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Abstract — In this paper we offer a ’birds eye view”
of the field of adaptive filtering with the aim of sug-
gesting a new approach to its teaching. Following
a brief survey of the diverse lines of thought under-
pinning the traditional approach to the presentation
of the most common adaptive filter algorithms, we
point out that all major families of adaptive filter al-
gorithms can be more easily developed and under-
stood in terms of the well established theory of it-
erative linear equation solvers. This simplifies both
the development and analysis of the most commonly
available adaptive filter algorithms and gives addi-
tional insight. In particular the commonalities and
differences between the various algorithms are more
easily understood. This enhanced and complemen-
tary understanding, inspired by numerical linear al-
gebra, also paves the way for the conception of new
adaptive filter algorithms.

Introduction

Adaptive filter theory is an important area in digital sig-
nal processing with many important applications having
been researched for more than four decades. No doubt,
adaptive filtering can be considered a mature subject.

Most adaptive filter algorithms share the same com-
mon goals: 1) Rapid convergence to a good approxima-
tion of the solution to the Wiener-Hopf equation in a sta-
tionary environment, 2) Good tracking of the time vary-
ing Wiener solution in non stationary environments, and
3) Small filter coefficient deviations from the Wiener so-
lution in a stationary environment after convergence. All
these objectives shall be satisfied with algorithms char-
acterized by the lowest possible computational complex-
ity. Nevertheless, and in spite of the commonality in
goals, the theory of adaptive filters is characterized by a
multitude of algorithms whose derivations, both as orig-
inally presented and as presented in contemporary grad-
uate level textbooks, rely on a large number of ideas that
are often perceived by students as unrelated. This will
be clear from our brief survey of the most common ap-
proaches to the teaching of modern adaptive filter algo-
rithms as presented below.

In this paper we promote an alternative and unified
approach to adaptive filters based on central elements of
the theory of iterative linear equation solvers. We will
point out that all major adaptive filters can be directly
derived from the common starting point of a precondi-
tioned Wiener-Hopf equation. As intuitively appealing

preconditioners and estimates for the correlation quanti-
ties of the Wiener-Hopf equation are selected the various
common adaptive filter algorithms are easily derived.

We have organized our paper as follows: In the next
section, we establish notation and briefly review histori-
cally important approaches to the presentation and devel-
opment of the Least Mean Square (LMS) algorithm and
in its normalized version (NLMS), the Recursive Least
Squares (RLS) algorithm and the Affine Projection Al-
gorithm (APA). This serves to illustrate the need for a
more coherent and unified approach which we present
subsequently. This approach is based on the application
of a simple iteration, the Richardson iteration that can
be dated back to 1910 [1], to a preconditioned version
of the Wiener-Hopf equation. From the presented criti-
cal approach to the field of adaptive filtering, it is hoped
the the reader gains an appreciation for our coherent and
unified alternative approach to this important branch of
digital signal processing.

The classical textbook approach

Before briefly reviewing the conceptual underpinnings of
the main workhorses in adaptive filter theory, namely the
LMS!, RLS and the APA algorithms, we introduce some
notation through the prototypical adaptive filtering setup
of Figure 1.

Adaptive filters can be seen as online algorithms ad-
justing the coefficients of an FIR filter h(k), given as a
length M column vector of filter coefficients, in such a
way that the output signal, y(k), is a good estimate of
the desired signal, d(k).
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Fig. 1: Prototypical adaptive filter setup.

The LMS algorithms is found by applying the steep-
est decent iterative optimization strategy to the objective
function E{e?(k)} [2] , where E{} is the expectation

! Along with its normalized version, the NLMS algorithms.



operator, and e(k) is the output error signal
e(k) = d(k) — h* (k)z(k). (1)
The signal vector z(k) is defined through
z(k) = [2(k),z(k = 1),...,2(k = M+ 1T, (2

where 7' denotes matrix transposition. The gradient of
the objective function with respect the the filter vector is
given by VE{e?(k)} = —2r + 2Rh, where R is the
auto correlation matrix of the filter input signal, R =
E{x(k)z™ (k)}, and r is the cross correlation vector de-
fined by r = E{z(k)d(k)}. The minimization of our
objective function is now performed iteratively: In each
iteration we move the current estimate of A some amount
in the direction of the negative gradient. That is:

h(k+1) = h(k) + S[-VE{S®))], ()
giving
h(k+1) = h(k) + ulr ~RAR). @)

1 is an adaption constant. Substitution of instantaneous
estimates for the correlation quantities, i.e. letting R —
z(k)zT (k) and r — z(k)d(k) we get the LMS algorithm
[2]:

h(k +1) = h(k) + pz(k)e(k), %)

What we have presented above is by far the most com-
mon approach to the introduction of LMS adaptive filters
to advanced undergraduate or beginning graduate stu-
dents. This material is often presented along with an
introduction to the FIR Wiener filter which is found by
assuming that the true auto correlation matrix and cross
correlation vectors are known or can be found exactly.
When the latter assumption about the availability of the
correlation quantities is valid the optimization problem
is solved directly by setting above mentioned gradient
equal to zero. This results in the Wiener-Hopf equation

Rh, =r, (6)
whose solution gives the FIR Wiener filter. Although the
gifted, may be even the average, student may very well
conjecture that the LMS algorithm really is an algorithm
for iteratively solving the Wiener-Hopf equation while
its coefficient matrix, R, and its right hand side, r, may
change continuously, this idea is not developed further in
the most commonly used textbooks. This is a pity since it
prevents us from conveying, quite easily, an understand-
ing for the connections between the many available adap-
tive filtering algorithms. Furthermore, this also prevents
us from tapping into the large body of knowledge avail-
able on iterative schemes for the solution of sets of linear
equations, which as we shall point out shortly, is directly
applicable to the study of adaptive filters.

Following the above development of the LMS algo-
rithm, most courses on adaptive filters proceed with the
development of the NLMS, RLS and APA adaptive fil-
ters. Typically, the NLMS algorithm is developed by
allowing the adaption constant x4 to be substituted with

a time variant quantity, u(k), which is determined by
minimizing E{e?(k + 1)} given the update structure of
the LMS algorithm as given in (5). Another popular ap-
proach, but from a student perspective viewed as quite
unrelated, also resulting in the NLMS algorithm solves
the constrained optimization problem min|h(k + 1) —
h(k)||* with respect to h(k + 1) subject to the equality
constraint 27 (k)h(k + 1) = d(k).

The APA adaptive filter can be developed and/or mo-
tivated using geometric arguments. However, more pop-
ular is the argument that is based on a generalization of
the second approach to the NLMS derivation of the previ-
ous paragraph in which the equality constraint is substi-
tuted with the set of equality constraints 27 (k —n)h(k +
1) =d(k—mn)forn=0,1,..., P — 1. The integer P is
referred to as the projection order.

Moving on to the RLS algorithm, the students are of-
ten left with the impression that in this case we have yet
another optimization problem as the starting point of the
algorithm development: In contrast to the “’statistical per-
spective” employed in deriving the algorithms above, we
now tend to present what we introduce as a “’determin-
istic perspective” through the minimization of the objec-

tive function
k

D AR (i), (7

=0

with e(k) as given in (1) above and 0 << A < 1. De-
pending on the scope of the adaptive filter course in ques-
tion, one now typically moves on to the various trans-
form domain and subband domain algorithms. By way
of example, considering what is commonly referred to
as the Pradhan-Reddy subband adaptive filter (PRSAF)
we have the choice of (at least) three quite different and
rather complicated arguments [3, 4, 5] giving us the adap-
tive filter algorithm.

Based on the short review above, almost needless to
say, the students’ perception of the subject of adaptive
filters are sometimes quite confused. This is our motiva-
tion for suggesting a change in teaching practice that is
based on a numerical linear algebra perspective in which
we base ourselves on a 1) preconditioned Wiener-Hopf
equation, 2) a simple iterative linear equation solver (the
Richardson iteration) and 3) the substitution of estimates
for the auto and cross correlation quantities, R and r.

The unified approach
Preliminaries

The preconditioned Wiener Hopf equation (PCWH) can
be stated as

CRh, = Cr, (®)

where C is some invertible matrix called the precondi-
tioner. The Wiener Hopf equation and its preconditioned
version have the same solution. Applying Richardson’s
method, [1], the simplest of all stationary iterative linear
equation solvers [6], to (8), we get

h(k +1) = h(k) + pClr — RA(K)], )



which, when formulated in terms of the coefficient devi-
ation (equation error), (k) = h, — h(k) gives

e(k+1) = (I— uCR)e(k). (10)

It is well known that, in complete analogy with the anal-
ysis of the mean performance of the LMS algorithm?, a
large eigenvalue spread for CR gives slow convergence,
whereas a small eigenvalue spread facilitates rapid con-
vergence. Thus, selecting C as an approximate inverse of
R, we can lower the eigenvalue spread significantly, and
consequently improve the convergence speed dramati-
cally relative to the case when no preconditioner is em-
ployed. Of course, the introduction of the preconditioner
should not increase the computational demands unduly.
The preconditioning paradigm has enjoyed great popu-
larity recently among numerical analysts working on the
iterative solution of large sets of linear equations [9]. In
the next section we demonstrate the relevance of precon-
ditioning to adaptive filtering.

From iterative linear equation solvers to adaptive fil-
ters

In (9) we might consider substituting the quantities R, r
and C with suitable estimates available at the time when
the k-th iteration is performed. Doing so, assuming that
the estimates are updated based on signal samples up to
and including time kN, where N is some suitably chosen
positive integer, and denoting the estimated quantities by
R(kN),r(kN), and C(kN) we have

h(k +1) = h(k) + uC(kN)[e(kN) — R(kN)A(K).
1D
Setting N = 1 we get sample-by-sample algorithms,
i.e. the iteration index and the signal time index coin-
cide, whereas selecting N > 1 results in block-based
algorithms in which chunks of N samples are input to
the algorithm for each coefficient update. It is impor-
tant to realize that any reasonable estimate of the men-
tioned quantities will give us an adaptive filter. For exam-
ple, substituting instantaneous estimates for the involved
auto- and cross-correlations estimates of (11), with N =
1,ie. R(k) — z(k)zT (k) and r — z(k)d(k) and se-
lecting the identity matrix as the preconditioner, we get

h(k + 1) = h(k) + pa(k)[d(k) — 2" ()h(k)], (12)

which is recognized as the LMS algorithm.

Based on the general update of (11) we point out
that it is possible to identify general expressions for the
estimates R(kN),r(kN) and C(kN) that are parame-
terized through a small number of parameters/choices in
such a way that the all common adaptive filter algorithms
are identified as special cases of (11). For clarity of pre-
sentation and economy of space, we avoid full generality
and focus on the central ideas. All the details can be
found in [10]. It is also interesting to note that this for-
malism makes it possible to derive general performance
results that can be specialized to particular families of

2See any of [7, 2, 8].

adaptive filters through the selection of the mentioned pa-
rameters. These important issues are also fully explored
in [10].

Defining the signal matrix X(n) as

X(k) = [g(k),g(kfl),,g(kflz+l)], (13)
and the vector of desired signal samples through

a fairly general® and intuitively appealing form for the
(scaled) estimates* R(kN) and r(kN) are given by

R(kN) = X(kN)XT (kN), 15)

and
r(kN) = X(kN)d(kN). (16)

Substituting the estimates of (15) and (16) into (11), we
obtain what we refer to as our generalized adaptive filter:

h(k +1) = h(k) + pC(kN)X(kN)e(kN),  (17)

where e(kN) = d(kN) — XT(kN)h(k). With this,
we are ready for the exploration of possible choices for
C(kN).

Three preconditioning strategies

From what we have said so far it is evident that a pre-
conditioner being a good approximation to the inverse of
the autocorrelation matrix results in a rapidly converging
iterative solution strategy for the Wiener-Hopf equation.
In an adaptive filtering environment the exact autocorre-
lation matrix is unavailable, we can only form estimates
of this matrix. These estimates may however be utilized
in the formation of intuitively plausible estimated pre-
conditioners, C(kN), for use in our generalized adap-
tive filter, (17). Below, we identify three approaches to
the selection of C(kN).

1. Constant C(kN): If we have some prior knowledge
of typical autocorrelation matrices to be encoun-
tered in an application, this information can be em-
ployed in the determination of a suitable fixed pre-
conditioner C. This was successfully explored in
[11], where C was chosen as a sparse and highly
structured matrix in order to preserve the low com-
putational complexity of the standard LMS algo-
rithm. We have also generalized this to normalized
algorithms, see [12, 13]. We emphasize that these
algorithms are a direct consequence of our numer-
ical linear algebra perspective involving precondi-
tioners. Without this perspective, it would be hard
to conceive a line of thought that would lead to
these novel adaptive filter algorithms. Of course,
the LMS algorithm employs this preconditioning
strategy in the sense that the preconditioning ma-
trix is set to the identity matrix.

3Though not the most general form, see [10] for details.

4Since the same scaling factor is implied for both the estimates of
R and r this scaling factor plays no role in the algorithm development.
In the following we shall consequently refer to estimates even though
they may be scaled.



2. C(kN) related to R(kN): Since R(kN) may not be
directly invertible, we cannot use its inverse as a
preconditioner. However, we might settle for the
next best option, the regularized inverse of R(kN):

C(kN) = {I + R(kN)} !
= {eI + X(EN)XT(kN)}-L,  (18)

where € is some suitably chosen constant.

3. Independently determined C(kN): Instead of us-
ing R(kNN) as the basis for the selection of C(kN),
we could form another estimate of the autocorrela-
tion matrix, denoted by R(kN ), whose invertibil-
ity we assure by design. An obvious choice for
the preconditioner in this case would be C(kN) =
R~!(kN). An example of such an autocorrelation

matrix estimate is
R(kN) = X(kN)XT(EN), (19)

where the signal matrix, X (kN), has the same struc-
ture as X (kNN), defined in ( 13), but with horizon-
tal dimension exceeding the vertical dimension M
50 as to ensure invertibility of R(kN) for reason-
able input signals, (k). Another example of such
an estimate is the exponentially weighted estimate:

kN
Roo(EN) =D XNNig(i)2" (i),  (20)
i=0

where 0 << A\ < 1.

Based on the generic iteration of (17) and one of these
preconditioning strategies, all important families of adap-
tive filter algorithms can be derived with a minimum of
effort. As an example we provide below a short and sim-
ple, yet the complete, argument leading to the APA adap-
tive filter.

Using the preconditioner of (18) and substituting this
into (17) we get

h(k +1) = h(k)+
p{el + X(kN)XT(kN)} X (kN)e(kN), (1)

which in view of the matrix inversion lemma [2] can be
written as

h(k+1) = h(k)+
pX(EN){el + XT(EN)X(kN)} " te(kN), (22)

which is immediately recognized as the e-APA algorithm
[8] when we select N = 1. For L = 1 this is the
NLMS algorithm. We also mention that setting € = 0,
and L = 2 corresponds to the binormalized data-reusing
LMS (BNDR-LMS) adaptive filter algorithm of [14].
Similar short and simple, but yet complete deriva-
tions can be made for most other families of modern
adaptive filters. Here we present a summary of the results
of such a collection of algorithm derivations in Table
1. The parameters characterizing each algorithm should

be interpreted with reference to (17) or its alternate, but
equivalent, form

h(k+1) = h(k) + pXp(kN)YW(EN)ep(kN), (23)

where W (kN) is a weighting matrix that is directly re-
lated to the preconditioner C(kN'). More details can be
found in [10]. The key message here is that there in-
deed is a systematic line of thought along which modern
adaptive filters can be developed in a unified fashion. We
have had success with this approach in the teaching of
our graduate course on adaptive filters at the University
of Stavanger. A nice experience has been the assignment
of student projects associated with preconditioning strat-
egy no. 1 based on which students have been able to
come up with novel algorithms.

Summary and conclusion

The main issue in this paper has been the advocation of a
new approach to the teaching of adaptive filters based on
the use of simple iterative linear equation solvers applied
to a preconditioned Wiener-Hopf equation. We have shown
that with this approach a consistent and unified deriva-
tion of the major adaptive filter algorithms, as well as
novel algorithms, can be found. Our experience of con-
necting the various algorithms together via (17), (23) and
Tabe 1 enhances the students’ understanding of the im-
portant field of adaptive filters. Furthermore, it turns out
that when dealing with issues of performance, we can
do general performance analyses taking (17) or (23) as
a starting point. This saves time and enable us to fo-
cus on the implications of the results rather than on the
technicalities involved in the classical approach in which
each and every adaptive filter algorithms is subjected to
its own algorithms specific performance analysis.
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