University of West Bohemia
Faculty of Electrical Engineering

Department of Electronics and Information Technology

Master’s thesis

Power Analysis on FPGA

Plzen 2021 Jessica Fenclova

ZAPADOCESKA UNIVERZITA V PLZNI

Fakulta elektrotechnicka
Akademicky rok: 2020/2021

ZADANI DIPLOMOVE PRACE

(projektu, uméleckého dila, uméleckého vykonu)

Jméno a pfijmeni: Bc. Jessica FENCLOVA

Osobni cislo: E19NO057P

Studijni program: N2612 Elektrotechnika a informatika
Studijni obor: Elektronika a aplikovana informatika
Téma prace: Odbérova analyza na platformé FPGA

Zadavajici katedra: ~ Katedra elektroniky a informaénich technologii

Zasady pro vypracovani

Seznamte se s principy odbérové analyzy CMOS obvodil, zaméfte se na DPA (Differential Power Analysis)
a na modelovani prib&hd spotieby integrovanych obvodi v technologii CMOS.

1.

2
3.

4.
B,

Implementujte na platformé FPGA 1 rundu Sifry AES v synchronni varianté s podporou pro fizeni experi-
mentt (UART + controler).

Implementujte na platformé FPGA parametrizovatelné paralelné pracujici bloky rundy AES.

Provedte extrakci dat zpracovévanych 1 AES rundou na FPGA pomoci DPA (Differential Power Analysis)
a urcete SNR vlastniho méfeni.

Zkoumejte (kvantifikujte) vliv poétu paralelnich AES blokd na SNR.

V pfpadné dostatku casu prozkoumejte vliv poctu aktivnich kruhovych oscilétort na SNR.

Pro spravu zdrojovych textll a vyuZijte verzovaci systém SVN nebo GIT. Implementaci a méfeni podrobné
zdokumentujte.

Rozsah diplomové prace: 40 - 60 stran
Rozsah grafickych praci: podle doporuceni vedouciho
Forma zpracovani diplomové prace: tisténa/elektronicka

Seznam doporucené literatury:

1. Pinker J., Poupa M.: Cislicové systémy a jazyk VHDL. Monografie, BEN - technicka literatura, Praha, 2006,
352 s. ISBN 80-7300-198-5.
2. https://eprint.iacr.org/2018/676.pdf

Vedouci diplomové prace: Doc. Ing. Martin Poupa, Ph.D.
Katedra elektroniky a informacnich technologii

Datum zadani diplomové prace: 9. fijna 2020
Termin odevzdani diplomové prace: 27. kvétna 2021

———

>

Doc//mg. Jifi Hammerbauer, Ph.D.
vedouci katedry

//{fx

s i l e | \
- R \

| S P 2

T el
LR R el gr !
Lo ix I /)

- e

\.2s el

DN L

V Plzni dne 9. ¥jna 2020

Dodatek k zadani Diplomové price

Fakulty elektrotechnické ZCU v Plzni v akademickém roce 2020/2021

V souvislosti s krizovym opatfenim vyhlafenym dle krizového zdkona a mimofadnym opatfenim vydanym
podle zvlastniho zékona, na zakladg kterych doglo k omezeni osobni pfitomnosti studentii v prostordch
vysoké Zkoly a s ohledem na nutnost vyuziti infrastruktury FEL pfi vypracovani kvalifikaéni prace v obdobi
tohoto omezeni a v plné mife s pfihlédnutim k realizovatelnosti prace po dobu trvani tohoto omezeni se
v intencich ¢l. 54 odst. 4 Studijniho a zkuebniho fadu Zapadodeské univerzity v Plzni upravuje zadani price
takto:

Body 1. a 2. ziistavaji v plném rozsahu.

Bod 3. Proved'te extrakci dat zpracovavanych 1 AES rundou na FPGA pomoci DPA (Differential Power
Analysis) a uréete SNR vlastniho méfeni.

je zménén na:
3. Ovéfte funkci navrzeného fedeni a navrhnéte experiment.
Body 4. a 5. jsou zrudeny.

Pro spravu zdrojovych textd vyuZijte verzovaci systém SVN nebo GIT. Implementaci podrobné
zdokumentujte.

Beru na védomi a souhlasim.

V Plzni dne 16. 3. 2021 V Plzni dne 16. 3. 2021

¥ Digitélné podepsal Ing.
|n9- Ma rtln Martin Poupa, Ph.D.

Datum:2021.03.16
POU pa! Ph'D‘ 16:31:50 +01'00"

Vedouci prace: Doc. Ing. Martin Poupa, Ph.D. Studentka: Be. Jessica Fenclova

V Plznidne 7 7 -03- 0N

Digitalné podepsal prof.
prOf‘ Ing' Ing. Zden&k Peroutka,

[Cusiinl 2 Zdenék Ph.D.
feoe i Datum: 2021.03.22
Peroutka, Ph.D. gg.55:35 +01'00°

prof. Ing. Zdené&k Peroutka, Ph.D.

dékan Fakulty elektrotechnické
Zapado&eské univerzity v Plzni

Declaration

I hereby declare that this master’s thesis is completely my own work and
that I used only the cited sources.

Plzen, 27th May 2021

Jessica Fenclova

Abstract

Uncovering the vulnerabilities of secure systems that may be susceptible to
side-channel attacks, has been of interest to many researchers. There is a
growing concern for the vulnerability of devices processing confidential data
to side-channel attacks, which steal data by measuring the physical proper-
ties of the device. This master’s thesis deals with the design and implement-
ation of an experimental system made readily available for statistical power
analysis experiments — specifically for correlation power analysis (CPA) and
differential power analysis (DPA). The experiment’s goal is to obtain metrics
such as signal-to-noise ratio (SNR), that will give insight into the system’s
vulnerability. The resulting design is user-friendly and enables measuring in
a routine in many cycles for obtaining a fair amount of experimental data.

Abstrakt

Tato diplomova prace se vénuje navrhu a implementaci experimentalniho
systému, na kterém se provadi odbérova analyza — konkrétné korela¢ni odbé-
rova analyzu (CPA). Pro hlubsi porozuméni dané problematiky je poskytnut
popis teorie ttoklu postrannimy kanaly a odbérové analyzy. Prikladem za-
bezpecovaci Sifry je Advanced Encryption Standard (AES) algoritmus, na
kterym se provadi odbérova analyza. Obrys navrhu experimentalniho sys-
tému je uveden spolu se simulaci itoku na AES algoritmus. Na zavér prace
je navrzen postup takového experimentu, ktery by provéril stupen bezpec-
nosti systému na zdkladé metriky, jako je signal-to-noise ratio (SNR).

i

First and foremost I would like to thank my supervisor, Ing. Martin
Poupa, Ph.D. for sharing the expertise necessary for the realization of this
thesis. I would also like to thank Ing. Jan Bélohoubek for advice and
guidance. Finally, I am deeply grateful to my family for their unwavering
support throughout my studies.

il

Contents

1 Introduction

2 Theoretical Background

2.1 Side-channel Attacks
2.1.1 Acoustic
2.1.2 Opticalo
2.1.3 Timingo
2.1.4 Cache
2.1.5 Electromagnetic
2.1.6 Power
2.2 Methods and Power Models
2.2.1 Overview of Countermeasures
2.2.2 CMOS Power Consumption
223 DPA . ..
224 CPA
2.3 The Advanced Encryption Standard
24 FPGA

3 Design and Implementation

3.1 Simulation and Models
3.2 Architecture of Experimental System
3.21 UART Block
3.2.2 Controller Block
3.2.3 SboxBlock
3.3 Proposed experiment L

4 Conclusion
Bibliography
A Appendix

B Appendix

v

—

© 00 1 O UL UL i W W w NN

18
18
22
23
25
28
31

33

34

37

38

List of Figures

2.1
2.2

2.3
24
2.5
2.6
2.7

3.1

3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9

CMOS inverter. Source: [23]
Two power trace subset averages with a difference between
them. Source: 23]o
AES outline.o
Outline of AES steps.
The FPGA Design Flow.
The internal structure of FPGA. Source: [6]
An example image of the Stratix IV GX FPGA on silicon.
Source: [1]o

Plot with rendered number of power model matches for every
variation of the key. The maximum number of matches is
indicated by a different color, here it is 100 matches.

The top-level block diagram of the experimental system.
The diagram of the Rx UART state machine.
The diagram of the Tx UART state machine.
The diagram of the controll state machine.
The diagram of the state machine for activating the Sboxes.
The diagram of the state machine for setting the bits in the
LESR. . . .
The diagram of the measure state machine.
The block diagram of the Sbox block.

3.10 The example setup for conducting the experiment.

B.1 Image of the DE2 board with the Cyclone II FPGA. Source:

] e

List of Tables

3.1 Table of possible commands.
3.2 Table of generated bits of 7 states of the LFSR.
3.3 Table of used logic elements by entities in design.

vi

Abbreviations

AES
CMOS
CPA
CPLD
CPU
DPA
DUT
EM
FPGA
LFSR
LSB
LUT
MSB
MTD
PC
SNR
UART

Advanced Encryption Standard
Complementary Metal-Oxide Semiconductor
Correlation Power Analysis

Complex Programmable Logic Device
Central Processing Unit

Differential Power Analysis

Device Under Test

Electromagnetic

Field-Programmable Gate Array

Linear Feedback Register

Least Significant Bit

Look-up Table

Most Significant Bit

Measurements to Disclosure

Personal Computer

Signal-to-Noise Ratio

Universal Asynchronous Receiver-Transmitter

vii

Keywords

Side-channel attacks, DPA, CPA, AES, FPGA, SNR

viii

1 Introduction

The goal of this project was to design and implement an experimental sys-
tem, which may be used for power analysis experiments. Such experiments
would aim to uncover how vulnerable the Advanced Encryption Standard
(AES) algorithm is to a power analysis type of side-channel attack. The
core of the experimental system is one AES Sbox block because we want
to measure the power consumption of the Sbox operation. For obtaining
enough information it preferably will be possible to perform measurements
with a large number of defined inputs, and it must be possible to control the
system on the FPGA for thousands of iterations in an unattended manner
(fully automated). The purpose of measuring the power consumption and
analyzing the power traces is to find metrics, that uncover the level of secur-
ity vulnerabilities and thus help to design stronger more secure hardware.

The first chapter of this thesis begins with the background information
about side-channel attacks and the experimental system on which the pro-
posed experiment will be performed, including the hardware, software, and
associated algorithm. The chapter continues with the types of side-channel
attacks. Following the description of side-channel attacks is a comprehens-
ive description of statistical power analysis methods. Since the experimental
system was designed for an attack on the AES Sbox, the AES cipher is char-
acterized in detail in the corresponding section. The chapter concludes with
an explanation of how FPGA’s work and how to design architecture for
FPGAs.

In the second chapter, the experimental design and simulation of the
experiment are discussed in detail. The first step of the design of the ex-
periment is to simulate data and run the CPA to examine properties of the
analysis, and then use the program for CPA on realistically measured power
traces. The simulation is explained in this chapter and a visualization of
the results is offered. The setup of the experimental system was designed
so that experimental measurements could be easily conducted manually or
automatically. Meaning the measurement will be possible to either manually
conduct or may be done in a routine with the help of scripts. In conclusion,
the last section proposes experimental measurements, including the setup
for the measurements and the individual steps. The expected result of the
experiments could be the calculated Measurements to Disclosure (MTD) of
the design.

2 Theoretical Background

With the rise of the Internet of Things (IoT) and smart homes and buildings,
the danger of malicious attacks on electronic devices is growing. The desire
for secure systems which are not vulnerable to hacking is understandable.
Attackers have more distinct options when it comes to attacking hardware
compared to attacking software. These options are for example on-chip de-
bugging, exposed serial ports, memory extraction, and more. Many experts
are testing what these secure systems can hold up against. It is of interest to
uncover the weaknesses so as to enforce better security. One of the most used
classes of hardware attacks are side-channel attacks. Side-channel attacks
use leaked information to for example uncover secret keys (see section 2.1).
Following this opening, several types of side-channel attacks are character-
ized. Our experiment will focus on DPA side-channel attacks. Specifically,
we explore how DPA is used to attack the AES cipher, which is the most
common cipher used in today’s secure systems. For a better insight into the
AES cipher the third subsection explores this topic.) The hardware chosen
for the implementation of the experiment was a Cyclone II FPGA board
from Altera. There is also a brief overview of FPGAs and the basic concept
of programmable logic at the end of that chapter.

2.1 Side-channel Attacks

The disadvantage of side-channel attacks is the necessity of access to the
device that encrypts information. Thus we can deduce which devices are
really in danger of attacks-embedded systems. Embedded systems that are
vulnerable to side-channel attacks include remote car keys, smart cards,
smartphones, or IoT devices. Practically almost every smartphone with a
microphone or computer with LED indicators can become susceptible to an
attack. Published papers about attacks on hardware between the years 2008
and 2015 include [10], [17], [11], [15], [18].

Physical attacks become more of an issue with every new device, such
as smart appliances. The ways of attacking a device include fault injection
(intended fault causing a change in behavior), physically modifying the hard-
ware, and listening in on leaked information, this is known as a side-channel
attack. Side-channel attacks exploit information that is leaked from the
system when the system executes cryptographic operations. Side-channel
attacks are only passive observations. In addition, there are invasive attacks

when something is sent to a device. Side-channel attacks are some of the
most intriguing types of attacks on hardware because they leave no tracks
behind (no evidence) and may not modify a system while it’s computing.
Thanks to the affordability of devices (oscilloscopes, multimeters, sensors,
and microcontrollers), side-channel attacks are now made available to the
general public. Side-channel attacks are inconspicuous because they allow
hackers to bypass hardware and software security countermeasures, refer to
[18] for more information. The following types of side-channel attacks are
defined by the type of physical quantity being measured among a few other
attributes.

2.1.1 Acoustic

Acoustic attacks use the leaked information from the sound produced during
a computation. Different keys on keyboards make different sounds so record-
ing the sounds may help with uncovering the data entered. It is possible to
reconstruct documents by using a microphone to measure the sound made
by print heads of an inkjet printer. Adding white noise can countermeasure
the attack by masking the sounds of individual keypresses, more information
about mitigating acoustic side-channel attacks can be found in [2].

2.1.2 Optical

Secret data can be read by visual recording using a high-resolution camera,
for example the reading of a small number of photons emitted by transistors
as they change state. Another example is monitor eavesdropping. It works
by observing a monitor. Attacks can be in the form of using an infrared
camera, which looks at heat traces on keys that have been pressed to deduce
the pin code of a bank card. In a more sophisticated optical attack lasers
can be used to sample mechanical energy which is produced by keystrokes.
The authors explain in [3] that by flashing a laser beam at a computer’s
case while the keys are stroked, light is reflected back. The reflected light is
analyzed similarly as sound would be to deduce secret information.

2.1.3 Timing

Timing attacks are based on measuring the time it takes for a unit to perform
operations. This information can lead to partial or entire knowledge of
the secret keys. Timing attacks can either be instruction-related or cache-
related (described in the next subsection). Instruction-related timing can

mean anything from conditional jumps to complicated operations - integer
division, running shift and rotations in a loop, multiplication run in a similar
way as division. Even string comparison is insecure when implemented as
a loop comparing characters one by one. This implementation of string
comparison is insecure because if the for example third characters do not
match the loop would break and thus take a shorter time to process. Crypto
algorithms take slightly different amounts of time to process different inputs.
There are vulnerable encryption algorithms to timing attacks, these include
RSA, ElGamal, and Digital Signature Algorithm. For example, by carefully
measuring the amount of time required to perform private key operations, an
attacker might find factor RSA keys or fixed Diffie-Hellman exponents. In
RSA the square-and-multiply algorithm execution time directly correlates
with the number of ones in the key. If a unit is vulnerable, the attack
is computationally simple and often requires only known ciphertext. To
prevent the leakage of information about the pattern in execution time, the
time must be fixed to a constant period regardless of the inputs.

2.1.4 Cache

Attacks based on the ability to monitor cache memory accesses. Cache
memory is smaller but faster memory used as a buffer between the main
memory and the CPU. Its purpose is to make frequently requested data from
the main memory available much faster to the CPU by storing the copies
of this data (mapping the main memory data). There are several caches in
a system labeled by the corresponding level, for example, level 1, 2, and 3
cache. The LLC (Last Level Cache) compared to higher-level cache, like L1
and L2 is a good target for side-channel attacks because of properties such
as cross-core, inclusiveness, and high-resolution. Cache-based vulnerabilities
in CPUs deemed catastrophic are called Meltdown and Spectre and were
discovered in 2017. They allow an attacker to leak memory contents by
exploiting techniques for speeding up computation - speculative execution
and caching.

In [24] a cache attack called flush-reload was used to get the number of
items in a user’s shopping cart on an e-commerce website. These attacks
targeted shared physical systems for cloud platforms. During the flush in-
struction, the content is synchronized. Evict reload attack works in a similar
way to flush-reload with the difference that the evict method will remove
the content from the L1 cache. The evict-reload attack is applicable where
the flush instruction doesn’t exist. Another cache attack called Prime and
Probe fills the cache with data and when the victim executes (accesses the

lines) but misses so some of the data is evicted. The attacker measures the
time it took to access the data (cache hit, miss) in the cache and estim-
ates what cache lines were loaded knowing that it takes longer when lines
are evicted. Prime and probe attacks do not need page duplication like the
flush-reload attack. Smartphone cache memory has a different architecture
than computer cache, this first was a challenge but it has been overcome,
and as the authors of the published paper [13] demonstrated it can also be-
come a target of an attack. Using attacks as the cache attacks mentioned
earlier they were able to monitor tap and swipe events, as well as keystrokes.

2.1.5 Electromagnetic

Electromagnetic attacks are based on measured EM signals due to currents
flowing in electronics. When varying current flows through (for example)
a transistor, a magnetic field is created and emits EM waves. These waves
can be sampled at a given clock rate. The clock rate can be different from
the encrypting device because operations can take several clock cycles to
complete. An attacker will usually use EM measurement in conjunction with
other side-channel attacks, such as DPA. With EM attacks it is possible to
target specific areas of the chip by positioning a small antenna. Attacks
can be done from a distance, but due to inherent system noise, it may be
complicated. For example, an attack is receiving radio frequency with an
antenna near a computer screen and can recreate the contents on the screen.
An induction coil can also be used to measure the electromagnetic radiation
a circuit emits, such a method is described in [4].

2.1.6 Power

State-of-the-art cryptographic algorithms are typically implemented in integ-
rated circuit chips which consist of numerous logic gates composed of CMOS
(Complementary Metal-Oxide Semiconductor) transistors. When transist-
ors switch on and off to represent the gates logic function (0 switching to
1 or vice versa), they draw electric current from the chip’s power supply.
The capacitance properties of components also affect the total power con-
sumption. The power analysis attack is based on the fact that the overall
chip’s power consumption varies over time reflect the switching activity of
the logic gates.

The attack is performed with an oscilloscope by sampling the voltage
drop on a resistor inserted in series with the power or ground input. With
the knowledge of the resistance we can calculate the power consumption

with the formula:

Ve=1Iut)-R [V] (2.1)

The power trace is time-dependent but may be unclean. Then digital
signal processing may be applied to improve the quality of the obtained
power traces, from which you will once again be able to directly guess the
key or at least derive it with the help of additional methods.

Power attacks are categorized into three subtypes. The most widely used
are: SPA (Simple Power Analysis), DPA (Differential Power Analysis) and
CPA (Correlation Power Analysis). They were introduced to the open com-
munity in 1998. SPA is simply the observation of measured power, but DPA
and CPA are statistical methods of power analysis. SPA attacks have been
used to break encryption algorithms, for instance, the RSA algorithm by
showing the measured power differences between multiplication and squar-
ing operations used in modular exponentiation, [12]. SPA can be applied on
systems with large changes in power consumption or timing, DPA or CPA
can be used where changes are too small to be observed directly. Compared
to SPA, DPA and CPA are more powerful and more difficult to prevent.
It relies on statistical tests to make out the signals of interest from noise
obstructed power signals of a device.

We will pore over how statistical methods of power analysis work in
the next subsection. The performance of the attack can be affected by the
signal-to-noise ratio (SNR), which is defined even in decibels as follows:

V signa
SNR = # (2.2a)
Varsignal

Where Varg;gnq refers to the variance of the signal and Var,gs. to the vari-
ance of the noise, which does not correlate to the secret data. Therefore
SNR can be used to countermeasure the attack by eliminating the relation-
ship between the leaked information and the secret data. This is done by
increasing the noise or by decreasing the signal. Randomization and equal-
ization techniques can be used to decrease the SNR, both characterized in

[5]-

2.2 Methods and Power Models

As mentioned in the introduction to power analysis attacks, DPA and CPA
attacks have a statistical approach to the analysis and can apply error cor-

rection techniques to extract information correlated to secret keys. They
are noninvasive side-channel attacks, usually effective as black-box attacks
for extracting secret keys. The power consumption of devices executing en-
cryption will vary depending on what operations take place. The power is
equivalent to the number of bits changing or the number of bits being set
to one. DPA and CPA come into use when measurements contain too much
noise for a SPA attack. To measure the power of a device an oscilloscope
may be used as mentioned before in 2.1.6 or by putting an H-probe over
the chip, measuring the magnetic field that the current going through the
chip generates. Though the measurement would be considered as electro-
magnetic analysis, power analysis and electromagnetic analysis are based
on similar principles. For the measurements to have good time consistency
and the traces to be well aligned a trigger signal is often used to indicate to
the oscilloscope the beginning of the operation. The approaches to making
educated guesses are described in 2.2.3 and 2.2.4. Guessing the key and cor-
relating the assumption with the actual power consumption measured will
have a linear relationship (in CPA).

Compared to cryptoanalysis and other brute force methods of extracting
secret information DPA and CPA are much faster methods. It may only
take minutes or days to guess the correct secret key. As mentioned before
they are non-invasive, they do not leave any evidence (trace). Attackers can
steal confidential information without being detected. Therefore, security
countermeasures must be taken to prevent such attacks.

2.2.1 Overview of Countermeasures

The most effective and least difficult way to prevent side-channel attacks is
to design a protocol that will limit the number of transactions that can be
performed with a given key, similar to a password timeout. For example, a
key can be used only 1,000 times before it is destroyed or replaced with a new
key. This would eliminate most attempts at statistical power analysis since
DPA and CPA require a statistically significant number of data points in
order to identify the signal. Some other options for countermeasures include
making the cryptographic device physically secure, and decreasing SNR — the
lower the ratio, the greater the number of traces needed to perform an attack.
Introducing noise such as magnetic radiation and thermal noise can help with
SNR. Smart cards add another trace, a complementary line that switches in
the opposite direction than the power line. Finally, countermeasures may
also include loading registers beforehand, so that there is no loading leakage.

2.2.2 CMOS Power Consumption

The building block of digital circuits is the CMOS transistor. As mentioned
before in 2.1.6 during computational operations bits are set and reset by the
switching of the CMOS transistor. In this subsection, the power consump-
tion of CMOS transistors will be explained in greater detail.

The power consumption is composed of static power and dynamic power.
The static power can be calculated with equation 2.3 and is described as the
power consumption when the transistor is switched off but there is still cur-
rent leakage. With the reduction of the size of the transistors, the transistor
is more prone to current leakage due to a physical phenomenon called tun-
neling. The dynamic power is the sum of transient power and capacitive
load power as expressed in equation 2.4. Where the transient power - Pr,
refers to the amount of power used for changing from a logic 0 to a 1 and
vice versa. The transient power is linked to the internal capacitance of the
CMOS. This is better explained using a CMOS gate such as an inverter gate
shown in Figure 2.1. When the C} capacitor’s output switches from logic
0 to logic 1, Cp, is charged by a current from source V. The switching
power consumed by the gate is proportional to Cp, - (Vgq)? - f - N, where N
is the activity factor of 0 to 1 transitions in one clock cycle, and f is the
clock frequency of the circuit. When the output switches from 1 to 0, Cp,
discharges and ideally there is no current flowing from the power supply. Cpq
is the power dissipation capacitance. However, during both transitions (0 to
1 and 1 to 0) a short-circuit current flows from Vg, to the ground while both
transistors are conducting. The 0 to 0 and 1 to 1 transitions don’t cause
power variations. So if we measure the power consumption on the power
line, 0 to 1 and 1 to 0 respectively transition causes the biggest variation in
consumption.

The capacitive load power Py, refers to the power consumption to charge
the load capacitance and is proportional to Cpg - (Vaq)?- f - N. Of course the
more often the CMOS switches modes, the more often it will draw current
from the supply. We are interested in the dynamic power consumption which
coincides with operations being done on the digital circuit.

Ps = Ig- Vi (2.3)

Pp=P,+Pr=(Cpy+0Cr)- (Vag)* f-N (2.4)

Vid _Via Via Vad

{E 0 \ El‘\ A % LDE |
0 :II: 0 O\ 1 1 0 1 % 1
[:_ I.*L [: Ci CI [:_ IL

L

Figure 2.1: CMOS inverter. Source: [23]

2.2.3 DPA

With some insight into how statistical power analysis works we may now
characterize a few DPA attacks. To begin with, let us describe the most
used Difference of Means (DoM). The approach of DoM is that we firstly
presume that a certain bit for example the LSB of data will be a certain value
such as 1, then it is assumed that the expected power consumption of the bit
will be higher than if the bit had the value 0. (This is a sort of power model
denoted as least significant bit.) After measuring the power consumption
it turns out to be true, we can extract the secret key. Since changes in
power consumption are very small, we need to measure a large number of
power traces and then split the traces into two subsets. Half are the bits
with the value 1 and the other half with the value 0. Then we calculate the
average of each subset and then the difference between the average of the first
subset and the second subset. The difference in means between each subset
allows us to deduce whether the proposed assumption has any significance.
In [23] the authors mention that for DoM the power trace values sampled
at a specific point in time are similar to a normal probability distribution.
When both subsets are plotted they are still similar to a normal distribution
but with different means, shown in Figure 2.2. If the difference of means is
close to 0, then there is no distinction between the two subsets. If the sets
are correlated, then the difference will be a non-zero number. The non-zero
number is considered as significant when it is above the threshold value for a
strong correlation. Even tiny distinctions can be seen if we measure enough
traces. If there is noise in the measured traces it will effectively cancel out
during the averaging. The effect denoted ghost peaks can cause errors in
defining the correct key. Ghost peaks are unwanted peaks in traces that may
appear for incorrect key guesses. The reasons why ghost peaks cause errors
are explained in further detail in [7]. Suggested solutions to ghost peaks

100 12 140

-

= | o
(=1 =
(=1 =]
1 =]
o e
= o
= -]
-3 =
=% P A
=, =3
o =]
T | =

1 ' ra
= =
(=1 -
LI iy
- -

100 120 140

Figure 2.2: Two power trace subset averages with a difference between them.
Source: [23]

are described in [19] and [8]. Noise may cause other complications with the
analysis thus noise is used as a countermeasure. Noise can be introduced into
the signals by varying clocks, adding random wait states, random data, or
dummy operations. There are ways to improve the data collection and DPA
analysis processes to reduce the number of samples required and to evade
countermeasures. By considering the significance of the variations instead
of their magnitude is one way. Then maybe fewer than 15 traces from most
smart cards are needed to find a secret key as mentioned in [12].
High-order DPA implicates looking at power consumption between sev-
eral sub-operations of the encryption algorithm. High-order DPA may be
used to correlate information between multiple cryptographic sub-operations.

2.24 CPA

The next method is the correlation power analysis (CPA). It extracts secret
information by finding relationships between characteristics of power traces
and a hypothesized power model. If these two variables correlate it means
we are capable of predicting the correct secret key if enough power traces
are gathered. The power models used for CPA are Hamming weight power
model and Hamming distance power model, both described in [23]. Ham-
ming weight is the number of non-zero bits. Hamming distance expresses the
number of corresponding bits between two words. These models are correl-
ated with the actual power consumption of the device. They are correlated
by calculating the Pearson correlation coefficient between the modeled and
actual power consumption. This is done for every data point in the traces.

10

The Pearson correlation coefficient is a helpful tool for finding the relation-
ship between the guessed power model and the measured traces. The defini-
tion of the Pearson correlation coefficient is in [16]. It is used to find patterns
in noisy signals. In CPA attacks the pattern is the calculated power model
and in a noisy signal which is the measured power trace. The advantages of
CPA as to DPA are robustness, efficiency and a lower number of measured
traces. With CPA, even if part of the measurement is incomplete, partial
correlation can still give indications of secret information. Some counter-
measures for CPA are described in [7]. These countermeasures are more or
less the same as the countermeasures against DPA attacks. To give a few
examples some countermeasures incorporate desynchronization in the exe-
cution of the process in order to misalign traces. Desynchronization can be
anything from inserting fake cycles to inserting random delays. Although the
attacker may bypass this by applying appropriate signal processing. Mul-
tiple countermeasures should be applied for them to be effective [7].

2.3 The Advanced Encryption Standard

AES (The Advanced Encryption Standard) originally called the Rijndael, is
a symmetric block cipher. A symmetric cipher uses the same key to encrypt
plain text data and to decrypt the data as well. Plain text is encrypted
with the key and algorithm and the ciphertext is decrypted with the reverse
process. The input data is encrypted in blocks of 128 bits (16 bytes). The
algorithm arranges the 16 bytes in the form of a 4 x 4 array of bytes. FEach
array or block is encrypted separately using exactly the same steps and in
so-called rounds. If the plain text data is a different length than 16 bytes,
then padding is added to it. Meaning if the data is 368 bits long, 2 bytes
of padding are needed to make the data divisible into blocks of 16 bytes.
The number of rounds is given by the length of the key. The encryption has
substitution and permutation. SubBytes are the substitution and Shiftrows
is the permutation. Together ShiftRows and MixColumns provide diffusion
in the cipher. Diffusion means that the relation between output bits and
input bits should be very complex. The complete change of ciphertext when
a bit in the plain text is changed should be unpredictable so as to hide the
relationship between ciphertext and the plain text.

As defined in [9] a round of AES consists of the following four sub-
processes:

1. SubBytes is the first step in a round of the AES, which takes the input
block of 16 bytes and replaces each byte with another byte depending

11

Key — AES encrypt ——

Cipher
h1r3jto...

Figure 2.3: AES outline.

on the key. The substitutions are usually presented as a Look-up table,
in the case of AES the S-box. The values in the S-box are in 16 bytes
by 16 bytes matrix and are interpreted as polynomials over GF(2).
GF(2) is the Galois field consisting of the elements 0 and 1.

. Shift Rows as the name implies shifts the rows of the bytes. The first
row is not shifted. The second row is shifted by 1 byte to the left.
The third row is shifted by two bytes, and the final row is shifted by
3 bytes. The bytes are not thrown away, they are rotated to reappear
on the right.

. Mix Columns is a simple name for a complex operation. The trans-
formation is done for each column using a mathematical function.
The mathematical function consists of matrix multiplication and dot
product. Calculating the dot product between two Galois fields can be
simplified by using pre-calculated look-up tables. A simple way to ex-
plain the operations is that each column of the block is multiplied with
a fixed polynomial. The fixed polynomial is a(x) = 323 + 2? + = + 2.
After multiplying with the fixed polynomial the result is multiplied
modulo with z* + 1.

. Add Roundkey takes each block and executes the XOR (exclusive or)
operation with the round key.

The number of rounds or simply put the number of times the previous

steps are repeated is given by the length of the key. For a 128 bit key, the

procedure will have 10 rounds, for 192 it will have 12 rounds and for 256 it

will have 14 rounds. In theory the more rounds the more secure but slower

encryption we get. So the most commonly used key length is 128 bits and
it is the fastest.

The key is expanded for every round. The key expansion also known as

the AES key schedule is used to derive a round key for every round. The key

expansion effectively encrypts the key itself. The operations that calculate

12

Initial Round Rounds Final Round

S T
Data \\ SubBytes SubBytes
e o P ShiftRows l
Key = expansion T litemne Ky ShiftRows
MixColumns l
IAddRoundKeyr»h1r3jt9...

Figure 2.4: Outline of AES steps.

the new expanded key are performed on a block of four bytes of the keys
generated so far. These operations are rotation, S-box, and Rcon. For the
Rcon operation, an index is needed. Rotation of the four bytes is to the left
by one byte and the byte on the end reappears on the right. After that, we
use an S-box once again to lookup the corresponding value to each byte and
change it for this value. The Rcon operation is simply 2 exponentiated to a
user-supplied value in Rijndael’s Galois field. There is another look up table
for Rcon that simplifies this operation. So on the MSB an exclusive or with
2 to the power of i(rcon(i)) is done. For a 128 bit long key we need 10 new
keys for the 10 rounds. Together with the original 16 bytes of key, we will
have 176 bytes, it is an iterated process with the index ¢ being incremented
every iteration.

There is no point in trying to brute force attack this cipher. Brute
force attacks try to guess the key by trying every possible combination of
the key. For the 256 bit long key there are 2256 possible combinations.
Quite a large number, with modern computation speed it would take a very
long time to break. If the world’s fastest supercomputer was used for the
computation it would take trillions of years. To give a better idea, here are
a few calculations.

If decryption time on a machine with Intel Core i7 is 128 MB/sec per
core and on a 4 core machine with hyperthreading (8 concurrent threads)
it comes to 1024 MB/sec, which is 230 bytes per second. So rounding it
down then a single high-performance PC can encrypt 22 blocks per second,
or can test the same number of encryption keys per second. To calcu-
late the number of keys that can be tested in a year, we use the now
known number per second and calculate for the number of seconds in a year
60 - 60 - 24 - 365025 = 31,557, 600. So then 2%6.31,557,600 = 2,117.8-10'? is
the result giving us the number of keys that can be tested, which is 2,117.8

13

trillion keys. If we calculate the number of years we would need for 225
number of keys, 22°°/2,117.8 trillion. That gives us 2.73 - 10%'. So it would
take us 27 trillion trillion trillion trillion trillion years or 27 - 10°°, the uni-
verse has existed 15 billion years, so only a fraction of the time it would
take. If we calculate in a similar way the time it would take the world’s
fastest supercomputer we get the result of about 27 - 10*® years. The result
when using all of the PCs on earth is 13 - 10*® years. If we were able to try
10 000 000 000 keys/second, it would take 3.4028 - 10*® seconds, 9.45 - 10*
hours and 1.08 - 10?! years.

Quantum computing is expected to break AES encryption, but it still
will take a while before this type of technology will be capable of it. But
there are other types of attacks that may have a chance at breaking through
AES encryption. The most likely attacks on AES are social engineering and
side-channel attacks.

2.4 FPGA

When considering what hardware platform would best suit our needs for ex-
perimenting with power analysis attacks, the FPGA (Field Programmable
Gate Array) board fits the needs the best, since it can be programmed and
reprogrammed as needed and it is fast. An FPGA is a digital integrated
circuit with large resources of logic gates and RAM blocks. As the name
implies FPGAs use a grid of programmable logic gates, and are arranged in
cells and wires running between cells in horizontal and vertical directions.
The basic building blocks of an FPGA architecture are LUT blocks, inter-
connections (switching matrix), I/O blocks, PLL blocks, DLL blocks, RAM
blocks, DSP blocks, PCIe, and DDR. The simplified internal architecture
of an FPGA is visualized in Figure 2.6. Logic blocks are commonly made
up of two LUTs, some multiplexers, two D-type flip-flops, and a full adder.
Compared to CPLDs they are internally based on look-up tables (LUTs) also
referred to as function generators. The LUT is the core of the FPGA ar-
chitecture which behaves as a sort of RAM with inputs behaving as address
lines and a truth table of output values corresponding to the inputs. In brief
combinational logic is implemented using the LUTs. I/O blocks are on the
periphery of the board and help with driving signals off the chip and with
reading input signals. These blocks are once again made up of logic gates
as seen in Figure 2.6. I/O block connections lead to the switching matrix
or the logic block. PLL (Phase Lock Loop) blocks are used to generate the
required clock frequency for signals. DSP (Digital Signal Processing) blocks

14

are essentially units for multiplication and other arithmetic operations.

To program an FPGA a hardware description language (HDL) is used.
VHDL and Verilog are popular HDLs both standardized by IEEE. (Pro-
gramming in a HDL is like writing a schematic that uses text to describe
components and their interconnections.) In VHDL every statement is con-
sidered for execution simultaneously. This is different from procedural pro-
gramming languages like C. Written VHDL code can have the following three
styles of modeling;:

1. The behavioral description defines the digital system’s behavior in an
abstract manner because it does not directly define a gate-level imple-
mentation. The behavioral style uses process statements and is used
for simulation and synthesis. Behavioral processes are typically locally
synchronous meaning processes write data with a certain clock cycle.
The sensitivity list of a process sets what events cause a change in the
logic. RTL (register transfer level) design is a specific behavioral style.
It is a gate-level implementation that may consist of registers or only
combinational logic.

2. Dataflow style describes a system as data dependencies that match
with a typical hardware implementation. This type of description uses
signal assignment statements and descriptions directly implying gate-
level implementations. Dataflow architectures do not operate at clock
cycles.

3. The structural model defines the entity as interconnected components.
This style is usually used to design a top-level entity whose architec-
ture describes the interconnection of lower-level entities. Structural
description does not state anything about functionality and is used for
simulation and synthesis.

Libraries for VHDL need to be added to the code. Libraries contain
definitions of data types and operators. Libraries may consist of several
packages. The package std__logic_ 1164 from the IEEE library is always
used in designs. The code is divided into sections. The entity specifies the
name of the circuit and the ports of the circuit for the interface between a
module and its surrounding environment. The next part of the code is the
architecture which is the description of the internal operation. To simulate
our entity we must write a test bench model for it, which is also written in
VHDL. The test bench must include an instance of the design under test.
The code is written in a way to test values set to inputs and monitor values of
output signals. For the simulation of the designed digital circuit programs,

15

Design
Verification
Design Entry
Behavioral
l V Simulation
Synthesis
l Functional
I Simulation
Implementation
v
Device Static Timing]
Programming Analysis

Figure 2.5: The FPGA Design Flow.

VHDL simulators are used. To name some examples, currently available
are ModelSim, ISE, and non-commercial simulators EDA Playground and
GHDL. To map and compile the design to a netlist, a synthesis engine also
comes into use, usually, the engine for synthesis is for a specific FPGA man-
ufacturer. Synthesis takes the code and translates it into the interconnection
of the circuit. The Quartus program is specifically for Altera boards. Vivado
is for mapping Xilinx devices. Synthesis and simulation are complementary
processes. The higher the design§s level of abstraction is the less control we
have over what is being synthesized by the compiler. However, working at
a higher level of abstraction facilitates design re-use in the future and thus
future designs will take less time. More about FPGAs in [21].

16

-
B O
B O
O
0
Df
D\.

O0OC 0 &
OO0(0O)0O 0 B
(OO0 |00 &
OO(0(0O)0O|0 &

mElEEEE

i
N
00
U{&(o)|mu
Tololm:
O
LI

Logic Blocks)
i + g + 1/O Blocks Block DSP

|

Programmable
Interconnect

Figure 2.6: The internal structure of FPGA. Source: [6]

= o, B Ea kA =AY f i o BB’ " g
©2011 Altera Corporation—Confidential Amm o

Figure 2.7: An example image of the Stratix IV GX FPGA on silicon.
Source: [1]

17

3 Design and Implementation

There are many ways to experiment with power analysis. The key is to
implement such a system that is effective and easy to use. The attacker
wants the process to be as simple as possible. With this in mind, an exper-
imental system was designed and implemented on an FPGA. Implementing
the system on an FPGA has several reasons. To give a few, it is possible
to determine if the logic is sequential or combinational. It is possible to ad-
apt the design to the required size, meaning we can try to reduce the logic
needed to perform a function. The design and implementation of the system
are described in the following sections.

Designing and implementing the architecture of an experimental system
consists of several steps. Starting with the design, the system is first mapped
with an RTL schematic, which consists of the major functional blocks and
the interfaces between these blocks. With the RTL level design in mind, it is
possible to decide how each block will function and can be represented with
the help of state machines. In the design of this thesis, the control block
takes care of the core functions of the system, such as controlling the flow
of communication between the system and exterior systems. It controls the
desired succession of operations for an experiment, which is defined by the
command bits sent from a PC. All other blocks are dependent on this control
block. It is practical to develop a system that can receive data and use the
data to execute operations accordingly. The next step in the design is its
simulation and synthesis. Most faults are uncovered during these procedures.
The final step consists of implementing and testing the system. All source
code and scripts! of the design are saved in a GitHub repository.

3.1 Simulation and Models

Creating a simulation of the power analysis attack can help with testing out
the techniques and understanding the theory behind these types of attacks.
The simulation of the CPA attack was done in the numeric computing envir-
onment Matlab. The simulation was used as a model of CPA for educational
purposes, without the calculation of the correlation coefficient for simplicity.
The data being processed are any defined values by the user or randomly
generated. In order to simulate the CPA attack it was necessary to design

'https://github.com/JessicaFenclova/Power_analysis_on_FPGA.git

18

https://github.com/JessicaFenclova/Power_analysis_on_FPGA.git

the AES encryption algorithm. The algorithm and how it works has already
been introduced and described in Chapter 2.3. The following text only deals
with the design of it in Matlab. The designed Matlab script consists of sev-
eral functions that can be divided into two groups, one group of functions for
the encryption itself and the second group for the simulation of the power
analysis. The functions in the Matlab script are the following, starting with
the main script:

e AES simul — the main function used to start and plot the simulation
e AES_encrypt — putting together the individual blocks of AES

e prediction — the predicted power model for the subbytes operation
e real pow_mod — simulation of the pseudo-real power consumption

e addroundkey — the add roundkey block of AES, just a XOR

e mixcolumns — the mixcolumns block of AES

o shiftrows — the shiftrows block of AES

« subbytes — the subbytes block of AES

o expan_core — the core for the key expansion

« key_expansion — the key expansion operation

The main function AES_simul sets the values of the plain text and the
key and with these inputs calls the function AES_encrypt. The variable
num_of test_vectors is set to 100 elements by default. The 100 elements
are each 128 random bits of plain text. The number of elements does not
have to be 100. When a greater number is used like for example 1000, the
real and predicted power trace can have clearer differences in the amount
of matched models than with 100. Respectively, with a larger number of
measurements, the opposites will increase in mismatched lines. AES_encrypt
function encrypts the plain text by calling functions for every AES block.
The intermediate result of an operation is always stored in the variable state
and is then used as the input for the next operation. The next step is to
calculate the power models, prediction.

Possible choices for the power model are either Hamming distance (input
is XORed with the output) or Hamming weight (the number of ones in the
output). Please refer to Chapter 2.2 for more information about power
models. For our power model, we chose Hamming weight. The power trace

19

of interest to us is of the subbytes block of the AES algorithm. This is
because the subbytes block affects the data in a nonlinear way. The blocks
of the algorithm that come after the subbytes only affect the order of bits
(of the ones and zeros). So the data that goes into the block isn’t that
different from the data that comes out. Therefore the Hamming weight
is calculated for every test vector of data that is sent through the subbytes
block of the cipher. The calculated value representing the ones in the output
of the subbytes block is then substituted by a value in a look-up table. The
values in the look-up table correspond to the power consumption model from
5 pA to 50 pA. The values are linearly distributed and correspond to the
consumption when 0 to 256 bits are changed. This is done for the known
key and represents the measured power trace and also done for the key
predictions. The power analysis in the simulation was done for the first byte
of the key and therefore only the first byte of data is encrypted. We test all
of the possible combinations of only one byte of the 16-byte key. During the
testing, the first byte changes but the rest of the bytes stay the same. If we
wish to find the rest of the bytes of the key the whole process is repeated for
every byte. The predicted power model is for this reason also for 1 byte of
data (plain text). The calculation of the real power model and the predicted
model is executed for 255 different keys because the first byte can have 255
different combinations of values. The key can either be predefined in the
function or generated with random values. Calculated values are saved in
vectors and matrices. The matrix for the real power model versus the matrix
for the predicted power models have the following form.

plaintext(100)
del(1: 2
plaintext(100) powermodel(1 : 235)
powermodel (100)
ciphertext(100)

ciphertext(100)

The matrix of the real power model on the left is made up of vectors
of the plain text, power model, and ciphertext. The vectors consist of 100
elements, where every element is a 16-byte long plain text. The vector of
the power model is the length of the number of test vectors for one given
key and the ciphertext. In the matrix of predictions on the right, there are
vectors for every possible power model, precisely 255 possible power models
for the 255 possible keys. And this has to repeat for all 100 input plain
text vectors. The vector of the power model is a vector full of 255 vectors
of 100 values for the number of test vectors of plain text. Since the vector

20

The power models and correct key.

100

90 [~ -

70~ *

60 [~ *

40 N

30—

Num. of matching power models

0 50 100 150 200 250

255 different keys

Figure 3.1: Plot with rendered number of power model matches for every
variation of the key. The maximum number of matches is indicated by a
different color, here it is 100 matches.

power model only corresponds to one key, the vector must be saved again
for all other possible keys-255 times. The values of the two matrices are
compared. For every match, a variable is incremented and after all values in
the matrices have been compared, the numbers of matching values are saved
in a vector that is then used in the plot.

The results of CPA that have been calculated in Matlab are shown in
Figure 3.1. The figure displays the number of models that had matching
keys and in orange is the correct key with the largest number of matching
power models. The maximum number of matches being 100, but it could
be a different value, depending on the number of test vectors chosen. This
simulation may be used as a comparison to the experimental power ana-
lysis, which uses actual measurements of power consumption of a device
performing data encryption. In such a case the data used would be from the
measurement and the correlation coefficient between measured data and the
power models would be calculated.

21

3.2 Architecture of Experimental System

The design and implementation can be divided into the design of a block
diagram, the state machines, and the design and implementation onto the
hardware platform. The design of the logic is done in VHDL hardware
description language. The description of the processes of every main block
is for better intelligibility done in several entities that are then compounded
together in a top entity (of top entities that are composed of entities for
every process). The design in VHDL of every entity is tested by simulating
the functions, for this, a testbench can be written where inputs are defined
in such a way to test if the design works correctly. The verification can be
done in the simulation tool Modelsim from Siemens. Once the simulation
verifies the entity’s operation is correct the design is then synthesized, a
next-level test of the correctness of the design. Aspects of the design that
are tested include the clock distribution, untreated latches, and so on. The
design is then mapped (routed) onto the specific hardware, in our case the
development board DE2 with the Cyclone II FPGA on it. After all these
steps the design can be implemented onto the hardware. Once the design is
programmed onto the board, it then can be initially tested on a hardware
level using the available push buttons, LEDs, or 7 segment displays.

Designing a system on hardware begins with the block diagram, see Fig-
ure 3.2. In the block diagram, each main circuit has its own block. In the
design of the experimental system for power analysis, the main circuits are
the UART, the controller, and the Sbox logic. The main blocks work to-
gether with the use of interfaces. Interfaces in the block diagram between the
blocks are designed to transmit the data either in parallel or series. We must
not omit the interfaces between our system and the exterior environment.
The designed system receives and transmits data using UART communica-
tion. The interface lines for this serial communication are as seen in Figure
3.2, the TX and RX line. To send commands to the experimental system a
PC can be used. Intermediate results of the experiment would be sent over
UART back to the PC, where they could be checked.

The block designated for controlling the experimental system commu-
nicates with the UART with the help of a handshake protocol, the lines
facilitating this communication are labeled rd _req, wr_req, rd_ack and
wr_ack and the 8 bit data lines Data_In and Data_QOut. The rest of the
interfaces of the controller block are useful for performing the measurement.
A trigger signal is used to notify the measurement apparatus when to start
measuring the power consumption. The Sbox_bits are sent to the Shox
logic, these bits are generated in the controller block by a LESR. The Shox

22

Trigger]
DataIn 8 J\
= Data_Out™ 8 ﬁ
X Wr_req 1 8 Xor_Result A\ 8
<— UART Wi ack 1 CTRL \\>-</\
Rd_req 1
Rd_ack 1 .
Clk ’Zset |?
Clk | Reset EN Sbox_bits
8
22 SBOX ||| B
LOGIC|[|" "~~~ 7~

Figure 3.2: The top-level block diagram of the experimental system.

logic block is the design of the AES cipher for the hardware platform. For
the purpose of future experiments, it is possible to implement several of the
same Sbox logic blocks in parallel. The internal structure of the Sbox logic is
illustrated in Figure 3.9. The outputs from the Sbox logic blocks are tested
to make sure every Sbox is working correctly. The outputs of the Sboxes are
Xored with each other and if the result is 8 bits of zeros, they are working
correctly otherwise something is broken. This information is sent from the
UART to the PC. Because the designed system is synchronous the clock
signal leads into every block.

3.2.1 UART Block

After establishing the main blocks and interfaces of the design, the functions
of the individual circuits can be described in terms of state machines. The
following text concentrates on the UART block functionality.

The UART must be able to receive serial data and process it while in
synchronization with the exterior device’s baud rate. The UART can be
broken down into two entities, the transmit entity and the receive entity. The
process of the handshake between the UART and the controller is illustrated
in the state diagrams shown below in Figure 3.3 and Figure 3.4. The receive
state machine begins in the initial state wait state, once the signal write
request is received from the controller, the state transitions to the next state
ready to read state. In this state, the receive state machine sends out a

23

start bit

stop bit

Figure 3.3: The diagram of the Rx UART state machine.

write acknowledge signal to the controller. The state machine remains in
the ready to read state until the start bit is detected, then it proceeds
to the data accept state. After detecting the stop bit the state machine
returns to the initial wait uart state. The transmit state machine works
similarly except for the handshake protocol and the direction of data flow.

Implementing the designed state machine in VHDL is the next step. The
UART was designed as independent entities Top_Ctrl_Rx and Top_Ctrl_ Tx
put together in the top entity Top UART. The UART was designed without a
FIFO for storing incoming data, therefore if the state is not wait UART the
data is not saved. The Rx component takes care of being synchronized with
the exterior device sending data by sampling the data bits to detect when
the start bit is received and with it begin the new clock generation. The new
clock frequency is derived from the system’s clock and the defined baud rate.
This operation is taken care of by the baud generator component. The baud
rate is defined by the generics. When testing the circuit, the generic baud
rate was set to the default 115200. For sampling the data, it is practical to
sample each bit in the middle, so the sampling frequency is twice as fast as
the new clock frequency. Putting together the process of clock generation
and start bit detection the control Rx entity starts counting the received
data bits till reaching 8 bits and then checks for the stop bits.

The Tx is once again the function of components baud generator and
control Tx. For Tx, the sampling rate (clock frequency) is again derived
from the systems clock frequency and the baud rate. When the write request

24

shift reg = 0 W req

Figure 3.4: The diagram of the Tx UART state machine.

signal is received the Tx is ready for the controller to write data to it, the
write acknowledge signal is set and the parallel data are saved into the shift
register. The data from the controller are sent in series to the PC, where
they are processed.

The Matlab was used to program a script for communicating with the
experimental system via serial communication. The Matlab functions for
serial communication are serial, write, read, open and close. The Matlab
script prompts the user when starting up to enter the desired number of
measurements. The script iterates through the steps of the measurement
automatically and saves the results output by Sboxes and the generated
plaintext into text files, that later may be used for analyzing the measured
data. The Sbox outputs that have been XORed serve only as a parameter
for confirming that the measurement went smoothly.

3.2.2 Controller Block

Controlling the communication flow is one of many jobs the controller state
machine has to take care of. The controllers corresponding state diagram
is in Figure 3.5. When data in the UART is ready to be sent, this is when
the signal read request is set by the UART, the controller fetches the data
and sets the read acknowledge signal. Upon receiving the data the controller
decodes the command bits of the data and sets the start command bit for
the needed sub-state machine. If the operation needs parameter bits the

25

codeword command
000 set LSB in LFSR
001 set MSB in LFSR
010 set number of Sboxes
011 start measurement

Table 3.1: Table of possible commands.

main state machines sends those along to the sub-state machine. Of the 8
bits sent from the UART, 3 are command bits defined in Table 3.1, and 5
are parameter bits. With 3 bits there are 8 options. The rest are reserved
for future use, in case another command is needed. The 5 parameter bits
enable the activation of up to 32 Shoxes in a single command.

The sub-state machine will take care of the desired operation and when
finished sends a command done signal out and thus causing the transition
back to the main state machine. If the bits are command done bits the main
state machine returns to its initial state. But if the bits are from the XOR
block, then the controller sends these bits on to the UART. The handshake
protocol for writing is that the controller sets the write request flag and once
the UART sets the write acknowledge flag the data can be sent.

As explained above the controller state machine has sub-state machines
for every command. The state transitions of the Sbox activation sub-state
machine are in Figure 3.6. When the command for activating a number of
Shoxes is sent, the parameter bits defining what number of Sboxes are to
be activated are sent as well. The parameter bits are decoded into a 32-bit
vector, where every bit is the enable signal for a single Sbox block. The
vector is used as an output leading to the Sbox logic.

For generating pseudo-random data a LESR (Linear-Feedback Register)
was used in the design. The diagram for defining the states and transitions
is shown in Figure 3.7. The LFSR is a circuit made of a serial-in parallel-
out shift register mostly used for generating pseudo-random numbers, this
is often needed in cryptosystems. In this design, the LFSR is used as a
pseudo-random number generator for generating the data within the design.
The output bits are defined by the feedback polynomial. Since we need an
8-bit output the polynomial for determining which bits are XORed together
would be: z + 2% + 2% + 2%, This isn’t the only possible polynomial that
can be used for an 8 bit LESR, [20]. The seed bits will be used as either
LSB (least significant bits) or MSB (most significant bits) depending on the
command bits (000 or 001). The seed is defined by the parameter bits. The

26

rd req (UART)

EXE CMD

start cmd

cmd done

Figure 3.5: The diagram of the controll state machine.

param

if start cmd and cmd reg
equal set sbox

SET EN

enable

DONE

cmd done

Figure 3.6: The diagram of the state machine for activating the Shoxes.

27

iteration input output
0 seed 1110 | 0001 1110
1 0001 1110 | 0011 1101
2 0011 1101 | 0111 1010
3 0111 1010 | 1111 0100
4 1111 0100 | 1110 1000
5 1110 1000 | 1101 0001
6 1101 0001 | 1010 0010
7 1010 0010 | 0100 0100

Table 3.2: Table of generated bits of 7 states of the LFSR.

LFSR is a pseudo-random number generator, so after 2" (n is the length of
the LFSR) iterations it will repeat the generated outputs.

An example bit generation is given in Table 3.2. The input seed is
chosen by the user input of the parameter bits, here the bits 0001 were
chosen. Depending on the chosen command the seed is either saved to the
LSB or MSB part of the LFSR. In this example, the seed is saved in the
MSB part. The output generated by the LFSR is used as the plaintext for
the encryption.

The sub-state machine for starting the measurement has the diagram in
Figure 3.8. For experimental purposes, a trigger signal is used to let the
measurement, aperture when to start measuring. Because we are interested
in measuring the power consumption that is leaked by the AES subbytes
operation, we want the trace to be as clean as possible. One thing we can
do is omit any other operations from the measurement. So the measurement
sub-state machine sends the data from the LFSR to the Sbox then sets the
trigger signal and when the operation of the Sbox is done it resets the trigger
signal so that we stop measuring.

3.2.3 Sbox Block

The encryption part of the system is designed as the Sbox used in AES. In
this design, the Sbox is implemented as combinational logic. The reason for
this design is to save space on the board, meaning it uses up less logic than
the ROM based LUT implementation. It still operates in the same sense,
depending on the input the output is changed in a non-linear way, thus being
the most interesting target for the CPA attack. The bits generated in the
LFSR are first saved in a register before the Sbox and are only sent to the
Sbox if enabled. The bits are changed in the Sbox and the new output bits

28

if start cmd and cmd reg
are equal to set lsb

DONE

cmd_done

if start cmd and cmd reg

are equal to set msb

Figure 3.7: The diagram of the state machine for setting the bits in the
LFSR.

if start cmd and
cmd reg equal measure

SET

TRIGGER
trigger

DONE

cmd_done

MEASURE

data out
sbox

eval resul

Figure 3.8: The diagram of the measure state machine.

29

Sbox_bits

EN
Sbox_out
b b
ﬁ REG : ° REC
F AES T T

Trigger Clk SBOX

EN2 Clk

Figure 3.9: The block diagram of the Sbox block.

should be the same for all of the parallel Sboxes. They are saved in another
register, where they are kept until the second enable for the register behind
the Sboxes is set, then they are sent to the XOR circuit. The isolation of
the Sbox is to ensure the next operations being executed would not hamper
the power consumption measurement. The output of the XOR is used to
check the correctness of the operation of the Sboxes.

The lines leading to the circuit are the 32 bit long enable vector and the
8 bits of plaintext. Since it is possible to define the number of implemented
parallel Sboxes this is designed in VHDL with a for generate statement.
With the iterative generate the component of the Sbox can be added to
every iteration. This complicates the component following the Sbox, which
is the XOR. Since the inputs to the XOR will change the XOR must be
designed with a varying number of inputs. Therefore the XOR input is
designed as a parallel vector the length of the generic corresponding to the
defined number of Sboxes. Future experiments should show the influence
the number of Shoxes used will have on the SNR.

The whole design is wrapped together in the top entity named top_cpa.
This source code and all other design entities were tested on the board.
Quartus was used to implement the design onto the FPGA and program
it using a USB blaster. In the Quartus design environment the SDC file
was created, a synopsis design constraint file for clock constraints. The
environment notifies of any incorrect or unexpected behavior of the design,
one of these being the unsafe reset signal. The reset signal must be pre-
sampled (with two D flip-flops) so as to prevent metastability. After the
synthesis, the board was connected to a PC with a RS 232 serial adapter.
The script was run to test if the interface with the board works.

Below is a table of synthesized design results in terms of size(used logic

elements). The resulting maximum frequency of the design (top most entity)
came to 170.04 MHz.

30

entity num. of LE | total registers
top_ cpa 589 220
top_ ctrl aes 93 73
top_uart_ aes 331 163
top_sbox_aes 219 18

Table 3.3: Table of used logic elements by entities in design.

3.3 Proposed experiment

In recent years power analysis attacks have become a widely studied topic.
A lot of research has been done on DPA and CPA alike. The quality of an
encryption system is most often tested and once weaknesses are uncovered,
solutions are offered to help secure the system better. For the purpose
of making such research possible, an experimental system for determining
the relationship between vulnerability and the amount of redundancy was
designed and implemented. In this section, an experiment is proposed for
investigating the experimental system’s Measurements to Disclosure (MTD).

The goal of the experiment is to determine the metric MTD (measure-
ments to disclosure). MTD is interesting because it quantifies how resilient
the secure device is to CPA. The greater the MTD the more secure the
device is. In [22] the method for obtaining this metric is described. First,
the correlation from the measured traces and the chosen power model for
the given plaintext and key would be calculated and then the correlation
of the incorrect key guesses and the respective model would also be calcu-
lated and if the two correlations overlap, then the system is safe. When the
correlation of the traces for the correct key would be separated from the
correlations of incorrect keys, this is the amount of measured traces (MTD)
with which the key may be uncovered. MTD would be the number of traces
with which the correlation of correct keys would be greater or equal to the
maximum correlation of incorrect keys for the first instance. To obtain the
traces and resulting correlations the scripts and hardware implementations
for the experiment would be used together. In Figure 3.10 the setup for the
measurement is shown. The hardware implementation-DUT (design under
test) would be connected to the PC and to the oscilloscope. The power pin
and the trigger signal would be the connection points for the oscilloscope.
For measured power traces to be transferred to the PC another connection
between them would be assembled. The PC would be used to control the
measurement and to process the data.

31

Trigger

PC

% Oscilloscope

CPA

A
WL . .
Correct Key™ |

Incorrect Keys
Traces analyzed

Figure 3.10: The example setup for conducting the experiment.

With some simple changes to the Matlab script of the simulation, it can
be used as the script for conducting the CPA analysis of the metric MTD.
The inputs would be the plaintext and the measured power consumption.
The plaintext would be calculated from the seed of the LFSR and knowing
the characteristic polynomial as shown in Table 3.2. This could be done
in the Matlab script beforehand. The measured power by the oscilloscope
would be uploaded into the script and then all that would be done would
be the computation of the correlation between the measured values and
the predicted key values (power model). The correlation coefficients can be
calculated in Matlab by simply using a function for this native to Matlab
called corrcoef(). The incorrect key guesses can be emulated as the wrongly
matched power trace with the power model. Generating random power
model values could have this property. These modifications can have a
significant role on the SNR of the measured supply current. In [14] the
authors explain how the SNR is closely related to the MTD metric. With a
higher value of SNR the MTD value is lower and vice versa.

The experiment should be low maintenance since the Matlab script will
be used to conduct the measurements and will only need the initial inputs
from the user. The script will be turned on and left for some time and
in that time it will do several measurements. The script will iterate the
measurements on its own.

32

4 Conclusion

This thesis set itself the task of getting acquainted with the principles of
power analysis side-channel attacks and designing an experimental system
for an attack-resistance evaluation. Early on in the thesis power analysis
attacks were explained in detail and compared with other methods. The
most widely used categories of power analysis were outlined in detail. Due
to the fact that some methods have more advantages over other methods an
educated choice had to be made. CPA was evaluated to be the best method
to use for further experiments.

To prepare an experimental system for CPA on the AES Sbox block
a simulation was performed in Matlab. The simulation was designed as a
script with the plaintext and key set to be encrypted by the AES algorithm
and then modeled as a real power model and a predicted power model.
The result of the simulation was the number of matching real models with
predicted models. This script was designed as a computational tool, which
is intended for the use in the experiment.

For the purpose of a future experiment a design and implementation of
the experimental system was done. The designated hardware platform of
the design is a Cyclone II FPGA board. The hardware description language
VHDL was used for the design.

This thesis may be used as a starting point or manual for performing
future CPA experiments. Experiments would be done to unveil the relation-
ship between the SNR and the MTD and the fortitude of the system. One
such experiment was proposed at the end of the thesis. The experiment aims
to reveal a metric used to quantify the quality of the secure system. The
metric is denoted as the MTD (Measures to Disclosure) and is identified
as the number of measurements necessary for correctly distinguishing the
correct key from the other incorrect key guesses.

33

Bibliography

Altera. Introduction and the architecture of fpga.
http://intel.terasic.com/intelcup/1_FPGA_Introduction_A2GX.pdf,
2018. Online available; accessed at 26/5/2021.

S. Anand and Nitesh Saxena. A Sound for a Sound: Mitigating Acoustic
Side Channel Attacks on Password Keystrokes with Active Sounds. In
Financial Cryptography, pages 346-364. Springer, 05 2017. ISBN
978-3-662-54969-8.

Andrea Barisani and Daniele Bianco. Sniffing keystrokes with
lasers/voltmeters.
http://dev.inversepath.com/download/tempest/tempest_2009.pdf,
2009. Online available; accessed at 7/5/2021.

Fred Beer, Marc Witteman, Bartek Gedrojc, and Yijun Sheng. Practical
Electro-Magnetic Analysis. In Proc. Non-Invasive Attack Testing Workshop
NIAT. CSRC, 2011. URL https://csrc.nist.gov/CSRC/media/Events/
Non-Invasive-Attack-Testing-Workshop/documents/03_deBeer.pdf.
Online available; accessed at 6/5/2021.

Swarup Bhunia and Mark Tehranipoor. Hardware Security. Morgan
Kaufmann Publishers, Inc., San Francisco, CA, USA, 2019. ISBN
978-0-12-812477-2.

Priyabrata Biswas. Introduction to fpga and its architecture.
https://towardsdatascience.com/
introduction-to-fpga-and-its-architecture-20a62c14421c, 2019.
Online available; accessed at 7/5/2021.

Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power
Analysis with a Leakage Model. volume 3156, pages 16—29. Springer, 08
2004. ISBN 978-3-540-22666-6.

Juncheng Chen, Jun-Sheng Ng, Nay Aung Kyaw, Ne Kyaw Zwa Lwin,
Weng-Geng Ho, Kwen-Siong Chong, Zhiping Lin, Joseph Sylvester Chang,
and Bah-Hwee Gwee. Normalized Differential Power Analysis - For Ghost
Peaks Mitigation. In 2021 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1-5. IEEE, 2021. ISBN 978-1-7281-9201-7.

Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer, 01 2002. ISBN 3-540-42580-2.

34

http://intel.terasic.com/intelcup/1_FPGA_Introduction_A2GX.pdf
http://dev.inversepath.com/download/tempest/tempest_2009.pdf
https://towardsdatascience.com/introduction-to-fpga-and-its-architecture-20a62c14421c
https://towardsdatascience.com/introduction-to-fpga-and-its-architecture-20a62c14421c

[10]

[11]

[12]

[13]

[15]

[16]

Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud
Salmasizadeh, and M.T. Manzuri. On the Power of Power Analysis in the
Real World: A Complete Break of the KeeLLoq Code Hopping Scheme.
pages 203-220. Springer, 08 2008. ISBN 978-3-540-85173-8.

Ilya Kizhvatov. Side channel analysis of AVR XMEGA crypto engine. 01
2009.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Advances in Cryptology — CRYPTO’ 99, pages 388-397. Springer,
Berlin, Heidelberg, 1999. ISBN 978-3-540-48405-9.

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and
Stefan Mangard. ARMageddon: Cache Attacks on Mobile Devices. In 25th
USENIX Security Symposium (USENIX Security 16), pages 549-564.
USENIX Association, Austin, TX, August 2016. ISBN 978-1-931971-32-4.

Thorben Moos, Amir Moradi, and Bastian Richter. Static Power
Side-Channel Analysis—An Investigation of Measurement Factors. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 28(2):
376-389, 2020. ISSN 1557-9999.

Amir Moradi, Markus Kasper, and Christof Paar. On the Portability of
Side-Channel Attacks - An Analysis of the Xilinx Virtex 4 and Virtex 5
Bitstream Encryption Mechanism. IACR Cryptology ePrint Archive, 2011:
391, 01 2011. URL https://eprint.iacr.org/2011/391.pdf. Online
available; accessed at 6/5/2021.

Colin O’Flynn and Zhizhang Chen. ChipWhisperer: An Open-Source
Platform for Hardware Embedded Security Research. volume 8622.
Springer, 04 2014. ISBN 978-3-319-10174-3.

Colin O’Flynn and Zhizhang Chen. Side channel power analysis of an
AES-256 bootloader. Canadian Conference on FElectrical and Computer
Engineering, 2015:750-755, 06 2015. URL
https://eprint.iacr.org/2014/899.pdf.

David Oswald, Bastian Richter, and Christof Paar. Side-Channel Attacks
on the Yubikey 2 One-Time Password Generator. pages 204-222. Springer,
10 2013. ISBN 9783642412837.

Jing Pan, Jasper Woudenberg, Jerry Hartog, and Marc Witteman.
Improving DPA by Peak Distribution Analysis. volume 6544, pages
241-261. Springer, 08 2010. ISBN 978-3-642-19574-7.

35

[20]

[21]

[22]

[23]

[24]

Arash Partow. Primitive polynomial list.
https://www.partow.net/programming/polynomials/index.html.
Online available; accessed at 26/5/2021.

J. Pinker and M. Poupa. Cislicové systémy a jazyk VHDL. BEN-technicka
literatura, 2006. ISBN 80-7300-198-5.

Kris Tiri, David Hwang, Alireza Hodjat, Bo-Cheng Lai, Shenglin Yang,
Patrick Schaumont, and Ingrid Verbauwhede. Prototype IC with WDDL
and Differential Routing - DPA Resistance Assessment. In Cryptographic
Hardware and Embedded Systems - CHES 2005, 7th International
Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings,
volume 3659 of Lecture Notes in Computer Science, pages 354—365.
Springer, 2005. ISBN 978-3-540-28474-1.

Lu Zhang, Luis Vega, and Michael Taylor. Power Side Channels in Security
ICs: Hardware Countermeasures. CoRR, 05 2016. URL
https://arxiv.org/pdf/1605.00681.pdf. Online available; accessed at
29/4/2021.

Yingian Zhang, Ari Juels, Michael Reiter, and Thomas Ristenpart.
Cross-Tenant Side-Channel Attacks in PaaS Clouds. Proceedings of the
ACM Conference on Computer and Communications Security, pages
990-1003, 11 2014. URL
https://dl.acm.org/doi/pdf/10.1145/2660267.2660356.

36

https://www.partow.net/programming/polynomials/index.html

A Appendix

Hierarchical Structure of Source Code

VHDL design of the experimental system in VHDL
L,top_cpa.vhd top entity of entire design
| top_ctrl_aes.vhd
ctrl aes.vhd
sbox_decoder.vhd
lfsr.vhd
| top_uart_aes.vhd
top_ctrl_rx.vhd
ctrl rx.vhd
rx_sampling.vhd
baud_gen.vhd
top_ctrl_tx.vhd
ctrl_tx.vhd
baud_gen_tx.vhd
| top_sbox_aes.vhd
sbox.vhd
reg_sbox.vhd
reg after.vhd

| _xor_sbox.vhd
| Matlab ol Matlab scripts for CPA simulation

L,AES_simul.m main script for running the simulation
| AES_encrypt.m
addroundkey.m
expan_core.m
key_expansion.m
mixcolumns.m
shiftrows.m
subbytes.m
| _prediction.m
| real pow_mod.m
| Matlab oL Matlab scripts for CPA experiment
lg,auto_experiments.m main script
send_serial.m
read_serial.m
lfsr_generator.m
xor_result.m

37

B Appendix

= fegEe

Figure B.1: Image of the DE2 board with the Cyclone II FPGA. Source: [1]

38

	Introduction
	Theoretical Background
	Side-channel Attacks
	Acoustic
	Optical
	Timing
	Cache
	Electromagnetic
	Power

	Methods and Power Models
	Overview of Countermeasures
	CMOS Power Consumption
	DPA
	CPA

	The Advanced Encryption Standard
	FPGA

	Design and Implementation
	Simulation and Models
	Architecture of Experimental System
	UART Block
	Controller Block
	Sbox Block

	Proposed experiment

	Conclusion
	Bibliography
	Appendix
	Appendix

