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Abstract

We show that the square of every connected S(K1,4)-free graph satis-
fying a matching condition has a 2-connected spanning subgraph of maxi-
mum degree at most 3. Furthermore, we characterise trees whose square
has a 2-connected spanning subgraph of maximum degree at most k. This
generalises the results on S(K1,3)-free graphs of Henry and Vogler (1985)
and Harary and Schwenk (1971), respectively.

Keywords: squares of graphs, Hamiltonicity, trestles, forbidden sub-
graphs

In this note, we continue the long-established and thorough study of Hamil-
tonian properties of the squares of graphs (for instance, see [9, 2]).

We recall that the square of a graph G is the graph on the same vertex set
as G in which two vertices are adjacent if and only if their distance in G is either 1
or 2, and we let G2 denote this graph. We recall that a k-trestle (sometimes called
k-covering) is a 2-connected spanning subgraph of maximum degree at most k.
Clearly, 2-trestles are Hamilton cycles; and k-trestles are viewed as an extension
of the concept of Hamiltonicity (for instance, see [8] and the references therein).

We let S(K1,k) denote the graph obtained from K1,k by subdividing each
of its edges once (see Figure 1). Clearly, the square of S(K1,k+1) has no k-
trestle. We recall that Neuman [9] (and also Harary and Schwenk [6]) showed
that for trees, being S(K1,3)-free (and having at least 3 vertices) is a necessary
and sufficient condition in relation to Hamiltonicity of the square. Later, Henry
and Vogler [7] showed that this condition is sufficient for all graphs (and this
result was strengthened by Abderrezzak, Flandrin and Ryjáček [1] who studied
additional properties of induced copies of S(K1,3)).

We investigate the squares of S(K1,k+1)-free graphs and their k-trestles. For
k = 3, we show the following.
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Figure 1: Graph S(K1,3) and its square.

Theorem 1. Let G be a connected S(K1,4)-free graph (on at least 3 vertices).
Let X be the set of all vertices x such that x is the centre of an induced copy of
S(K1,3) in G. If G has a matching of size |X| whose every edge is incident with
precisely one vertex of X and one vertex of V (G) \ X, then G2 has a 3-trestle
such that all non-matched vertices have degree 2.

In case G is S(K1,3)-free, the obtained trestle is, in fact, a Hamilton cycle (in
particular, Theorem 1 can be viewed as a generalization of the result of [7]).

For the study of k-trestles in the squares of S(K1,k+1)-free graphs, we shall
need an extension of the matching condition of Theorem 1. To this end, we recall
that the symmetric orientation of a graph is the digraph obtained by replacing
every edge by a pair of antiparallel directed arcs, and we consider particular
assignments of integers to arcs of the symmetric orientation. Restricting to the
squares of trees, we show the following (which generalizes the result of [6]).

Theorem 2. Let k be an integer greater than 1, and T be a tree (on at least 3
vertices), and let n(v) denote the number of non-leaves adjacent to vertex v in T .
Take the symmetric orientation of T and an assignment of non-negative integers
to its arcs, and let i(v) denote the sum of the integers over all arcs ending in
vertex v and o(v) denote the sum over all arcs starting in v. The following
statements are equivalent.

(1) T 2 has a k-trestle.
(2) Every vertex v of T satisfies n(v) ≤ k, and there exists a considered as-

signment such that i(v) = max{0, n(v)− 2} and o(v) ≤ k − n(v) for every
vertex v of T .

(3) T 2 has a k-trestle whose every vertex v has degree o(v) + max{2, n(v)}.

We remark that the assignment condition of statement (2) can be checked
easily (for instance, by using an auxiliary flow network). For the case k = 2 of
Theorem 2, this condition is satisfied if and only if every assigned integer is 0.
Considering the case k = 3 and the set of all arcs whose assigned integer is
positive, we note that this set corresponds to a matching described in Theorem 1
(in particular, the result of Theorem 1 is, in some sense, sharp).

In addition, we note that the constraints preventing a tree from having a 3-
trestle in its square can also be easily described in terms of subtrees. We let T0
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Figure 2: Trees T0 and A (top) and some examples of trees of F (bottom). The
special vertices are depicted as white.

and A be the trees depicted in Figure 2, and we call vertex u of T0 and vertices
v and w of A special. We define an infinite family F of trees (some of whose
vertices are special) as follows. A tree belongs to F if and only if either it is T0

or it can be obtained from a tree of F by removing five of its vertices so that the
resulting graph is a tree and its special vertex has degree 2, and by identifying
this special vertex of the resulting graph with vertex v of A. We define the special
vertices of the obtained tree in the natural way. Some examples of trees of F can
be found depicted in Figure 2. We use Theorems 1 and 2 and the classical result
of Hall [5] on matchings in bipartite graphs, and we show the following.

Corollary 3. Let T be a tree (on at least 3 vertices) and F be the family of trees
defined above. Then T 2 has a 3-trestle if and only if T is S(K1,4)-free and for
every subtree of T isomorphic to a tree of F , at least one special vertex of the
subtree has degree greater than 3 in T .

The proofs of Theorems 1 and 2 and Corollary 3 are included below. In the
proof of Theorem 1, we extend the idea of [7]. We shall use the result of Fleis-
chner [3] on the squares of 2-connected graphs, and the following lemma. We
recall that a linear forest is a graph whose every component is a path (we view a
vertex of degree 0 as a trivial path), and the independence of a graph (digraph)
is the size of its maximum independent set.

Lemma 4. For every independent set I of a graph of independence k, there exists
a spanning linear forest such that it has at most k components each containing
at most one vertex of I and every vertex of I is of degree at most 1.
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We view Lemma 4 as a corollary of the following result of Gallai and Mil-
gram [4, Satz 3.1].

Theorem 5. For every digraph of independence k, its vertex set can be covered
by at most k vertex-disjoint paths (possibly trivial).

Proof of Lemma 4. We let G denote the given graph, and D be a digraph ob-
tained from G by replacing every edge with a directed arc as follows. For every
vertex of I, all arcs incident with this vertex are oriented towards it; and the
orientation of the remaining arcs is chosen arbitrarily.

We consider a path cover of D given by Theorem 5, and we note that it
consists of at most k paths and every vertex of I is an end of some of them. We
conclude that this path cover of D translates into a desired subgraph of G.

Finally, we prove Theorems 1 and 2 and Corollary 3.

Proof of Theorem 1. We note that the statement is satisfied for graphs on at
most four vertices. We suppose that it is satisfied for graphs which have fewer
vertices than G, and we show it for G.

We recall that if G is 2-connected, then G2 is Hamiltonian by [3]. Furthermore,
we note that if G is a path, then G2 is Hamiltonian. Consequently, we can assume
that G has a cutvertex, say c, of degree at least 3.

We let N(c) denote the set of all neighbours of c in G. We consider a matching
satisfying the assumptions of the theorem, and we let M0 be the set of all edges
of the matching whose both ends belong to N(c) ∪ {c}, and M be the set of all
remaining edges of the matching. We let T be a spanning tree of G containing
all edges incident with c and all edges of M (clearly, such a spanning tree exists
since G is connected and the fixed edges give a forest). We note that the graph
T − c has at least three components (since c is of degree at least 3 in G), and
every component of T − c contains precisely one vertex of N(c).

In addition, we can assume that at least one component of T −c is non-trivial
(otherwise G2 is a complete graph, and thus Hamiltonian). We consider all non-
trivial components of T − c, and we let V1, . . . , Vk denote their vertex sets, and
ui denote the neighbour of c in Vi.

For every i = 1, . . . , k, we consider the subgraph of G induced by Vi ∪ {c},
and we extend it by adding an auxiliary vertex yi and the edge cyi; and we let Hi

denote the resulting graph. (We view yi as an extra vertex not belonging to V (G).
On the other hand, Hi can be viewed as an induced subgraph of G since c is a
cutvertex in G.) In addition, we let Mi be the restriction of M consisting of all
edges of M whose one end is a centre of induced S(K1,3) in Hi; and if ui is a
centre of induced S(K1,3) in Hi and the vertex matched with ui does not belong
to Vi, then we extend Mi by adding the edge cui. We show the following.

Claim 1. For every i = 1, . . . , k, the graph H2
i has a 3-trestle such that every

vertex which is not covered by Mi has degree 2.
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Proof of Claim 1. We recall that Hi can be viewed an induced subgraph of G,
and hence if a vertex is a centre of induced S(K1,3) in Hi, then it is a centre of
induced S(K1,3) in G (in particular, vertex yi has degree 1 and c has degree 2 in
Hi and so none of them is a centre in Hi). We observe that Hi considered with
the matching Mi satisfies the assumptions of the theorem. Since Hi has fewer
vertices than G, we conclude that H2

i has a desired 3-trestle by the induction
hypothesis. �

For every i = 1, . . . , k, we let Zi be a 3-trestle of H2
i given by Claim 1. We

note that Zi contains the edges cyi and uiyi (since Zi is 2-connected and yi is
only adjacent to c and ui in H2

i ). Also, we let Oi denote the set of all vertices of
Vi which are adjacent to c or yi in Zi. We note that 3 ≥ |Oi| ≥ 2 (in particular,
ui belongs to Oi). In addition, we let Ri denote the graph Zi − {c, yi}. We shall
use the graphs Ri for constructing a 3-trestle of G2 (we view Oi as the entry
points of Ri). Preparing to show the 2-connectivity of the desired construction,
we observe the following.

Claim 2. Let r be a vertex of Ri (where 1 ≤ i ≤ k). Then in the graph Ri − r,
every vertex is joint by a path to a vertex of Oi \ {r} (possibly a trivial path if the
vertex itself belongs to Oi \ {r}).

Proof of Claim 2. We note that every vertex of Vi \ {r} is joint by a path to c in
the graph Zi− r (since Zi is 2-connected), and for every vertex of Vi \ (Oi ∪ {r})
this path goes through a vertex of Oi \ {r}. The existence of a desired path in
Ri − r follows. �

We let wi denote a vertex of Oi distinct from ui. We recall that 3 ≥ |Oi| ≥ 2,
and so Oi consists of ui and wi and possibly one additional vertex.

For every i = 1, . . . , k such that |Oi| = 3, we define edge ei as follows. We
observe that if |Oi| = 3, then c is of degree 3 in Zi; and by Claim 1 we get that
c is incident with an edge of Mi, and it is, in fact, the edge cui. In particular, ui

is a centre of induced S(K1,3) in Hi, and the vertex originally matched with ui

does not belong to Vi (the vertices are joint by an edge of M0); we say that the
vertex is engaged with ui. We let ei denote the edge joining the third vertex of
Oi to the engaged vertex (possibly to c if c is engaged with ui).

We note that no engaged vertex is a centre of induced S(K1,3) in G, and each
engaged vertex belongs to N(c) ∪ {c} and is incident with only one of the edges
ei, and that ei is an edge of G2.

We let A be the subgraph of G2 induced by N(c) ∪ {w1, . . . , wk}. Further-
more, if c is a centre of induced S(K1,3) in G, then we let a denote the vertex
matched with c in M0. We shall need particular paths in A for interconnecting
the graphs Ri. To this end, we show the following.

Claim 3. The graph A has a spanning linear forest with the following properties.
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(1) It contains all edges uiwi.
(2) It has at most three components; and if it has precisely three components,

then c is a centre of induced S(K1,3) in G.
(3) Every component has at least two vertices and it has an end belonging

to N(c); and if there are precisely three components, then one of these
ends is the vertex a.

Proof of Claim 3. We let W denote the set consisting of all vertices ui, wi such
that wi does not belong to N(c). We can assume that W is non-empty (otherwise
A is a complete graph and the claim follows). We let B1, B2 denote the subgraph
induced by W in G, G2, respectively (clearly, B2 is an induced subgraph of A).

First, we contract all edges uiwi of B1, and we let C denote the resulting
graph and ci denote its vertex corresponding to uiwi (for each edge uiwi). We
note that if C is of independence 3, then c is a centre of induced S(K1,3) in G.
Similarly, we get that C is of independence at most 3 (since G is S(K1,4)-free).
We consider a spanning linear forest of C given by Lemma 4. In particular, if
a exists and belongs to W (say a is labeled as ui), then we consider a forest
such that the corresponding vertex ci is of degree at most 1; such a forest can be
obtained by applying Lemma 4 to graph C and independent set {ci}.

Next, we expand each of the path-components of the forest to a path in B2

as follows. We observe that if ci is adjacent to cj, then each vertex of {ui, wi} is
adjacent to at least one of {uj, wj} in B2. For every path-component, we replace
each vertex ci by the pair uiwi (or wiui) so that the resulting sequence is a path
in B2 whose end belongs to N(c); in particular, if a exists and belongs to W ,
then we can ensure that a is an end of one of the paths (by starting with the
corresponding vertex ci and replacing it with the pair awi). We let FB2 denote
the resulting spanning linear forest of B2.

Finally, we consider the vertices of V (A) \W . If this set is empty, then we
observe that FB2 satisfies the claim. Otherwise, we use the fact that all vertices of
N(c) are pairwise adjacent in A, and we take a path P consisting of all vertices of
V (A) \W such that it contains all remaining edges uiwi (which are not included
in FB2); furthermore if a exists and belongs to V (A) \ W , then we take P so
that a is an end of P . We extend FB2 by adding P as follows. We choose a
path-component of FB2 and its end belonging to N(c) and an end of P , and we
join the paths by adding the edge connecting the chosen ends; in particular, if
FB2 has three components, then we ensure that a is an end of a path-component
in the resulting graph (by choosing a component not containing a and an end of
P distinct from a). We conclude that the resulting graph is a spanning linear
forest of A satisfying properties (1), (2) and (3). �

We let F be a forest given by Claim 3, and we extend it as follows. We recall
that each path-component of F is non-trivial by property (3), that is, it has two
ends. We let L be the set given by property (3) consisting of precisely one end of
each path, and L′ be the set of the other ends (clearly, |L| is equal to the number
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of components of F ). We enhance F by adding vertex c and adding all edges
joining c to the vertices of L′, and we finish the extension by discussing three
cases based on |L|.

• If |L| = 1, then we add the edge joining c to the vertex of L (and we note
that the obtained graph is a cycle).

• If |L| = 2, then we add the edge joining the two vertices of L (obtaining a
cycle).

• Otherwise, we have |L| = 3 (by property (2) of Claim 3). We use that a
belongs to L by property (3), and we add the two edges joining a to the
vertices of L \ {a} (and we obtain a graph consisting of three internally
disjoint paths from a to c).

We let Θ denote the resulting extension of F , and we note that Θ is a 2-connected
subgraph of G2 on the vertex set V (A) ∪ {c}. Finally, we use property (1) of
Claim 3 and expand Θ as follows. For every i = 1, . . . , k in sequence, we remove
the edge uiwi (of Θ) and take the union of the graph on hand with the graph Ri,
and if |Oi| = 3, then we add the edge ei; and we let Z denote the resulting graph.

We note that Z is a spanning subgraph of G2. In order to verify that Z
is 2-connected, we consider removing an arbitrary vertex of Z and we observe
that the obtained graph is connected (in particular, we view the construction as
interconnecting the graphs Ri and use Claim 2 and the fact that Θ is 2-connected).
Lastly, we discuss the degrees of vertices in Z. We note that vertex c is of degree
at most 3 in Z; and if it has degree 3, then either it is engaged with some vertex
ui or it is a centre of induced S(K1,3) in G. Also, we note that vertex a (if it
exists) is of degree at most 3 in Z. We consider the vertices (distinct from c and
a) belonging to none of the graphs Ri, and we note that each such vertex has
degree 3 in Z if engaged, and degree 2 otherwise (since it is of degree 2 in Θ). It
remains to discuss the vertices of the graphs Ri (distinct from a). We note that
if such a vertex does not belong to Oi, then it is not engaged and its degree in
Z is equal to its degree in Zi. Furthermore, for every vertex of Oi at least one
edge of Zi is removed in the construction and one edge of Θ is added; and if such
a vertex is engaged, then it is of the degree 2 in Zi (by Claim 1) and one of the
edges ei is added. We conclude that every vertex of degree 3 in Z is covered by
M0 or M . It follows that Z is a desired 3-trestle of G2.

Proof of Theorem 2. We show that (1) implies (2). We let Z denote a given k-
trestle in T 2. We consider an arbitrary vertex, say x, of T and let U denote the
set of all its neighbours in T , and N denote the graph induced by U in Z. Since
T is a tree and Z is a k-trestle of T 2, we have that n(x) ≤ k and that N is
connected (we view trivial graph as connected).

In particular, N has at least |U | − 1 edges, that is, the sum of degrees of its
vertices is at least 2|U | − 2. We consider the arcs from U to x in the symmetric

7



orientation of T , and we note that there exists an assignment with the following
properties (since 2|U | − 2 ≥ |U |+ n(x)− 2).

• If x is a leaf in T (that is, N is trivial), then the arc from U to x is assigned 0.
• Otherwise, for every vertex u of U , the arc ux is assigned a non-negative

integer smaller than the degree of u in N ; and the sum of the assigned
values is equal to max{0, n(x)− 2}.

We consider such assignment for every vertex of T , and we take the union
of all these assignments. We conclude that the resulting assignment satisfies
i(v) = max{0, n(v)− 2} and o(v) ≤ k − n(v) for every vertex v of T .

We show that (2) implies (3) by examining a hypothetical minimal counterex-
ample to the implication. We consider the smallest k for which a counterexample
exists, and we let T be a counterexample on the smallest number of vertices for
this k.

By Theorem 1 and by the choice of T , we can assume that there exists a
vertex x such that n(x) ≥ 3, and we let u1, . . . , un(x), un(x)+1, . . . , u` denote its
neighbours in T so that u1, . . . , un(x) are non-leaves. We let a(ujx), a(xuj) denote
the integer assigned to the arc ujx, xuj, respectively (for every j = 1, . . . , `). For
every j = 1, . . . , n(x), we take the component of T − x containing uj and extend
it by adding vertices x and yj and the edges ujx and xyj; and we let Tj denote
the resulting tree.

We consider Tj with the corresponding restriction of the assignment for its
symmetric orientation (assigning 0 to the arcs ujx, xyj and yjx). By the choice
of T , there exists a k-trestle of T 2

j and the degrees of its vertices correspond to
the restricted assignment; and we let Zj denote such k-trestle. In particular,
yj has degree 2 (it is adjacent to x and uj) and x has degree a(xuj) + 2 and
uj has degree o(uj)− a(ujx) + max{2, n(uj)} (where o(uj) refers to the original
assignment in T ).

Also, we consider a graph on the vertex set {u1, . . . , u`} such that for every
j = 1, . . . , `, the vertex uj has degree a(ujx)+1 if j ≤ n(x), and degree a(ujx)+2
otherwise; and we note that the sum of degrees is 2`− 2 (since i(x) = n(x)− 2).
In particular, there exists such a graph which is a tree, say TU .

Finally, we take the union of all graphs Zj − yj (in this union, x is of degree
o(x) + n(x), and for every j = 1, . . . , n(x), the degree uj is o(uj) − a(ujx) +
max{2, n(uj)}−1), and we extend this graph by adding the vertices un(x)+1, . . . , u`

and adding all edges of TU . We note that the resulting graph is a k-trestle of T 2

contradicting the choice of T .
Clearly, (3) implies (1) which concludes the proof.

Proof of Corollary 3. For the sake of simplicity, we say that a vertex is red if it
is a centre of S(K1,3) in T , and it is black otherwise.

First, we suppose that T 2 has a 3-trestle. We apply Theorem 2 and note that
statement (2) yields that T is S(K1,4)-free and T has a matching covering all red
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vertices such that each edge of the matching is incident with precisely one black
vertex. We consider an arbitrary subtree S of T isomorphic to a tree of F , and
we note that its special vertices are coloured red in T and some of them has to
be matched with a vertex outside S (since there are not sufficiently many black
neighbours in S). Thus, the degree of this special vertex is greater than 3 in T .

Next, we suppose that T is S(K1,4)-free and the condition on subtrees is
satisfied. For the sake of a contradiction, we suppose that T 2 has no 3-trestle. We
consider the spanning bipartite subgraph B of T given by the red-black colouring
(that is, by deleting each edge whose ends have the same colour). By Theorem 1,
we have that B has no matching covering all red vertices. We consider a minimal
set R of red vertices violating the condition of Hall’s theorem, and we let N(R)
be the set of all black vertices adjacent to a vertex of R in B. We observe that
the minimality implies that the vertices of R are precisely the special vertices
of a subtree of T isomorphic to a tree of F . Since |R| > |N(R)| and T is
S(K1,4)-free, we conclude that no vertex of R has degree greater than 3 in T ,
a contradiction.
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[8] S. Jendrol’, T. Kaiser, Z. Ryjáček, I. Schiermeyer: A Dirac theorem for tres-
tles, Discrete Mathematics 312 (2012), 2000–2004.

[9] F. Neuman: On a certain ordering of the set of vertices of a tree, Časopis pro
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