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Abstract. The aim of this paper is to describe the methodology of 
modelling fluid flow and heat transfer tasks for testing electronic motion 
sensors, especially PIR (passive infra-red) motion sensors. The motion 
sensor measures changes in electromagnetic radiation in the infrared range 
caused by the movement of warmer objects compared to its surroundings. 
Distortion of the perception of the environment can lead to false alarms or 
insensitivity of the detector. PIR motion sensors should be designed and 
located to minimize heating of the lens by ambient air. The sensor may be 
exposed to conditions not specified in the basic standards. The practical part 
of this article deals with a non-standard test. A single-phase transient 
simulation in a specific test cabinet for two specific motion sensor models 
was performed using the computational fluid dynamics (CFD) method. The 
aim of these simulations was to evaluate the effect of hot flowing air on the 
lens and to compare the designs of both models. Comparison and analysis 
of the results showed that the test configuration does not guarantee a defined 
flow at the outlet of the pipeline, so a new configuration was designed. 

1 Introduction 
Nowadays, there are many ways to protect and secure property against fire or other damage 
(e.g. theft). One way is to use a PIR (passive infrared) motion sensor. A PIR sensor is a device 
working on the pyroelectric principle. The sensor measures different values of 
electromagnetic radiation in the infrared range, which enter through an optical lens to the 
pyroelement. Objects with a temperature higher than absolute zero (-273.15 °C) radiate their 
heat in the form of infrared radiation, which is invisible to the human eye but detectable to 
electromagnetic sensors. The size of the space monitored by the sensor is determined by its 
viewing angle. The pyroelement evaluates the change of infrared radiation, which leads to a 
change to the output voltage and, if necessary, an alarm is triggered [1, 2, 3]. 

PIR sensors are tested according to EN 50131-X [4]. In normal operation, the sensor may 
be exposed to conditions other than those specified in the standard, such as placement near 
windows, various heat sources, fans, air conditioners, or above heating elements. This topic 
is not yet reflected in the available information sources. 

This article deals with a non-standard test whose configuration was inspired by specific 
measurements in a laboratory. A single phase transient simulation in a test cabinet for two 
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different models of motion sensors was carried out using computational fluid dynamics 
(CFD). The aim of these simulations was to evaluate the effect of hot flowing air on the lens 
and to compare the designs of the models. The second aim was the assessment of the quality 
of the test rig design in terms of stability of the velocity and temperature field. The project 
was therefore designed as a pilot to explore the potential of engineering simulations to 
identify the impact of off-design conditions on PIR sensors.  

2 Geometry and computational domain
Two models of sensors marked Type 1 and Type 2 were chosen for simulations as shown in 
Figure 1. The computational domains around the sensors are determined by the dimensions 
of the test cabinet – see Figure 2. The arrangement of the cabinet does not directly comply 
with the EN standards; however, it provides stricter conditions for testing the sensors than 
the standards. 

The computational domain contains an air outlet into which the air flow enters through a 90° 
pipe and a washer for mounting the sensors. The aim of this task is not to monitor the heat 
transfer through the walls of the cabinet, so only the inner surfaces of the cabinet were 
considered in the simulations. It is appropriate to include the volume of the PIR body in the 
transient simulation, due to heat accumulation, as the thermal properties of the volume are 
important for the surface temperature to monitor the warming of the body surface. Therefore 
the volume of the lens and the entire detector was also modelled to monitor the warming of 
the lens surface (Figure 2). 

The output surfaces (ambient atmosphere) are marked in green and the input area in 
red – the orange colour indicates the location of the BOI body (body of influence) for setting 
up better local discretization. 

Fig. 1. PIR motion sensor models 
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3 Solver setup and boundary conditions 
The CFD system ANSYS FLUENT 2020 R2 [5] was used for the simulations. The SST  
k- was chosen as a turbulent model, the energy equation was included as well. For 
the mesh independence study, a stationary type of calculation with averaging of values was 
chosen. A transient solver was chosen for the final simulations, because it is important to 
capture the vortices and fluctuations around the sensors. 

The gravitational acceleration was set to 9.81 ms-2. The material properties of all the 
elements were set according to the manufacturer’s data. The flowing air was set as an 
incompressible ideal gas – the density depends only on the temperature. 

A turbulence intensity of 2 % and a (Kolmogorov) turbulence scale of 4.8·10-4 m were 
set. The inlet air temperature was set at 35 °C with a flow velocity of 0.7 ms-1. The 
temperature was set to 20 °C and the pressure to 101.325 kPa at the outlet. A no-slip condition 
was set on the walls and the heat transfer coefficient was set to 10 W/(m2K). 

4 Computational mesh 
The detector interior, solid bodies and whole test cabinet domain were meshed with conform 
polyhedral meshes, because these sections are geometrically suitable for these types of 
elements. The polyhedral elements are able to surround complex geometric shapes and have 
a high number of adjacent cells, so it achieves a generally higher accuracy and stability then 
tetrahedral elements. 

In order to ensure the accuracy of the CFD results from the simulation, a mesh 
independence study was made. Nine mesh versions of the Type 1 model were created for this 
study. All the meshes satisfy the recommended quality limits for polyhedral meshes. The 

Fig. 2. Computational domain (left) and simplified models of sensor bodies (right) 
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mean values and RMSE fluctuations of velocity magnitude and total temperature were 
monitored (in stationary simulations) at specified surfaces, see Figure 3. 

The results of the mesh independence study are shown in Figures 4 and 5. It can be seen that 
the values obtained are quite strongly mesh dependent for the first five versions of the mesh 
and only weakly dependent for the next four versions. For the purpose of this work, the sixth 
version of the computational mesh with about 8.7 million polyhedral cells was chosen as the 
applicable discretization level. 
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Fig. 3. Surfaces for evaluating the mesh independence study 

Fig. 4. Mean temperature (left) and RMSE temperature (right) 
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Below in Figure 6 is a preview of the selected mesh. After evaluating the optimal mesh, the 
same mesh generation setting was also implemented on Type 2. 

 

5 Methodology of evaluating the results  
Figure 7 shows the planes and points and their locations where important quantities were 
monitored. The layout is the same for both sensor models. The xy plane is at a distance of 
685 mm from the front (in the middle of the pipe opening). The planes for the mesh study are 
also used for evaluation. 

A steady-state simulation was used for the first run together with an additional 30 time 
steps of non-steady-state simulation. The evaluation was carried out during an additional 300 
time steps of 5·10-4 s. 

All the results were evaluated relatively, thus the values are normalized by the maximum 
value from the stationary simulation of Type 1. 
  

Fig. 5. Mean velocity magnitude (left) and RMSE velocity magnitude (right) 

Fig. 6. Computational mesh – detail and general views 
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6 Results of the CFD simulations 
The normalized temperature contours in Figure 8 show a slightly non-stationary stream of 
warmer air. This heat propagation caused by flow along the wall also indicates the importance 
of proper placement of the detector in the space, as heating of the lens can adversely affect 
the function of the sensors. By comparing the generated contour time sequences over time, 
the pulsating nature of the outgoing warm air stream was observed 

Fig. 7. Methodology of evaluation 

Fig. 8. Contours of the normalized temperature at 7 s and 12 s, plane yz – Type 1 (up) and Type 2 
(down) 
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It was expected (and confirmed by calculations) that after the impact of the flowing medium 
on the lower edge of the detector, the flow splits. This situation is shown in Figure 9 and it 
also shows the inhomogeneous flow in the test cabinet. 

Figure 10 shows the flow field around the sensor and the separation of the flow in front of 
the lens. The flow separation is more extensive for the Type 2 model. This effect is caused 
by the geometry of Type 2 which is more sensitive to the flow separation than Type 1.  

Fig. 9. Contours of the normalized temperature at 7 s and 12 s, rear wall – Type 1 (left) and Type 2 
(right) 

Fig. 10. Contours of the normalized velocity mag. at 7 s and 12 s, plane yz – Type 1 (up) and Type 2 
(down) 
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The results in Figure 11 show that the flow for Type 2 is more unstable than Type 1. The 
results also show, similar to the results in Figure 9 for temperatures, that the flow from the 
inlet pipe is not symmetrical or stable.  

This shows that the design of the test cabinet and especially the air outflow from the 
supply pipe is not satisfactory. The geometry of the circular duct (especially the elbows and 
the outlet) does not allow a homogeneous flow of the warm air in the cabinet; the flow is 
unstable and undefined. 

The shape of the Type 2 sensor also causes higher fluctuation compared to Type 1, but 
the differences are not large. This finding is supported by the monitoring of temperatures and 
velocities during the unsteady simulation – see the normalized values from various points in 
the computational domain of both types in Figure 12. More detailed information about the 
modelling and the results can be found in the work [8]. 

  

Fig. 11. Contours of the normalized velocity mag. at 7 s and 12 s, plane xz, Type 1 (top) and Type 2 
(bottom) 
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7 New design of the test cabinet 
Based on the findings described above, a new test cabinet for non-standard PIR testing was 
designed. It has a more suitable design of the inlet pipe, which guarantees a homogeneous 
flow at the outlet of the pipe. A fan is located behind the inlet, followed by a heater, an elbow 
with internal inserts and a flow conditioner. To change the flow pattern, a properly designed 
element can be placed at the outlet of the supply pipe. The PIR sensors can be mounted in 
various ways. A preview of the new configuration can be seen in Figure 13. 

Fig. 12. Temperatures monitored during unsteady simulation – Type 1(up) and Type 2 (down) 
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Fig. 13. The new test cabinet for PIR sensors for testing in off-design thermal conditions 
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8 Conclusions 
PIR motion sensors should be constructed and, above all, positioned so that the lens is 
warmed as little as possible by the ambient air. Different mounting conditions of PIR sensors 
that may occur in practice are as yet not well researched. The knowledge gained can help 
manufacturers and users to address the placement of sensors outside the standard conditions. 
Basic engineering principles regarding the enveloping of PIR sensors by warm flowing air 
were tested using numerical simulations. The results of the simulations can help in selecting 
a suitable location for measuring velocity or temperature in experimental measurements. 
They also show the importance of the shape of the sensor with respect to the interaction with 
the flowing warmed air. Finally, the test cabinet used for non-standard testing of sensors was 
analysed and based on the results, a new design was proposed for testing sensors in non-
standard conditions, eliminating the shortcomings of the original design. 

 
The results were developed within specific research (UWB SGS-2019-021) and contract research. 
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