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Abstract
One of the essential tasks of non-destructive testing is to detect a crack in a specimen. It is well
known that a component with a crack exposed to a harmonic excitation of a given frequency
has a nonlinear response as a function of the excitation amplitude. The focus of this paper is the
numerical modelling of this phenomenon using the finite element method with the consideration
of the contact constraint at the crack interface. In addition to the nonlinear transient dynamic
problem solved by explicit time integration, a more efficient procedure based on the harmonic
balance method is developed. The results of numerical simulations are also compared with
experimentally obtained data.

1. Introduction
Non-destructive testing is often used to detect defects in solids, but the commonly used lin-
ear ultrasonic techniques based on reflection, transmission, and scattering, are not sensitive to
closed cracks. However, damaged solids, together with other microheterogeneous media such
as rocks and concrete, containing such cracks, exhibit strong nonlinearities [3] when a reso-
nant frequency depends on the amplitude of the ultrasonic signal. The underlying microscopic
mechanism of these nonlinearities is still poorly understood [1], thus the numerical simulations
are used to decode the effect of clapping or frictional contacts of the crack interfaces or the
effect of the crack tip plastic zone. In addition, the comparison of numerical simulations with
experimental results can provide internal parameters and thus the complete characterization of
the defects.

Since the direct time integration method for computing the resonance of the sample is very
time-consuming, the new method based on harmony balance has to be developed. In this work,
we present this newly developed method and its comparison with direct time integration. Thus,
only the effect of clapping of crack interfaces is studied here.

2. Formulation
The problem of wave propagation in an elastic specimen with a crack can be formulated as a
linear elastodynamics problem with contact conditions. In particular, it is an initial boundary
value problem where the governing equations are partial differential equations of hyperbolic
type expressing the balance of linear momentum. For the spatial discretization, we use the
finite element method, which leads to a system of nonlinear ordinary differential equations of
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the form
Mü + Ku + fc(u) = fext(t), (1)

where M is the mass matrix, K is the stiffness matrix, fext is the vector of external forces, fc is
the vector of contact forces and u is the vector of nodal displacements. Contact constraints are
enforced by the so-called bi-penalty method [2].

The time discretization of the semi-discrete system (1) is preferably performed by the cen-
tral difference method (CDM), which is particularly suitable for fast phenomena such as the
wave propagation problem. In addition to the undeniable advantages of this method, such as
simplicity and efficiency of numerical implementation, the main disadvantage of the CDM is
the conditional stability, which dictates the maximum allowed time step size. In this work, we
use the leapfrog variant of the CDM, whose integration scheme is

an = M−1(fnext − fnc −Kun), (2)

vn+1/2 = vn−1/2 + an∆t, (3)

un+1 = un + vn+1/2∆t, (4)

where the acceleration an ≈ ü(n∆t), velocity vn±1/2 ≈ u̇(n∆t ± 1/2∆t), and displacement
un ≈ u(n∆t) are obtained by integration at discrete time points {0,∆t, 2∆t . . . , N∆t}. The
system of equations is completed with initial and boundary conditions.

Zero displacement and velocity fields are often considered an initial condition, but this is not
compatible with harmonic excitation. Therefore, there is a transient phase in the early stages
of time integration before the system response stabilizes at the expected harmonic response.
It necessitates considering a sufficiently long simulation time for the solution to transition to
steady-state harmonic oscillation. In addition, the finite element mesh must be sufficiently fine
to capture waves of the desired frequency correctly. All these limitations impose enormous time
demands on the numerical solution.

A promising alternative that could reduce the described drawbacks of the direct time inte-
gration solution is the harmonic balance method (HBM) [4]. This method offers an alternative
to time-domain methods for analyzing problems where a steady-state, periodic solution to the
equation of motion is sought. The idea of this method is to represent the time history of the
displacement function, u(t) by its frequency content, U(ω), to obtain a set of equations for the
corresponding frequencies (harmonics) and iteratively balance the related terms. Specifically,
the displacements and forces are represented as truncated Fourier series with N harmonics

u(t) ≈
N∑

n=1

Une
j(ωnt), fc(t) ≈

N∑

n=1

Fn
c e

j(ωnt), fext(t) ≈
N∑

n=1

Fn
exte

j(ωnt), (5)

where Un, Fn
c , Fn

ext are the vectors of Fourier coefficients. Substituting these expressions into
the equation of motion, (1), and balancing the harmonic terms yields, for a harmonic n

(
K− (nΩ)2M

)
Un = Fn

c + Fn
ext. (6)

As the Fourier coefficients, Fn
c , of the non-linear contact forces are functions of the displace-

ments, equation (6) is non-linear and must be solved iteratively. This iteration process can be
sketched as

U(ωn)(k)
FFT−1

−→ u(t)(k) → fc(t)
(k+1) FFT−→ Fc(ωn)(k+1) → U(ωn)(k+1). (7)

While the CDM approach achieves steady-state solutions by direct time integration, the HBM
solves systems of nonlinear equations. For large problems, HBM proves to be a more efficient
approach.
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3. Numerical example
As a numerical example, we studied a resonant frequency of a plate with the dimension of
100 × 20 × 8 mm3 with a V-shaped crack in the middle of the longest side of the sample. The
crack length is half of the plate, and the aperture of the crack on the side of the plate is 1µm,
see Fig. 1. Plate was made from 2024 aluminium alloy with Young’s modulus of elasticity
E = 73.1 GPa, Poisson’s ratio ν = 0.33 and density ρ = 2.78 g.cm−3. The sample was modelled
by 20 × 100 plane strain 4-node elements. The direct integration was provided by the central
difference method with time step 7 × 10−8 s. Contact pairs were prescribed on the clapping
crack interfaces, and the bi-penalty method was used to simulate the contact nonlinearity.
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Fig. 1. Sample geometry (left) and loading (right)

During the first 10 ms of computation, on one side of the sample was applied force signal
shown in Fig. 2 causing the longitudinal waves. It is the linear chirp signal with frequencies
from 20 kHz to 23 kHz modified by the cosine-tapered window on the first and last sixths of
the signal. Next 50 ms, the sample was already unloaded. The displacement in the longitudinal
direction was captured in the middle of the opposite face to loading, see Fig. 3. After the fast
Fourier transform (Fig. 4), the resonance frequency was stated (here, it is 21.978 kHz).
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Fig. 2. Input loading signal is a chirp with frequency from 20 kHz to 23 kHz

4. Conclusions
The direct time integration method for the determination of the resonance frequency is time-
consuming. On the other hand, the harmonic balance method proves to be more efficient, espe-
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Fig. 3. Computed displacement
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Fig. 4. Fast Fourier transform of the displacement signal

cially for large 3D problems with a fine finite element mesh. It is because the demanding time
integration with a small time step is replaced by a sequence of iterative solutions of systems of
nonlinear equations. Moreover, due to the orthogonality of the basis functions of the Fourier ex-
pansion, the process can be parallelized efficiently. The proposed methodology will be further
employed to study the behavior of a crack subjected to harmonic excitation.
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