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Abstract

This thesis is devoted to statistical methods for comparing data from acoustic
and dynamic measurements and simulations. Firstly, the modal analysis and
statistical methods are introduced, then chosen comparative criteria generalized.
In the case of two data sets comparison, we primarily focus on acquirement and
inclusion of a mass matrix and extensions for capturing differences in the data.
The main results concern the case of multiple data sets, where the basic assurance
criteria are generalized through regression models for comparison and differences
detection for more input data. Demonstrations of the standard and improved
criteria applied on real data are also provided. Within the thesis, an application,
written in Python 3.6, for ZF Friedrichshafen AG usage was created as well and
the documentation for the application is attached.

Keywords: modal analysis, dynamic measurements, Modal Assurance
Criterion and generalizations, linear regression, statistical tests

Abstrakt

Práce je zaměřena na statistické metody pro porovnáńı dat z akustických a dy-
namických měřeńı a simulaćı. Nejprve jsou představeny modálńı analýza a stati-
stické metody, poté zobecněna vybraná srovnávaćı kritéria. V př́ıpadě porovnáńı
dvou datových sad se předevš́ım věnujeme stanoveńı a zahrnut́ı matice tuhosti a
rozš́ı̌reńım zachycuj́ıćıch rozd́ılnosti v datech. Hlavńı výsledky se týkaj́ı př́ıpadu
v́ıcero dat, kde jsou základńı kritéria zobecněna pomoćı regresńıch model̊u pro
porovnáńı a detekci rozd́ılnost́ı pro v́ıce vstupńıch dat. Součást́ı práce jsou také
ukázky kritéríı aplikovaných na reálná data. V rámci práce byla vytvořena ap-
likace, napsaná v Python 3.6, pro účely společnosti ZF Friedrichshafen AG a
proto je připojena rovněž dokumentace k aplikaci.

Kĺıčová slova: modálńı analýza, dynamická měřeńı, Modal Assurance
Criterion a zobecněńı, lineárńı regrese, statistické testy
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Chapter 1

Introduction

The text focuses on the topic of modal analysis and the statistical methods for
data processing from acoustic and dynamic measurements and simulations. The
standard criteria are usually used for comparison of measurement and simulation
and for updating numerical models describing the real system or for a comparison
of two measurement data with displaying differences in vibrational behaviour
(e.g. visualizing which system is stiffer in terms of vibration) [1], [2], [3]. The
main aim of this work was to generalize the basic criteria primarily for comparison
of more data sets and apply them to real data and create an application with
standard and improved criteria for ZF Friedrichshafen AG usage. The program
was written in Python 3.6.

The text is composed of five main chapters.

The chapter Modal analysis serves as an introduction into the vibrational ana-
lysis and dynamic measurements and additionally contains a new approach for
approximation of a mass (and stiffness) matrix for measurement data.

Whereas the chapter Statistical modeling is an introduction into the statistical
analysis, the theory of linear regression models and statistical testing. The presen-
ted concepts and tools of both these chapters are used in the next two chapters.

In the chapter Correlation criteria for two data sets comparison, we present the
known basic criteria, especially so called MAC and FDAC, as well as their new
extensions. All of these criteria are suitable for comparison of two data and
they are based on elementary correlation criteria and modal properties. The first
main generalization is through the inclusion of the mass matrix obtained from
measurement data into the criteria and the second new development are selective
criteria which are intended to capture and determine the differences in the data
and give a more detailed view of data. All criteria are applied on real data and
the results are demonstrated.

The chapter Statistical processing of multiple data sets is the major chapter de-
voted to new generalizations of the basic criteria through application of the stat-
istical theory of linear regression models. These criteria have the same purpose
as the standard criteria, to compare the data involved and detect the differences.
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The only, essential, difference is in comparing many data sets together. In con-
clusion of the chapter, there is again a demonstration of the criteria on real data.

The last large chapter MAC application is a user documentation for the pro-
grammed tool containing information about the installation, description of the
application options and required format of input data and few more useful notes
about the program itself.
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Chapter 2

Modal analysis

Modal analysis is a way of studying vibrating systems by finding system resonant
(natural) frequencies and modes of vibration. The concept is that, under certain
conditions on the system, any structural vibration can be described as a weighted
superposition of each natural mode [4], [5].

Let us focus on linear (linearised) time-invariant N degree of freedom systems
that can be modelled by a set of coupled second order differential equations of
motion as

Mẍ+Dẋ+Kx = f, (2.1)

where M , D, K are mass, damping and stiffness matrices, x = x(t) is a time-
varying vector of generalized coordinates (e.g. x, ẋ, ẍ are displacement, velocity
and acceleration vectors) and f = f(t) is a vector of external forces. In clas-
sical structural models, the proportional viscous damping (Rayleigh damping) is
assumed, i.e. the damping matrix can be written as a linear combination

D = c1M + c2K,

where c1 ∈ R, c2 ∈ R and both matrices M and K are considered real symmetric,
matrix M positive definite and matrix K positive semidefinite.

For the undamped, unforced system, the equations of motion (2.1) become

Mẍ+Kx = 0. (2.2)

Assuming the general solution of the form

x = veiωt,

v designate a vector of amplitudes and ω an angular frequency of the motion, and
introducing it into the equations (2.2), a generalized matrix eigenvalue problem

(K − λM)v = 0, (2.3)

where λ = ω2, is obtained.

3



We assume that a solution to the eigenvalue problem (2.3) are N distinct ei-
genvalues and corresponding N eigenvectors. Eigenvalues are numbers λn = ω2,
n = 1, 2, . . . , N , for which the eigenvalue problem has a nontrivial solution vn,
the resonant frequencies are given by ωn =

√
λn, and the nontrivial solutions vn

are called eigenvectors or modal vectors or mode shapes. We will use the term
modal vectors from now on.

Due to the M symmetric positive definite, K symmetric positive semidefinite and
the assumption on distinct eigenvalues, we get N distinct nonnegative eigenvalues
and corresponding N linearly independent real eigenvectors that comprise an
orthogonal basis of mass and stiffness matrices [6], [7]. By arranging modal
vectors as columns into a matrix V and eigenvalues on diagonal of a diagonal
matrix Λ, a modal matrix V and a spectral matrix Λ arises.

Modal vectors comprise an orthogonal basis of mass and stiffness matrices, i.e. both
V ∗MV and V ∗KV are diagonal matrices, and because of proportional damping, a
matrix V ∗DV is a diagonal matrix as well (matrices M , D, K are diagonalizable
in the same basis). The modal expansion theorem holds, the vector of generalizes
coordinates x can be expressed in modal (natural) coordinates q = q(t) as

x = V q.

By expressing the equations of motion (2.1) in modal coordinates and multiplying
it by matrix V ∗ from the left, it is possible to have the system described by a set
of N uncoupled equations of motion. Modal vectors may be M -orthonormalized
(eventually also K-orthonormalized) and then for modal vectors holds

V ∗MV = I = VMV ∗,

V ∗KV = Λ = V KV ∗.

When the system under study does not comply with the classical assumptions,
the resonant frequencies of the system may not be identical to those of associ-
ated undamped system and both eigenvalues and modal vectors may be complex
valued.

2.1 Experimental modal analysis

Experimental modal analysis is the study of modal properties of vibrating sys-
tems in a frequency domain, using an experimental frequency response function
(a transfer function) information.

The transfer function H(z) is, as a complex function of a complex variable z,
an input-output representation of the system differential equation. For the lin-
ear time-invariant system with continuous time input x(t) and output y(t), the
transfer function is defined as a linear mapping of the Laplace transform of the
input X(z) = L(x(t)) to the Laplace transform of the output Y (z) = L(y(t))
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with the following form,

H(z) =
Y (z)

X(z)
.

The roots of the equation Y (z) = 0 are the system zeros and the roots of the
equation X(z) = 0 are the system poles or the system eigenvalues.

The frequency response function is the transfer function evaluated for z = iω,
where i is an imaginary unit. Considering a set of N differential equations of
motion with harmonic excitation as

Mẍ+Dẋ+Kx = Feiωt,

where F is a vector of amplitudes, then, assuming the solution of the form
x = Aeiωt and introducing it into the equations,[

(iω)2M + iωD +K
]
A = F,

the frequency response function can be expressed as

H(iω) =
[
(iω)2M + iωD +K

]−1
,

where H(iω) is a N×N matrix, whose element at position r, s (the r-th row, the
s-th column) designate the response in the r-th position due to the unit excitation
in the s-th position. Applying a harmonic force at resonant frequency results in
a deflection shape that is proportional to the modal vector corresponding to this
frequency.

In a dynamic measurements of the experimental frequency response function of
mechanical or acoustical systems, usually the input is force (or acceleration) and
the output is acceleration (or displacement or velocity). The structure is excited
by external forces using an impact hammer (a hammer impact testing), an elec-
trodynamic shaker or a measurement on a test bench. The output is measured
in selected sensor positions per individual channels with translational degrees of
freedom denoted as DOF 1, 2, 3 (or as ‘u’, ‘v’, ‘w’), eventually rotational degrees
of freedom DOF 4, 5, 6 (or ‘phiu’, ‘phiv’, ‘phiw’).

Typically amplitudes and phases as a function of frequency for individual chan-
nels (sensor positions) are plotted as a graph of the frequency response function.
Amplitudes have peaks (maxima) corresponding to resonant frequencies. If the
frequency response function is expressed in real and imaginary parts, then the
real parts equal zeros and imaginary parts have peaks (maxima or minima, either
above or below zero) at resonant frequencies and the peak values of the imagin-
ary parts may be taken as the modal vectors, for acceleration or displacement
responses [8]. The selection of peaks itself is not entirely unambiguous due to the
noise in the data (and all the measurement errors) and a requirement for global
peak selection, it is necessary to select such frequency values (and corresponding
modal vectors) that occur as peak at multiple channels.

For the modal vectors approximated by the deflection shape (experimental fre-
quency response function) corresponding to resonant frequencies, the designa-
tion v (and V for the modal matrix) is also used in the following text. Therefore
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also the resulting modal matrix do not have to be square, the length of modal
vectors gained from the measurements depends on the number of channels and
sensor positions.

2.2 Experimental mass and stiffness matrices -

Pseudoinverse method

In case of Rayleigh damping, two dominant experimental damping coefficients
may be measured and when mass and stiffness matrices are known, it is possible
to determine the coefficients c1, c2 and hence the damping matrix [5].

Mass and stiffness matrices are usually obtained from finite element models. How-
ever, when experimental modal analysis is used, the mass and stiffness matrices
remain unknown. For the case we do not have the finite element model of the
structure, we introduce a new approach, named pseudoinverse method, to ap-
proximate the mass and stiffness matrices. The matrices thus obtained may be
also compared to matrices from the finite element simulation or used for addi-
tional eigenvalues and eigenvectors computation (and then serve as an accuracy
indicator of the pseudoinverse method).

The approach of pseudoinverse method has been practically implemented only
to obtain a mass matrix and theoretically can be used to the stiffness matrix as
well.

Based on the knowledge of the (measured) modal and spectral matrices, the mass
and stiffness matrices can be derived from equations

V ∗MV = I,

V ∗KV = Λ,

so the normalization of modal vectors with respect to the mass matrix M is
presumed (some methods to determine a scaling factor for modal vector normal-
ization are shown in [9]). Since the modal matrix V may not be square, the
Moore-Penrose pseudoinverse V + is used to get the matrices M and K as least
squares solutions (minimum norm solutions) or as projections into a subspace of
smaller size matrices. If the modal matrix V is of type L × N , where N < L,
(which is not at all a common case for measurement data) some rows of the modal
matrix are deleted to ensure the system is not overdetermined. Let R denote the
number of degrees of freedom (channels) per sensor, AUTOMAC an AUTOMAC
matrix (see below, in the section 4.1.1) and AUTOMACR the AUTOMAC mat-
rix for modal matrices with R rows corresponding to some sensor removed. While
N < L, iteratively R rows per each sensor of both (the same duplicated) modal
matrices are deleted so that the L2 norm

‖AUTOMAC − AUTOMACR‖

is minimal. However, the square dimension of the modal matrix is the ideal shape
for calculating M and K matrices.
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Several numerical methods with regularisations have been extended and combined
to obtain the mass matrix and named as

� Tikhonov and Schulz,

� IC symmetric and Schulz,

� Tikhonov and PR2-Schulz,

� IC symmetric and PR2-Schulz.

In these algorithms, Tikhonov regularization or an initial condition designated
as IC symmetric serves to get the first approximation of matrices M and K
(resp. matrix (V V ∗)−1) and Schulz or PR2-Schulz methods applied to improve
their accuracy. The description of the individual (modified) procedures follows,
methods together with implemented algorithms are presented, and a comment
on a comparison of methods in terms of condition number is added at the end of
this section.

2.2.1 Tikhonov regularization

Tikhonov regularization is a classical regularization method [1], [10], that im-
proves conditioning of a problem (and allows numerical finding an approximate
pseudoinversion) by seeking the solution, matrices M and K, in the least squares
sense (as a projection) with a constraint eliminating solutions of large norm. We
consider obtaining the mass and stiffness matrices separately, different regulariza-
tion parameters and thus approximation of the pseudoinversion V + (resp. matrix
(V V ∗)−1) are used.

For the mass matrix holds

M = V ∗+V + = (V V ∗)−1V V ∗(V V ∗)−1 = (V V ∗)−1

(matrix V has full column rank thus the matrix (V V ∗) is regular).

Applying a simple Tikhonov regularization with one regularization parameter
β1 ∈ (0, 1) to the problem leads to two variants of mass matrix computation,

M = (V V ∗ + β1E)−1V V ∗(V V ∗ + β1E)−1

or

M = (V V ∗ + β1E)−1. (2.4)

The second variant (2.4) is used, because less matrix multiplication implies fewer
numerical errors and thus better results (experimentally verified).

The stiffness matrix can be calculated as

K = (V V ∗ + β2E)−1V Λ V ∗(V V ∗ + β2E)−1,

with the regularisation parameter β2 ∈ (0, 1).
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The regularization parameters can be adjusted based on different tools, known
are e.g. Morozov′s discrepancy principle, L-curve method or a generalized cross-
validation. However, parameters β1 and β2 may be also chosen for fixed V as
minima

β1 = min
β
ϕ1(V, β), ϕ1(V, β) := cond((V V ∗ + β)−1),

β2 = min
β
ϕ2(V, β), ϕ2(V, β) := cond((V V ∗ + β)−1V ),

where cond(·) designate a condition number and β ∈ (0, 1). It can be shown
that both functions −ϕ1(V, β) and −ϕ2(V, β), β ∈ (0, 1), are weakly unimodal
(there exists a value c such that functions are weakly monotonically increasing
for 0 < β ≤ c and weakly monotonically decreasing for c ≤ β < 1) and functions
ϕ1(V, β), ϕ2(V, β), β ∈ (0, 1), have the minimum, for fixed V . Which means, the
minimum can be found e.g. by a golden section search.

We chose to select the parameter β1 for fixed V numerically close to minimum
by a golden section search with a termination condition

|a− b| ≤ ε ∨ ‖V ∗MnV − I‖ ≥ 1.1 · ‖V ∗Mβ=0V − I‖ ,

where a and b are boundaries of the search interval, ε is a tolerance parameter,
Mn is the current approximation of the mass matrix and Mβ=0 is a mass matrix
obtained without any regularization. That is, the parameter β1 is chosen so that
the conditional number of the resulting mass matrix M is the lowest possible
while the L2 norm error is less than 1.1 multiple of L2 norm error for the mass
matrix obtained without any regularization.

The value of β2 may be found by a golden section search with analogous termin-
ation condition

|a− b| ≤ ε ∨ ‖V ∗KnV − Λ‖ ≥ 1.1 · ‖V ∗Kβ=0V − Λ‖ ,

where a and b are boundaries of the search interval, ε is a tolerance parameter,
Kn is the current approximation the stiffness matrix and Kβ=0 is the stiffness
matrix obtained without any regularization. That is, the parameter β2 can be
chosen so that the conditional number of the approximate pseudoinversion V +

2 is
the lowest possible while similar condition (as in case of mass matrix) for norms
for the stiffness matrix holds.

Matrix (V V ∗ + β1E)−1 (ev. (V V ∗ + β2E)−1) is then the first approximation A−10

for Schulz and PR2-Schulz methods.

In addition to the mentioned simple Tikhonov regularization, other types of reg-
ularization, such as for example

� generalized (e.g. [11]) or higher order of Tikhonov regularization,

� TSVD – Truncated singular value decomposition, where singular values of
inverted matrix smaller than a tolerance ε are truncated to zero (the disad-
vantage is that, unlike a smooth behaviour of Tikhonov filtering function,
a TSVD filtering function has discontinuous cut off behaviour, which may
result in oscillations),
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� iterative regularization (steepest descent, conjugate gradients, Landweber-
Fridman), where the regularization parameter equals to the number of it-
erations,

could be applied as well [10].

2.2.2 IC symmetric

IC symmetric is a denomination for an initial approximation of an inversion of
symmetric positive definite matrix A of type N ×N ,

A−10 =
I

‖A‖
,

that, analytically, satisfies a necessary and sufficient condition of convergence for
the Schulz and PR2-Schulz method,∥∥I − AA0

−1∥∥
S
< 1,

with a known bound ∥∥I − AA0
−1∥∥

S
< 1− 1√

N cond(A)
,

where ‖·‖S designate a spectral norm [12], [13]. When searching for the mass
matrix M , or stiffness matrix K, the IC symmetric condition is applied to matrix

A = V V ∗.

Numerically, approximations of the matrix V V ∗ are forced to be real symmetric
(trimming imaginary parts) with the assumption of positive definite (checked at
the end of all the algorithms) in a Python implementation.

Besides the above mentioned initial condition, another initial approximation
might be considered as well. A classic example is

Ã−10 =
A∗

‖A‖1 ‖A‖∞
,

with a bound ∥∥∥I − AÃ−10

∥∥∥
S
< 1− 1

N(cond(A))2
,

for not only symmetric positive definite matrix A [13] (with trimming of imaginary
parts and checking of positive definiteness of resulting mass and stiffness matrices
only). Nevertheless, because of more matrix multiplication with such an initial
approximation the sufficient condition of convergence, and convergence itself,
is numerically less feasible (in addition, as expected, in numerical experiments
applied to real data the trimming of imaginary parts led to better results when
used on the matrix V V ∗ instead of on resulting mass matrix).
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2.2.3 Schulz method

Schulz method is a Newton′s method generalized for matrix (pseudo-) inversion
problems, exhibits local quadratic convergence, but require a suitable initial ap-
proximation [12]. For a given initial matrix A−10 the iterations are defined by

A−1n+1 = 2A−1n − A−1n AA−1n .

New approximations of A−1 are calculated while the error norm∥∥I − V ∗A−1V ∥∥
(‖Λ− V ∗A−1V Λ V ∗A−1V ‖ in case of stiffness matrix) decreases and the max-
imum limit of iterations is not reached (if the decreasing stops, a few more iter-
ations are additionally calculated in case of further error norm decrease).

Schulz method of the third order (Chebyshev-Sen-Prabhu) [14], where

A−1n+1 = 3A−1n − 3A−1n AA−1n + A−1n AA−1n AA−1n ,

is also implemented. It is a cubically convergent method, less iterations, but more
computations per iterations are needed.

To speed up the algorithms runs, secant methods, where iterations do not require
a large amount of computational work, or just another fast iterative algorithm
for matrix inversion approximation [13] could be used.

2.2.4 PR2-Schulz method

PR2-Schulz method is a combination of the Schulz method and an extension of
Richardson′s method using the matrices A−1n as preconditioners that results in
an effect of accelerating the convergence of the iterative method. Nevertheless,
some numerical instability can occur at the last iterations for very ill-conditioned
problems [12]. PR2-Schulz method generalized to obtain the mass matrix led to
an algorithm

r0 = I − V ∗A−1V,
d = A−1V rV ∗A−1,

for n = 1, 2, . . . , Nmax do :

u = V ∗dV,

δn =
〈r∗n, u〉
‖u‖2

,

Mn+1 = Mn + δnd,

rn+1 = I − V ∗Mn+1V,

A−1 = 2A−1 − A−1AA−1,
d = A−1V rV ∗A−1,
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where at the beginning the matrix A−1 is a given initial approximation, 〈r∗n, u〉
is a L2 (Frobenius) inner product of r∗n and u and rn is an error matrix which is
recomputed in every loop to avoid loss of precision (otherwise rn+1 = rn − δnu
could be used). The principle of the method is that the new approximation of
mass matrix Mn+1 is calculated as the addition of the old approximation Mn and
the correction term δnd, where the coefficient δn is chosen so that the new error
norm squared ‖rn+1‖2 is minimal — the formula is obtained from a necessary
condition of extreme, using a Fermat′s theorem.

In the Python implementation, the new iterations are calculated while the error
norm decreases, while rn+1 < rn, and the maximum limit of iterations Nmax is not
reached (if the decreasing stops, a few more iterations are additionally calculated
in case of the further error norm decrease).

2.2.5 Comparison of methods in terms of condition num-
ber

For ill-conditioned problems a small error in the initial input data can lead to
much larger errors in the output results, regardless of the algorithm used for
returning the output result. An ill-conditioned problem is indicated by a large
condition number. For rectangular matrix with full column rank, a condition
number of a matrix A can be defined as

cond(A) =
σmax(A)

σmin(A)
,

where σmax(A) is the largest and σmin(A) the smallest singular value of the mat-
rix A. The conditional number of the singular matrix is infinite. The inverted
value of the conditional number indicates the distance of the given matrix from
the set of singular matrices measured in the spectral norm [6].

For the idea, what does a ‘large’ condition number mean, the inverted value
of float digits of precision in Python (‘1/sys.float info.epsilon’) gives a value of
approximately 4.5 · 1015.

In the implemented methods, the condition number of the input matrix V and of
the resulting mass matrix M is computed (and reported) and at the beginning of
Schulz and PR2-Schulz methods, the norm

∥∥I − AA0
−1∥∥

S
is computed as well.

In the case of a higher condition number, the PR2-Schulz method should be
avoided and the conditioning may be improved using a Tikhonov regularization.
Therefore, the recommended methods are primarily ‘IC symmetric and Schulz’
and ‘Tikhonov and Schulz’.
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Chapter 3

Statistical modeling

Statistical modeling stands for a set of statistical models that embodies also
statistical assumptions, estimates and associated statistical tests derived from
the models.

In this chapter, we introduce a model of linear regression and two ANOVA (Ana-
lysis of Variance) models primarily following on from [15], [16]. ANOVA models
can also generally be understood as regression models, we present a model of
two-way ANOVA with interactions and a model of three-way ANOVA with in-
teractions. Finally we mention basic information about statistical testing and
provide statistical tests that we use. We apply this theory in other chapters
(partly in the chapter 4 and primarily in the chapter 5).

3.1 Statistical models

Introduction of individual models, the model of linear regression, the model of
two-way ANOVA with interactions and the model of three-way ANOVA with
interactions, follows.

3.1.1 Linear model of regression

Although a regression model with complex numbers exists as well (see [17], [18]),
we assume all the following real.

Let us have a random vector y = (y1, . . . , yR)∗ and a regression matrix of given
numbers X = (xrs) of type R × S, S < R with full column rank. Suppose that
the vector y is given by

y = Xβ + ε,

where β = (β1, . . . , βS)∗ is a vector of unknown regression parameters and ε =
(ε1, . . . , εR)∗ a vector of unknown random deviations (errors) satisfying
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1. variables εr, r = 1, . . . , R, are independent,

2. E ε = 0, where 0 is a vector of zeros,

3. (homoscedasticity) var ε = σ2I, where σ2 > 0 is an unknown parameter,

4. ε ∼ N(0, σ2I).

We call this model a regression model, see [15], [16].

With the regression model we try to explain the larger number of random variables
y1, . . . , yR by known influences X and a relatively small number of parameters
β1, . . . , βS.

In the regression model, the columns of matrix X are called regressors. The
regression model tries to relate y to a function of Xβ, therefore y also stands
for an explained (dependent) variable and the columns of X for an explanatory
(independent) variables (yr is the r-th observation of the s-th explained variable,
xrs is the r-th observation of the s-th explanatory variable). The regression model
is called linear since the β parameters are represented in the model in linear form.

If any explanatory variable takes the value 1 for all r, if for some s and all r is
xrs = 1, then βs is called the regression intercept. A regression model without the
intercept term has no regression intercept and the regression mapping ỹ = Xb,
where b is an estimate of β (see below), is forced to pass through the origin in
this case.

Parameter estimates

Parameters β1, . . . , βS are usually estimated by the least squares method. The
estimates denoted as b1, . . . , bS, b := (b1, . . . , bS)∗ are given by

b = (X∗X)−1X∗y

(matrix X has full column rank, thus the matrix X∗X is regular).

The parameter σ2 is estimated by statistic s2, so called residual variance,

s2 =
Se

R− S
,

where Se is a residual sum of squares calculated as

Se = y∗y − b∗X∗y. (3.1)

When we define estimated values as

ỹ = Xb,

that are the best approximations for y, and residuals

er = yr − ỹr, r = 1, . . . , R,

14



the residual sum of squares can be defined as

Se =
R∑
r=1

er
2

[15], [16].

From the assumption of normally distributed errors ε ∼ N(0, σ2I) it follows that
variable y has a normal distribution y ∼ N(Xβ, σ2I) and because b is derived
from y by linear transformation, it has a normal distribution as well and b ∼
N(β, σ2(X∗X)−1) [15, p. 100].

It is also known, that the vector b and the variable s2 are independent and that
the variable Se/σ

2 has a χ2 probability distribution with a parameter R − S,
Se/σ

2 ∼ χ2(R− S), [15, p. 100]. That is, (R− S)s2/σ2 ∼ χ2(R− S).

Coefficients of determination

The coefficient of determination is a statistical measure of how well the regression
curve ỹ = Xb fits the observed data y.

Let define a total sum of squares as

ST =
R∑
r=1

(yr − y)2,

where y is an average value of yr, r = 1, . . . , R,

y =
1

R

R∑
r=1

yr.

For ST 6= 0 and R > 1 we define a coefficient of determination

R2 = 1− Se
ST

(3.2)

and an adjusted coefficient of determination

R2
a = 1− Se/(R− S)

ST/(R− 1)
.

In regression with the intercept term, the definition (3.2) is equivalent to

R2 =

R∑
r=1

(ỹr − y)2

ST
, (3.3)

it ranges between zero and one and it is interpreted as a proportion of variance
of the values yr, r = 1, . . . , R, that was explained by the regression model (1−R2

is a proportion of variance of the values yr, r = 1, . . . , R, that was not explained
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by the regression model). However, for the model without the intercept term,
the two relations (3.2) and (3.3) are not equivalent and R2 is not bounded by
the values of zero and one. Value of R2 calculated from (3.2) lies in the interval
(−∞, 1] and R2 calculated from (3.3) lies in the interval [0,+∞) [16, p. 99].

We will also define a modified coefficient of determination in the form

R2
0 = 1− Se

STT
,

with

STT =
R∑
r=1

(yr)
2

(the reason will be obvious later, because it is connected with a special regression
model introduced in the chapter 5).

3.1.2 Model of two-way ANOVA with interactions

In the following we again focus only on real numbers. We will be using the bold
letters for ANOVA parameters to distinguish ANOVA and regression parameters
later in the text.

Let us have a random variables yn
sr (take attention on top indexes here), s =

1, . . . ,S, n = 1, . . . ,N , r = 1, . . . ,R (we restrict to the same number of obser-
vations in subclasses). Suppose that the variables yn

sr are given by

yn
sr = µ+αs + βn + λn

s + εnsr,

where µ, αs, β
n, λn

s are unknown parameters and εnsr are unknown random
deviations (errors) that are assumed to be normally distributed with zero mean
and constant variance σ2 > 0, σ2 is an unknown parameter, εnsr ∼ N(0,σ2), and
εnsr being mutually independent, for all s = 1, . . . ,S, n = 1, . . . ,N , r = 1, . . . ,R.
We assume reparameterization conditions

S∑
s=1

αs = 0,

N∑
n=1

βn = 0,

S∑
s=1

λn
s = 0, ∀n = 1, . . . ,N ,

N∑
n=1

λn
s = 0, ∀s = 1, . . . ,S,

SN + 1 linearly independent parameters µ, αs, β
n, λn

s and σ2, R ≥ 2 and for
the number of observations SNR, that SNR ≥ SN + 1. We call this model a
model of two-way ANOVA with interactions [15], [16].

16



The parameters αs, β
n are called the main effects and λn

s the interactions. Be-
cause of two main effects in the ANOVA model, it is a two-way ANOVA model.

For all parameters µ, αs, β
n, λn

s and σ2 we can get the estimates by the least
square method as well [15, p. 165].

3.1.3 Model of three-way ANOVA with interactions

We will be again using the bold letters for ANOVA parameters and consider
them real. Unlike the two-way ANOVA model we introduce three main effects
and more interactions between them within the model.

Let us have a random variables yn
slr (with top indexes here), s = 1, . . . ,S, l =

1, . . . ,L, n = 1, . . . ,N , r = 1, . . . ,R. Suppose that the variables yn
slr are given

by

yn
slr = µ+αs + βn + γl + λABn

s + λBCn

l + λAC
sl + λABCn

sl + εnslr,

where µ, αs, β
n, γl, λ

ABn
s , λBCn

l , λAC
sl, λ

ABCn
sl are unknown parameters and

εnslr are unknown random deviations (errors) that are assumed to be normally
distributed with zero mean and constant variance σ2 > 0, σ2 is an unknown para-
meter, εnslr ∼ N(0,σ2), and εnslr being mutually independent, for all s = 1, . . . ,S,
l = 1, . . . ,L, n = 1, . . . ,N , r = 1, . . . ,R. We assume reparameterization condi-
tions, in a simplified way written as

S∑
s=1

αs = 0,

N∑
n=1

βn = 0,

L∑
l=1

γl = 0,

S∑
s=1

N∑
n=1

λABn

s = 0,

L∑
l=1

N∑
n=1

λBCn

l = 0,

S∑
s=1

L∑
l=1

λAC
sl = 0,

S∑
s=1

L∑
l=1

N∑
n=1

λABCn

sl = 0,

SNL + 1 linearly independent parameters µ, αs, β
n, γl, λ

ABn
s , λBCn

l , λAC
sl,

λABCn
sl and σ2, R ≥ 2 and for the number of observations SLNR, that
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SLNR ≥ SLN + 1. We call this model a model of three-way ANOVA with
interactions [15].

The main effects are αs, β
n, γl, the parameters λABn

s , λBCn
l , λAC

sl are called
interactions of the first order and λABCn

sl interactions of the second order.

The parameters can be estimated by the least square method as well [15, p. 169].

When the parameters γl, λ
BCn

l , λAC
sl and λABCn

sl are all zero valued, we obtain
the two-way ANOVA model with λsl = λAC

sl.

3.2 Statistical testing

Statistical testing provides a mechanism for making a decision about a chosen
hypothesis. The main intent is to determine whether there is enough evidence to
reject the hypothesis or not.

The statistical test requires a pair of hypotheses,

� a null hypothesis H0, which is a statement being tested,

� an alternative hypothesis H1, which is the negation of the null hypothesis.

The null hypothesis is generally assumed to be true (until evidence is indicative
of the opposite) and it is usually our wish to reject the null hypothesis. The test
procedure is constructed so that the probability of incorrectly rejecting the null
hypothesis (rejecting the null hypothesis, when it is in fact true) is ‘small’.

The process of statistical testing is associated with two types of errors,

� a type I error, that denotes an incorrect rejection of a true null hypothesis,

� a type II error, denoting a failure to reject a false null hypothesis.

A significance level, usually denoted by letter α, is a maximum admissible prob-
ability of the type I error. The probability of the type II error is usually denoted
by a letter β and is related to a power of a test. There is generally no relationship
between the significance level and the power of a test, it can be only shown that,
under certain conditions, the decrease of α leads to growth of β and vice versa.

In statistical testing, firstly a null and an alternative hypothesis are specified and
then the significance level is set. Often a value of α = 5% or α = 1% is chosen
(meaning that it is acceptable to have a 5% or 1% probability of incorrect rejec-
tion). Finally the testing of the null hypothesis against the alternative hypothesis
is done according to specific random variable and critical value of a critical region.
If the value of the random variable falls in the critical region, we reject the null
hypothesis (for concrete examples see below).

An alternative approach of testing is using a p-value. The p-value is the smallest
significance level α, on which the null hypothesis is rejected. A small p-value
indicates a strong evidence against the null hypothesis. Thus, when the p-value
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is less than the determined significance level α, the null hypothesis is rejected,
otherwise the null hypothesis is not rejected. In special cases (as in our cases
later), the p-value may be calculated as a complement of a cumulative distribution
function of the random variable (when the null hypothesis is valid) evaluated in
the critical value. We present the results of applied statistical tests primarily by
the p-value.

3.2.1 Statistical tests for regression

Let us introduce two known theorems used for statistical testing within the re-
gression models. We use the notations and estimates introduced in the previous
sections here.

Theorem 3.1 ([15, p. 101]). Let us denote

β =

[
β◦1
β◦2

]
, b =

[
b◦1
b◦2

]
, (X∗X)−1 =

[
T U
U∗ W

]
,

where vectors β◦1 and b◦1 have q1 elements, vectors β◦2 and b◦2 have q2 elements,
q2 > 0, q1 + q2 = S, T is of type q1 × q1 and W of type q2 × q2.

Then a random variable

Z =
1

q2s2
(b◦2 − β◦2)∗W−1(b◦2 − β◦2)

has the F distribution (Fisher probability distribution) with parameters q2 and
R− S, Z ∼ F(q2, R− S).

We use the theorem 3.1 for testing the hypothesis

H0 : β = 0,

against the alternative hypothesis

H1 : β 6= 0,

that is, for testing whether the whole vector of regression parameters is zero
valued. Therefore we set β = β◦2 , b = b◦2, (X∗X)−1 = W , q2 = S and Z is
calculated as

Z =
1

Ss2
b∗X∗Xb.

If

Z > F1−α(S,R− S),

where F1−α(S,R−S) is a 1−α quantile of the F distribution with parameters S
and R−S, then hypothesis H0 is rejected at the significance level α. Alternatively,
we can compute a p-value, as

p = 1− P(X ≤ Z),
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where P(X ≤ Z) is a cumulative distribution function of the F distribution
evaluated at Z. If p < α, the hypothesis H0 is rejected at the significance level α.

In the case of N := q1 < S (if we want to test not all but fewer regression
parameters), the theorem 3.1 is equivalent to the following theorem 3.2 with the
same distributed variable Z [15].

Theorem 3.2 ([16, p. 100]). Let M be a set of N different natural numbers, M ⊂
{1, . . . , S}, N < S, and define Se the residual sum of squares of the regression
model with all S regressors and SeM the residual sum of squares of a regression
model without all regressors with indexes m ∈M .

Then a random variable

Z =
SeM − Se

Se

R− S
N

has the F distribution (Fisher probability distribution) with parameters N and
R− S, Z ∼ F(N,R− S).

The theorem 3.2 is used for testing a null hypothesis

H0 : ∀m ∈M : βm = 0,

i.e. that N selected regression parameters, N < S, are zero valued, against the
alternative hypothesis

H1 : ∃m ∈M : βm 6= 0.

The residual sum of squares SeM , of a regression model without regressors with
indexes m ∈ M , is a residual sum of squares calculated provided the hypothesis
H0 is valid. The null hypothesis H0 is rejected at the significance level α, if

Z > F1−α(N,R− S),

where F1−α(N,R − S) is a 1− α quantile of the F distribution with parameters
N and R− S.

3.2.2 Statistical tests for ANOVA

Let us introduce the third theorem used for statistical testing, that we apply on
ANOVA model. We use the notations and estimates introduced in the previous
sections here as well.

Theorem 3.3 (Scheffe, [15, p. 147]). Let ϕ = (ϕ1, . . . , ϕP )∗ be a random vector,
ϕ ∼ N(ψ, σ2W ), where W > 0 is a known matrix and σ2 > 0 an unknown para-
meter. Let A be a t dimensional subspace of RP and s2 an independent estimate
for σ2 with ν degrees of freedom, i.e. νs2/σ2 ∼ χ2

ν with s2 and ϕ independent.

Then the probability that an inequality

|a∗ϕ− a∗ψ| ≤
√
ts2 Fα(t, ν) a∗Wa

holds true for all a ∈ A simultaneously, is equal to 1− α.
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The Theorem 3.3 may be used to test the equality of multiple variables alongside.
Let us have what is listed in assumptions of the Theorem 3.3 and let M be a set
of Q natural numbers M ⊂ {1, . . . , P}, Q ≤ P and W = (wpq) of type P × P .
With the Theorem 3.3 we can test a null hypothesis that Q selected parameters
are identical, i.e.

H0 : ∀p, q ∈M : ψp = ψq,

against the alternative hypothesis

H1 : ∃p, q ∈M : ψp 6= ψq.

To verify whether the equality applies to all pairs (p, q), p 6= q, p, q ∈ M , we
introduce vectors apq, p, q ∈M , of lengths of P that have the p-th element equal
to one, the q-th element equal to −1 and other elements zero valued. Then
ψp = ψq for some p, q ∈ M holds true if and only if a∗pqψ = 0. The set of these
vectors apq generates a subspace A of dimension t = Q−1 in RP , a∗pqϕ = ϕp−ϕq,
a∗pqWapq = wpp + wqq − wpq − wqp. According to Scheffe theorem, the inequality

‖ϕp − ϕq‖ ≤
√

(wpp + wqq − wpq − wqp) (Q− 1)s2 Fα(Q− 1, ν)

holds true for all pairs (p, q), p, q ∈ M , simultaneously with a probability of at
least 1− α. If for some pair (p◦, q◦) the inverse inequality applies, i.e.

|ϕp◦ − ϕq◦| >
√

(wp◦p◦ + wq◦q◦ − wp◦q◦ − wq◦p◦) (Q− 1)s2 Fα(Q− 1, ν),

the null hypothesis H0 is rejected. In addition, we have directly designated the
pair (or several such pairs) where the equality ψp◦ = ψq◦ is rejected at the signi-
ficance level α [15, p. 149].

In our case we take a vector of estimated ANOVA parameters as the vector ψ
(the exact use of the Theorem 3.3 is then described in the section 5.2).
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Chapter 4

Correlation criteria for two data
sets comparison

This chapter is dedicated to an overview of classical methods (correlation criteria)
and their extension that can be used for two data sets comparison. The chapter is
divided into two parts, basic nonselective criteria and selective criteria developing
them.

For most of the criteria, the data sets consist of a vector of resonant frequencies
and a matrix of modal vectors together with channel specifications which des-
ignate modal vector components. The data can originate from simulation, the
modal analysis using a finite element method, or from measurements, from the
experimental modal analysis (see the section 2). In the criterion called FDAC,
the input data sets consist of a vector of frequencies (not only resonant) and
a matrix of deflection shapes again together with channel specifications which
designate the deflection shapes components.

The following methods are used to compare two data, it can be two different meas-
urements of the same system, two measurements or two simulations of slightly
different systems or a comparison of measurement and simulation of the same
system. We will shortly use “two variants” from now on. The result of the meth-
ods is a “degree of similarity” of the variants, an indication of the most similar
positions and vice versa positions of differences, across frequencies and across
channel specifications (modal vectors elements) or a global overall decision which
input data describes a tougher, stiffer, system, relative to oscillations.

The description of individual methods follows.
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4.1 Nonselective criteria

4.1.1 MAC – Modal Assurance Criterion

MAC is a standard criterion used to determine the degree of similarity of modal
vectors. MAC criterion provides the correlation of each modal vector of the
first system with each modal vector of the second system (i.e. the result is a
matrix of these correlations) over all the channels (sensor positions) involved (see
Fig. 4.1). Modal vectors used in the comparison may be obtained from simulation
or measurements.

Figure 4.1: Example of MAC.

If we denote two modal vectors v1 and v2, the MAC value is given by

MACv1,v2 =
|v1∗v2|2

v1∗v1 v2∗v2
.

MAC values range from zero to one. For two identical modal vectors (when the
displacements in all sensor positions are the same) the MAC has the value of one
and for completely different modal vectors is the MAC value close to zero (may
not be zero because modal vectors are not necessarily L2-orthogonal).

Usually two vectors are considered correlated when the MAC value is greater
than 0.9 and uncorrelated when the MAC value is less than 0.5.

MAC is insensitive to vector scaling, but sensitive to sensor location and their
quantity and to the level of response at each sensor. In case that measured values
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across individual sensors differ significantly, the normalization of data per sensors
is for consideration [19]. The false correlation in the MAC matrix is also caused
by not L2-orthogonality of modal vectors ([20] shows the impact of the diagonal
non-identity mass matrix on the MAC nondiagonal values). Another issue is that
for complex conjugate modal vectors, when the classical assumptions of structural
dynamic are not complied with, the MAC criterion is not sufficient [19] (preferable
methods are also introduced in [19]).

AUTOMAC

The MAC applied to one data set, one variant (if modal vectors of one system
are compared only to themselves) is called AUTOMAC. The AUTOMAC is a
standard indicator of how well the sensor values represent the system, each modal
vector should be unambiguously distinguishable from others and the resulting
matrix of AUTOMAC ideally diagonal.

MAC linearly scaled

A MAC linearly scaled is a newly displayed MAC. The MAC value for two modal
vectors v1 and v2 can be interpreted as a square of cosine of an angle for these
two vectors γv1,v2 as well,

MACv1,v2 = cos2 (γv1,v2)

(γ is a Hermitian angle for complex modal vectors [21]).

MAC linearly scaled is the MAC after a transformation

MAC linearly scaledv1,v2 = 1−
cos−1

(√
MACv1,v2

)
π
2

.

It shows linearly distributed value of MAC. (see Fig. 4.2).

γ0

1

π
2

π
4

1
2

γv1,v2

MACv1,v2
MAC linearly scaledv1,v2

Figure 4.2: Dependence of MAC and MAC linearly scaled on modal vectors angle.
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As we have already mentioned, two vectors are considered correlated when the
standard MAC value is greater than 0.9, which with rounding corresponds to an
angle less than 18 degrees, and uncorrelated when the MAC value is less than
0.5, which is equivalent to an angle greater than 45 degrees. Therefore the MAC
value of 0.9 is equivalent to the rounded MAC linearly scaled value of 0.8 (which
corresponds to the fact that 18 degrees is 20 percent of 90 degrees).

4.1.2 FDAC – Frequency Domain Assurance Criterion

FDAC is a MAC applied to frequency response functions - deflection shapes,
it includes amplitude and phase information (it is complex valued). Given two
deflection shapes h1 and h2, the FDAC value is as follows,

FDACh1, h2 =
|h1∗h2|2

h1
∗h1 h2

∗h2
.

FDAC is, as well as MAC, insensitive to vector amplitudes scaling and to phase
shift, but sensitive to sensor locations and their quantity and to the level of
response at each sensor.

4.1.3 MWMAC – Mass Weighted Modal Assurance Cri-
terion

MWMAC is a new tool, it is a MAC including mass matrix weighting of modal
vectors (i. e. the modal properties in the criterion) wherein the mass matrix
is not known at the input (when the mass matrix is known from simulations, a
MOC criterion can be used, see below). Because modal vectors are M-orthogonal,
MWMAC criterion improves the resulting matrices with smaller nondiagonal (or
noncorresponding) values.

The mass matrix is obtained by the pseudoinverse method, by Tikhonov and
Schulz, IC symmetric and Schulz, Tikhonov and PR2-Schulz or IC symmetric
and PR2-Schulz algorithms (described in the section 2.2). That is, to obtain the
mass matrices, the M-orthonormalization of input modal vectors is assumed.

The MWMAC value for two modal vectors v1 and v2 is given by

MWMACv1,v2 =
|v1∗
√
M1

√
M2v2|

2

v1∗M1v1 v2∗M2v2
,

where
√
M1 is a square root of a mass matrix gained for the first variant (

√
M2

analogously), that is for a positive semidefinite matrix uniquely defined. A
blocked Schur algorithm for computing the matrix square root was applied [22].

MWMAC is again insensitive to vector scaling (and to phase shift in case of
complex modal vectors) and less sensitive to sensor selection and their quantity
in comparison with MAC, but the accuracy of the calculated mass matrix M plays
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an important role. Because of that the matrix M is generally just the projection
(and because of inaccuracies), MWMAC values do not range strictly between zero
and one. Due to the inclusion of mass matrix as a global information about the
whole system, firstly, a local change at the input modal matrix generates a global
change in the resulting MWMAC matrix (see Fig. 4.3), secondly, the MWMAC
result is dependent on the number of sensors as well as on the number of modal
vectors (see Fig. 4.4, 4.5).

(a) (b)

Figure 4.3: (a) MWMAC, (b) MWMAC with the third element od the first modal
vector perturbed.

MOC – Mass Orthogonality Check

MOC is a known criterion that provides the similarity of two data sets through
the check of M-orthogonality of all the modal vectors, when the mass matrix is
known. Ideal case leads to pure diagonal (identity) matrix. In our case is this
criterion primarily used as an indicator of how well the matrices M1, M2 have
been calculated. Therefore, these three types of MOC are calculated,

MOC1 = V1
∗M1V1,

MOC2 = V2
∗M2V2,

MOC12 = V1
∗
√
M1

√
M2V2,

where V1 is the modal matrix of the first variant, V2 the modal matrix of the
second variant.

The MOC1 and MOC2 have also similar meaning to the AUTOMAC, they in-
dicate how well the sensor values represent the system with an embedded mass
matrix obtained from these sensor values.
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More sensors

Figure 4.4: Dependence of MAC and MWMAC on number of sensors.

Less modal shapes

Figure 4.5: Dependence of MAC and MWMAC on number of modal vectors.
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4.1.4 PLR – Pairing and Linear Regression

PLR is a global comparison of two variants based on MAC. Pairing is the desig-
nation for selecting pairs of the most similar modal vectors according to MAC,
with assigning the corresponding frequencies, from the first and the second vari-
ant (see 4.6). Linear regression then denotes the weighted fitting of the assigned
pairs of frequencies by a linear curve with only a slope coefficient (regression
model without the intercept term, see the section 3.1.1), that indicates a stiffness
ratio between the variants (see 4.7). The approach of the PLR global comparison
is known and was only extended in the part of the pairing [23].

(a)

(b)

Figure 4.6: (a) MAC, (b) MAC paired values (per columns).

The PLR approach assumes sufficiently ‘sharp’ MAC results in the sense that in
each column and each row of the MAC matrix there is at most one value close to
one, indicating the correlation, and all other values indicating the uncorrelation.
Because this assumption is not always met in reality, five possible types of pairing
are considered,

� pairing per rows of MAC matrix (a reference variant is the first variant),

� pairing per columns of MAC matrix (a reference variant is the second vari-
ant),

� pairing per the shorter size of MAC matrix (a reference variant is the variant
with less modal vectors contained),

� pairing per the longer size of MAC matrix (a reference variant is the variant
with more modal vectors contained),
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Figure 4.7: PLR interactive plot.

� pairing with unique maximization (no reference variant).

The first four approaches are based on ‘looking’ at the MAC matrix from one
reference direction and searching for (a vector of) maximum values in the MAC
matrix from this reference direction. e.g. with pairing per rows of MAC matrix
the maximum value from each row is selected (in one column, multiple values
can be selected). The last approach, pairing with unique maximization, is a new
approach that searches for values so that each row and column contains at most
one such value and the sum over all the selected values is the highest possible
(the highest values may not be selected). Pairing with unique maximization is
done by the Munkres algorithm (in a Python implementation, a module [28] was
used).

In the linear regression the weighting is done by MAC values corresponding to
pairs, the fitted linear function is of the form ω1 = α ω2, where ω1, ω2 (take
attention on top indexes here) are variables (frequencies) and α ∈ R is a constant
gained from a set of equations

diag(MAC) ω1p = α diag(MAC) ω2p,

ω1p, ω2p are vectors of the paired frequencies from the first and the second variant
(in the s-th position of both vectors is the s-th pair of assigned frequencies, the
letter p is used only to indicate the pairing), diag(MAC) is a diagonal matrix
with MAC values corresponding to assigned frequencies on a diagonal.
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Denoting

y = diag(MAC) ω1p,

X = diag(MAC) ω2p,

the value of α is given by

α = (X∗X)−1X∗y.

Together with the estimation of the regression coefficient α, a coefficient of de-
termination R2 is also calculated. If S denotes the number of elements of the
vector y, then R2 is calculated as

R2 = 1− Se
ST

= 1−

S∑
s=1

(ys − (Xα)s)
2

S∑
s=1

(
ys −

∑S
s=1 ys
S

)2 .

The coefficient α represents the stiffness ratio between the variants, α > 1 means
that the first variant is stiffer than the second one (analogously for α < 1).

The coefficient of determination expresses how well the regression curve passing
through the origin approximates the linear relationship between the assigned
pairs of frequencies. The value of R2 equal to 1 indicates that the regression line
perfectly fits the data and the lower the R2, the more local variations, with larger
MAC values, between the assigned frequencies values. Note that R2 in this case
(of regression model without the intercept term) can be any number from the
interval (−∞, 1] (see the section 3.1.1).

MWPLR – Mass Weighted Pairing and Linear Regression

Pairing and linear regression done with the MWMAC weighting instead of MAC.

4.2 Selective criteria

All selective criteria follow the pairing and serve as a root cause analysis attempt-
ing to capture which positions (at which frequencies and channel specifications)
lead to poor correlations. Selective criteria can be applied to all paired modal
vectors and frequencies or to paired modal vectors and frequencies that corres-
pond to a higher MAC value only (the ‘high pairs only’ option in the Python
implementation).

Selective criteria are divided into:

� with or without mass weighting (MW),
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� over DOF 1 – 6 or over sensors,

� with component removal as ‘what if analysis’ or with COMAC (see below).

All following criteria except COMAC are new tools.

4.2.1 COMAC – Coordinate MAC

A known criterion COMAC compares two sets of paired modal vectors to identify
which channels lead to poor correlation of these the most similar modal vectors.
This criterion provides the correlation through all the pairs for every channel
individually (i.e. the result is a vector of these correlations).

Let be S pairs of assigned modal vectors and let us designate matrices of paired
modal vectors as V 1p, V 2p, where in the s-th column of both matrices is the s-th
pair of assigned modal vectors (the letter p is used only to indicate the pairing;
take attention on top indexes here). For the r-th channel, an element v1prs of the
matrix V 1p at position r, s (the r-th row, the s-th column) and an element v2prs
of the matrix V 2p, the COMAC value is defined by

COMACr =

S∑
s=1

∣∣v1prs (v2prs)∗∣∣2
S∑
s=1

(
v1prs
)2 S∑

s=1

(
v2prs
)2 .

COMWMAC – Coordinate MWMAC

As COMWMAC was named a mass weighted (extended) version of COMAC
criterion, that is applicable only to square modal matrices of the same sizes (and
thereby mass matrices of the same sizes).

Let V 1p, V 2p be the matrices with paired modal vectors as columns (in the s-th
column of both matrices is the s-th pair of assigned modal vectors). If the modal
matrices V 1p, V 2p are not of the same square sizes, some rows and columns of
the modal matrices are deleted in the Python implementation. Let R denote
the number of degrees of freedom (channels) per sensor and AUTOMACR the
AUTOMAC for modal matrices with R rows removed. While the number of rows
is greater than the number of columns, iteratively R rows per each sensor of both
modal matrices are deleted so that the L2 norm ‖AUTOMAC − AUTOMACR‖
is minimal. Then the last S1 and the last S2 columns in the first and the second
modal matrix are deleted so that the resulting matrices are square.

The mass matrices are obtained as inversions by the pseudoinverse methods (de-
scribed in the section 2.2), where the M -orthonormalized modal vectors are as-
sumed.

For two rows ṽ1, ṽ2 of the modal matrices V 1p, V 2p as row vectors, the COMW-
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MAC matrix value is calculated as

COMWMAC matrixṽ1,ṽ2 =
|ṽ1
√
M1

√
M2ṽ

∗
2|

2

ṽ1M1ṽ∗1 ṽ2M2ṽ∗2
,

where
√
M1 is the square root of the mass matrix obtained for a variant described

by V 1p,
√
M2 analogously. The COMWMAC matrix should be ideally an identity

matrix and the diagonal of this matrix is taken as the COMWMAC, used for the
further criteria.

4.2.2 SC – Selective Criterion

New criterion SC serves as a ‘what if’ analysis, where sensors are sequentially
removed. If we denote a row vector of original MAC values for the paired modal
vectors (without any sensor removal) as MAC and a row vector of MAC values for
the paired modal vectors without the r-th sensor information (all of its channels-
DOF) as MACr, then the r-th row of relative differences in the SC matrix is
calculated as

SCr =
MAC − MACr

MAC
,

where the division is done element-wise (see Fig. 4.8).

Figure 4.8: Example of SC.
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All the relative differences are less or equal to one. The value of SCr element

� cca 1 (MACr close to 0) indicates that other sensors except the r-th capture
the differences in the pair (the removed sensor had been capturing the
similarity in the pair),

� cca 0 (MACr is similar to MAC) indicates no change,

� less than 0 (MACr is higher than MAC) indicates that the r-th removed
sensor captures the differences in the pair.

Each MACr row of values is then averaged and the sensor with the minimal
average value is selected as the worst sensor that is removed and the whole process
is iteratively executed as many times as the chosen ‘number of selected sensors’.

During the process, the changes besides the pairs are not followed – after any
sensor removal the nondiagonal (or noncorresponding) values can differ as well
and new higher correlated pairs can occur (see Fig. 4.9). Thus, SC is meaningful
only for data with unambiguous stable pairing (MAC matrix ‘sharp enough’), if
the pairing is not changed after the sensor removal. Plus it is better if there is
enough of sensors, so that after removing some of sensors, there is still enough of
information for modal vectors distinguishing (the same reason).

In the implemented version, there is also a possibility to process the SC criterion
only for pairs with higher MAC value greater than chosen limit (‘high pairs only’).

(a) (b)

Figure 4.9: (a) MAC, (b) MAC for data after the ‘worst sensor’ removal.
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SMWC – Selective Mass Weighted Criterion

As SMWC is named a mass weighted version of SC criterion using MWMAC
instead of MAC.

4.2.3 SC with COMAC

Relating SC with COMAC, sensors are sequentially removed and the COMAC
criterion is calculated. COMAC returns a vector of correlations of all paired
modal vectors per channels, therefore the COMAC results are averaged within
sensors. The resulting values range from zero to one and shows the correlation of
the pairs per each sensor (see Fig. 4.10).

SC with COMAC is again meaningful only for data with unambiguous stable
pairing (MAC matrix ‘sharp enough’).

Therefore, in the implemented version, there is also a possibility to process the
SC with COMAC only for pairs with higher MAC value greater than chosen limit.

Figure 4.10: Example of SC with COMAC.

SMWC with COMWMAC

As SMWC with COMWMAC is named a mass weighted version of SC with
COMAC (MWMAC instead of MAC and COMWMAC instead of COMAC),
that is applicable only to M-orthonorma-lized modal vectors. Due to the possible
removal of columns of rectangular modal matrices, some sensors may not be
involved in the criterion comparison.
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4.2.4 SDOFC – Selective Degrees of Freedom Criterion

New criterion SDOFC serves as a ‘what if’ analysis, where the data per degrees
of freedom DOF 1 – 6 are considered individually. If we denote a row vector
of original MAC values for the paired modal vectors as MAC and a row vector
of MAC values calculated only for the r-th DOF for all sensors of paired modal
vectors as MACr, then the r-th row of SDOFC matrix of relative differences is
defined by

SDOFCr =
MAC −MACr

MAC
,

where the division is done element-wise.

All the relative differences are less or equal to one. The value of SDOFCr element

� cca 1 (MACr close to 0) indicates differences in the r-th DOF in the pair,

� cca 0 (MACr is similar to MAC) indicates that the r-th DOF in the pair
is without the change,

� less than 0 (MACr is higher than MAC) indicates differences in the other
than the r-th DOF in the pair.

SDOFMWC – Selective Degrees of Freedom Mass Weighted Criterion

As SDOFMWC is named a mass weighted version of SDOFC criterion using
MWMAC instead of MAC.

4.2.5 SDOFC with COMAC

Relating SDOFC with COMAC, the mode shape data are considered separatelly
for DOF 1 – 6 and the COMAC criterion is calculated. This criterion results are
exactly the same as pure COMAC, the only difference is that it is rearranged
and grouped by DOF. The resulting values range from zero to one and shows the
correlation of the pairs per each channel. Pairs with low MAC values cause an
overall poor COMAC correlation.

SDOFMWC with COMWMAC

As SDOFMWC with COMWMAC is named a mass weighted version of SDOFC
with COMAC criterion (MWMAC instead of MAC and COMWMAC instead of
COMAC), that is applicable only to M-orthonormalized modal vectors.
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4.3 Criteria applied on real data

We show all the criteria used on data. The data comes from modal analysis
of the construction–vehicle axle on the test bench. Three (slightly) different
measurements were done. The first measurement is of the axle with attached
planetary gear in its original configuration, this variant of data are denoted with
0.0D label. Then the position of the planetary gears were shifted, in the second
measurement by only 4.5 degrees from the original settings, labelled with 4.5D,
and in the third measurement by the largest extent by 22.5D degrees, marked with
22.5D label. The aim was to find out how the different positioning of planetary
gears impacts on the resulting modal properties of the system, if and how these
variants differ. We take always the variant 0.0D as the variant A and compare it
to 4.5D or 22.5D as variant B and we take a look on comparison 0.0D – 22.5D in
more detail.

One of each three data sets consists of a vector of approximately 100 natural fre-
quencies from range of 0Hz to cca 1000Hz, a vector of 111 sensor ID specifications
(37 sensors with 3 channels – 3 DOF per sensor) and a matrix of corresponding
obtained modal vectors.

Firstly we show MAC for variants A:0.0D, B:4.5D only for frequencies less than
230Hz and selected modal vector of variant A for frequency 201Hz compared with
three different modal vectors of variant B corresponding to different MAC values,
so the MAC sensitivity can be seen (see Fig. 4.11, 4.12).

Figure 4.11: MAC for variants A:0.0D, B:4.5D.
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(a)

(b)

(c)

Figure 4.12: Modal vectors for A:0.0D, B:4.5D and frequencies (a) A:201Hz,
B:111Hz, (b) A:201Hz, B:191Hz, (c) A:201Hz, B:201Hz.
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The whole MAC for A:0.0D – B:4.5D and also A:0.0D – B:22.5D comparison
follows (see Fig. 4.13, 4.14). In the first case, the resulting MAC matrix is re-
latively close to a diagonal matrix, in the second case the corresponding pairs
of modal vector are often shifted, because of some new natural frequencies and
modal vectors without the pairs in the second variant of data.

We show AUTOMAC for variant A (see Fig. 4.15a), it is not a pure diagonal
matrix. We display also the MAC, where we take into account the distances of
the individual natural frequencies (ranges between them), for variants A:0.0D –
B:22.5D (see Fig. 4.15b).

And there is compared MAC and MAC linearly scaled for variants A:0.0D –
B:22.5D in Fig. 4.16. MAC linearly scaled is more sensitive (distinguishes between
modal vectors more) around high and low MAC values.

Then we show results of MWMAC for A:0.0D – B:4.5D (see Fig. 4.17) and MW-
MAC and all three MOC criteria for A:0.0D – B:22.5D (see Fig. 4.18). MWMAC
improved the results in both cases compared to MAC. For computing the mass
matrices, the data corresponding to 4 sensors with all their 3 DOFs were deleted
in the modal matrices (see 2.2).

Figure 4.13: MAC for variants A:0.0D, B:4.5D.
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Figure 4.14: MAC for variants A:0.0D, B:22.5D.

(a) (b)

Figure 4.15: (a) AUTOMAC for variant A:0.0D, (b) MAC with frequency ranges
for variants A:0.0D, B:22.5D.
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(a) (b)

Figure 4.16: (a) MAC and (b) MAC linearly scaled for variants A:0.0D, B:22.5D.

Figure 4.17: MWMAC for variants A:0.0D, B:4.5D.

41



(a) (b)

(c) (d)

Figure 4.18: (a) MWMAC, (b) MOC1, (c) MOC2, (d) MOC12 for variants
A:0.0D, B:22.5D.

From now on we continue only with the comparison of variants A:0.0D, B:22.5D
and without the mass weighting. The reason is that the following criteria focus
on identifying differences in the data and in this case we get the results displaying
the largest differences in the data, well visible.

We performed the pairing per the shorter size of the MAC matrix, that is with the
first reference variant A, and with PLR obtained the stiffness ratio 0.995 and the
coefficient of determination 0.991, meaning that the second variant is stiffer than
the first one in terms of vibrations. There is a screen shot of an interactive plot
of MAC values for pairs together with the fitted linear curve in Fig. 4.19. Plot
of pairs and so called absolute and relative frequency differences are displayed in
Fig. 4.20. The absolute frequency differences are calculated as differences between
assigned paired frequencies and they are in addition divided by the first reference
frequencies and multiplied by 100% in case of relative differences.
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Figure 4.19: MWMAC for variants A:0.0D, B:22.5D.

(a)
(b) (c)

Figure 4.20: (a) Pairs, (b) absulute and (c) relative frequency differences.
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The selective criterion SC follows (see Fig. 4.21). All the green and turquoise
colors in the picture mean almost no differences after the sensor removal in the
resulting MAC value for the pairs. The red color, e.g. for sensor ID 120 and the
second pair of modal vectors, indicates that the other sensors except the one with
ID 120 capture the differences in the second pair (and also in the 22-th and the
34-th pairs), that is, the sensor with ID 120 is capturing the similarities (except
the scaling factor for modal vectors) in the second pair. Whereas the blue color,
e.g. for the sensor ID 120 and the fifth pair of modal vectors, indicate that the
sensor with ID 120 captures the differences in the fifth pair (and also in the 37-th
and the 38-th pairs).

It is also possible to plot the whole MAC matrix after the sensor removal to check,
what happens with non-paired MAC values, or to continue with the process after
one (‘the worst’) sensor is removed as well. In all cases the results depend on the
‘original’ MAC values, it is always a comparison highlighting the differences in
MAC (without some sensor information) relative to the original MAC matrix.

Figure 4.21: SC for variants A:0.0D, B:22.5D.

The COMAC criterion is sensitive to the values of all pairs, therefore, we firstly
present the COMAC for all pairs (with the first reference variant A) and then the
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COMAC for pairs with MAC value greater than 0.7 (see Fig. 4.22). Although
all the MAC values in the last case are greater than 0.7 for the pairs, quite a
lot of COMAC correlations across the pairs for sensors individually are still low.
The best results are obtained for sensors with IDs (109) 116 and (130) 132, 133.
In the previous SC criterion, after removal of these individual sensors, no large
changes in new MAC values compared to the original MAC values for the pairs
are displayed, i.e. no large similarities captured by e.g. the sensor 116 indicated
using the MAC correlation across the sensors and the sensors except the sensor
with ID 116.

(a) (b) (c)

Figure 4.22: (a) Pairs, (b) SC with COMAC for all pairs, (c) SC with COMAC
for the pairs with MAC value grater than 0.7.

Then we show the SDOFC criterion for all pairs of modal vectors (see Fig. 4.23).
There are displayed the differences in MAC values when considering only the
specific DOF separately compared to original MAC values for the pairs in the plot
of SDOFC. All the green and turquoise colors again indicate minimal differences.
The red color here, e.g. for the first DOF and the first pair of modal vectors,
indicates the differences in the first DOF in the first pair. The (dark) blue color,
e.g. in the second DOF and the 36-th pair of modal vectors, indicates similarities
in the second DOF and in the 36-th pair.

Finally, we show the SDOFC with COMAC for all pairs of modal vectors (see
Fig. 4.24). After comparing it to the COMAC result for sensors (see Fig. 4.22b),
we get e.g. the information, that the high correlations for sensors with IDs (109,
111) 116 and (131) 132, 133 are primarily in the second and the third translational
DOF direction and all the correlations within the first DOF are low (less than 0.3).
Then the high correlation just for the specific DOF can be seen.
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Figure 4.23: SDOFC for variants A:0.0D, B:22.5D.

(a) (b) (c)

Figure 4.24: SDOFC with COMAC for all pairs (a) for the first DOF, (b) for the
second DOF, (c) for the third DOF.
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Chapter 5

Statistical processing of multiple
data sets

This chapter is devoted to generalizations through regression and ANOVA ap-
proaches of MAC or FDAC criteria that can be used for comparison of multiple
data sets. Of course, even in case of multiple input data, we could use MAC
(FDAC) for each pair of input data and then process the results. However, our
goal is to set up a criterion that provides a direct results similar to MAC (FDAC)
for more input data. All the tools designed in this chapter are new procedures.

The data sets again consist of a vector of resonant frequencies and matrix of
modal vectors together with channel specifications, which designate modal vector
components, or all of them consist of a vector of frequencies, matrix of deflection
shapes and channel specifications for deflection shape components. According
to whether the methods are applied on modal vectors or deflection shapes, the
methods are generalizations of MAC or FDAC. However, formulas are the same
(just like formulas for MAC and FDAC are the same). Therefore, we will only
use the terms ‘modal vectors’ and ‘resonant frequencies’ from now on, but the
generalizations are applicable to deflection shapes as well.

Now, we want to compare more than two data sets. We distinguish between
multiple variants of systems and more measurements of each variant of system.
In the first criterion called MM, one reference variant is compared to the second
variant, that may be measured more times. MM may be used for comparing
e.g. one simulation and 10 measurements (of the same type) of the system or it
may be used in the same way as MAC for just two variants. Other criteria serve
for comparison of more variants, there is no reference variant (in the criteria
themselves), but more measurements of each variant are required, making the
criteria suitable e.g. for comparing 10 measured systems, each measured twenty
times (in the same way). The result of the methods is a “degree of similarity”
of all the variants (compared to the reference one in case of MM or all compared
to all others) with an indication of differences across frequencies and eventually
across channel specifications (modal vectors elements).

The detailed descriptions of individual methods follow.
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5.1 Basic criteria

The basic criteria consist of a regression model and the associated statistical
testing. The model and the testing is always introduced for one set of modal
vectors and then applied as criterion independently for more combinations of
modal vectors selection (as well as the MAC criterion is introduces for two modal
vectors, but applied for all combinations of modal vectors). Three regression
models were derived during the generalization that varies in use, however, the
same type of statistical tests were then applied to each model.

5.1.1 MM – More Measurement

As a MM criterion, we named a basic criterion, on which we primarily try to
show the consistency with MAC. MM criterion is a direct generalization of MAC.

MM criterion can be used to determine the degree of similarity of modal vectors
from two variants, where the first variant is the reference variant once measured
and the second variant may be more times measured. It is compared whether the
modal vectors from the second variant are all (from all measurements) the same
multiple of the modal vectors from the first reference variant. All modal vectors
of the first variant with all the modal vectors of the second variant (n-th vector
of all measurements) are independently compared in the same way.

In MM model the complex input data are decomposed into real and imaginary
parts. In the case of two variants both once measured, it turns out that the
modified coefficient of determination R2

0 of the model is the same as the MAC
criterion.

Let us firstly focus on a special case of MM criterion for two variants both once
measured and then introduce the MM criterion in general.

MAC to MM transition

When comparing two modal vectors v1 and v2, the MAC coefficient describes the
degree of linearity of the vectors. When the MAC value for two vectors is equal
to one, it means that (e.g.) the modal vector v2 is just a scaled modal vector v1.
When the MAC value is zero, the two modal vectors are completely different and
we can not write the one vector using the other as its multiple. In fact, the MAC
criterion is related to a complex regression model

v2 = βv1 + ε, (5.1)

where β is a regression parameter and ε a vector of errors (take attention on top
indexes here, we will be using them in the whole chapter), each component in
(5.1) can be complex. In order to use classical regression analysis tools mentioned
in the section 3.1.1, we write (5.1) with real and imaginary components as

vRe
2
s + i vIm

2
s = (βRe + i βIm)

(
vRe

1
s + i vIm

1
s

)
+ εRes + i εIms, (5.2)
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for every s = 1, . . . , S, where S is the number of modal vector elements. By writ-
ing the relationship (5.2) by real and imaginary components into two equations
and rearranging it into a linear regression model with all components real, we
obtain a regression model without the intercept term. This special case of MM
model takes form

vRe
2
1

...
vRe

2
S

vIm
2
1

...
vIm

2
S


︸ ︷︷ ︸

y

=



vRe
1
1 −vIm1

1
...

vRe
1
S −vIm1

S

vIm
1
1 vRe

1
1

...
vIm

1
S vRe

1
S


︸ ︷︷ ︸

X

[
βRe
βIm

]
︸ ︷︷ ︸

β

+



εRe1
...

εReS
εIm

...
εImS


︸ ︷︷ ︸

ε

, (5.3)

where y is a random vector, X a regression matrix of given numbers, β is an
unknown vector of regression parameters and ε a vector of unknown random de-
viations, which we assume meet the regression assumptions (see the section 3.1.1).

Let us note that in the model (5.3), it can be shown that the estimation of the β
coefficient by the least squares method

b = (X∗X)−1X∗y

is equal to a value of MSF, so called Modal Scale Factor [3]. Renaming the
elements of vector y as yr, r = 1, . . . , R, R = 2S, the modified coefficient of
determination takes the form

R2
0 = 1− Se

STT
= 1−

R∑
r=1

(yr − ỹr)2

R∑
r=1

(yr)
2

, (5.4)

where

ỹ = Xb. (5.5)

Theorem 5.1. The modified coefficient of determination R2
0 in the regression

model (5.3) is equivalent to the MAC value,

R2
0 = MACv1,v2 .

Proof. For purpose of this proof, let us denote

yRe :=

 vRe
2
1

...
vRe

2
S

 , yIm :=

 vIm
2
1

...
vIm

2
S

 , xRe :=

 vRe
1
1

...
vRe

1
S

 , xIm :=

 vIm
1
1

...
vIm

1
S


and also

x :=

[
xRe
xIm

]
.
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That is

y =

[
yRe
yIm

]
, X =

[
xRe −xIm
xIm xRe

]
,

where matrix X has full column rank, and

v1 = xRe + i xIm,

v2 = yRe + i yIm.

Elements of real vectors x and y are denoted with yr and xr, r = 1, . . . , R, R = 2S

and with
∑

(·) we understand
R∑
r=1

(·) within this proof.

Notice that

X∗X =

[
xRe

∗ xIm
∗

−xIm∗ xRe
∗

] [
xRe −xIm
xIm xRe

]
=

[ ∑
(xr)

2 0

0
∑

(xr)
2

]
,

(X∗X)−1 =


1∑
(xr)

2 0

0
1∑
(xr)

2

 =
(
(X∗X)−1

)∗
and that

X∗y =

[
xRe

∗ xIm
∗

−xIm∗ xRe
∗

] [
yRe
yIm

]
=

[
xRe

∗yRe + xIm
∗yIm

xRe
∗yIm − xIm∗yRe

]
.

By rewriting the relations we get

R2
0 = 1−

∑
(yr − ỹr)2∑

(yr)
2 =

∑
(yr)

2 − (yr − ỹr)2∑
(yr)

2 =

∑
2yrỹr − (ỹr)

2∑
(yr)

2 =

=

∑
2yr [X(X∗X)−1X∗y]r −

[ y∗X
(
(X∗X)−1

)∗
X∗y︷ ︸︸ ︷(

X(X∗X)−1X∗y
)∗ (

X(X∗X)−1X∗y
) ]

r∑
(yr)

2 =

=

∑
2 [y∗X(X∗X)−1X∗y]r − [y∗X(X∗X)−1X∗y]r∑

(yr)
2 =

=

∑
[y∗X(X∗X)−1X∗y]r∑

(yr)
2 =

∑
([X∗y]r)

2∑
(yr)

2 ∑ (xr)
2 =

=
(xRe

∗yRe + xIm
∗yIm)2 (xRe

∗yIm − xIm∗yRe)2∑
(yr)

2 ∑ (xr)
2 = MACv1,v2 .

The modified coefficient of determinationR2
0 similarly toMACv1,v2 ranges between

zero and one and for two identical modal vectors have the value of one.
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In the regression model with the intercept term, the standard coefficient of de-
termination R2 equals to the square of the correlation coefficient ρ2 [16][p. 99].
For a random sample (v1r, v

2
r), r ∈ R, R ∈ N, the square of the correlation

coefficient is given by

ρ2 =

∣∣∣∣∣
R∑
r=1

(
v1r − ṽ1

)(
v2r − ṽ2

)∣∣∣∣∣
2

R∑
r=1

∣∣∣v1r − ṽ1∣∣∣2 ∣∣∣v2r − ṽ2∣∣∣2 ,

where

ṽn =
1

R

R∑
r=1

vnr, for n = 1, 2.

The value of R2
0 (MACv1,v2) may be interpreted as a square of a modified cor-

relation coefficient in the MM regression model without the intercept term. By
writing the MACv1,v2 , the square of the modified correlation coefficient is given
by

ρ20 =

∣∣∣∣∣
R∑
r=1

v1rv
2
r

∣∣∣∣∣
2

R∑
r=1

∣∣v1r∣∣2 ∣∣v2r∣∣2 .
The modified coefficient of determination R2

0 have also again in the MM model
the meaning of a measure of how well the regression line passing through the
origin ỹ = Xb fits the observed data y.

Theorem 5.2. In the regression model (5.3), the modified coefficient of determ-
ination R2

0 is zero if and only if the vector b is zero.

Proof. If b = 0, then ỹ = Xb = 0 and R2
0 = 1− 1 = 0.

If R2
0 = 0, we use the relation (3.1) for Se and obtain

R2
0 = 1− Se∑R

r=1 (yr)
2

= 1− y∗y − b∗X∗y∑R
r=1 (yr)

2
= 1− 1 +

b∗X∗y∑R
r=1 (yr)

2
= 0.

The coefficient R2
0 equals zero if and only if the term b∗X∗y equals zero. And

because the first (resp. the second) zero valued element of X∗y implies the first
(resp. the second) zero valued element of b, b = (X∗X)−1X∗y, and the signs of
the first (resp. the second) elements of vectors b and X∗y are the same, in all
cases b∗X∗y = 0 implies b = 0.

Alternatively for the second part of the proof, we can write

b∗X∗y =
(
(X∗X)−1X∗y

)∗
X∗y = (X∗X)−1 (X∗y)∗ I (X∗y) = 0.

Because (X∗X)−1 > 0, it implies X∗y = 0 and thus b = 0.
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Therefore, we set the null and the alternative hypothesis as

H0 : β = 0,

H1 : β 6= 0

and test the null hypothesis against the alternative hypothesis using the the-
orem 3.1. That is, we are testing whether the theoretical MAC is zero, i.e. whether
‘the modal vectors are different’. We compute the value of statistic

Z =
1

2s2
b∗X∗Xb,

where

s2 =
y∗y − b∗X∗y

2S − 2
,

and the p value as a complement of a cumulative distribution function of the F
distribution with parameters 2 and 2S − 2 evaluated at Z. If we obtain s2 = 0
in practical calculation, we set the p value to zero.

As the result of the MM criterion we provide the complement of p value 1− p of
the statistical test together with the R2

0.

Practically, we have implemented the described procedure for all combinations of
modal vectors selection from both variants of input data and computed values of
1 − p and R2

0 arranged into two matrices. The matrix with R2
0 values equals to

MAC matrix and matrix of 1− p values provides analogous information. In both
matrices the values close to zero indicate different modal vectors and values of one
the same vectors except a multiple (linearly dependent vectors). The difference
is that the R2

0 (MAC) value is not affected by the number of elements of modal
vectors S, whereas the size S is included in the statistical test and thus expressed
in 1− p. However, because of the involvement of S in 1− p value and not in R2

0,
the results of both may differ.

By expressing the relation for Z statistics using R2
0 we obtain (for R2

0 6= 1)

Z = (S − 1)
R2

0

1−R2
0

. (5.6)

From (5.6) evidently, for R2
0 close to 1, the value of 1 − p may be close to 1 as

well, but also smaller for small number of sensors S (1− p is larger for larger S).
Contrariwise, for R2

0 close to 0, the value of 1− p may be close to 0 as well, but
also larger for large number of sensors S.

MM in general

Let us denote a modal vector of the first reference variant as v1 and the modal
vectors of the second variant as v21, . . . , v

2
L, where L is the number of measurements

of the second variant of input data, L ≥ 1.
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We want to set a model, where modal vectors from the second variant are all a
multiple (the same multiple) of the modal vector from the first variant, that is
the reference variant. We proceed from complex relations

v21 = βv1 + ε1,

...

v2L = βv1 + εL

and write them with real and imaginary components, for every s = 1, . . . , S,
where S is the number of modal vectors elements, as

vRe
2
s1 + i vIm

2
s1 = (βRe + i βIm)

(
vRe

1
s + i vIm

1
s

)
+ εRes1 + i εIms1,

...

vRe
2
sL + i vIm

2
sL = (βRe + i βIm)

(
vRe

1
s + i vIm

1
s

)
+ εResL + i εImsL.

(5.7)

By writing the relationships (5.7) by real and imaginary components into twice
as much equations and rearranging into a linear regression model with all com-
ponents real, we get the MM model

vRe
2
11

...
vRe

2
S1

vIm
2
11

...
vIm

2
S1

...

vRe
2
1L

...
vRe

2
SL

vIm
2
1L

...
vIm

2
SL


︸ ︷︷ ︸

y

=



vRe
1
1 −vIm1

1
...

vRe
1
S −vIm1

S

vIm
1
1 vRe

1
1

...
vIm

1
S vRe

1
S

...

vRe
1
1 −vIm1

1
...

vRe
1
S −vIm1

S

vIm
1
1 vRe

1
1

...
vIm

1
S vRe

1
S


︸ ︷︷ ︸

X

[
βRe
βIm

]
︸ ︷︷ ︸

β

+



εRe11
...

εReS1
εIm11

...
εImS1

...

εRe1L
...

εReSL
εIm1L

...
εImSL


︸ ︷︷ ︸

ε

,

where y is a random vector, X a regression matrix of given numbers, β is an
unknown vector of regression parameters and ε a vector of unknown random de-
viations, which we assume meet the regression assumptions (see the section 3.1.1).

As the first part of the MM criterion result, we compute the modified coefficient
of determination R2

0 according to (5.4), (5.5), with R = 2LS. For two variants
once measured, when L = 1, we have R2

0 = MACv1,v2 , as we have shown in
Theorem 5.1.

It can be also shown that the modified coefficient of determination R2
0 is zero if

and only if the estimated vector b is zero in the general MM model (the proof is
analogous to the proof of the Theorem 5.2). Thus we also set the null and the
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alternative hypothesis as

H0 : β = 0,

H1 : β 6= 0

and using the theorem 3.1, as the second part of the MM criterion, compute the
p value of the statistical test. The test statistic in this case is given by

Z =
1

2s2
b∗X∗Xb,

where

s2 =
y∗y − b∗X∗y

2SL− 2
,

and the p value is obtained as a complement of a cumulative distribution function
of the F distribution with parameters 2 and 2SL−2 evaluated at Z. If we obtain
s2 = 0 in practical calculation, we set again the p value to zero.

The described procedure is implemented for a comparison of all combinations
of the modal vectors from the first reference variant and the second variant.
However, it is assumed that in the input data, the modal matrices and the vectors
of natural frequencies of individual measurements of the second variant consist of
sorted corresponding modal vectors and frequencies. Within the second variant,
the first modal vectors from all measurements are taken to approximate the first
modal vector, all second modal vectors approximate the second modal vector etc.
(with deflection shapes that means that the same sampling rate is assumed).

The results of the MM criterion are two matrices, one for R2
0 values, one for p

values. A value of one shows that all the vectors are just a scaled version of the
first reference modal vector and a value of zero indicates the total opposite, in
both MM resulting matrices. The 1− p values are affected by the size of modal
vectors S and the number of measurements of the second variant L and R2 are
not.

5.1.2 MMV – More Measurements and Variants

As a MMV model, we denote a linear regression model of ANOVA type for more
variants, each more times measured, with no reference variant. The MMV model
is not a direct generalization of MAC, we can not get exactly MAC values as
a special case of MMV and also we proceed a bit differently compared to the
MV criterion. In the MMV model the complex input data are decomposed into
amplitude and phase components and the same type of linear regression model is
used for logarithm of amplitudes and phases (without logarithm) independently.

As in the case of previous correlation criteria, we select arbitrarily a single modal
vector for each variant and show the statistic, that can be then used for all
combinations of modal vectors selection in the same way.

Suppose we have N variants, each L times measured, N > 1, L > 1 and modal
vectors are composed of S generally complex elements (S channels were used in
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measurements). Let us have one modal vector per each variant and measurement
v11, . . ., v1L, . . ., vNL . Different number of measurements for each variant could be
considered as well, but for simplicity we focus on the same number of measurement
L for each variant n, n = 1, . . . , N .

This time, we introduce a new vector of unknown values (a new variable) µ, on
which the first modal vector is also dependent and is not the reference to other
modal vectors. Also, we now initially consider that each modal vector element
is a different multiple of another modal vector element (we are assuming linearly
independent modal vector). For all l = 1, . . . , L and s = 1, . . . , S we consider
relations

v1sl = µs + ε′1sl,

v2sl = µsβ
2
s + ε′2sl,

...

vNsl = µsβ
N
s + ε′Nsl

and write all complex numbers except errors ε′ in an exponential form, with
amplitude and phase components, as

v′A
1
sl eivP

1
sl = µ′As eiµP s +ε′1sl,

v′A
2
sl eivP

2
sl = µ′Asβ

′
A
2
s ei(µP s+βP

2
s) +ε′2sl,

...

v′A
N
sl eivP

N
sl = µ′Asβ

′
A
N
s ei(µP s+βP

N
s ) +ε′Nsl .

(5.8)

We could have also decomposed all complex numbers into real and imaginary
parts, however we would failed with the following linearisation procedure.

The system (5.8) determines a nonlinear regression model with all components
real. Because we want a linear model, we apply a complex logarithm along with
the introduction of a new vector of errors. For complex logarithm of the product
of z1, z2 ∈ C \ {0} the relation

ln(z1z2) = ln |z1|+ ln |z2|+ i (arg(z1) + arg(z2))

holds true.

Denoting

vA
n
sl := ln v′A

n
sl, n = 1, . . . , N,

βA
n
sl := ln β′A

n
sl, n = 2, . . . , N,

µAs := lnµ′As,

and introducing new errors, we get from (5.8)

vA
1
sl = µAs + εA

1
sl,

vA
2
sl = µAs + βA

2
s + εA

2
sl,

...

vA
N
sl = µAs + βA

N
s + εA

N
sl .

vP
1
sl = µP s + εP

1
sl,

vP
2
sl = µP s + βP

2
s + εP

2
sl,

...

vP
N
sl = µP s + βP

N
s + εP

N
sl ,

(5.9)
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for all l = 1, . . . , L and s = 1, . . . , S. Errors in (5.9) denoted with the letters εA,
εP are different errors beside amplitudes and phases of errors ε′.

We look at relations (5.9) as two regression models separately. From now on, we
continue with formulas with A indexes only, because the formulas are the same
for both amplitudes and phases.

Finally, for all n = 2, . . . , N and for s = 2, . . . , S, we replace the unknowns βA
n
s

with new unknown additions ∆A
n
s in the model by introducing

βA
n
s = βA

n
1 + ∆A

n
s .

The obtained MMV model for amplitudes is given by

vA
1
11

...
vA

1
1L
...

vA
1
S1
...

vA
1
SL

vA
2
11

...
vA

2
1L
...

vA
2
S1
...

vA
2
SL

...

vA
N
11

...
vA

N
1L
...

vA
N
S1
...

vA
N
SL


︸ ︷︷ ︸

y

=



1

0
0

...
1

. . .

0
1
...
1

1

0
1

0
0

...
...

1 1
. . .

...
. . .

0
1 1

0
1

...
...

...
1 1 1

... 0
. . . 0

1

0
0

1

0...
...

1 1
. . .

...
. . .

0
1 1

0
1

...
...

...
1 1 1


︸ ︷︷ ︸

X



µA1
...

µAS
βA

2
1

∆A
2
2

...
∆A

2
S

...

βA
N
1

∆A
N
2

...
∆A

N
S


︸ ︷︷ ︸

β

+ ε. (5.10)

where y is a random vector, X a regression matrix of given numbers, β is an
unknown vector of regression parameters and ε a vector of unknown random
deviations, which we assume meet the regression assumptions (see the section
3.1.1). Using the model on real data, we examine the fulfilment of assumptions
in more detail (see the section 5.4).

The MMV model (5.10) is a regression model of type of two-way ANOVA with
interactions not fulfilling the reparametrization conditions. The MMV model is
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in the form

vA
n
sl = µ+αs + βn + λn

s + εnsl,

where the parameter µ is set to zero, then αs = µAs for all s = 1, . . . , S, the
first parameter β1 is set to zero, βn = βA

n
1 for n = 2, . . . , N , as well as the

interactions λn
s are set to zeros for s = 1∧n = 1, . . . , N and n = 1∧ s = 1, . . . , S

and λn
s = ∆A

n
s for s = 2, . . . , S, n = 2, . . . , N .

The first main effect αs are the sensor positions and the second main effect βn are
the variants. In this parametrization of MMV model e.g. coefficients βn = βA

n
1

for n = 2, . . . , N estimate the differences of additions of other variants compared
to the first variant. The MMV model can be rewritten into the standard para-
metrization of two-way ANOVA with interactions meeting the reparametrization
conditions (see 3.1.2), where then e.g. βn, n = 1, . . . ,N , represent the additions
of individual variants.

The reason for rewriting all βA
n
s , s = 2, . . . , S for all n = 2, . . . , N as the sum

of the first βA
n
1 and the addition ∆A

n
s was that, in the MMV model, we want to

test, whether all the additions ∆A
n
s , s = 2, . . . , S, n = 2, . . . , N , are zero valued.

If they are, that means that all modal vectors are scaled versions of others, all
elements of one modal vector are the same multiple of all elements of another
modal vector and this holds true for modal vectors of all variants. If all the
additions are not zero valued, there is at least one nonzero addition and therefore
at least one significantly different (and linearly independent) modal vector.

The situation of all additions ∆A
n
s , s = 2, . . . , S, n = 2, . . . , N , zero valued in

MMV model corresponds to the equality of all parameters λn
s in the classical

ANOVA parametrization meeting the reparametrization conditions.

We set the null and the alternative hypothesis as

H0 : ∀n ∈ {2, . . . , N} ∧ ∀s ∈ {2, . . . , S} : ∆A
n
s = 0,

H1 : ∃n ∈ {2, . . . , N} ∨ ∃s ∈ {2, . . . , S} : ∆A
n
s 6= 0

and test the null hypothesis, using the theorem 3.2 and calculating the p value
of the statistical test. The test statistic is given by

Z =
SeM − Se

Se

S(L− 1)N

(S − 1)(N − 1)
,

where Se is the residual sum of squares of the MMV model and SeM is the residual
sum of squares of a regression model without all the regressors ∆A

n
s , and it has

the F distribution with parameters (S − 1)(N − 1) and S(L− 1)N . Analogously
we do the same for the phases, separately. With that we are testing, whether ‘the
modal vectors are the same’ (linearly dependent).

Notice two things in the MMV model. In the case of phases, the input values
are angle values from the basic interval of length 2π. Whenever the calculation
involves a difference of two angles, an angle greater than π may be taken into
account instead of the correct angle value (even in parameter estimates). There-
fore, when differently large angles appear at the input, incorrect statistics F may
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be calculated and the null hypothesis H0 incorrectly rejected. The second note
is about the assumption on the normal distribution of errors ε that are different
unknown errors compared to the original unknown errors ε′, because the complex
natural logarithm and the transformation into polar coordinates was used.

The result of the MMV criterion are p values for amplitudes and also p values for
phases. Combining these two results, the maximum of p values for amplitudes
and for phases for each set of modal vectors is also returned as a result of this
criterion. Recall also that p values are affected by the length of modal vectors
(number of channels) S, by number of measurements L and number of variants
N .

The resulting p value equals to one indicates that all the amplitudes or phases
of modal vectors are the same except amplitude scaling and phase shift (all the
modal vectors are mutually linearly dependent) and p value close to zero indicates
the differences (and in case of phases, the value close to zero can be falsely
diminished by the inclusion of angles grater than π in estimates).

When implementing, in the case of two variants more times measured, all modal
vectors of the first variant with all the modal vectors of the second variant are
compared, resulting in matrices of p values as the MMV criterion result. For more
variants, a comparisons for all combinations of all variants can be theoretically
done as well, only, it would be more difficult to display the results. Therefore,
for more variants, only the n-th modal vectors of the all variants, n ∈ N , are
compared, resulting in vectors of p values. Another option is to use pairing that
is done with the reference first variant per rows of matrices of p values (for the
first reference and other variants) sequentially. In case of pairing, firstly matrices
of p values for pairs of the first and another variants are calculated. Then the
maximum value from each row in every matrix of p values is selected and the
corresponding frequencies and modal vectors are assigned to each other, resp. to
the frequencies of the first reference variant (the principle of pairing is the same
as in case of PLR with pairing per rows in the section 4.1.4). Finally, only the
sets of assigned modal vectors are compared, resulting again in vectors of p values
only.

In the input data, the modal matrices (and the vectors of natural frequencies)
from all measurements within one variant are assumed all with sorted corres-
ponding modal vectors (and frequencies). The first modal vectors from all meas-
urements of the variant are taken to approximate the first modal vector of the
variant etc. (which means the same sampling rate for deflection shapes in all
measurements of the variant).

With the resulting matrices or vectors of p values also a matrix or vector of clas-
sical coefficients of determination R2 and adjusted coefficients of determination
R2
a (see the section 3.1.1) are calculated to indicate how well the MMV model

globally approximates the data. Value close to one indicates a good approxima-
tion (the coefficient of determination R2 is not related to the linear dependence
and independence of modal vectors). The adjusted coefficients of determination
R2
a is a scaled version of R2 taking into account also the number of variants, meas-

urements and number of modal vector elements in the case of MMV. It could be

58



worth considering a derivation of some kind of (square of) partial correlation
coefficient as in case of R2

0 in MM criterion, however we are not providing it.

5.1.3 MMV 2

MMV 2 model is the second model of the same type as MMV. The only difference
compared to MMV is that extra parameters expressing the linear dependencies
between the measurements of the same variant are included in the model. Thus
MMV 2 is also suitable for more variants each more times measured, but unlike
MMV, in MMV 2 we expect that the second end every other measurement of
some variant differs from the first measurement by a multiple (i.e. results of
measurements within one variant are scaled by a multiple).

The derivation of the MMV 2 model is similar to the MMV model.

Suppose again N variants, each L times measured, N > 1, L > 1, S gener-
ally complex modal vectors elements and one modal vector per each variant and
measurement v11, . . ., v1L, . . ., vNL . We introduce a new vector of parameters µ,
on which the first modal vector is also dependent, as in the MMV model, and
moreover a matrix of parameters γ, which expresses the linear relations between
the measurements of the same variant.

For all s = 1, . . . , S we consider

v1s1 = µs + ε′1s1,

v1s2 = µsγ
1
2 + ε′1s2,

...

v1sL = µsγ
1
L + ε′1sL,

v2s1 = µsβ
2
s + ε′2s1,

v2s2 = µsβ
2
sγ

2
2 + ε′2s2,

...

v2sL = µsβ
2
sγ

2
L + ε′2sL,

...

vNs1 = µsβ
N
s + ε′Nsl ,

vNs2 = µsβ
N
s γ

N
2 + ε′Ns2 ,

...

vNsL = µsβ
N
s γ

N
L + ε′NsL.

Then we proceed in exactly same way as with MMV and obtain two identical
systems for amplitudes and phases. Continuing only with the system for amp-
litudes and introducing ∆A

n
s with βA

n
s = βA

n
1 + ∆A

n
s for all n = 2, . . . , N and
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s = 2, . . . , S, we get the MMV 2 model in the form

vA
1
11

vA
1
12

...
vA

1
1L
...

vA
1
S1

vA
1
S2
...

vA
1
SL

vA
2
11

vA
2
12

...
vA

2
1L
...

vA
2
S1

vA
2
S2
...

vA
2
SL
...

vA
N
11

vA
N
12

...
vA

N
1L
...

vA
N
S1

vA
N
S2
...

vA
N
SL


︸ ︷︷ ︸

y

=



1

0

0

0

0

1 1
...

. . .

1 0 1
. . .

...

0
1

01 1
...

. . .

1 0 1
1

0
1

0

0

1 1
...

...
1 1

. . .
...

. . . 0 0

0
1 1

0
1

. . .

1 1 1
...

...
...

1 1 1
... 0

. . . 0
1

0

0

1

0

0

01 1 1
...

...
. . .

1 1 0 1
. . .

...
. . .

...

0
1 1

0
1

01 1 1 1
...

...
...

. . .

1 1 1 0 1


︸ ︷︷ ︸

X



µA1
...

µAS
βA

2
1

∆A
2
2

...
∆A

2
S

...

βA
N
1

∆A
N
2

...
∆A

N
S

γA
1
2

...
γA

1
L

...

γA
N
2

...
γA

N
L


︸ ︷︷ ︸

β

+ ε,

(5.11)

where y is a random vector, X a regression matrix of given numbers, β is an
unknown vector of regression parameters and ε a vector of unknown random
deviations (different compared to amplitudes and phases of errors ε′), which we
assume meet the regression assumptions (see the section 3.1.1).

The MMV 2 model (5.11) may be considered as model of type of three-way
ANOVA with interactions, without introducing parameters λAC

sl, λ
ABCn

sl and
using the parametrization

yn
sl = µ+αs + βn + γl + λABn

s + λBCn

l + εnsl,

where µ, β1, λABn
s for s = 1 ∧ n = 1, . . . ,N or n = 1 ∧ s = 1, . . . ,S, γl

for all l = 1, . . . ,L and λBCn
l for l = 1 and all l = 1, . . . ,L, are set to zeros
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and αs = µAs for s = 1, . . . , S, βn = βA
n
1 for n = 2, . . . , N , λABn

s = ∆A
n
s for

s = 2, . . . , S, n = 2, . . . , N and λBCn
l = γnl for l = 2, . . . , L, n = 1, . . . , N .

The first main effect αs are the sensor positions, the second main effect βn are
variants and the third main effects γl are measurements. The MMV 2 model is
also possible to rewrite into the standard parametrization of three-way ANOVA
with interactions (without introducing parameters λAC

sl, λ
ABCn

sl) that meets
the reparametrization conditions.

The null and the alternative hypothesis are again set as

H0 : ∀n ∈ {2, . . . , N} ∧ ∀s ∈ {2, . . . , S} : ∆A
n
s = 0,

H1 : ∃n ∈ {2, . . . , N} ∨ ∃s ∈ {2, . . . , S} : ∆A
n
s 6= 0

and the null hypothesis (for phases separately analogously) tested using the the-
orem 3.2 with p values calculation. The test statistic is now given by

Z =
SeM − Se

Se

(S − 1)(L− 1)N

(S − 1)(N − 1)
,

where Se is the residual sum of squares of the MMV 2 model and SeM is the
residual sum of squares of a regression model without all the regressors ∆A

n
s , and

it has the F distribution with parameters (S − 1)(N − 1) and (S − 1)(L− 1)N .
With the hypothesis H0 and H1 we test whether there is one multiple for all
elements of the modal vectors for all variants and thus whether all ‘the modal
vectors are the same’ (linearly dependent).

The result of the MMV 2 criterion are p values for amplitudes, p values for phases
and the maximum of both, p values for amplitudes and p values of phases. For
phases, the same issue with incorrect angles grater than π can occur as in MMV
criterion.

The resulting p value equal to one indicates that all the (amplitudes or phases of)
modal vectors are the same (except multiples) and p value close to zero indicates
the differences. In the case of MMV 2, p values are affected by the number of
channels S, the number of measurements L and the number of variants N .

A matrices of values are computed for all combinations of modal vectors for two
variants of input data, but a vectors of values are computed for more variants
(just because all combinations would be difficult to visualize). In case of more
variants, only the n-th modal vector of every variant are compared, n ∈ N , or the
pairing with the reference first variant can be done and then the sets of assigned
modal vectors are compared (the same approach as in MMV).

It is again assumed that the input modal matrices (and the vectors of natural
frequencies) from all measurements within one variant are all with sorted corres-
ponding modal vectors (and frequencies).

Together with resulting p values the coefficients of determination R2 and adjusted
coefficients of determination R2

a are calculated as global indicators of how well
the MMV 2 model approximates the data, values close to one indicate good
approximations.
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5.2 Scheffe tests

The MMV and MMV 2 regression models may be rewritten to classical ANOVA
models meeting the reparametrization conditions and the Theorem 3.3 applied.
The statistical testing is denoted as the Scheffe test and it intends to serve as
a root cause analysis, attempting to capture which positions (at which variants,
which frequencies and sensor specifications) lead to poor results in MMV and
MMV 2. The selective approach (following the pairing with the reference first
variant) could be also used to the data, similarly to 4.2). The only issue is that,
when multiple data are processed, this approach is just more complicated as there
exist more combinations of removals.

The Scheffe tests has not been implemented and practically applied on data, only
the theoretical introduction follows.

For Scheffe tests we assume firstly computing the basic criteria MMV and MMV 2
for the paired modal vectors with the first reference variant.

5.2.1 SMMV - Scheffe test for MMV

In the MMV model (5.10) for one set of assigned modal vectors (for some reference
frequency) we test whether all the interactions λn

s , for that the reparametriza-
tion conditions applies, are of the same value. That is, whether the increments of
individual interactions for sensor positions and variants are all identical, whereas
the parameter µ, the additions for sensor positions αs and additions for variants
βn may be arbitrary and we are not interested in them. This type of testing (but
with another test and model parametrization) we have already done within the
MMV criterion. However, if the interactions λn

s differ, it would be advantage-
ous to know where, for which variant and sensor position, within the reference
frequency. Thus, it is convenient to apply the Theorem 3.3 that results in the
decision about the differences for all pairs of interactions (the rejecting or fail-
ure of rejecting of the null hypothesis together with indication of the pairs of
interactions with differences).

Let us denote ψ = (µ,α1, . . . ,αS,β
1, . . . ,βN ,λ1

1,λ
1
2, . . . ,λ

N
S )∗ a vector of para-

meters of MMV model meeting the reparametrization conditions, ϕ a vector of
corresponding estimates by the least square method and rename the elements of
vectors ψ as ψp and ϕ as ϕp, p = 1, . . . , P , P = SN + S +N + 1.

Using the Theorem 3.3 we want to test the equality of all interactions, i.e. to test
a null hypothesis

H0 : ∀p, q ∈M1 : ψp = ψq,

against the alternative hypothesis

H1 : ∃p, q ∈M1 : ψp 6= ψq,

where M1 is a set of SN numbers,

M1 := {S +N + 2, . . . , P}.
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The estimate ϕ is given by a linear transformation

ϕ = Cb,

where b is the estimate from the regression model (5.10) and C is a matrix

1
S

1
S
· · · 1

S
1
N

0 · · · 0 1
N

0 · · · 0

1- 1
S

- 1
S

- 1
S

0 0 0 0 0 0

- 1
S

1- 1
S

- 1
S

0 1
N

0 0 1
N

0

. . . . . . . . .

- 1
S

- 1
S

1- 1
S

0 0 1
N

0 0 1
N

- 1
N

- 1
SN

- 1
SN

- 1
N

- 1
SN

- 1
SN

0
1- 1

N
1
S
- 1
SN

1
S
- 1
SN

- 1
N

- 1
SN

- 1
SN

. . . . . .

- 1
N

- 1
SN

- 1
SN

... 1- 1
N

1
S
- 1
SN

1
S
- 1
SN

0 1
SN

1
SN

0 1
SN

1
SN

0 1
SN

- 1
N

1
SN

0 1
SN

- 1
N

1
SN

. . . . . .

0 1
SN

1
SN

- 1
N

0 1
SN

1
SN

- 1
N

0 0 1
SN

- 1
S

1
SN

- 1
S

0 1
SN

1
SN

0 1
SN

+1- 1
N
- 1
S

1
SN

- 1
S

0 1
SN

- 1
N

1
SN

. . . . . .

0 1
SN

1
SN

- 1
N

0 1
SN

- 1
S

1
SN

+1- 1
N
- 1
S


with rows written for estimates

ϕ=
(
µ◦,|α◦

1,α
◦
2, . . . ,α

◦
S,|β◦1,β◦2, . . . ,β◦N,|λ◦11,λ◦

1
2, . . . ,λ

◦1
S,λ

◦1
2,λ

◦2
2, . . . ,λ

◦N
S

)∗
and columns corresponding to estimates of regression parameters

β =
(
µA1, µA2, . . . , µAS, |βA2

1,∆A
2
2, . . . ,∆A

2
S, | . . . , |βAN1 ∆A

N
2 , . . . ,∆A

N
S

)∗
.

We know from the regression model, that b ∼ N(E b, var b) with E b = β and
var b = σ2(X∗X)−1, σ2 > 0 (see the section 3.1.1). Because ϕ is derived from b
by the linear transformation, it has a normal distribution ϕ ∼ N(Eϕ, varϕ) as
well and for the parameters, we get the relations

Eϕ = C E b,

varϕ = C(var b)C∗,

(see Theorem 2 in [15, p. 27]). That is, ϕ ∼ N(ψ, σ2W ), where ψ = Cβ,
W := C(X∗X)−1C∗. We have also W > 0, because (X∗X)−1 > 0 and by
checking the matrix C, we get CC∗ > 0 as well.
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Let us denote ν := SLN − SN . We have the estimate s2 of σ2 for the MMV
regression model in the form

s2 =
y∗y − b∗X∗y

ν
,

νs2/σ2 ∼ χ2
ν for the MMV model. And because vector b and variable s2 are

independent (see 3.1.1), we have also independent ϕ and s2.

Because of S+N−1 reparametrization conditions for interactions, we practically
test the equality only for all p, q ∈M2, p 6= q, M2 ⊂M1, where

M2 := M1 \ (M3 ∪M4),

M3 := {S +N + 1 + nS ∀n = 1, . . . , N − 1},
M4 := {S +N + 1 + S(N − 1), . . . , P}.

We introduce vectors apq, p, q ∈M1, of sizes P . We set the vectors apq zero valued
and

� add 1 in the p-th element if p ∈M2,

� add numbers −1 at positions p− (S − 1) to p− 1 if p ∈M3,

� add numbers −1 at positions p− (nS), ∀n = 1, . . . , N − 1, if p ∈M4,

� add −1 in the q-th element if q ∈M2,

� add numbers 1 at positions p− (S − 1) to p− 1 if q ∈M3,

� add numbers 1 at positions p− (nS), ∀n = 1, . . . , N − 1, if p ∈M4.

Then ψp = ψq for some p, q ∈ M1 applies if and only if a∗pqψ = 0. The set of
vectors apq generates a subspace A of dimension t = SN − S −N + 1 in RP .

According to the Scheffe Theorem 3.3, the inequality

‖ϕp − ϕq‖ ≤
√
ts2 Fα(t, ν)a∗pqWapq, (5.12)

where t = SN − S − N + 1, ν = SLN − SN , holds true for all pairs (p, q),
p, q ∈ M1, simultaneously with a probability of at least 1 − α. If for some pair
(p◦, q◦) the inverse inequality applies, i.e.

‖ϕp◦ − ϕq◦‖ >
√
ts2 Fα(t, ν)a∗p◦q◦Wap◦q◦ ,

the null hypothesis H0 is rejected at the significance level α.

Practically it is more demanding to display the results of the statistical testing.
For vector of paired modal vectors with the first reference variant, vector of results
of testing at chosen significance level α (the rejecting or failure of rejecting of the
null hypothesis H0) may be taken as a result of SMMV criterion. When rejecting
the null hypothesis H0, the fulfilment of the equality (5.12) for all pairs (p, q),
p, q ∈M1, may be displayed in a matrix.
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5.2.2 SMMV 2 - Scheffe test for MMV 2

The process of applying the Scheffe Theorem 3.3 for the MMV 2 model (5.11) is
the same as with MMV. We denote ψ a vector of parameters of MMV 2 model
meeting the reparametrization conditions and ϕ a vector of estimates. The estim-
ate ϕ may be obtained by linear transformation ϕ = Cb, where b is the estimate
from the MMV 2 model (5.11) and C is a matrix given by

1
S
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SN

1
L

· · · 1
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LN
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LN
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- 1
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LN

- 1
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0 1

SN
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- 1
S

1
LN
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1
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L

1
LN

1
LN

1
LN
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- 1
N

1
LN

- 1
L

1
LN

- 1
N

1
LN

1
LN

1
LN

1
LN

1
LN

1
LN

- 1
L

1
LN

+1- 1
L
- 1
N

1
LN

- 1
N

1
LN

- 1
N

0 1
LN

· · · 1
LN

1
LN

· · · 1
LN

1
LN

- 1
N

1
LN

1
LN

- 1
N

1
LN

1
LN

1
LN

1
LN

1
LN

1
LN

1
LN

- 1
N

1
LN

- 1
L

1
LN

+1- 1
L
- 1
N
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with rows written for estimates

ϕ =
(
µ◦, |α◦

1,α
◦
2, . . . ,α

◦
S, |β◦1,β◦2, . . . ,β◦N, |γ1, . . . ,γL, |λAB◦1

1, . . . ,λ
AB◦N

S , |

λBC◦1
1,λ

BC◦1
2, . . . ,λ

BC◦1
L,λ

BC◦2
1,λ

BC◦2
2, . . . ,λ

BC◦N
L

)∗
and columns corresponding to estimates of regression parameters

β =
(
µA1, . . . ,∆A

N
S , ||γA1

2, . . . , γA
1
L, | . . . , |γAN2 , . . . , γANL

)∗
.
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From the assumptions on the regression model implies that ϕ ∼ N(ψ, σ2W ),
ψ = Cβ, W := C(X∗X)−1C∗ > 0, σ2 > 0. Denoting ν := SLN −N(S + L− 1)
we obtain also s2 = (y∗y−b∗X∗y)/ν and νs2/σ2 ∼ χ2

ν with ϕ and s2 independent.

In MMV 2 model, we want to test, if interactions λAB are all the same, i.e.

H0 : ∀p, q ∈M1 : ψp = ψq,

H1 : ∃p, q ∈M1 : ψp 6= ψq,

where M1 is a set of indexes of interactions λAB within the vector ψ. That
is, we can proceed with the same introduction of vectors apq for all p, q ∈ M1,
with the only difference that they contain more zeros on indexes corresponding
to variables γ and λBC . The set of vectors apq then again generates a subspace
A of the dimension t = SN − S −N + 1.

According to the Scheffe Theorem 3.3, we can check, whether the inequality

‖ϕp − ϕq‖ ≤
√
ts2 Fα(t, ν)a∗pqWapq,

where t = SN−S−N+1, ν = SLN−N(S+L−1), holds true for all pairs (p, q),
p, q ∈ M1, if not, the null hypothesis H0 is rejected at the significance level α.
Results can be displayed in the same way as SMMV.

5.3 Possible Extensions

The whole approach can be extended also for mass weighted version of criteria
using the weighting matrices in regression models. The weighting coefficients may
be estimated also from the statistical point of view, e.g. by incorporating the
estimated sample variance (each row in the regression model may be multiplied
by the inverse of the square root of the estimated variance). Using an estimated
variance stabilizing transformation (so that the new variables have approximately
the same variance) could be an another, similar, option [16, p. 115]. Then the
approaches of MM, MMV, MMV 2, can be also applied. And we can also proceed
a bit differently, with statistical testing for rank deficient ANOVA models instead
of MMV and MMV 2 regression models [15, p. 135].

In addition to the introduced statistics, other known statistical tools may be used.
As for example, for estimates of regression parameters β, also an interval estimate
a confidence interval may be calculated [16, p. 94] or for the measurement data,
influential data points (diverging or outlying data points) can be detected [16,
p. 102] or the influence rate, e.g. a Cook distance, determined [16, p. 104].

Regarding the MMV, MMV 2 criteria and regression or test assumptions, we
only look at the data by plotting it (see later), however, many issues may be
also formally statistically tested (to help in decisions about the fulfilment of the
assumptions). E.g. it is possible to test, whether the residuals as estimated errors
(or the data itself) have the normal distribution [16, p. 68] (and there exist also
normality tests implemented in Python, see module ‘scipy.stats’, functions ‘.nor-
maltest’, ‘.shapiro’, ‘.kstest’ or ‘.anderson’). In the case of measurement data, it
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is known, that the measurements are more accurate for lower frequencies than for
the larger. Thus, for high frequency ranges non-fulfillment of homoskedasticity
can be expected. We focus only on smaller frequency ranges, but homoskedasti-
city could be tested [16, p. 109] as well. Also, it can be tested whether the
three-way ANOVA (or more general model) extra parameters are zero valued
and the two-way ANOVA applicable. Using the three-way ANOVA model and
criterion MMV 2 generally is not a good idea, if the extra MMV 2 parameters
are actually zero valued, we obtain misleading results, because in the statistical
tests a higher than the actual number of parameters is used.

5.4 Criteria applied on real data

We show the criteria MM, MMV and MMV 2 applied on two different data sets.

5.4.1 Data 5× 2

The first data consist of measurements of 10 similar parts where each one was
once measured. 5 of these parts contain a crack and we already know which does
and which does not. The hammer impact testing was used to obtain the data,
which is quite accurate but exacting type of (‘laboratory’) measurement.

Each data set is composed of a vector of frequencies from 0Hz to 3200Hz with
a sampling rate 0.5Hz, a vector of 50 sensor ID specifications and a matrix of
corresponding deflection shapes (frequency response).

The data have been already analysed. From each measurement the natural fre-
quencies were detected and because the natural frequencies of the parts with crack
are lower than those without crack, the parts were distinguished. The natural
frequencies of all measurements are covered by the intervals given by the values
listed in the Table 5.1.

mean ± spread

575.3 ± 0.7
580.3 ± 1.

1408.4 ± 2.9
1626.8 ± 1.5
2330.7 ± 3.8
2430.65 ± 6.05
2741.9 ± 11.4
3142.4 ± 9.2

Table 5.1: Intervals covering the natural frequencies in Hz.

Because we need every variant in the MMV and MMV 2 criteria twice or more
times measured, we look at these data as two variants (just two parts, one with
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crack and the second one without crack) where each one is 5 times measured.

Firstly, we introduce the results from the MM criterion, then MMV and MMV 2
criteria. In all cases we cut the frequencies with limits ‘500 < frequencies < 3200’.

MM

At first, we applied the MM criterion on just two chosen data sets, one data set
for a part with the crack (Variant A) and one without the crack (Variant B).
The R2

0 (MAC) and 1− p values give us similar results, however, the 1− p values
are higher for most pairs of compared modal vectors, see Fig. 5.1 (the color bar
values are rounded to tens in Fig. 5.1).

(a) (b)

(c) (d)

Figure 5.1: Result of MM criterion for 1&1 data, (a) R2
0, (b) 1− p values, (c) R2

0

with a high middle value close to 1, (d) 1 − p values with a high middle value
close to 1.
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We also obtained similar results when applied the MM criterion on 1 measurement
of variant with the crack (Variant A) and the second variant 5 times measured
without a crack (Variant B). The difference between obtained R2

0 (MAC) and
1− p values can be seen in the Fig. 5.2.

(a) (b)

(c) (d)

Figure 5.2: Result of MM criterion for 1&5 data (a) R2
0, (b) 1− p values, (c) R2

0

with and (d) 1− p values with a high middle value close to 1.

MMV

As we have already said, we consider two variants of input data, one describing the
part with crack and the second one without crack, each variant 5 times measured.

Let us firstly display the data itself. There is an example of frequency response
from chosen sensors in Fig 5.3. In the whole data set, the curves for amplitudes
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are quite similar, but differ for phases where the problem with the angle difference
greater than π can be expected. We are also displaying all the data in a complex
plane for one chosen frequency of 580.5Hz and the data distribution points out
the same possible problem (see Fig 5.4).

Figure 5.3: Frequency response from chosen sensors for all measurements of vari-
ant A.
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Figure 5.4: Data for fixed frequency 580.5Hz in a complex plane, all measurements
and all variants.

For some frequencies, we plotted the natural logarithm of amplitudes and phases
in degrees as a functions of number of measurements for all IDs and logarithmized
amplitudes and phases as a functions of IDs for all measurements (see Fig. 5.5,
5.6), we call these graphs independency graphs. The situation was not entirely
obvious for all frequencies, but in some cases, the observed data seemed to be
dependent (the same may apply to the random deviations), which is inconsistent
with the assumptions on the MMV regression model and can result in distorted
conclusions. From the plotted (parts of) graphs we can e.g. observe, that some
lines seems to (almost) be one equidistantly shifted from other.

As an example for the data dependence, we provide a standard correlation coeffi-
cient for pairs of vectors of logarithmized amplitudes, with vector elements corres-
ponding to measurements, for the first ten sensors of the first variant and fixed
frequency 580.5Hz in the Table 5.2. Some (nondiagonal) values are relatively
high meaning relatively high correlation (and dependence) between the sensors
information. The correlation coefficient r for vectors of logarithm of amplitudes
m1 and m2 (values for all measurements from two sensors) is calculated as

r =
m1
∗m2 − L m1

∗m2√
(m1

∗m1 − L m1
∗m1) (m2

∗m2 − L m2
∗m2)

(5.13)
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with L = 5, the number of measurements, and with averages

m1 =
1

L

L∑
l=1

m1l, m2 =
1

L

L∑
l=1

m2l.

Meas. 1 2 3 4 5 6 7 8 9 10
1 1. 0.81 0.78 0.82 0.74 0.75 -0.1 0.54 -0.23 -0.54
2 0.81 1. 0.99 1. 0.99 0.99 -0.5 0.81 0.09 -0.67
3 0.78 0.99 1. 0.99 1. 0.99 -0.51 0.83 0.07 -0.66
4 0.82 1. 0.99 1. 0.99 0.99 -0.5 0.81 0.06 -0.65
5 0.74 0.99 1. 0.99 1. 0.99 -0.52 0.81 0.14 -0.68
6 0.75 0.99 0.99 0.99 0.99 1. -0.61 0.88 0.04 -0.58
7 -0.1 -0.5 -0.51 -0.5 -0.52 -0.61 1. -0.84 0.15 -0.17
8 0.54 0.81 0.83 0.81 0.81 0.88 -0.84 1. -0.3 -0.14
9 -0.23 0.09 0.07 0.06 0.14 0.04 0.15 -0.3 1. -0.63
10 -0.54 -0.67 -0.66 -0.65 -0.68 -0.58 -0.17 -0.14 -0.63 1.

Table 5.2: Correlation coefficients for pairs of measurements within the first vari-
ant, coresponding to the Fig. 5.6, for frequency 580.5Hz.

Figure 5.5: Independency graph for fixed frequency 580.5Hz.
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Figure 5.6: Independency graph for fixed frequency 580.5Hz.

After applying the MMV criterion we get the results displayed in Fig. 5.7, 5.9a
with R2 coefficient indicating the level of representativeness of the data by the
MMV model in Fig. 5.8, 5.9b. From earlier analysis we got the result, that
the parts with crack and without crack differ in areas of natural frequencies
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2741.9± 11.4Hz and 3142.4± 9.2Hz and also slightly in region of 2330.7± 3.8Hz.
We can see similar tendency in Fig. 5.7, in addition, there are low p values also
in the area approximately 1900− 2040Hz and the p values are close to one in the
area around 2500Hz. The results for phases do not (entirely) match the previous
results, also the maximum of estimated delta parameters was a value of cca 3.7π,
which is irrelevant.

Figure 5.7: Result of MMV criterion for amplitudes.

When focusing only on the areas covering the natural frequencies and using the
pairing of the most similar deflection shapes according to the reference first variant
(Variant A with crack), we obtain the results in Fig. 5.10, where the differences of
the parts with and without crack in areas of natural frequencies 2330.7± 3.8Hz,
2741.9±11.4Hz and 3142.4±9.2Hz are obvious. Also notice the lower value of R2

for the frequency 580.5Hz (right below 581Hz) for which we plot the independency
graphs (Fig. 5.5, 5.6) and listed the correlations (Table 5.2).
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Figure 5.8: R2 for amplitudes.

(a) (b)

Figure 5.9: (a) Result of MMV criterion for phases, (b) R2 for phases.
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(a) (b)

(c)

Figure 5.10: MMV criterion for amplitudes with pairing of the most similar
deflection shapes, areas of the natural frequencies, (a) p values, (b) , (c) R2.

76



The results of the statistical testing at selected significance levels are shown in
Fig. 5.11. For significance levels, let us say, 10–0.1%, the differences are detected
and displayed in the expected areas of frequencies.

Figure 5.11: Results of statistical testing for amplitudes with pairing, areas of
the natural frequencies.

To show how the criterion behaves for data we consider to be ‘the same’ (except
the scaling coefficient for deflection shapes), we applied the MMV criterion also
on data describing the parts with crack only. For this case we considered having
two variants (both of them are with crack), where each variant is twice measured
(we do not use the fifth measurement of the part with crack). Here follow the plots
of p values and R2 and results of statistical testing, all for amplitudes applied on
paired deflection shapes only within the areas covering the natural frequencies
(see Fig. 5.12).
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(a) (b)

(c)

Figure 5.12: MMV criterion for amplitudes with pairing of the most similar
deflection shapes, areas of the natural frequencies, data 2× 2 of parts with crack
only, (a) p values, (b) R2, (c) results of statistical testing.
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MMV 2

Because the MMV model has actually sufficiently approximated the real data,
applying the MMV 2 model on the data (with introduced parameters for scaled
measurements within variants) led to similar results as MMV. Therefore, we just
state here the MMV 2 p values with R2 and results of statistical testing, for
amplitudes with pairing for areas of the natural frequencies (see Fig. 5.13, 5.14
and compare to Fig. 5.10, 5.11).

(a)
(b)

Figure 5.13: MMV 2 criterion for amplitudes with pairing of the most similar
deflection shapes, areas of the natural frequencies, (a) p values, (b) , (c) R2.
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Figure 5.14: Results of statistical testing for amplitudes with pairing, areas of
the natural frequencies.
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5.4.2 Data 10× 4

The second data, on which we show MMV and MMV 2 criteria, consist of 4
slightly different variants of 8HP transmission measurements, where each variant
was 10 times measured. All of them were run up measurements on the test
bench, that are frequent, but not very accurate measurements, with a relatively
high error rate.

Each data set is composed of a vector of 64 frequencies from 500Hz to 2000Hz,
a vector of 9 sensor ID specifications and a matrix of corresponding deflection
shapes with size of 9× 64 (the modal matrix ‘V ’ has 9 rows and 64 columns).

MMV

At first, we display the data. There is an example of the frequency response from
chosen sensors in Fig. 5.15. Although the phases appear to meet all assumptions
of the MMV regression model, without expecting the problem with the angular
difference, the phases of the data do not provide us with any information. They
are averaged values where all of them are close to π

4
, see also Fig. 5.16 of data

for fixed frequency 703.125Hz in a complex plane, and we do not include them in
further comparisons.

Figure 5.15: Frequency response, sensor 11, u, for all measurements of variant A.
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Figure 5.16: Data for fixed frequency 703.125Hz in a complex plane, all measure-
ments and all variants.

We plotted the independency graphs as well and with these data, it was quite
obvious that the MMV 2 model will be significantly more suitable to represent
the data compared to MMV. As an example, we show the independency graphs
only for the first and the second variant, for the fixed frequency 703.125Hz (see
Fig. 5.17). Individual curves within both of these graphs appear to be all a scaled
version of the others (and this is the reason for using the MMV 2 model including
also the scaling parameter).

All values of the standard correlation coefficient for pairs of logarithmized amp-
litudes of individual measurements of the first variant, calculated again according
to (5.13), ranges between 0.98 and 1.
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Figure 5.17: Independency graph for fixed frequency 703.125Hz.
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We present a graph of data of all variants and measurements as well as the es-
timated data, that are obtained from the estimated regression parameters of the
MMV model, for the fixed reference frequency 703.125Hz, see Fig. 5.18 (how-
ever, the corresponding paired deflection shapes are almost the same as deflec-
tion shapes all for the frequency 703.125Hz, which can be also seen comparing
Fig. 5.18 and Fig. 5.17). Notice that the estimated data of variants 3 and 4 do not
adequately capture the real data shapes. Introducing more parameters in MMV
2 model (additionally) improved the result, compare the p values for MMV and
the MMV 2 criterion in Fig. 5.19.

Figure 5.18: Graph of the data with MMV estimated data for fixed reference
frequency 703.125Hz.
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(a) (b)

Figure 5.19: (a) MMV criterion and (b) MMV 2 criterion results, p values in bar
plots for amplitudes with pairing of the most similar deflection shapes.

Let us now focus only on the results of MMV 2 criterion.

MMV 2

The resulting p values of MMV 2 together with R2 are shown in Fig. 5.20 and
they clearly indicate the different data across the entire frequency spectrum (the
same is already visible in Fig. 5.19).

(a)
(b)

Figure 5.20: (a) MMV criterion and (b) MMV 2 criterion results, p values in bar
plots for amplitudes with pairing of the most similar deflection shapes.
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The results of statistical testing at chosen statistical significance levels are illus-
trated in Fig. 5.21, each time the zero hypothesis was rejected signifying all the
paired deflection shapes different.

Figure 5.21: Results of statistical testing for amplitudes with pairing.

We do also the same trick as with the previous data of a part with and without
crack, we take only the first variant of data and divide it into two fictive variants
of the same type. Because the result of the criterion depends on the selection
of measurements representing individual variants (and on the number of meas-
urements as well), we perform this procedure twice. Firstly we take the first
5 original measurements as measurements of the first variant A and the last 5
measurements as measurements of the second fictive variant B. In the second case
we take the 5 odd numbered original measurements as measurements of the first
variant A and the even numbered to form the second fictive variant B.

Looking at the data, the second way of division seemed to split the measurement
more ‘evenly’, as an example, we provide a graph of the data again for the fixed
frequency 703.125Hz (see Fig. 5.22). The conjecture corresponds with obtained
results in Fig. 5.23 – 5.25.

The plots of p values and R2 follows as well as results of statistical testing for
both types of measurement splitting, all results for amplitudes applied on paired
deflection shapes (see Fig. 5.23 – 5.25), the influence of redistribution of meas-
urements within variants on the results is worth noting.
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(a)

(b)

Figure 5.22: Graph of the data 5 × 2, fixed frequency 703.125Hz, (a) spliting of
measurements to first 5 and last 5 (b) spliting to odd and even numbered original
measuremensts.
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(a) (b)

Figure 5.23: MMV 2 criterion p values, data 5× 2, (a) spliting of measurements
to first 5 and last 5 (b) spliting to odd and even numbered measuremensts.

Figure 5.24: MMV 2 criterion statistical testing, data 5× 2, spliting of measure-
ments to first 5 and last 5.
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Figure 5.25: MMV 2 criterion statistical testing, data 5× 2, spliting to odd and
even numbered measuremensts.

As the last example, we show the MMV 2 criterion applied only to the first two
original variants of the data, each 10 times measured. In graphs in Fig. 5.18, these
two variants for the frequency of 703.125Hz looks similar. The results are given
in Fig. 5.26, 5.27 and show obvious differences in whole area of cca 930−1550Hz.

(a) (b)

Figure 5.26: MMV 2 criterion, data 10× 2, (a) p values in bar plot, (b) R2.
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Figure 5.27: MMV 2 criterion, data 10× 2, statistical testing.
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Chapter 6

MAC application

The basic information about the application itself are mentioned within this
chapter. Two application windows were created and can be used, the first one
was named MAC and contains correlation criteria for two data sets comparison
(described in chapter 4), the second one was named MAC MV (MAC More Vari-
ants) and contains the statistical processing of multiple data sets (described in
chapter 5).

6.1 Requirements

The requirements for running the MAC and MAC MV apps follows.

6.1.1 Installation of Anaconda package

Download Anaconda 5.0.0 or newer with Python 3.6 version from here (see
Fig. 6.1): https://www.anaconda.com/download/.

Run the installer and go through with following settings.

� Select an installation for ‘Just Me’,

� as a destination folder, select drive D:\ anaconda\
(the path can not contain spaces or unicode characters, if you select a
different folder, remember the directory path),

� do not add Anaconda to your PATH and not register Anaconda as your
default Python 3.6 (see Fig. 6.2),

� after the installation, check or uncheck ‘Learn more about Anaconda Cloud’
and ‘Learn more about Anaconda Support’ as you wish and click the ‘Finish’
button.
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Figure 6.1: Anaconda download website.

Figure 6.2: Anaconda installation settings.

6.1.2 How to run the MAC app

Copy the whole ‘MAC’ folder with everything inside into your drive D.

The MAC folder contains files ‘mac gui.py’ and ‘mac mv gui.py’ and a folder
‘needed’. The tools, you can run and use, are ‘mac gui.py’ (MAC for two input
data) and ‘mac mv gui.py’ (MAC MV for more input data). The folder ‘needed’
contains the necessary modules and files to make the applications work properly
– you can take a look inside, but do not edit or change anything in it (unless
you know, what you are doing). If you ever want to move the ‘mac gui.py’ or
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‘mac mv gui.py’ file, move it together with the ‘needed’ folder.

Double click the ‘mac gui.py’ and set the program from ‘Other programs’ to
launch it (see Fig. 6.3).

� If you want to run only a graphical version of the application, choose D:\
anaconda\python.pyw,

� if you want to run the graphical version and see the command line as well,
choose D:\anaconda\python.py.

When choosing to launch the MAC app with displaying the command line, it is
possible to see which calculation is in progress and how long the finished calcu-
lation has taken.

Figure 6.3: Set Python from Anaconda to run the application.

Now you should be able to run the MAC app with double click the ‘mac gui.py’.

To run the MAC MV app, double click ‘mac mv gui.py’ and set the program to
launch it in the same way as with MAC app.

Batch file

Using a batch file can be another way to run the MAC (or MAC MV) app
anywhere from your PC. A simple batch file, a simple script, where only the
Python and the MAC app are called, may be written. Open a Notepad and write
firstly the path to the ‘python.exe’ program in quotes, then a space and the path
to the ‘mac gui.py’ app in quotes. If the standard paths were used, the Notepad
should contain:
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“D:\anaconda\python.exe” “D:\anaconda\mac gui.py”

Save the file with a ‘.bat’ extension as ‘starter.bat’, without the ‘.txt’ extension,
anywhere you want and run the MAC app with double click the ‘starter.bat’.

6.2 MAC and MAC MV apps

If you followed instructions in the section 6.1, you can run the MAC app (or MAC
MV app) with double click the ‘mac gui.py’ (‘mac mv gui.py’) or the ‘starter.bat’
file.

The main window of both applications is structured as follows. There are the
‘Browse...’ buttons for selection of your input data in the upper part of the
window, the main tabs ‘Input Data’, ‘Criteria’, ‘Criteria Parameters’ and ‘Output
Options’ in the middle of the window and the ‘Start’ button to start evaluations
of selected calculations at the bottom of the window (see Fig. 6.4a). And there
is a ‘Help’ with the documentation in the main ribbon.

With pointing to a button or a cell in the application window a tooltip appears
in most cases, to specify what the button or cell is used for (see Fig. 6.4b).

6.2.1 File selections

By clicking on the ‘Browse...’ button the standard dialog box for selecting a file
or folder opens. When selecting a file, there is a drop-down list with supported
file formats at the bottom right corner of the dialog box (see Fig. 6.5).

In MAC MV app for Variant A a dialog box for selecting a file opens, there
should be selected a first measurement of the first reference variant of input data
(reference variant for MM criterion or pairing, frequencies of this variant are then
displayed in plots). For Data B in MAC MV app a dialog box for selecting a folder
opens. In the selected folder should be places all other measurements of the first
reference variant and all other variants and their measurements (together with
the first measurement of the first reference variant, everything from this folder
will be imported and used in calculations).

Supported file formats are CSV (*.csv), PUNCH (*.pch) and UFF (*.uf, *.uff
and *.unv).

One CSV file with amplitudes or two CSV files, the first one with amplitudes
and the second one with phases, can be considered as the input data of one
measurement of one variant. CSV files with amplitudes are selected in the dialog
box and for inclusion of the phases there is a check button in the tab ‘Input Data’
in the app – in this case the CSV files including phases must be located in the
same folder, where CSV files with amplitudes are, and have exactly the same
name as files with amplitudes and end with ‘p.csv’. e.g. if the file with amplitude
is named ‘xyz ac.csv’, then the file with phases must be named as ‘xyz acp.csv’.
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(a)

(b)

Figure 6.4: (a), (b) MAC application.
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Figure 6.5: Dialog box for selecting a file.

In case of more variants of input data, in MAC MV app, individual measurements
of the same variant must be named with the same name of variant and end with
number: first measurement with 1, second with 2, third with 3, etc. right before
the file extension and eventual ‘p’ letter. For MM criterion, there must be exactly
two variants, one reference variant once measured and the second variant once
or more times measured. For MMV and MMV 2 criteria, there must be at least
2 variants, each 2 times measured, and the number of measurement must be the
same for each variant. According to selected reference variant, the pairing with
the reference variant is done.

Here is an example for MMV criterion for 2 measurements of the first variant
‘xxx’ saved in CSV files with amplitudes and phases and 2 measurements of a
second variant ‘yyy’ saved in PUNCH files. The data should be saved e.g. in
folders ‘A’ and ‘B’ as

� folder ‘A’: ‘xxx 1.csv’, ‘xxx 1p.csv’,

� folder ‘B’: ‘xxx 2.csv’, ‘xxx 2p.csv’, ‘yyy 1.pch’, ‘yyy 2.pch’

and in the MAC MV application window, in Variant A should be selected the file
‘xxx 1.csv’ and in Data B should be selected the whole folder ‘B’.

After calculations are done, an ‘OUT’ folder is created in the selected output
path. In the MAC app, the results are denoted as FDAC (MWFDAC etc.), if
some complex input data were imported, otherwise the results are denoted as
MAC (i.e. the notation FDAC or MAC is based only on the complexity of the
data, it is not determined whether there are actually modal vectors or deflection
shapes at the input). In the MAC MV app, for both deflection shapes and modal
vectors the notations MM, MMV, MMV 2 are used. It is also practically possible
to have the calculations done for one input data with modal vectors and others
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with deflection shapes, in both MAC (detected as FDAC) and MAC MV apps.

6.2.2 Format of selected data

Files with input data must be arranged in a certain way. In all supported file
formats, CSV (*.csv), PUNCH (*.pch) and UFF (*.uf, *.uff and *.unv), it is
assumed that frequencies and sensor numbers are sorted from the smallest value
to the largest and channel specifications are unambiguous. Only three possibilities
of DOF specifications are considered, either DOF 1–6 (‘u’, ‘v’, ‘w’, ‘phiu’, ‘phiv’,
‘phiw’) or DOF 1–3 (‘u’, ‘v’, ‘w’) or just one arbitrary DOF.

CSV

CSV files contain only real numbers and the following is expected (see Fig. 6.6).

� There are frequencies in the first column and channel specifications in the
first row and the corresponding data thereto.

� Channel specifications include sensor numbers and translational DOF spe-
cifications ‘u’, ‘v’, ‘w’ and/or rotational DOF specifications ‘phiu’, ‘phiv’,
‘phiw, which are listed in mentioned order and separated by a comma (the
DOF specifications follow the comma).

� The ‘u’, ‘v’, ‘w’, ‘phiu’, ‘phiv’, ‘phiw’ specifications are repeated for each
sensor number in the same way, listed in the same order throughout the doc-
ument. For example, there can not be columns with channel specifications
‘50,u’, ‘50,v’, ‘50,w’ and ‘51,u’, ‘51,w’ only (the column ‘51,v’ is missing).

� The data in the CSV file including phases are arranged identically as the
data in CSV file with amplitudes and the values are given in degrees. Any
row or column can not miss or be redundant and all frequencies and channel
specifications must be the same in both files with amplitudes and phases.

Figure 6.6: Example of CSV input file.
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PUNCH

In PUNCH files, the following is expected.

� At the beginning of the PUNCH document is line, that starts with either
‘$REAL-IMAGINARY OUTPUT’ or ‘$MAGNITUDE-PHASE OUTPUT’
or ‘$REAL OUTPUT’, between the first lines starting with ‘$TITLE’ and
‘$SUBCASE ID’.

� The whole document then may be structured either in blocks by ‘POINT ID’
with frequencies stated before the letter ‘G’ or in block by ‘EIGENVALUE’
with sensor numbers stated before the letter ‘G’.

� The blocks are separated by ‘POINT ID’ or ‘MODE’, the file contains at
least two blocks and the number of frequencies or the number of sensor
numbers per each block is constant and the values are listed in the same
order throughout the document.

� According to the minimal number of elements in all parts of the document
between the letters ‘G’, the number of DOF is set. Only four possibilities
are considered, either all parts have lengths one (the number of DOF is
one), all parts have lengths of three (the number of DOF is three), all parts
have lengths of six (the number of DOF is six) or some parts have lengths
of three and some lengths of six (the number of DOF is three).

� In case of ‘REAL-IMAGINARY’, firstly real and then imaginary compon-
ents of numbers are listed within the parts. In case of ‘MAGNITUDE-
PHASE’, firstly amplitudes, then phases are listed and phases are given in
radians. And in case of ‘REAL OUTPUT’, there are only real components
of number.

� The numbers in parts are sorted in the order corresponding to specifica-
tions ‘u’, ‘v’, ‘w’, ‘phiu’, ‘phiv’, ‘phiw’ (firstly the real, then the imaginary
components are sorted this way etc.). At the end of data importing, the
DOF specifications ‘u’, ‘v’, ‘w’, ‘phiu’, ‘phiv’, ‘phiw’ are added to sensor
numbers in this order (for DOF 1–6, for less DOF analogously).

UFF

All UFF files data may be read by setts with Python Module pyuff.py [29].

In UFF files with .uf or .uff extension, the following is assumed.

� The key names are: ‘x’ for frequencies, ‘ref dir’ for DOF specifications,
‘id4’ for a type of data and ‘data’ for the data of the modal matrix. The
sensor numbers are made of combination of integer numbers denoted with
‘rsp node’ and ‘rsp node’, placing digits next to each other and separating
them by extra zero.

� The file contains at least 2 sensor numbers. The frequencies per each sensor
are the same and the type of data as well.
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� The type of data may be complex only, the importing is not implemented
for other data types. The specification for ‘id4’ must end with ‘omplex’ (it
may be ‘komplex’ or ‘complex’) meaning that the complex data are saved
with real and imaginary parts.

� The DOF specifications are not changing for individual sensor numbers
and they are sorted in the same way within the whole document. The DOF
specifications are integers between one and six. The numbers 1, 2, 3, 4, 5, 6
are renamed into specifications ‘u’, ‘v’, ‘w’, ‘phiu’, ‘phiv’, ‘phiw’ in this
order. Any other eventual value or in case of not standard number of DOF,
all DOF specifications are renamed into just one DOF ‘u’.

� The sets of data consists of vectors of data per individual channels (sensors
and DOFs) and they are sorted (the first sensor and all its DOFs, the second
sensor and all its DOFs etc.).

In UFF files with .unv extension, the following is assumed.

� In the first four sets are just basic information.

� The key names are: ‘freq’ for frequencies, ‘node nums’ for sensor numbers,
‘n data per node’ for the number of DOF per sensors, ‘data type’ for a type
of data and the data of the modal matrix are accessed per DOF labels ‘r1’,
‘r2’ up to ‘r6’.

� The file contains at least 2 sensor numbers. The frequencies per each sensor
are the same and the type of data as well.

� The type of data may be complex only, the importing is not implemented
for other data types. The specification for ‘data type’ must be value 5
meaning that the complex data are saved with real and imaginary parts.

� The DOF specifications are not changing for individual sensor numbers
and they are sorted in the same way within the whole document. The DOF
specifications are set according to the number of DOF, for 6 DOF as ‘u’,
‘v’, ‘w’, ‘phiu’, ‘phiv’, ‘phiw’ in this order (and analogously for 3 DOF or 1
DOF – only DOF ‘u’ is used in this case).

� The sets of data are arranged per sorted DOFs (accessible with keys ‘r1’ up
to ‘r6’ in case of 6 number of DOF) and the sets themselves are arranged
per sorted sensor numbers.

6.2.3 Starting the calculations

After setting all the values in tabs ‘Input Data’ – ‘Output Options’ (see specific-
ations for MAC and MAC MV below separately) and pressing the ‘Start’ button,
the application status changes in the lower-right corner of the app next to the
‘Start’ button into ‘I′m running’ (see Fig. 6.7a). When computations are done,
the error or informative window, with or without warnings details, pops up (see
Fig. 6.7b) as well as the application status changes again into ‘Finished’.
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(a)

(b)

Figure 6.7: (a) The change of application status and (b) informative pop-up
windows.
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If the button ‘Export XLSM for the overview of main results’ in the ‘Output
Options’ tab have been checked, the XLSM file opens when the informative pop-
up window is closed.

All outputs are saved in the ‘Output path’ or in the folder, were the application
was started (in the current working directory) if the ‘Output path’ has not been
selected.

6.3 MAC app Input Data – Output Options

Here is an overview of adjustable options in the ‘Input Data’ – ‘Output Options’
tabs in the MAC app. The following information is contained in the tooltips in
the application as well.

6.3.1 Input Data

CSV files

‘Include CSV files with phases’ – In case CSV files were selected as the input, do
you want to include CSV files with phase information in calculations too? CSV
files including phases must have the same name as files including amplitudes and
end with ’p.csv’.

Predefined Settings

Three basic predefined settings.

Data

‘Skip rotational DOF’ – Let or skip rotational degrees of freedom (if there are
rotational DOF included in the input data)?

‘Zero tolerance’ – Sensors with a maximum value less than or equal to ‘Zero
tolerance’ and DOF (e.g. all translational DOF ‘u’) with a maximum value less
than or equal to ‘Zero tolerance’ are skipped.

‘Frequency lower limit [Hz]’ – Data less than ’Frequency lower limit’ are cut off.
An empty cell means nothing cut off regardless of the frequency range of the
input data.

‘Frequency upper limit [Hz]’ – Data greater than ’Frequency upper limit’ are cut
off. An empty cell means nothing cut off regardless of the frequency range of the
input data.

101



‘Norm data per columns’ – Norm data per columns with the maximum value
per sensors/channels? Good to use if some sensors/channels installed on the
structure capture significantly larger values than the rest. With ’Norm equally’
both variants are normed with the same value (the higher one).

Peaks Finding

A combo box – Choose whether all the data should be used or only peaks found,
for computation of mass matrix ‘M’ and other ‘Criteria’ (e.g. ‘M all Criteria
peaks’ means all applicable input data are used for mass matrix computation,
but only the peaks found are applied in the criteria calculations).

‘Peaks with AUTOMAC’ – Selects a peak at AUTOMAC diagonal value if all
values in the corresponding row (and column), except the diagonal value and
values in ± ‘High value range [#]’, are less than 0.5.

‘Standard peaks finding’ – Search for peaks through each column of the data.

‘Filter data’ – Remove noise from the data? Method doesn’t need any parameter
and works well, but is slow for data with many columns (channels).

‘Peaks min height [0-1]’ – Relative minimum of peak height (value between zero
and one) – lower values are not identified as peaks.

‘Peaks min distance [Hz]’ – Minimum frequency distance between peaks (value
in Hz) – in case of more peaks found closer to each other only the maximum is
preserved as peak.

‘Peaks ocurrences [#]’ – How many times the peak must appear through the
columns (channels)?

‘Peaks grouping’ – Group the found peaks at points that are nearby – every point
is grouped with another one if it’s closer than ± ’Grouping range [Hz]’ to each
other, finally only averages of groups retained.

‘Plot data amplitudes per columns’ – Plot amplitudes of data per columns? Plot
them into one graph or into two graphs separately?

6.3.2 Criteria

In this tab it is possible to select which criteria to calculate.

All criteria from the section 4 may be selected.
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6.3.3 Criteria Parameters

Mass Weighted Criteria

‘Regularisation’ – Which type of regularisation in mass weighted versions of cri-
teria should be used? ‘Tikhonov and Schulz’ or ‘IC Symmetric and Schulz’ are
mostly recommended.

‘Reg. loops limit’ – Limits for loops in regularization.

‘Reg. loops limit extension’ – Limits extension for loops in regularization – so
many more loops are made and it is checked whether the value of the result is
improved.

‘Schulz method of third order’ – Higher order of Schulz method? Implies faster
convergence (less steps needed) with orderly similar results.

‘M with arbitrary precision’ – Compute the mass matrix M with an arbitrary pre-
cision floating point arithmetic? Computation of M with the arbitrary precision
is much slower!

‘Decimal precision’ – Set the exact decimal precision (valid only for M with ar-
bitrary precision = True).

Pairing and Linear Regressions

‘Type of pairing’ – Type of pairing used for linear regression and selective criteria.
The ‘With unique maximization’ option uses a Munkres algorithm (also called the
Hungarian algorithm or the Kuhn-Munkres algorithm) to find an unambiguous
pairing such that the sum of values through this pairing is the maximum possible.

Selective DOF Criteria

‘High pairs only [0-1]’ – Let only pairs with (MW)MAC / (MW)FDAC value
greater than ‘High pairs only’ (value from zero-one interval) for SDOFC compu-
tations?

‘All plots’ – Plot whole (MW)MAC / (MW)FDAC matrices for each degree of
freedom?

Selective Criteria

‘High pairs only [0-1]’ – Let only pairs with (MW)MAC / (MW)FDAC value
greater than ‘High pairs only’ (value from zero-one interval) for SC computations?

‘Number of selected sensors [#]’ – The number of sensors selected and iteratively
removed as the worst in SC.
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‘All plots’ – Plot whole (MW)MAC / (MW)FDAC matrices after the worst
sensors removals?

‘Check of pairs’ – Check if pairing is the same after the worst sensors removal?

6.3.4 Output Options

Plot Parameters

‘Show frequencies’ and ‘Show mode / deflection numbers’ – Frequencies or mode
/ deflection numbers in the plot?

‘Faster plots’ – Generate only a quick less-pretty graphs?

‘Zero-one color set’ – Which color set to use in graphs with values ranging from
zero to one?

‘Neg.-pos. color set’ – Which color set to use in graphs with positive and negative
values?

‘Cbar midparameter [0-1]’ – Relative middle parametr of the color set (value
between zero and one).

‘Figure height [pixel]’ – Figure height, width is given automatically (square image
size for basic criteria). The minimum size to fit all the labels is cca 500 pixels.

MS Excel Output File

‘Export XLSM for an overview of main results’ – Create an Excel XLSM (Macro-
Enabled Workbook) file for an overview of the main results. The XLSM file is
opened automatically after the calculations have finished in the app.

6.4 MAC MV app Input Data – Output Options

Here is an overview of adjustable options in the ‘Input Data’ – ‘Output Options’
tabs in the MAC MV app. The following information is contained in the tooltips
in the application as well.

6.4.1 Input Data

CSV files

‘Include CSV files with phases’ – In case CSV files were selected as the input, do
you want to include CSV files with phase information in calculations too? CSV
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files including phases must have the same name as files including amplitudes and
end with ’p.csv’.

Data Plots

‘Plot data per columns’ – Plot data per columns? For all IDs, for every vari-
ant (and all variant together), graphs of amplitude, ln(amplitude) or phase as a
function of frequency for all measurements are ploted.

‘Independency plots’ – Plot data for MMV or MMV 2 distinction? For fixed
frequency, for every variant, graphs of ln(amplitude) or phase as a function of IDs
for all measurements or as a function of measurements for all IDs are plotted.

Data

‘Skip rotational DOF’ – Let or skip rotational degrees of freedom (if there are
rotational DOF included in the input data)?

‘Zero tolerance’ – Sensors with a maximum value less than or equal to ‘Zero
tolerance’ and DOF (e.g. all translational DOF ‘u’) with a maximum value less
than or equal to ‘Zero tolerance’ are skipped.

‘Frequency lower limit [Hz]’ – Data less than ’Frequency lower limit’ are cut off.
An empty cell means nothing cut off regardless of the frequency range of the
input data.

‘Frequency upper limit [Hz]’ – Data greater than ’Frequency upper limit’ are cut
off. An empty cell means nothing cut off regardless of the frequency range of the
input data.

‘Extract every n-th frequency’ – Extract every n-th frequency and n-th row of
all input data?

6.4.2 Criteria

In this tab it is possible to select which criteria to calculate.

‘MM’ – More Measurements. Criterion for two variants, the first variant once
measured, the second variant once ore more times measured.

‘MMV’ – More Measurements and Variants. Criterion for two or more variants,
every variant is at least twice measured. The linear dependencies between meas-
urements of the same variant are not expected.

‘MMV 2’ – More Measurements and Variants 2. Criterion for two or more vari-
ants, every variant is at least twice measured. The linear dependencies between
measurements of the same variant are expected.
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6.4.3 Criteria Parameters

Pairing

‘Pairing’ – With pairing? Pairing with the first reference variant A is performed.

‘Pairing with amplitudes’ – Include only amplitude information in the pairing?

‘Pairing with amplitudes and phases’ – Include both amplitude and phase inform-
ation in the pairing?

‘Independency plots with pairing’ – Plot data for MMV or MMV 2 distinction
for paired set of frequencies? For fixed reference frequency, for every variant,
graphs of ln(amplitude) or phase as a function of IDs for all measurements or as
a function of measurements for all IDs are plotted. Valid only for MMV = True
or MMV 2 = True and if Pairing = True as well.

MMV and MMV 2

‘Significance levels alpha’ – Which vector of significance levels should be used for
statistical testing?

‘Alpha plots’ – Plots of results of statistical tests at the chosen significance levels?
Valid only for MMV = True or MMV 2 = True.

MMV

‘MMV plots with estimates’ – Plot graphs with estimates for MMV? For fixed
frequency, for every variant, graphs of ln(amplitude) or phase as a function of
IDs for all measurements are plotted. Valid only for the case of MMV = True.

6.4.4 Output Options

Plot Parameters

‘Show frequencies’ and ‘Show mode / deflection numbers’ – Frequencies or mode
/ deflection numbers in the plot?

‘Faster plots’ – Generate only a quick less-pretty graphs?

‘Zero-one color set’ – Which color set to use in graphs with values ranging from
zero to one?

‘Binary color set’ – Which color set to use in graphs with binary values?

‘Cbar midparameter [0-1]’ – Relative middle parametr of the color set (value
between zero and one).
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‘Figure height [pixel]’ – Figure height, width is given automatically (square image
size for basic criteria). The minimum size to fit all the labels is cca 500 pixels.

6.5 Useful remarks

6.5.1 One more option how to use the MAC app

There is one more way how to use the MAC and MAC MV tools, without the
graphical window, only with double click on the icon but with own custom settings
in one of the scripts. For this type of usage do the following.

Create a new folder ‘MAC run from folder’ in your ‘MAC’ folder, here we will
copy the necessary files and folders and use this ‘run from folder’ version of the
MAC or MAC MV app (to ensure that the settings in the graphical version of
MAC and MAC MV apps remain the original). Open your ‘needed’ folder (what
is the ‘needed’ folder is described in the section 6.1.2) and select and copy these
files and folders:

� mac more variants.py,

� mac.py,

� A,

� B,

� needed for mac

into the ‘MAC run from folder’ folder.

The file ‘mac more variants.py’ is the tool you will launch with a double click in
case of two data sets comparison and the file ‘mac.py’ is the tool you will launch
with a double click for multiple data sets comparison.

‘A’ and ‘B’ are empty folders where to put the input data, in A should be the data
of the first measurement of variant A, in B the other data. Supported file formats
are again PUNCH, UFF or CSV. If using MAC for two data sets comparison, in
each folder A and B can be only one of PUNCH or UFF files or up to two CSV
files – in this case, CSV files including phases must end again with ‘p.csv’ (there
can not be more of your data in these folders, only the data you want to use in
calculations when you run the ‘mac.py’). If using MAC MV for multiple data
sets comparison, in A must be the first measurement of the first variant ending
with the number 1 (denoting the first measurement) and other measurements
and other variants must be in folder B (the same principle as with graphical user
interface).

Folder ‘needed for mac’ contains again the necessary modules and files to make
the tool work properly and, moreover, important files ‘sett more variants.py’ and
‘sett.py’ that needs to be opened and set to yours requirements. Before using
‘mac.py’, the ‘sett.py’ must be set and before launching ‘mac more variants.py’,
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the ‘sett more variants.py’ must be set. We describe setting of ‘sett.py’ and all
is analogous with ‘mac more variants.py’.

Open the ‘sett.py’ in Notepad, PSPad, Spyder or any IDE (see Fig. 6.8).

(a)

(b)

Figure 6.8: (a) The ‘sett.py’ file opened in Notepad and (b) variables for criteria
calculations.
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The character # is used for comments in the script, all after this character in
the same line are just labels for better understanding. In a section ‘VARIABLES
YOU CAN EDIT’ set values you want to use, especially select (write ‘True’
instead of ‘False’) which criteria you want to be calculated. Take attention on
spacing, there can not be any redundant space character, otherwise the program
will end with error (probably with an error message “Import of needed modules
... failed.”). Then save the file, close it and you can use the ‘mac.py’ by double
click. If anything goes wrong, you overwrite something important etc., you can
always delete the whole ‘sett.py’ file and copy it again from the ‘needed’ folder.

If you are using the Spyder or any IDE for launching the ‘mac more variants.py’ or
‘mac.py’ instead of double clicking on it, make sure to use the Python interpreter
installed from the Anaconda. In Spyder the path to the Python interpreter can be
set in ‘Tools > Preferences > Python interpreter’ by selecting ‘Use the following
Python interpreter:’ with the standard path ‘D:\anaconda\python.exe’.

6.5.2 How long the calculations should approximately take

MAC app

Here is an example what can be seen from the command line, when all calculations
were selected in the MAC app (run with graphical window) with the standard
settings for loaded modal matrix size of cca 100 rows × 100 columns containing
3 translational DOFs per sensors (on PC Fujitsu – Celsius W530 x64, processor
Intel®Core�i5–4670 3.40GHz – 3.40GHz, RAM 8.00 GB, with Windows 7).

AUTOMAC
calculations time: 3.1029074305833513
MAC
calculations time: 3.276207595820119
MWMAC and MOC
calculations time: 8.226702792966238
PLR, MWPLR
calculations time: 2.396992050885924
SDOFC with COMAC
calculations time: 1.0331188938011167
SDOFC
calculations time: 0.22090833736314153
SC with COMAC
calculations time: 1.27199620142585
SC
calculations time: 0.8083703259637858
SDOFMWC with COMWMAC
calculations time: 8.1445031456564777
SDOFMWC
calculations time: 1.051228529634244
SMWC with COMWMAC
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calculations time: 8.1948759094210345
SMWC
calculations time: 56.49866971421949

The AUTOMAC includes two calculations, one for both of the input data, MAC
includes two calculations, the standard and the scaled version of MAC. The MW-
MAC and MOC include calculations of both mass matrices M1, M2, three MOC
criteria and the standard and the scaled version of MWMAC. Paring per the
shorter size was applied and the selective criteria ran with three sensors removal
in this example.

All calculations times are in seconds. SC calculation is fast because the MAC
values are computed for pairs only (the pairing is already done, in this case, and
the MAC is not computed for all combinations of modal vectors, but only for
modal vectors corresponding to pairs). On the contrary, SMWC is significantly
the slowest because in every loop the mass matrices M1, M2 are computed and
the MWMAC is computed for all combinations of modal vectors.

MAC MV app

Here follows an example what is written in the command line, when MMV and
MMV 2 calculations were selected in the MAC MV app (run with graphical
window), with pairing (using only amplitudes) and plotting the ‘alpha plots’
for the vector of significance levels [10, 1, 0.1, . . . , 0.00001]% and other standard
settings for one loaded modal matrix size of cca 9 rows × 100 columns with 4
variants, each 10 times measured (on PC Acer Aspire E5–575G x64, processor
Intel®Core� i5–6200U 2.30GHz – 2.40GHz, RAM 8.00 GB, with Windows 10).

MMV
Calculations time: 9.29386730405005
MMV 2
Calculations time: 9.083900707797635

6.5.3 Other comments

Due to finite binary floating point representation of numbers in computers, float-
ing point arithmetic in Python etc. [24], the MAC (FDAC) value can be slightly
higher than the value of one (ev. less than zero). In scaling version of criteria the
values above one are overwritten to the value of one before the transformation
and values out of acceptable zero-one range are displayed as boundary values
(zero or one) in graphs.

Regarding ‘big data’, in case of MAC app for two input data, the larger the data
are, the more time calculations take. In case of MAC MV app for more input data,
we encountered the problem of Memory Error in addition. The statistical models
were implemented only in an elementary way in Python. The fact is, that we are
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not dealing with sparse matrices and, moreover, the statistical testing is done for
all combinations of modal vectors at the input for two data or when pairing is
used. The Memory Error arising is dependent on more factors, on the PC system,
where the memory is currently allocated, etc.,thus it is not easy to specify some
limit of input data sizes, for that the MAC MV app run without the Memory
Error. In our numerical experiments, the error occurred when attempting to
compute the MMV criterion for all combinations of modal vectors of two variant
10 times measured, with one modal matrix of size larger than 100 rows × 6000
columns.

6.5.4 Program code

We are using several Python Modules (Python scripts), that are not our original
work, these are

� mpmath [25],

� peakutils [26],

� gmpy2 [27],

� munkres [28],

� modified Module pyuff [29],

� tabulate [30]

and then other Anaconda and standard Modules.

In conclusion, we provide an example of the code for the MMV criterion, where
the omitted parts are indicated by three dots. Only the code of MMV for all
combinations of modal vectors for two variants was left. For the construction of
matrices X and Y (Y is matrix of vectors y from the chapter 5 for all combinations
of modal vectors) are attached schemes in appendix A.

"""
Calculate Z statistic for MMV.
"""
def z_calculate(Y, X, XXX , XM , XXXM , coef1 , coef2 , coef3 ,

indexes , angle_recalculation=False):

b = np.dot(XXX , Y)

if angle_recalculation:

# b[indexes,:][b[indexes,:] > 180] = 360 - b[indexes,:]
for i in indexes:

for j in range(len(b[i])):

if b[i, j] > 180:

b[i, j] = 360 - b[i, j]

...

YY = np.dot(X, b)

S_e = np.sum((Y - YY) ** 2, axis =0) # vector

b_M = np.dot(XXXM , Y)

YY_M = np.dot(XM , b_M)
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S_eM = np.sum((Y - YY_M) ** 2, axis =0)

Z = (S_eM - S_e) / S_e * (coef2 / coef1)

Y_aver = np.sum(Y, axis =0) / len(Y)

Y_aver = np.reshape(np.ones(len(Y)), (len(Y) ,1)) * Y_aver

S_T = np.sum((Y - Y_aver) ** 2, axis =0)

R2 = 1 - S_e/S_T

R2a = 1 - (S_e/coef2)/(S_T/coef3)

return Z, R2, R2a , b

"""
Method for the case of more measurements, more variants, concept

of no reference variant.
Rearrange data into regression model and calculate statistics Z

that have the F distribution.
Returns arrays of booleans, 1 means rejection of the hypothesis,

0 non-rejection, p values and R^2.

Parameters:
data: list of numpy arrays with transposed modal matrices,

sorted that the first is the first reference variant, all
measurements of it, then other variants and all their
measurements,

N: number of variants,
S: number of modal vector elements (number of sensor

specifications),
L: number of measurements,
frequencies: list of numpy arrays with vectors of frequencies,
pairing, pairing_with_phases, pairing_with_sums: specifications

for pairing
"""
def mmv_calculate(data , N, S, L, frequencies , pairing ,

pairing_with_phases , pairing_with_sums):

...

# Rearrange data into regression model Y_a = X * b_a, Y_p = X
* b_p,

data_a = np.log(np.array ([np.abs(data[i]) for i in range(N *

L)]))

if sett_more_variants.mac_name == "FDAC":

data_p = np.array([np.angle(data[i], deg=True) for i in

range(N * L)])

if pairing and mmv_calculate_matrices:

...

else:

if mmv_calculate_matrices:

R1 , = data [0]. shape

R2 , = data[sett_more_variants.number_of_data - 1]. shape

Y_a = np.zeros((N * S * L, R1 * R2), dtype=np.float64)

Y_a_blocks1_r1 = np.zeros((S * L, R2), dtype=np.float64)

Y_a_blocks1_r2 = np.zeros((S * L, 1), dtype=np.float64)

for r1 in range(R1):

for s in range(S):

Y_a_blocks2_r1 = data_a [0:L, r1 , s]

Y_a_blocks1_r1[s * L: s * L + L] =
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Y_a_blocks2_r1.reshape ((len(Y_a_blocks2_r1), 1)) #
size: L x 1

Y_a [0:S * L, r1 * R2:(r1 + 1) * R2] = Y_a_blocks1_r1

indexes = np.array(range(R1)) * R2

for r2 in range(R2):

for s in range(S):

Y_a_blocks2_r2 = data_a[L:2 * L, r2 , s]

Y_a_blocks1_r2[s * L: s * L + L] =

Y_a_blocks2_r2.reshape ((len(Y_a_blocks2_r2), 1)) #
size: L x 1

Y_a[(S * L): 2 * (S * L), indexes + r2] = Y_a_blocks1_r2

if sett_more_variants.mac_name == "FDAC":

...

else:

...

X = np.zeros((N * S * L, N * S), dtype=np.float64)

X_ones = np.zeros(L, dtype=np.float64) + 1

X_block1 = np.zeros ((S * L, S), dtype=np.float64)

for s in range(S):

X_block1[s * L:(s + 1) * L, s] = X_ones

X_block2 = X_block1.copy()

for s in range(1, S):

X_block2[s * L:(s + 1) * L, 0] = X_ones

X[:S * L, :S] = X_block1

for n in range(1, N):

X[n * S * L:(n + 1) * S * L, :S] = X_block1

X[n * S * L:(n + 1) * S * L, n * S:(n + 1) * S] = X_block2

XT = np.transpose(np.conjugate(X))

XXX = np.dot(np.linalg.inv(np.dot(XT , X)), XT)

# Model without all regressors
XM = X.copy()

indexes2 = []

for n in range(1, N):

for s in range(1, S):

indexes2.append(n * S + s)

XM = np.delete(XM , indexes2 , axis =1)

XTM = np.transpose(np.conjugate(XM))

XXXM = np.dot(np.linalg.inv(np.dot(XTM , XM)), XTM)

coef1 = (S - 1) * (N - 1)

coef2 = N * S * (L - 1)

coef3 = N * S * L - 1

# Calculate statistics Z (Z_a, Z_p)
np.seterr(invalid=’ignore ’) # because of possible zero

division in Z (S_e = 0)
Z_a , R2_a , R2a_a , b_a = z_calculate(Y_a , X, XXX , XM , XXXM ,

coef1 , coef2 , coef3 , indexes2)

if sett_more_variants.mac_name == "FDAC":

Z_p , R2_p , R2a_p , b_p = z_calculate(Y_p , X, XXX , XM , XXXM ,

coef1 , coef2 , coef3 , indexes2 , angle_recalculation)

else:

b_p = None

np.seterr(invalid=’warn’)

...
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np.seterr(invalid=’ignore ’)

p_value_a = f_distribution.sf(Z_a , coef1 , coef2 , loc=0,

scale =1)

if sett_more_variants.mac_name == "FDAC":

...

np.seterr(invalid=’warn’)

if pairing and mmv_calculate_matrices:

...

else:

if mmv_calculate_matrices:

p_value_a = np.reshape(p_value_a , (R1, R2))

R2_a = np.reshape(R2_a , (R1 , R2))

R2a_a = np.reshape(R2a_a , (R1, R2))

if sett_more_variants.mac_name == "FDAC":

...

freq = np.array ([ frequencies [0],

frequencies[sett_more_variants.number_of_data - 1]])

if alpha_plots:

...

else:

...

return mask_a , mask_p , mask_ap , p_value_a , p_value_p ,

p_value_ap , R2_a , R2a_a , R2_p , R2a_p , freq
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Appendix A

Matrices X and Y

Schemes of matrices X and Y for the Python program code follows (see Fig. A.1,
A.2).

Figure A.1: A scan of a scheme for matrix Y construction.
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Figure A.2: A scan of a scheme for matrix X construction.
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Nomenclature

M , D, K, mass, damping and stiffness matrices,
t, time,
ω, frequency,
i, imaginary unit,
v, modal vector (mode shape),
V , Λ, modal and spectral matrices,
I, identity matrix (unit matrix),
R2, coefficient of determination,
diag(a), diagonal matrix with vector a on a diagonal,
A∗, a∗, conjugate transpose (Hermitian conjugate) of matrix A or

vector a (a transpose in case of A or a real),
A−1, inversion of matrix A,
A+, Moore–Penrose pseudoinversion of matrix A,
cond(·), condition number,
σmax(·), the largest singular value,
σmin(·), the smallest singular value,
L(·), Laplace transform,
| · |, absolute value,
arg(·) the principal value of argument of complex number,
‖·‖, L2 (Frobenius) norm,
‖·‖S, spectral norm (induced 2-norm),
‖·‖1, induced (operator, Schatten) 1-norm,
‖·‖∞, induced (operator, Schatten) ∞-norm,
N, R, C, natural, real and complex numbers,
EX, expected value of a random variable X,
varX, variance of a random variable X,
PX, probability of a random variable X,
X ∼ N(µ, σ2), a random variable X has a normal probability distribution with

a mean µ and a variance σ2,
X ∼ F(ν1, ν2), a random variable X has a F probability distribution (Fisher

distribution) with parameters ν1 and ν2,
X ∼ χ2

ν , a random variable X has a χ2 probability distribution
(chi-squared distribution) with a parameter ν,

α, significance level,
DOF, degrees of freedom.
ANOVA, analysis of variance.
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Matrix norms

For matrix A of type R × S with an element ar,s at position r, s (the r-th row,
the s-th column) the matrix norms are given by

‖A‖ =

(
R∑
r=1

S∑
s=1

|ar,s|2
) 1

2

,

‖A‖S = σmax(A),

‖A‖1 = max
s∈{1,...,S}

R∑
r=1

|ar,s|,

‖A‖∞ = max
r∈{1,...,R}

S∑
s=1

|ar,s|.
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