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ABSTRACT A new generation of Oxide Dispersion Strengthened (ODS) alloys called Oxide Precipitation
Hardened (OPH) alloys, has recently been developed by the authors. The excellent mechanical properties
can be improved by optimizing the chemical composition in combination with heat treatment. However,
the behavior of such materials requires the consideration of a large number of variables, nonlinearities,
and uncertainties in the analyses, and the modeling of such alloys by analytical methods is not accurate
enough. Therefore, artificial intelligence (AI) methods, such as machine learning (ML), can be beneficial to
alleviate the problems associated with the complexity of these alloys. In this work, three different hybrid ML
techniques have been employed to estimate the ultimate tensile strength (UTS) and elongation in these special
alloys. The proposed methods include a feedforward artificial neural network (FF-ANN) trained using
particle swarm optimization (PSO) and two adaptive neuro-fuzzy inference system (ANFIS) methods trained
using both fuzzy C-means (FCM) clustering and subtractive clustering (SC). Since OPH alloys are mainly
produced via mechanical alloying (MA) of a mixture of powder components followed by consolidation and
hot rolling, a series of standard tensile tests were performed on the different variants of the OPH alloy. In this
way, some critical parameters such as UTS and elongation could be extracted from the experimental results.
The main contribution of the present study is to estimate these important parameters based on some material
properties including Aluminum (Al), Molybdenum (Mo), Iron (Fe), Chromium (Cr), Tantalum (Ta), Yttrium
(Y) and Oxygen (O), MA and the heat treatment conditions. The results show that the proposed strategies
are not only able to accurately determine the complex behavior of OPH alloy with an accuracy of about
95%, but they can also help the designer to benefit from these powerful tools to design new versions of such
materials without analytical calculations.

INDEX TERMS Oxide precipitation hardened (OPH) steels, tensile strength, artificial neural network
(ANN), particle swarm optimization, ANFIS, Fe—Al-O, machine learning, computational mechanics.

I. INTRODUCTION implementing industries utilizing a carbon emission-free,
Developing new structural alloys for industrial applications safe, and globally available energy source. One of the primary
requires a shared effort between the commercial sector and structural materials challenges is the mechanical properties,
the push for green environment. These efforts will thrive with mainly focused on Ultimate Tensile Strength (UTS), elon-

gation, and toughness [1]. As the new generation of ODS
The associate editor coordinating the review of this manuscript and alloys, OPH alloys have been considered as a promising
approving it for publication was Turgay Celik . candidate for industrial applications, attributing to their high

156930 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021


https://orcid.org/0000-0003-3978-2903
https://orcid.org/0000-0002-5312-6497
https://orcid.org/0000-0001-6742-1975
https://orcid.org/0000-0001-6925-6010

0. Khalaj et al.: Hybrid Machine Learning Techniques and Computational Mechanics

IEEE Access

strength, corrosion resistance, and toughness [2]-[5]. Based
on the importance of the oxide nanoparticles, they have been
widely studied concerning their morphology, composition,
crystallographic structure, and interface relationships with
the matrix [6]-[8]. However, further improvement of ODS
steels” mechanical properties needs appropriate composition
designs, which have become a hot topic for researchers. Y,03
is one of the typical oxides usually used to develop ODS as
well as OPH steels. However, its strengthening effect is not
ideal due to its growth at high temperatures [9]-[12]. Reactive
elements, such as Cr, Ti, and Zr, could be added to the Al-free
ODS steels to reduce the size of oxide dispersoids and pro-
duce stable oxide dispersoids [13]-[15]. To extend the maxi-
mum temperature capability of superalloys, such as Chrome
or Iron Aluminum-based OPH alloys, the mechanical alloy-
ing (MA) of powder feedstock, followed by Hot Rolling (HR)
and Heat Treatment (HT) were studied [14], [16]. This new
design expresses the leading idea in the OPH steel processing:
dissolve a required amount of O in the matrix during mechan-
ical alloying and let a fine dispersion of oxides precipitate
during hot consolidation. Such a microstructure evolution
depends on the initial chemical components and the entire
thermomechanical processing history through all processing
operations, which still needs optimization [13], [17].

Nowadays, the complexity of engineering problems has
been increased, and modeling and simulation methods
have been appearing as essential computational tools that
can explore and reveal insights into investigated pro-
cesses [18]-[22]. Many theoretical methodologies have
been conducted to survey the physical parameters of
materials [23]-[28]. In this regard, the use of Machine
Learning (ML) techniques is considered a powerful way of
conquering the problems associated with conventional meth-
ods [29]-[31]. The literature study reveals that ML algo-
rithms like artificial neural network (ANN) and Adaptive
Neuro-Fuzzy Inference System (ANFIS) display superior
performance in terms of high accuracy and low error content
compared to conventional statistical methods [32]. ANFIS
can combine the least-squares and the back-propagation gra-
dient descent method to identify the effective parameters of
Sugeno-type fuzzy inference systems. It has the benefits of
both neural networks and fuzzy logic principles [30]. Fuzzy
C-means clustering (FCM) is a data clustering technique
in which each data point belongs to two or more clusters.
FCM has a smaller number of rules, higher speed, and bet-
ter results [33]. These properties make FCM-ANFIS more
efficient for data simulation [34]. Moreover, the ANFIS-
Subtractive Clustering (SC) method is another helpful tech-
nique reported by several authors [35].

Researchers have been attracted to Al and ML, which
originated from artificial neural networks (ANNS), to find the
potential relationships between inputs and outputs in complex
functions and systems. This theory imitates the human neu-
ron network structures, including data processing, intention-
making, and learning [36]. However, this methodology has
essential weaknesses, like landing at a local minimum using
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many parameters and a slow convergence rate. Therefore,
many attempts have been made to solve these problems.
One effective way of dealing with these issues is to con-
clude the hybridization of ANNs with intelligence algorithms
and merging the neural network using powerful optimization
techniques [23]-[28]. Particle Swarm Optimization (PSO) is
the most useable optimization model for robust ANN, defined
as a population-based algorithm [37]. The PSO algorithm
is beneficial due to its easy implementation, fewer param-
eters, and high convergence speed. The role of PSO is to
optimize the weights and biases of ANN to get the highest
performance capacity of the hybrid intelligent systems [38].
In recent years, researchers have shown great interest in
modeling various alloys’ mechanical properties using ML
techniques [26], [27]. Table 1 gives useful information about
some very recent publications with a focus on applications
of Al-based methods for studying and analyzing materials.
This way, Stanev et al. tried to use Al for the search and
discovery of quantum materials [39]. In that field of materials,
the rise of new experimental and computational techniques
has increased the volume and the speed with which data
are collected, and Al is used to impact the exploration of
new materials such as superconductors, spin liquids, and
topological insulators [39]. They outlined how the use of
data-driven approaches is changing the landscape of quantum
materials research, with the result that artificial intelligence
is already well on its way to becoming the lynchpin in the
search and discovery of quantum materials [39]. Wang et al.
surrogated the model via Artificial Intelligence Method for
Accelerating Screening Materials and Performance Predic-
tion [40]. They used deep learning models, which have been
verified as an effective and efficient method for handling
computer vision and neural language problems [40]. Using
a deep learning surrogate model (DLS) for predicting the
maximum stress value under complex working conditions
reproduced the finite element analysis model results with
98.79% accuracy [40]. They outlined that deep learning has
great potential with a new approach for material screening in
practical engineering [40]. Guo et al. investigated Artificial
intelligence and machine learning in the design of mechan-
ical materials [41]. They show that the performance of an
ML-based materials design approach relies on the collection
or generation of a large dataset that is properly preprocessed
using the domain knowledge of materials science underly-
ing chemical and physical concepts, and a suitable selec-
tion of the applied ML model [41]. Recent breakthroughs in
ML techniques have created vast opportunities for not only
overcoming long-standing mechanics problems but also for
developing unprecedented materials design strategies [41].
Eser et al. used Artificial Intelligence-Based Surface Rough-
ness Estimation Modelling for Milling of AA6061 Alloy [42].
The cutting speed, depth of cut, and feed rate were evaluated
as input parameters for their experimental design [42]. The
results show that the depth of cut is the most effective param-
eter for surface roughness [42]. Prediction models developed
using ANN and RSM were compared in terms of prediction
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TABLE 1. An overview on the latest publications in the terms of applications of Al in material analysis.

accuracy R2, MEP, and RMSE [42]. The data estimated from
ANN and RSM were found to be very close to the data
acquired from experimental studies [42]. The value R2 of the
RSM model was higher than the values of the ANN model
which demonstrated the stability and sturdiness of the RSM
method [42]. Kabaldin et al. evaluated the mechanism of
the destruction of metals based on approaches of artificial
intelligence and fractal analysis [43]. They showed that a
relationship has been established between the fractal values
of fractures of specimens tested for impact from a value and
the impact strength KCV [43]. With an increase in toughness,
a decrease in the fractal dimension of the sample fracture is
observed [43]. Also, it has been shown that when recognizing
a viscous component in fractures of steel 45 using an INS, the
recognition error does not exceed 8% [43].

The appropriate features of OPH alloys make them great
alloys for different applications. Since the estimation of these
alloys always involves a number of uncertainties and non-
linearities, the application of an efficient model is essen-
tial for developing and studying such alloys. Accordingly,
in this research, some hybrid ML-empowered methods are
employed to address the complex behavior of these mate-
rials. The hybrid ML methods include two neuro-fuzzy
methods based on Adaptive Neuro-Fuzzy Inference System
(ANFIS) [44] and an FF-ANN to estimate the UTS and strain
in OPH steels. These parameters play a crucial role in consid-
ering the properties of OPH alloys. Therefore, understanding
the relationship between these critical parameters and other
structural parameters can lead to great improvements in the
accuracy and speed of designing OPH alloys. Moreover, since
the experimental data are used to determine the behavior of
the above parameters, the resulting models are more reli-
able and accurate than the mathematical models which do
not cover many nonlinearities or complexities. The ANFIS
techniques include SC and FCM to generate a fuzzy inference
system. Also, a hybrid of the ANN-PSO optimization method
is used to model the mechanical properties.
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Year Author Technique Application Objectives Differences
2021 [39] | Stanev, Valentin, Kamal Aland ML Prediction Review use of data-driven Quantum material, verity of
Choudhary, Aaron Gilad approaches methods
Kusne, Johnpierre Paglione,
and Ichiro Takeuchi
2021 [40] | Wang, Tian, Mingqi Shao, deep Performance Method for Accelerating Screening  FEA model base not
Rong Guo, Fei Tao, Gang learning Prediction Materials and Performance  experimental, not focused on
Zhang, Hichem Snoussi, and  surrogate Prediction special type of material
Xingling Tang model
2021 [41] | Guo, Kai, Zhenze Yang, Chi- ML and DL  Design materials design and computational ~ Used existing data base from a
Hua Yu, and Markus J. methods bunch of different materials,
Buehler Data generation
2021 [42] | Eser, Aykut, Elmas Askar ANN and Estimation Based Surface Roughness  Completely different Alloy,
Ayyildiz, Mustata Ayyildiz, RSM Estimation Modelling for Milling Different parameter estimation
and Fuat Kara of AA6061 Alloy
2020 [43] Kabaldin, Yuri, Maksim Aland FA Evaluation Evaluation of the mechanism of Different material, different
Anosov, and Dmitrii Shatagin the destruction of parameters
metals based on approaches of
artificial
intelligence and fractal analysis

The rest of this paper includes four sections. Section II
describes the experimental procedure and the special prop-
erties of the new OPH alloy based on metal powders.
Subsequently, the proposed adaptive neuro-fuzzy inference
system (ANFIS) trained by FCM clustering and SC in
addition to an ANN method trained by PSO is deployed
for estimating the mechanical characteristics in Section III.
Following that, the results of estimating the UTS and elon-
gation in the OPH steel are discussed in Section IV. Finally,
Section V summarizes the conclusions.

Il. EXPERIMENTAL PROCEDURE

The new OPH Alloy is based on metal powders using powder
metallurgy [45]. The main powders (Fe and Al) and other
components (Table 2 ) are mechanically alloyed in a vacuum
low energy ball mill developed by the authors (Fig. 1). While
the MA is completed, the mixture of powders is transferred
to a low-alloy steel rolling container with no contact to the
air, evacuated, and sealed by welding. Afterward, it is rolled
in three steps (Fig. 2) under 900 °C to a final thickness of
3.2 mm. An approximately 2.5 mm thick OPH sheet covered
on both sides by a 0.3 mm thick scale from the rolling
container is produced in this way.

The samples are then cut using a waterjet parallel to the
rolling direction (Fig. 3), followed by grinding to get a final
thickness of 2 mm. Using a servo-hydraulic MTS machine
(Fig. 4), all tensile tests were carried out with a strain rate
of 1 x 10.3 s-1. Standard size specimens with a thickness of
2 mm and a geometry of 53mm height and 13mm width with
the active part length of 25mm were tested. A central data
logger recorded all the measurements while the elongation
was measured using a video camera extensometer (Fig. 5).
Three samples were tested for each state and the average
values of UTS and elongation to failure (A) were statistically
calculated.

As shown in Fig. 5, the DIC technique was used to measure
the elongation of the samples. Speckle patterns were sprayed
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TABLE 2. Material parameters.

Electromoto

FIGURE 1. Low energy ball mill (developed by the authors).

on two opposite surfaces of the specimen using an airbrush to
achieve an optimal speckle size of 3-5 pixels. A professional
operator created all the patterns trying to get a coverage factor
falling within the range of 42% to 50%, which then minimizes
the noise. The average speckle size and coverage factors
were 4.3 pixels (mean value range: 4.1 to 4.5 pixels) and
49% (range 47% to 50%) respectively. Images were acquired
under the best achievable experimental conditions by using
the maximum exposure time (56 ms, due to the frame rate set
to 15 Hz). Later the strain was compared to what the internal
measurement system of the hydraulic machine measured to
be sure about the measurements.
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Material No. Milling time Rolling Temp. Annealing Chemical composition
(h) (°C) (wt. %)

OP1 150 925 RT,1000,1100,1200 °C- 0.72Fe-0.15Cr-0.06Al-0.03Mo-0.01Ta —
0,1,520 h 0.02Y203

OP2 230 925 RT,1000,1100,1200 °C- 0.72Fe-0.15Cr-0.06 Al-0.03Mo0-0.01Ta—
0,1,520h 0.03Y20s3

M1 200 900 RT 0.72Fe-0.14Cr-0.06A1-0.04Mo-0.03Y20s

M2 200 900 RT 0.74Fe-0.15Cr-0.04A1-0.04Mo-0.03Y20s

M3 200 900 RT 0.75Fe-0.15Cr-0.04A1-0.04Mo-0.03Y20s

M4 200 900 RT 0.76Fe—0.15Cr-0.03A1-0.04Mo-0.03Y20s

M5 200 900 RT 0.76Fe—0.15Cr-0.02A1-0.04Mo-0.03Y20s

M6 200 900 RT 0.77Fe-0.15Cr-0.01A1-0.04Mo-0.03Y20s

A5 480 960 RT,1000,1100,1200 °C- 0.85Fe-0.11A1-0.03Y203
0,1,520h

A6 480 960 RT,1000,1100,1200 °C- 0.87Fe-0.11Al1
0,1,520h

OP3 230 850 RT,800,1000,1100,1200 °C- 0.75Fe-0.15Cr-0.07A1-0.03Y20s3
0,1,520h

OP4 230 865 RT,800,1000,1100,1200 °C- 0.74Fe-0.15Cr-0.07A1-0.04Y20s3
0,1,520h

OP5 230 873 RT,800,1000,1100,1200 °C-  0.72Fe-0.14Cr-0.06A1-0.04Mo-0.03Y20s
0,1,520h

OP6 230 860 RT,800,1000,1100,1200 °C-  0.72Fe-0.14Cr-0.06A1-0.04Mo-0.03Y20s
0,1,520h

Ill. THE PROCEDURE FOR COMPUTATIONAL ANALYSIS
The proposed adaptive neuro-fuzzy inference system (ANFIS)
method has been trained by FCM clustering and SC, which
increases the capability of the ANFIS algorithm to analyze
and model complex functions. In addition, an ANN method
trained by PSO has been deployed for identifying the param-
eters as mentioned earlier. It should be noted that these
methods can predict the behavior of dynamic parameters in
different materials. Therefore, using such techniques can sub-
stantially decrease the costs and time required for designing
and producing new alloys. Fig. 6 demonstrates the framework
in which each of the parameters was modeled.
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FIGURE 2. Hot rolling machine.

B

~ Rolled O

FIGURE 4. Servo-hydraulic MTS machine.

As observed in the first approach, the datasets are measured
and collected for modeling purposes. Next, the aggregated
data need to be prepared. After that, the prepared data are
randomized and divided into two sets for training and testing.

156934

FIGURE 5. Measurements through extensometer.

In the next stage, three different scenarios are considered
to complete the process of estimation. As mentioned above,
there are three ML-based approaches that have been used to
identify the desired characteristics of the understudied alloy.

A. ANFIS-SUB

Subtractive clustering is functional, especially when there is
no indicated technique to distribute the data in the centers
and the number of clusters [35]. The algorithm is typically
summarized as follows:

1. A set of data points placed into a dimensional space
should be considered. In this regard, the most potential
data point in putting in the center of the first cluster
needs to be chosen.

2. The density index D; of the corresponding to data x; is
then calculated as in (1):

2

n Xi — Xj
pioy” (-] - 1 "

2)
r, is defined as a number showing the radius in which all
the points within its area are accounted as neighborhoods.
Accordingly, the data point with the most potential density
measure is opted for the first center group indicated with x|

its density D1.
3. D'- the density measurement - is recomputed for each
data point x; with the use of the equation (2):
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FIGURE 6. The diagram of the proposed scenarios to identify the dynamics of the UTS and elongation.

e (=5l
‘ (rofn)’

4. D;, D’ and other parameters are recalculated and the
procedures until adequate cluster centers are produced.

D.=Di—D

1

@

B. ANFIS-FCM

The second approach is ANFIS-FCM. In this approach,
firstly, the number of clusters is chosen based on the system’s
dynamic. Coefficients for each data point are then determined
randomly and placed into the clusters built-in before the
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stage [46]. In the following step, the algorithm needs to be
repeated until the best results are reached. In other words, the
center of each cluster (the centroid) is calculated. In addition,
the coefficients, which are used for placing the data points
in the clusters, are computed again. Generally, the FCM
algorithm can be described as equation (3):

1

n c
FCM =argcminZ, Z

= i
llxi—crl

L]
Z
Yo (=)
2
X [ xi = ¢

3
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where the fuzzy cluster level ¢; is controlled by m which is a
hyper-parameter while x; shows the data point.

C. PSO-ANN
In optimization application, PSO is defined as a computing
technique utilized to optimize a complex problem by an
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iterative method. In this algorithm, considering the required
quality, the algorithm can calculate the best possible value
for a candidate solution that has the potential to be the best
solution [47]. The population of particles called dubbed par-
ticles plays a crucial role in this method. In other words,
this algorithm tries to move these particles around a certain
search-space area using some simply specific formulas over
the velocity and position of the particles. In this part, we use
this algorithm to train an ANN to estimate the parameters as
mentioned above in the alloy. Fig. 7 illustrates a combination
of the PSO algorithm and ANN as a hybrid methodology.
As observed in this figure, firstly, the size of population
is selected depending on the required accuracy. Next, the
population of particles is generated with different kinds of
variables. Now, the first generation is available to complete
the initialization phase.

In the proposed technique, firstly, a cost function is con-
sidered to be minimized or maximized depending on the
optimization problem. After that, a number of particles is
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l & J Wi bi Error of training:
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The proposed PSO Algorithm:

Degerming velocity and position vectors:
VI =l e (Bl = ) At ey (Gl = 1)
P =pl 4V A

Computing value of the presented fitness function:

B0 =~ [0 5B (o))
.

Updating location of weights for determined number of
iterations and populations

Stop algorithm until the target value is achieved

FIGURE 9. The process of training MLP-FF-ANN using PSO algorithm for estimation of UTS and Elongation.

provided and employed throughout the problem with D
dimensional space. In fact, any particle includes some vari-
ables of the problem. Therefore, the fitness function (cost)
can be computed for each particle. Consequently, the position
and velocity of these elements should be updated based on
equations (4) and (5) as follows:

VI = wVE 4 1.1 (P, — pF)/ A
+2r2(Ghog — PP/ A )
P = pk 4 VI AL &)
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where i and k in order are defined as the num-
ber of particle and the number iteration. Also, V; =
{vit, via, .. vip) and pi = {pi,po, ...,
Pijs -+ - » ,0,~D} in order are defined as the velocity and position
vectors. Moreover, P’;est’i = {p,‘l,piz, ee s Dijs - e ,piD} and
G’;esl = {g1,82,...,gp}. Furthermore, c¢; is a cognitive
parameter and ¢ is a social parameter. In this regard, w is
considered to be the internal weight utilized of preservation
of the previous velocity while the optimization process is
performed, whilst 7; and r, are considered as two random

-5 Vijy -
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FIGURE 10. A comparison between the results of the ANFIS-SUB method and the actual measurements; (a) and (c) show the training data while

(b) and (d) illustrate test results.

numbers which are uniformly distributed between O and 1.
A, is the time interval for updating velocity and position and
it is typically equal to 1.

In fact, the process of training for an ANN contributes to
minimizing the problems which can be performed through
metaheuristic or mathematical algorithms [48]. Fig. 8 demon-
strates the structure of a conventional multilayer perceptron
feed-forward ANN (MLP-FF-ANN). As is shown in this
figure, there are three important layers, input layer, hidden
layer and output layer that can be described via equation (6):

yi=fQ" wii+ b)) (©)

where x; and y; are considered as the values in the previ-
ous and current layers respectively. This way, b; and w; are
defined as biases and weights of the ANN. In addition, f is
an activation function used for computing the value of the
ANN. Training is a process in which biases and weights of the
ANN are calculated in order to minimize the error between
the outputs of the network and the real values (targets). That
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is why we face a minimization problem when it comes to
training an ANN.

In the proposed method, PSO as the activation function
helps the ANN to reduce the errors by calculating the opti-
mized values, considering some structural parameters, such
as biases and weights. Hence, variables of PSO are weights
and biases of the network. In addition, the suitable space
of the problem is related to the intervals. The fitness func-
tion (cost) of particles is calculated via equation (7):

I s
E(wi, b,->=\/ “D [Zle (T = Pu (w, bi)}z} ™

here Py is the predicted output and Ty, is the target out-
put. Also, the number of neurons is defined by O. In the
proposed network, the parameters of the PSO algorithm are
defined as Swarm Size = 200; Max Iteration = 35; C1 = 2;
C2=4-Cl.
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FIGURE 11. The response of the ANFIS-FCM method compared to the actual measurements; figures (a) and (c) show the training data and figures

(b), and (d) illustrate test results.

This procedure is illustrated in Fig. 9. According to this
figure and the above explanations, the following stages can be
summarized to demonstrate the mechanism of this method:

1. After determining the number of neurons of ANN in its
hidden layer, a network with initial biases and weights are
built.

2. Since D is defined as the total number of the problem,
each of the biases and weights is considered as a particle in a
specific location in D-dimensional space of the problem.

3. Then output values of the particles in each iteration can
be estimated, leading to computing value of the presented
fitness function brought in Equation (7).

4. Finally, the location of weights and biases which are
defined particles are updated via the PSO algorithm for an
indicated number of iterations and populations and until
achieving the target value.

The proposed hybrid ML-based methods have been imple-
mented by MATLAB R2020A through a processor Intel(R)
Core (TM) i7-9700 CPU @3 GHz with 16 GB (RAM).
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IV. RESULTS AND DISCUSSION

A. MODELING RESULTS

In this section, the results of the estimation of the UTS
and elongation in the OPH steel are discussed. The most
important advantage of the utilization of the present method
is to estimate these complex parameters with three ML meth-
ods without using mathematical analysis. In this approach,
the material is considered to be a black-box model.
Fig. 10 depicts a comparison between the output of the
ANFIS-SUB model and the actual measurements.

This figure is extremely helpful as it shows the nonlinear
and complex behavior of the UTS and elongation in the OPH
steel. In fact, this nonlinear dynamic behavior is the reason
that analytical methods cannot model or identify such mate-
rials for design purposes with the highest rate of accuracy as
well as providing a reliable estimator for the prediction of
UTS and elongation. Moreover, even if mathematical mod-
els can consider all uncertainties or nonlinearities, we face
some complex equations that cannot be solved. That is why
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FIGURE 12. Standard deviation and error regression for SUB-ANFIS model.

the proposed method can compensate for the weaknesses of
analytical strategies. However, the most challenging issue in
order to apply such techniques is to have a reliable measure-
ment. In the present work, as mentioned in section 2, we try
to utilize an appropriate dataset in which the accuracy of the
proposed methods is not affected.

According to Fig. 10, the ANFIS-SUB method can suc-
cessfully estimate all three studied parameters’ values. In this
regard, Figs 10a and 10c depict to the training data for UTS
and elongation, respectively, whereas Figs. 10b and 10d rep-
resent their related test results.

Since UTS and elongation can assist the process of the
design, reaching this level of accuracy will help the designers
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to see the effects of changing any structural parameters on
the properties of these alloys. Disregarding the excellent
results, the figure shows how such methods highlight the
capability of Al-based models to predict the complex behav-
ior of different materials which can be used as a holistic
approach for other materials. This can be accomplished when
it comes to materials that cannot be modeled by simple
equations.

In this section, two error criteria have been used as
follows:

As with the ANFIS-SUB method, the results of the
ANFIS-FCM model are demonstrated to evaluate the
method’s performance. In this respect, Fig. 11 shows
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FIGURE 13. Standard deviation and error regression for FCM-ANFIS model.

the output of the ANFIS-FCM model compared to the actual
measurements. As can be seen, although the introduced
hybrid method based on ANFIS-FCM is suitable for iden-
tifying the parameters, the accuracy of the ANFIS-SUB
model seems better. Accordingly, Figs 11a and 11c compare
training data for UTS and elongation respectively, whereas
Figs 11b and 11d demonstrate test data.

Moreover, Figs. 12 and 13 demonstrate the error regression
graph and the Standard Deviation (SD) for ANFIS-SUB and
FCM respectively. Based on these figures, the performance of
the proposed hybrid methods equipped by the ANFIS model
can be evaluated appropriately. Accordingly, in Fig. 12a,
12¢, the SD of three parameters show desirable values
about 0.55 and 0.0012 for UTS and elongation respectively.
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Moreover, in Figs. 12b and 12d, representing error regression
graphs, there are almost no dramatic differences between the
estimated data points at a specific time and the actual data
points, proving the appropriate performance of the ANFIS-
SUB model. However, a different scenario should be said(?)
for ANFIS-FCM. According to Fig. 13, the ANFIS-FCM
method does not have an appropriate performance in all the
graphs in Fig 13.

After initializing the network, the simulation with the time
domain is started. The fitness function for each of the gener-
ated particles is then found while in the first stage, their cor-
responding is determined. Consequently, the fitness function
should be evaluated, in which if it is the best solution, the pro-
cess ends; if not, it needs to be repeated. Fig. 14 illustrates the

156941



IEEE Access

0. Khalaj et al.: Hybrid Machine Learning Techniques and Computational Mechanics

0.8 H
0.6 H 4
0.4 ! b

0.2 A 4

[ g

02} a4

UTS (MPa)

|
>

Target a A
- A - Qutput
1 : ‘ . | . |

-0.8 -

10 20 30 40 50 60 70 80
Sample Number

(a)

Target

0.8/- A - Qutput 1

0.6

0.4
0.2 A‘ 7
04\ “1“‘? } @A
: !
A

-0.2

Elongation (%)

04

-06

—_p===
P =
DF_Z_F
E=Z 2

-0.8 -

4 . . A,

10 20 30 40 50 60 70 80
Sample Number

(©)

0.8 — ‘ : . . . .
—6&— Target
0.6 - |—=— Output
0.4
-~
<
EQ' 02
N’
2 o
-
0.2
0.4
0.6 L1 ‘ . . s s . . s .
2 4 6 8 10 12 14 16 18 20
Sample Number
08 : : . .
Target
- A - Qutput
e
B
N’
=
=5
=
I
o0
=
=
=
4 : )

2 4 6 8 10 12 14 16 18 20
Sample Number

(d)

FIGURE 14. The output of the PSO-ANN model compared to actual measurements.

comparison between the output of the ANN-PSO approach
and real data points. As can be seen, this method has an
average performance compared to ANFIS. The first criterion
is Mean Squared Deviation (MSD) -also called Mean Squared
Error (MSE)- which is an estimating technique to measure
the average of the squared errors. In this method, the average
squared difference between the real output and the estimated
output of the model.
N

msE =Y @ ®)
where N is defined as the number of data points, y; is
the model’s output, and y; is the real value for the data
point i.

Root Mean Square Deviation (RMSD) or the Root Mean
Square Error (RMSE) is a kind of statistical method that is
nearly the same as the standard deviation of the mean (SD),
in which instead of N — 1 data points, N ones are used in
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Table 3 gives information about the actual values and esti-
mated values for three parameters. As can be seen, the ANFIS
method trained by the subtractive clustering method has the
best fitness for identifying the parameters, while another
ANFIS model optimized by the FCM algorithm shows the
worst results. Moreover, the proposed ANN method trained
by the PSO algorithm has an acceptable response for model-
ing the parameters.

One of the most significant contributions of this work
compared to our recent research [20] is the methodologies
that have been used. In fact, in [20] a conventional ANN
trained by Levenberg—Marquardt backpropagation algorithm
is used while in the present work, a hybrid ML method, which
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TABLE 3. Comparison between the measured data and the estimated data for both training and testing methods.

Estimation ANFIS-SUB ANFIS- ANFIS ANFIS ANN ANN PSO
Targets (MSE) SUB FCM FCM PSO (RMSE)
(RMSE) (MSE) (RMSE)  (MSE)
UTS (MPa) 0.013 0.11401 0.0453 0.21283 0.0605 0.24596
£
=
E Elongation (%) 0.0356 0.1886 0.01506 0.12271 0.0223 0.14933
(<l
UTS (MPa) 0.0209 0.14456 0.0921 0.30347 0.0481 0.21931
E Elongation (%) 0.1336 0.36551 0.0966 0.31080 0.0939 0.30643
TABLE 4. Comparison of the results of the proposed method and some similar methods for estimation of UTS.
MSE RMSE
ANFIS-SUB 0.0209 0.14456
ANFIS-FCM 0.0921 0.30347
ANN-PSO 0.0481 0.21931
Linear Regression Model [49] Not reported 41.2
RF Model [49] Not reported 40.4
FFBPNN [50] Not reported 3.99
ANFIS [51] Not reported 0.88
ANN [51] Not reported 0.92
FIS [51] Not reported 0.8

is trained via particle swarm optimization (PSO) is used.
In this research, as for any optimization problem, minimiza-
tion of the network cost is taken into consideration. This has
been achieved by minimizing some form of error function
between the desired and the actual network outputs, during
the training phase. However, the conventional algorithms like
Levenberg—Marquardt backpropagation are sensitive to the
choices of the initial weights and tend to get trapped in local
minima. On the other hand, evolutionary algorithms like the
proposed method have proved their usefulness in introducing
randomness into the optimization procedure, since they work
on a global search strategy and induce a globally minimum
solution for the network weights. In this regard, the utilization
of an ANN trained by PSO for analyzing the behavior of
the alloys leads to achieving the local-best and global-best
particle positions as possible solutions to the setting of the
network weights. In summary, the application of PSO for
training the ANN is one of the important contributions of the
presented manuscript.

Another important contribution of the present work is
about the target of modeling. Although both papers used
ANFIS for analyzing the alloys, the aims are completely
different to each other. For example, in [20], the simulation of
the hardness of OPH steels was studied, while in this work we
use the ANFIS methods or the ANN-PSO method for analyz-
ing ultimate tensile strength (UTS), and elongation. UTS and
elongation are two main parameters that highlighted alloys
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for formability and strength. Higher UTS value usually backs
with lower elongation while higher elongation increases the
plasticity of the alloy. So, it is quite important to balance and
optimize these two values to achieve the best performance of
the final alloy. In fact, this work aims to estimate the nonlinear
behavior of UTS and elongation.

The reliability and accuracy of ML-based techniques for
estimating the nonlinear behavior of OPH alloys indicate
that for future work a multi-objective method based on deep
learning or reinforcement learning can be considered in order
to increase the level of precision. It is also worth mention-
ing that, regardless of the satisfaction and reliability of the
derived results from all the applied techniques, all ML meth-
ods should be utilized with caution as sometimes the appro-
priate data for a mining operation is not available, leading to
effects on the simulation and prediction.

Table 4 compares the results of the proposed method with
some similar papers, representing the applicability and accu-
racy of the introduced method in the estimation of UTS.
It should be noted that measurement accuracy and input
signals can significantly affect the outputs of all data-driven
models.

V. CONCLUSION

In this paper, some hybrid ML techniques have been
employed and evaluated for the estimation of the dynamic
behavior of OPH steels. OPH alloys are types of material
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TABLE 5. Glossaries.

0ODS Oxide Dispersion Strengthened
OPH Oxide Precipitation Hardened
Al Artificial Intelligence

ML Machine Learning

UTS Ultimate Tensile Strength
FF-ANN Feedforward Artificial Neural Network
PSO Particle Swarm Optimization
ANFIS Adaptive Neuro-Fuzzy Inference System
FCM Fuzzy C-Means

SC Subtractive Clustering

MA Mechanical Alloying

Al Aluminum

Mo Molybdenum

Fe Iron

Cr Chromium

Ta Tantalum

Y Yttrium

(0] Oxygen

Ti Titanium

Zr Zirconium

HR Hot Rolling

HT Heat Treatment

RMSD Root Mean Square Deviation
RMSE Root Mean Square Error

SD Standard Deviation of the mean
DL Deep Learning

DLSM Deep Learning Surrogate Model

that are typically prepared by mechanical alloying from a
mixture of powder components consolidated by hot rolling
followed by heat treatment. The proposed ML approaches
were applied as estimators to estimate the ultimate tensile
strength (UTS) and elongation based on actual measurements
of the different chemical compositions of the studied alloy,
such as Al, Mo, Fe, Cr, Ta, Y, and O), heat treatment con-
ditions, and mechanical alloying conditions. The proposed
methods consist of a feedforward artificial neural network
(FF-ANN) trained by particle swarm optimization (PSO) and
two adaptive neuro-fuzzy inference system (ANFIS) meth-
ods trained using both fuzzy C-means (FCM) clustering and
subtractive clustering (SC).

The results showed that the proposed strategies can model
and identify the complex behavior of OPH Steels with an
approximate accuracy of 95% and can help the designer to
address and predict these steels with all nonlinearities and
uncertainties without using analytical calculations. In addi-
tion, the proposed methods provide designers with a tool for
finding which chemical composition might have more impact
on UTS or elongation in such steels.

In the future, we will work on more accurate ML-based
techniques to study different materials and adapt the proposed
method accordingly. There are a number of parameters for
each material that can significantly affect the accuracy and
reliability of the estimate. Moreover, some new DL -methods
such as reinforcement learning and transfer learning can
be considered to improve the applicability of the proposed
method.

APPENDIX
See Table 5.
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