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Abstract

We give a simple combinatorial description of an (n − 2k + 2)-
chromatic edge-critical subgraph of the Schrijver graph SG(n, k), itself
an induced vertex-critical subgraph of the Kneser graph KG(n, k).
This extends the main result of [J. Combin. Theory Ser. B 144 (2020)
191–196] to all values of k, and sharpens the classical results of Lovász
and Schrijver from the 1970s.

1 Introduction

Given integers k ≥ 1 and n ≥ 2k, the Kneser graph KG(n, k) is defined as
follows: the vertices are all the k-element subsets of [n] = {1, . . . , n}, and the
edges are the pairs of disjoint subsets. A famous conjecture of Kneser [6],
proved by Lovász [8], states that KG(n, k) is (n− 2k + 2)-chromatic. Schri-
jver [12] sharpened the result by identifying the elements of [n] with the
vertices of the n-cycle Cn, and showing that the Schrijver graph SG(n, k)
— the subgraph of KG(n, k) induced by the vertices containing no pair of
adjacent elements of Cn — is also (n− 2k + 2)-chromatic. Moreover, Schri-
jver proved that SG(n, k) is vertex-critical, i.e., the removal of any vertex
decreases the chromatic number.
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There is a stronger (and arguably, more natural) notion of criticality: a
graph is said to be edge-critical, or simply critical, if the removal of any edge
decreases the chromatic number — in other words, if any proper subgraph
(not necessarily induced) has a smaller chromatic number than the graph
itself.

The Schrijver graph SG(n, k) is not edge-critical, unless k = 1 or n =
2k + 1. This prompts the following natural question: can we give a simple
combinatorial description of an (n−2k+2)-chromatic edge-critical subgraph
of SG(n, k)?

In a recent paper [5], such a construction was given for the case k =
2. Here we extend the construction to all values of k, thereby sharpening
Schrijver’s theorem.

An edge AB of SG(n, k) is said to be interlacing if the elements of A and
B alternate as we go round Cn. Simonyi and Tardos [13] recently proved
that any edge of SG(n, k) whose removal decreases the chromatic number is
interlacing. Thus, a tempting candidate for an (n− 2k + 2)-chromatic edge-
critical subgraph of SG(n, k) might be the spanning subgraph formed by the
interlacing edges. However, Litjens et al. [7] have shown that this graph has
chromatic number dn/ke, so interlacing edges are much too restrictive.

We introduce instead the notion of almost-interlacing edges (we postpone
the definition to Section 3), and define XG(n, k) to be the spanning subgraph
of SG(n, k) formed by the almost-interlacing edges. The main result of this
paper is the following theorem:

Theorem 1.1. For every k ≥ 1 and every n ≥ 2k, χ(XG(n, k)) = n−2k+2.
Moreover, XG(n, k) is edge-critical.

We remark that the definition of almost-interlacing edges is particularly
simple for the case k = 2. Indeed, almost-interlacing edges of SG(n, 2) corre-
spond to crossing and transverse pairs defined in [5], so the graph XG(n, 2)
is precisely the graph Gn studied in [5].

In a forthcoming paper, we will relate the graph XG(n, k) to the graphs
studied in [4], and show that XG(n, k) is a quadrangulation of RPn−2k (see [3]
for a definition). In conjunction with the results from [3], this gives a new
proof of the first part of Theorem 1.1.

For terminology not defined here, we refer the reader to Bondy and
Murty [1].

The paper is structured as follows. Preliminary definitions and observa-
tions are collected in Section 2. Section 3 gives the definition of the graph
XG(n, k). The chromatic number of this graph is determined in Section 4,
and the graph is shown to be edge-critical in Section 5.
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2 Preliminaries

Let Cn be the n-cycle with vertex set [n] = {1, . . . , n} and edges between
consecutive integers as well as between 1 and n. The vertices of the Schrijver
graph SG(n, k) mentioned in Section 1 are independent sets in Cn of size k;
two such sets are adjacent in SG(n, k) if they are disjoint.

We usually visualise Cn in such a way that the vertices 1, . . . , n appear
clockwise in the given order. The vertices of Cn will be referred to as elements
to distinguish them from the vertices of SG(n, k) or of the graph XG(n, k)
we will shortly define. Any arithmetic operations with the elements are
performed modulo the equality n+ 1 = 1.

Our arguments frequently use intervals in Cn. For a, b ∈ [n], the interval
[a, b] is the set {a, a+ 1, . . . , b}. Thus, [a, b] consists of a and the elements
following a clockwise up to b. In case b = a − 1, the interval [a, b] contains
all elements of [n]. By a slight abuse of this notation, we will also write [0, n]
for the set {0, . . . , n}.

Open or half-open versions of intervals, namely (a, b), [a, b) or (a, b], are
defined as expected: for instance, [a, b) = [a, b− 1]. All of the following defi-
nitions are modified for these other versions of intervals in a straightforward
way.

Let X be a subset of [n]. It will be convenient to let [a, b]X = [a, b] ∩X.
The set carries a natural ordering given by the interval; thus, for instance,
the first element of [a, b]X is the element of this set encountered first when
moving clockwise from a to b.

The following notions will be used often in our arguments. An X-gap is
an interval (s, t) such that s, t ∈ X and (s, t)X = ∅. Furthermore, if Y ⊆ [n],
then we say that an X-gap (s, t) is an X-gap in Y (or that Y has this X-gap)
if it is a Y -gap at the same time. See Figure 1 for an illustration. We stress
that saying that Y has an X-gap (s, t) does not mean that (s, t) ⊆ Y .

To distinguish ordered pairs from open intervals, we use the notation
〈a, b〉 for an ordered pair consisting of elements a and b.

If I is an interval in [n], we say that disjoint subsets A,B of [n] alternate
on I if the elements of A alternate with those of B as we follow Cn from the
start to the end of I. Sets A,B whose elements alternate on the whole of [n]
are said to form an interlacing pair.

A crucial notion for our construction is that of an admissible interval. For
disjoint subsets A,B of [n], an interval [d, c] is weakly AB-admissible if

|[d, c]A| = |[d, c]B| = c.

Furthermore, a weakly AB-admissible interval [d, c] is AB-admissible if

c, d /∈ A ∪B.
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Figure 1: Subsets X (black dots) and Y ⊆ X (red squares) of the vertex set
of C12. The X-gaps in Y are (1, 4) and (11, 1). The remaining four X-gaps,
namely (4, 5), (5, 6), (6, 9) and (9, 11), are not X-gaps in Y .

We extend these notions to open or half-open intervals such as (d, c) or (d, c]
in precisely the same way, just replacing [d, c] with the interval in question.

Let us examine some basic properties of weakly AB-admissible intervals,
where A,B are disjoint subsets of [n], each of size k. It is not yet required
at this point that A and B be independent in Cn, so we may view AB as an
edge of the Kneser graph KG(n, k).

Observation 2.1. If AB is an edge of KG(n, k) and [d, c] is a weakly AB-
admissible interval, then c ≤ k < d.

Proof. Note first that c ≤ k follows directly from the definition of weakly
AB-admissible interval. Since A and B are disjoint, we have |[d, c]A∪B| = 2c.
It follows that d > c, for otherwise 2c ≤ |[d, c]| ≤ c, leading to a contradiction
as c ≥ 1. Now

2k = |A ∪B| = |[d, c]A∪B|+ |(c, d)A∪B| ≤ 2c+ (d− c− 1) = c+ d− 1,

and since c ≤ k, we must have d > k.

Another basic property of weakly AB-admissible intervals is that they
are nested, as shown by the first part of the following lemma:

Lemma 2.2. Let AB be an edge of KG(n, k) and let [d, c], [d′, c′] be weakly
AB-admissible intervals. Then the following hold:

(i) [d′, c′] ⊆ [d, c] or vice versa,

(ii) if [d′, c′] ⊆ [d, c] and c′ < c, then the set [d, d′)A∪B is nonempty; if,
moreover, [d, c] is AB-admissible, then |(d, d′)A∪B| ≥ 2.
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Proof. (i) Suppose that the claim does not hold. By Observation 2.1 and by
symmetry, we may assume that c < c′ < d < d′. Then

2c′ = |[d′, c′]A∪B| = |[d′, c]A∪B|+ |(c, c′]A∪B| ≤ 2c+ (c′ − c)

implying c′ ≤ c, a contradiction.
(ii) Our assumptions imply c′ < c < d ≤ d′. We have

2c = |[d, c]A∪B| = |[d, d′)A∪B|+ |[d′, c′]A∪B|+ |(c′, c]A∪B|
≤ |[d, d′)A∪B|+ 2c′ + (c− c′), (1)

so |[d, d′)A∪B| ≥ c− c′ ≥ 1.
If c, d /∈ A ∪ B, then the (c − c′) term in (1) improves to (c − c′ − 1)

and furthermore, we can write (d, d′)A∪B in place of [d, d′)A∪B. The second
assertion follows.

We conclude this section by the definition of switching, used in Section 3
to introduce the graph XG(n, k). Suppose that c, d ∈ [n]. Switching at [d, c]
is the operation transforming any pair AB of subsets of [n] to another such
pair A′B′ defined as follows:

A′ = A4 [d, c]A∪B,

B′ = B 4 [d, c]A∪B,

where 4 denotes symmetric difference. The pair A′B′ is the result of the
switching.

It is easy to see that if AB is an edge of KG(n, k), then the result of switch-
ing AB at a weakly AB-admissible interval is again an edge of KG(n, k). A
similar statement holds for SG(n, k) and switching at an AB-admissible in-
terval.

Switching along a sequence ([di, ci])i∈[m] of intervals means switching at
[d1, c1], . . . , [dm, cm] in this order. (Switching along an empty sequence is the
identity operation on pairs.)

Under an admissibility assumption, switching along a sequence of inter-
vals maps any edge of the Schrijver graph SG(n, k) to an edge:

Observation 2.3. Let AB be an edge of SG(n, k) and let A′B′ be the pair
obtained by switching AB along a sequence S of AB-admissible intervals.
The following holds:

(i) A′B′ is again an edge of SG(n, k),

(ii) any weakly AB-admissible interval is weakly A′B′-admissible and vice
versa.
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3 Definition of XG(n, k)

In this section, we define the graph XG(n, k). Let k ≥ 1 and n ≥ 2k. The
vertex set of XG(n, k) coincides with that of SG(n, k), so the vertices of
XG(n, k) are all k-element independent sets of Cn. The edges of XG(n, k)
are all the almost-interlacing pairs, defined as follows.

A pair AB of vertices, where A∩B = ∅, is almost-interlacing if there exists
a set X = C ∪ D ⊆ [n] such that C = {c1, . . . , cm} and D = {d1, . . . , dm},
with the following properties:

(1) 1 ≤ c1 < c2 < · · · < cm ≤ k − 1,

(2) k + 1 ≤ dm < dm−1 < · · · < d1 ≤ n,

(3) each interval [di, ci] is AB-admissible,

(4) switching along the sequence ([di, ci])i∈[m] changes AB to an interlacing
pair.

Any set X satisfying this definition is called an AB-alternator. We often
write it as C ∪D, with C and D as in the definition. The elements in C are
the control elements of the AB-alternator, the elements ci and di (i ∈ [m])
correspond to each other, and pairs 〈ci, di〉 (i ∈ [m]) are the control pairs of
the AB-alternator.

When referring to an (A ∪ B)-alternator C ′ ∪D′ with C ′ = {c′1, . . . , c′m}
and D′ = {d′1, . . . , d′m}, an ordering as in properties (1) and (2) is implicitly
assumed.

Observe that XG(n, k) is a spanning subgraph of SG(n, k). Any pair of
vertices AB that is an interlacing pair is an edge of XG(n, k), since in this
case the empty set is trivially an AB-alternator.

Another example is shown in Figure 2, depicting an edge AB of SG(16, 4).
The set {2, 3, 7, 11} is anAB-alternator, soA andB are adjacent in XG(16, 4).
There is only one other AB-alternator, namely {2, 3, 7, 10}.

Let us consider the special case of the definition for k = 2. (See Figure 3
for an illustration.) Let AB be an edge of SG(n, 2). We may assume that
A = {a1, a2}, B = {b1, b2}, where a1 < a2, b1 < b2 and a1 < b1. Possible
AB-alternators are ∅ (in which case AB is an interlacing pair), or a set {1, d},
disjoint from A ∪ B, such that [d, 1]A∪B = {a2, b2} (which is easily seen to
be equivalent to 1 < a1 < b1 < b2 < a2). In the paper [5], pairs of these two
types are referred to as crossing and transverse pairs, respectively, and they
coincide with the edges of the graph studied in that paper (denoted by Gn).
Thus, as noted in Section 1, the present definition specialises to the one of [5]
for k = 2.
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Figure 2: Vertices A = {4, 9, 12, 15} (black dots) and {6, 8, 13, 16} (white
dots) of XG(16, 4) forming an almost-interlacing pair. The elements not in
A ∪ B are shown as tick marks. Dotted lines mark the control pairs of the
AB-alternator {2, 3, 7, 11}. Similar conventions are used in the other figures.
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Figure 3: (a) and (b) Examples of edges in XG(8, 2). (c) A non-edge in
XG(8, 2). The dotted line in picture (b) shows the only control pair of the
AB-alternator {1, 5}.
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Let us add some comments on the definition of edges of XG(n, k). Note
that in condition (1), the bound cm ≤ k is trivial (and stated in Observa-
tion 2.1), so (1) just strengthens this bound by one. Furthermore, the bound
k + 1 ≤ dm in condition (2) is actually superfluous (though we include it for
clarity) as it also follows from Observation 2.1. Using Lemma 3.1(i) below,
the bounds in condition (2) can be strengthened to dm ≥ k+2 and d1 ≤ n−2.

We will now describe an algorithm that finds an AB-alternator C ∪ D
if it exists, where AB is an edge of SG(n, k). It may be helpful to consult
Figure 2 for an illustration. First we need another lemma.

Lemma 3.1. Let C ∪ D be an AB-alternator for an edge AB of SG(n, k).
The following hold:

(i) if (x, y) is a (D ∪ {k, n})-gap other than (n, k) or (k, n), then the size
of [x, y]A∪B is at least 2,

(ii) if (x, y) is an (A∪B)-gap, then |(x, y)C∪D| is odd if and only if x, y ∈ A
or x, y ∈ B.

Proof. We may assume that AB is not interlacing, for otherwise (i) is vacuous
and (ii) is clearly true. Thus, let D = {d1, . . . , dm} with d1 > · · · > dm and
m ≥ 1. For i ∈ [m], let ci be the control element corresponding to di.

(i) If x, y ∈ D, then the assertion follows from Lemma 2.2(ii) and the fact
that each of the intervals [di, ci] is AB-admissible.

For the pair 〈k, dm〉, we can write

2k = |A ∪B| = |[dm, cm]A∪B|+ |(cm, k)A∪B|+ |[k, dm)A∪B|
≤ 2cm + (k − cm − 1) + |[k, dm]A∪B| ,

so |[k, dm]A∪B| ≥ k − cm + 1 ≥ 2 since cm ≤ k − 1.
Similarly, for the pair 〈d1, n〉, we have

2c1 = |[d1, n]A∪B|+ |[1, c1]A∪B| ≤ |[d1, n]A∪B|+ (c1 − 1)

(using the fact that c1 /∈ A ∪B), and we find that |[d1, n]A∪B| ≥ c1 + 1 ≥ 2.
(ii) Let us say that a subset of [n] is separating if it contains exactly one

of x and y. Let s be the number of intervals [di, ci] (i ∈ [m]) which are
separating. Observe that s has the same parity as |(x, y)C∪D|.

For 0 ≤ j ≤ m, let AjBj be the pair obtained from AB by switching
along ([di, ci])i∈[j]; in particular, A0B0 = AB. For j > 0, it is not hard to
see that Aj is separating if and only if exactly one of Aj−1 and [dj, cj] is
separating. Now since AmBm is an interlacing pair, Am is not separating. It
follows that either A is separating and s is even, or A is not separating and
s is odd. Since A is not separating if and only if x, y ∈ A or x, y ∈ B, and
by the above observation on the parity of s, this implies part (ii).
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Let us return to the task of finding an AB-alternator for a given edge AB
of SG(n, k). Consider any (A∪B)-gap (x, y) with x, y ∈ [k, n]. If x, y ∈ A or
x, y ∈ B, then by Lemma 3.1(ii), our set D needs to contain an element in
(x, y). The latter interval is nonempty since each of A and B is independent
in Cn. Furthermore, by Lemma 3.1(i), D must contain exactly one element
from this interval. The choice of the element from (x, y) is arbitrary; in
fact, we will see that this is the only choice we have in the process. In the
example of Figure 2, the set D must include the element 7 and one element
from {10, 11}.

Similarly to the above, Lemma 3.1(ii) and (i) implies that if exactly one
of x, y is in A, then (x, y)D must be empty, because its size is even and at
most one. Finally, by Lemma 3.1(i), D contains no element between k and
the first element of [k, n]A∪B, nor between the last element of the latter set
and n.

Summing up, D is obtained by choosing exactly one element in each
(A ∪ B)-gap (x, y) with x, y ∈ [k, n] and either x, y ∈ A or x, y ∈ B. Let
D = {d1, . . . , dm} for some such choice. (Thus, for the pair in Figure 2, D
equals {7, 10} or {7, 11}.)

We will show that this determines the set C whenever there exists an
AB-alternator. The following lemma provides a tool.

Lemma 3.2. Let d ∈ [n] and let X be a vertex of SG(n, k). There is at most
one element c ∈ [k − 1] such that |[d, c]X | = c and c /∈ X.

Proof. For x ∈ [k − 1], let

f(x) = |[d, x]X | − x.

The function f is non-increasing. For each x ∈ [k − 2], we have

f(x+ 1) =

{
f(x) if x+ 1 ∈ X,

f(x)− 1 otherwise.

Thus, if f(x) = f(x + 1) and x ≤ k − 3, then f(x + 1) > f(x + 2) by the
independence of A. It follows that we have f(x) = 0 for at most two values
of x. Supposing (for the sake of a contradiction) that the lemma does not
hold, there are two such values, say c and c + 1, where c ∈ [k − 2]. Since
f(c+ 1) = f(c), we have c+ 1 ∈ X, so c+ 1 does not satisfy the conditions,
a contradiction.

For each i ∈ [m], C has to contain an element ci such that [di, ci] is
AB-admissible. Since ci has to satisfy the condition of Lemma 3.2 with
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X = A, there is at most one such element. Furthermore, ci is independent
of the choice of di: more precisely, if (x, y) is the (A ∪ B)-gap such that
di ∈ (x, y), and if d′i ∈ (x, y), then [d′i, c]A∪B = [di, c]A∪B for any c ∈ [k − 1].
It follows that if an AB-alternator does exist, then each element of C is
uniquely determined by Lemma 3.2. Our algorithm returns C ∪D when this
is the case, and reports that there is no AB-alternator otherwise. (In the
example of Figure 2, we have c1 = 2 and c2 = 3, so one of the sets {2, 3, 7, 10}
or {2, 3, 7, 11} is returned.)

To obtain a unique choice for the AB-alternator when it exists, we impose
the extra condition that for each i ∈ [m], di + 1 ∈ A ∪ B. This amounts
to choosing the largest possible element for each di. The resulting AB-
alternator is called standard. Speaking of the control elements or control
pairs for the edge AB, we mean the control elements or pairs of the standard
AB-alternator.

4 Chromatic number

In this section, we prove the first part of Theorem 1.1 — namely, that
χ(XG(n, k)) = n− 2k + 2 for every k ≥ 1 and every n ≥ 2k. It is enough to
prove the inequality χ(XG(n, k)) ≥ n− 2k + 2, the other inequality being a
direct consequence of the fact that XG(n, k) is a subgraph of KG(n, k).

The case k = 2 of Theorem 1.1 was proved in [5] using the so-called
Mycielski construction. Here we prove the general case using the same idea,
but rely instead on the generalised Mycielski construction, introduced by
Stiebitz [14] (see also [2, 11]).

Given a graph G = (V,E) and an integer r ≥ 1, the graph Mr(G) has
vertex set (V ×[0, r−1])∪{z}, and there is an edge (u, 0)(v, 0) and (u, i)(v, i+
1) (for every i ∈ [0, r − 2]) whenever uv ∈ E, and an edge (u, r − 1)z for all
u ∈ V . The construction is illustrated in Figure 4.

For every integer t ≥ 2, we denote by Mt the set of all ‘generalised
Mycielski graphs’ obtained from K2 by t − 2 iterations of Mr(·), where the
value of r can vary from iteration to iteration. That is, H ∈Mt if and only
if there exist integers r1, r2, . . . , rt−2 ≥ 1 such that

H ∼= Mrt−2(Mrt−3(. . .Mr2(Mr1(K2)) . . .)).

Using topological methods, Stiebitz [14] (see also [2, 9]) proved the fol-
lowing result. A ‘discrete’ proof, based on a combinatorial lemma of Fan,
can be found in [10].

Theorem 4.1 (Stiebitz [14]). If G ∈Mt, then χ(G) = t.
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(v, 2)

(v, 1)

Figure 4: The generalised Mycielski construction applied to C7 (bold) result-
ing in the graph M3(C7).

We now come to the key lemma of this section.

Lemma 4.2. For every k ≥ 1 and every n ≥ 2k, Mk(XG(n − 1, k)) admits
a homomorphism to XG(n, k).

Proof. We shall explicitly describe a homomorphism f from Mk(XG(n−1, k))
to XG(n, k). Let A be a vertex of XG(n−1, k) and let (A, 0), . . . , (A, k−1) be
its copies in Mk(XG(n−1, k)). In order to keep all vertex names capitalised,
we choose to denote the vertex z in the generalised Mycielski construction
by Z.

Suppose that A = {a1, . . . , ak}, where a1 < · · · < ak. Let 0 ≤ i ≤ k. We
define the set Λn,i ⊆ [n] as follows:

Λn,i =

{
{n− i+ 1, n− i+ 3, . . . , n} ∪ {2, 4, . . . , i− 1} if i is odd,

{n− i+ 1, n− i+ 3, . . . , n− 1} ∪ {1, 3, . . . , i− 1} if i is even.

Thus, for instance, Λn,0 = ∅, Λn,1 = {n} and Λn,2 = {1, n− 1}.
We will now define a map f : V (Mk(XG(n − 1, k))) → V (XG(n, k)).

Given a vertex A of XG(n − 1, k) and an integer j ∈ [k], let Aj = [d, j]A,
where d is the maximum integer such that |[d, j]A| = j. Furthermore, let
A0 = ∅. We set

f : (A, j) 7→ (A \ Aj) ∪ Λn,j, where 0 ≤ j ≤ k − 1,

Z 7→ Λn,k.

Note that the image of f is contained in the vertex set of XG(n, k).
Informally, f(A, j) can be seen as the result of the following process: viewing
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A as a subset of V (Cn), Aj consists of the j elements of A that are closest to j
counterclockwise; push them clockwise in such a way that the first one stops
at j and the remaining ones are tightly packed (still forming an independent
set), and rotate them back by one element. The other k − j elements of A
are not affected.

To verify that f is a homomorphism, it is enough to check that f maps
edges of Mk(XG(n − 1, k)) to edges of XG(n, k). Fix an arbitrary edge AB
of XG(n− 1, k), and let C ∪D ⊆ [n− 1] be the standard AB-alternator. Let
{〈ci, di〉 : i ∈ [m]} be its set of control pairs.

We will show that f maps the edges (A, 0)(B, 0), (A, j)(B, j+ 1) (for any
j ∈ [0, k − 1]), as well as (A, k − 1)Z, to edges of XG(n, k), by finding an
appropriate alternator C ′ ∪D′.

First, consider the edge (A, 0)(B, 0) ofMk(XG(n−1, k)). Since f((A, 0)) =
A and f((B, 0)) = B, the required alternator is obtained by taking C ′ = C
and D′ = D. (Note that the definition is still satisfied if A and B are viewed
as vertices of XG(n, k) rather than XG(n− 1, k).)

Edges of type (A, k−1)Z are another easy case: we have f(Z) = Λn,k and
f((A, k−1)) contains Λn,k−1 as a subset, which means that f((A, k−1))f(Z)
must actually be an interlacing pair, and hence an edge of XG(n, k) (with
empty alternator).

It remains to consider the edge (A, j)(B, j + 1), where j ∈ [0, k − 1]. Let
A′ = f((A, j)) and B′ = f((B, j + 1)). The sets A′ and B′ are disjoint since
A ∩B = ∅ and Λn,j ∩ Λn,j+1 = ∅.

Given r ∈ [0,m], let ArBr be the pair obtained from AB by switching
along ([di, ci])i∈[r]. Since AmBm is interlacing, there is d ∈ [k + 1, n] such
that [d, j+1] is weakly AmBm-admissible. Choose d to be maximal with this
property. By Observation 2.3(ii), [d, j + 1] is weakly AB-admissible.

For any i ∈ [m], we have [di, ci] ⊆ [d, j+1] or vice versa by Lemma 2.2(i).
If there is t ∈ [m] such that ct < j + 1, then let t be maximal with this
property; otherwise, let t = 0.

We now aim to show that the pair A′B′ is, in a sense, not too different
from AtBt.

Let X, Y be disjoint vertices of the graph H (that is, vertices such that
X ∩ Y = ∅), where H is either XG(n − 1, k) or XG(n, k). Let I be the
interval [d, j + 1] ⊆ V (Cn), where d is as above. (Thus, n ∈ I even if H is
XG(n− 1, k).)

Let us say that the pair XY is nice if the following hold:

(N1) X \ I = A \ I and Y \ I = B \ I,

(N2) the sets X and Y alternate on I and the first element of I ∩ (X ∪ Y )
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belongs to X if and only if the first element of I ∩ (A ∪ B) belongs to
A.

Claim 1. The pair AtBt is nice.

Condition (N1) in the definition follows from the fact that for each of the
intervals [di, ci] with i ≤ t, we have ci < j + 1 and therefore [di, ci] ⊆ I by
Lemma 2.2(i). Thus, switching at such intervals does not affect the elements
outside I.

Let us verify condition (N2). Since AmBm is an interlacing pair and
I ⊆ [di, ci] for any i > t, At and Bt must alternate on I. For the rest
of condition (ii), we may assume that t > 0. Let x be the first element of
I∩(A∪B); since A∪B = At∪Bt, this is also the first element of I∩(At∪Bt).
By Lemma 2.2(ii), x is not contained in [dt, ct] (nor in any [di, ci] with i < t),
and therefore x ∈ At if and only if x ∈ A. This concludes the proof of the
claim.

Claim 2. Any nice pair XY of disjoint vertices of XG(n, k) forms an edge
of XG(n, k).

It is clear from the definition of nice pair that XY can be obtained from
(the nice pair) AtBt by first extending the underlying cycle Cn−1 to Cn (just
inserting the element n) and then moving the elements of X ∪ Y within I
without changing their order on Cn.

It follows that switching along ([dt+1, ct+1], . . . , [dm, cm]) changes XY to
an interlacing pair, just as in the case of AtBt. (Recall that I is a subset
of each of these intervals by the choice of t.) Summing up, {ct+1, . . . , cm} ∪
{dt+1, . . . , dm} ⊆ [n] is an XY -alternator.

The following claim relates the above observations to A′B′.

Claim 3. One of the following conditions holds:

(i) A′B′ is a nice pair,

(ii) the interval I is A′B′-admissible and the pair A′′B′′ obtained by switch-
ing A′B′ at I is nice.

First of all, observe that since I is weakly AB-admissible, both Aj and
Bj+1 are contained in I. Furthermore, both Λn,j+1 and Λn,j are contained
in I: indeed, the weakly A′B′-admissible interval I = [d, j + 1] must satisfy
d ≤ n − j, while at the same time Λn,j ∪ Λn,j+1 = [n − j, j]. This proves
condition (N1) for both of the pairs involved in (i) and (ii).

We have in fact Bj+1 = I ∩ B and Aj = (I ∩ A) \ {a} for some a ∈
I ∩ A. There are essentially three possibilities for a, illustrated in Figure 5:
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if j + 1 /∈ A, then a is the first element of [d, j + 1]A and it may or may not
equal d, while if j + 1 ∈ A, then a = j + 1.

All the elements of Bj+1 are replaced in B′ by Λn,j+1; similarly, all the
elements of Aj are replaced in A′ by Λn,j. Hence, A′ and B′ alternate on
[n− j, j], and therefore they alternate on I regardless of the position of the
remaining element a of [d, j + 1]A′∪B′ .

If condition (N2) holds for A′B′, then we are done. Assume thus that this
is not the case. We have a 6= d, for otherwise a would be the first element of
both I ∩ (A ∪ B) and I ∩ (A′ ∪ B′) while a ∈ A ∩ A′, implying (N2). For a
similar reason (using the fact that A′B′ alternates in I), we find a 6= j + 1.
Consequently, neither d nor j + 1 belong to A′. They do not belong to B′

either: this is clear in the case of j + 1, and d ∈ B′ would only be possible
if d = n− j, but then |[d, j + 1]A| = j + 1 would force j + 1 ∈ A and hence
a = j+ 1, a contradiction. We have proved that [d, j+ 1] is A′B′-admissible.

Let x be the first element of [d, j + 1]A′∪B′ = [d, j + 1]A′′∪B′′ and note
that x belongs to A′ if and only if it belongs to B′′. Thus, condition (N2) is
satisfied for exactly one of the pairs A′B′ and A′′B′′. This proves the claim.

Let us finish the proof of the lemma. If condition (i) of Claim 3 holds,
then A′B′ is an edge of XG(n, k) by Claim 2. If condition (ii) holds, then we
obtain an A′B′-alternator by setting C ′ = C ∪ {j + 1} and D′ = D ∪ {d},
completing the discussion for edges of type (A, j)(B, j + 1) as well as the
whole proof.

We are now ready to prove that χ(XG(n, k)) ≥ n− 2k+ 2. First, observe
that if G, H are graphs such that G is homomorphic to H (i.e., there exists
a homomorphism from G to H), then Mk(G) is homomorphic to Mk(H).
Hence, by repeated applications of Lemma 4.2, the graph

H = Mk(Mk(. . .Mk(XG(2k, k)) . . .)),

where Mk(·) is applied n − 2k times, is homomorphic to XG(n, k). Since
XG(2k, k) is isomorphic to K2, H ∈ Mn−2k, so using Theorem 4.1, we con-
clude that χ(XG(n, k)) ≥ n− 2k + 2.

5 Criticality

In this section, we prove the second part of Theorem 1.1, namely that
XG(n, k) is edge-critical. Let AB be an edge of XG(n, k) and let G =
XG(n, k)− AB. We show that G is (n− 2k + 1)-colourable.
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(a) a differs from both d and j + 1.

1 2
3

a = d

I
1 2

3

(b) a = d.

1 2

d

I

3 = a
1 2

3

(c) a = j + 1.

Figure 5: Possible cases in the proof of Claim 3, shown for k = 4, j = 2
and AB interlacing. The figures on the left show the pair AB, those on the
right show A′B′. Black dots represent A or A′, white dots represent B or B′,
the interval I = [d, j + 1] is shown gray. The cases are distinguished by the
position of the element a of (I ∩A) \Aj. The pair A′B′ is interlacing except
in (a), in which case a switch at [d, j + 1] is needed to make it interlacing.
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Let C ∪D be the standard AB-alternator, where C = {c1, . . . , cm}, D =
{d1, . . . , dm} and

c1 < c2 < · · · < cm ≤ k − 1 < dm < dm−1 < · · · < d1.

We recall that the sets A, B, C, D are pairwise disjoint.
Let us give an informal overview of the colouring procedure. The precise

description will be given later as Rules (R1)–(R7) on page 27. This overview
will also serve to motivate and introduce (precise) definitions of the necessary
concepts.

Let us call a vertex of G essential if it is a subset of W := A∪B∪C ∪D.
It will turn out that we may restrict our attention to colouring the essential
vertices of G, since there is an easy and safe rule to colour the other ones.

The main idea for colouring an essential vertex X is to determine the
colour based on the weight of X on certain intervals. Here, the weight of
X on an interval I is the cardinality of X ∩ I. The intervals taken into
consideration are determined by the AB-alternator C ∪D: namely, these are
the intervals

[di, ci) and (di, ci], where 1 ≤ i ≤ m.

We call them standard intervals. Recall that the weight of A (and B) on the
interval [di, ci) is exactly ci, by the definition of AB-alternator. The same
applies to (di, ci]. We compare the weight of X on such an interval to ci,
which is viewed as the ‘standard’ weight.

Thus, if I is one of the intervals [di, ci) and (di, ci] (where 1 ≤ i ≤ m), then
we say that X is heavy on I if its weight on I is greater than ci. Furthermore,
X is light or balanced on I if its weight on I is smaller than ci or equal to ci,
respectively. See Figure 6 for an illustration of these notions.

We will see in Lemma 5.1 below that it is safe to assign the same colour
to two vertices X and Y such that X is heavy on some [di, ci) while Y is
light on this interval, because such a pair of vertices cannot be adjacent.

We might therefore think of colouring all essential vertices that are heavy
or light on [di, ci) with one colour. This would not work, however, since
nothing prevents G from containing an edge between vertices X and Y both
of which are heavy on [di, ci). Luckily, Proposition 5.3 shows that it helps
to require i to be minimal such that either of X and Y is heavy on [di, ci).
This leads us to define an essential vertex X to be min-heavy on the interval
[di, ci) (1 ≤ i ≤ m) if it is heavy on [di, ci) and not heavy on any interval
[dj, cj) nor (dj, cj] with j < i. For instance, the vertex X from Figure 6 is
min-heavy on [d1, c1) but not on [d2, c2).

As one can expect, there is a symmetric notion for light vertices: X is
max-light on [di, ci) if it is light on this interval and not light on any [dj, cj)
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c1 = 1
2

c2 = 3

4

5

d2 = 6

78

9

d1 = 10

11

12

13

Figure 6: VerticesA (black circles) andB (white circles) of XG(13, 4). Dotted
lines show the control pairs of the standard AB-alternator. Note that the
only element not in W is 12. An essential vertex X of XG(13, 4) is shown
with red boxes. The vertex X is heavy on [d1, c1), (d1, c1] and [d2, c2), while
it is balanced on (d2, c2]. Observe that A and B are balanced on every [di, ci)
and (di, ci], where i ∈ {1, 2}.

nor (dj, cj] with j > i. Being min-heavy or max-light on the interval (di, ci]
is defined in an analogous manner.

Now the idea is to assign one colour to all essential vertices which are
either min-heavy or max-light on [di, ci), and another colour to those which
are min-heavy or max-light on (di, ci]. This will indeed be done, but by itself,
this rule might still assign the same colour to adjacent vertices, as illustrated
in Figure 7.

However, it turns out that — as in Figure 7 — this only happens if one
of the vertices, say X, contains a balanced pair, namely a pair 〈ci, di〉, where
1 ≤ i ≤ m, ci and di belong to X, and X is balanced on [di, ci) (and therefore
also on (di, ci]). To prevent the above problem, we will colour such vertices
first. We do not need any extra colour for that, since it will be shown that
no essential vertex containing a balanced pair 〈ci, di〉 is adjacent to a vertex
that is min-heavy or max-light on (di, ci]. Hence, it is safe to assign it the
same colour used for the latter group of vertices.

It is not hard to see that by now, any essential vertex X that is heavy or
light on some standard interval will have obtained a colour. This leaves us
with essential vertices which are balanced on every standard interval — we
call them simply balanced.

Among these vertices, those containing at least one vertex from C ∪ D
are also already coloured, because Proposition 5.2 below shows that each of
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c1 = 1

c2 = 2
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4

d2 = 5
6

7

d1 = 8

9

10

Figure 7: Two adjacent vertices of XG(10, 3) (shown with red boxes and
blue triangles), both of which are min-heavy on the standard interval [d2, c2)
(shaded grey). Vertices A and B and the control pairs of an AB-alternator
are shown using the same conventions as in Figure 6.

them contains a balanced pair.
Vertices having no colour at this point are exactly the balanced vertices

which are subsets of A ∪ B. We call such vertices regular. Note that two
examples of regular vertices are A and B, and that any two adjacent regular
vertices partition A ∪B.

Let us pause to discuss the actual set of colours we are going to use to
colour G. It will be convenient to associate colours with certain elements of
[n]. For each such element j, there will be a colour j . If j /∈ W , then j

will be used to colour inessential vertices of G containing j. If j ∈ C ∪ D,
then j will be assigned to essential vertices which contain a balanced pair
that includes j, or which are min-heavy or max-light on one of the standard
intervals delimited by j. There will be no colours associated with j ∈ A∪B,
but instead there will be an additional colour 0 . Note that the total number
of colours is n− 2k + 1, which is the right value.

To deal with regular vertices, we first observe that adjacent regular ver-
tices X and Y partition the set A ∪ B. This means that any regular vertex
X has at most one regular neighbour in G, namely X∗ := (A ∪B) \X.

In most cases, one or both of X and X∗ will contain a W -gap. Therefore,
we first focus on colouring vertices of this type, for which we will use the
colours j , where j ∈ [k − 1] \ (A ∪ B), together with the colour 0 . The
basic idea here is the concept of ‘depth’ of a vertex X containing a W -gap.
This will be introduced later, but for the time being let us say that the depth
of X is an integer in [k] that encodes the position of the topmost W -gap in
X (where ‘topmost’ refers to the ordering of [n]).
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This notion has two important properties, which follow from Lemmas 5.5
and 5.8 below. If X and Y are adjacent vertices, both having W -gaps, then
the following hold:

� X and Y have different depths,

� the depth of X is not contained in A ∪B (unless it equals k).

The first property suggests that we might colour a regular vertexX having
a W -gap with colour j , where j is the depth of X, and this is what we do

(using colour 0 for depth k). The only exception is if j ∈ A ∪ B, in which
case we do not have any corresponding colour to use. The second property,
however, implies that X is not adjacent to X∗. Indeed, if they were, then the
depth of X would not belong to A∪B by the second property above. Thus,
X may be given the special colour 0 . The same can be done for vertices
of depth k, and the first of the above properties ensures that this causes no
problem.

Having coloured vertices with a W -gap, we have simplified the situation
substantially. Indeed, we observe that if adjacent vertices X,X∗ are still
uncoloured, then they alternate on every interval delimited by the elements
of C ∪D. In particular, for each di ∈ D, X contains exactly one of the two
elements preceding di in W and exactly one of the two following di in W .
In one of the four possible cases, we call X ‘skew’ at di (see page 27 for a
precise definition). If X is skew at some di, we take the minimal such i and
colour X with di , checking that this does not conflict with the previous use
of this colour.

In the last step, we colour all the remaining vertices with 0 and verify
that this is an independent set by narrowing the list of possible edges on it
down to the single edge AB, which is precisely the edge we removed from
XG(n, k) to get G. Again, we check that there is no conflict with previous
applications of colour 0 .

Having completed this high-level description of the colouring process, let
us now state and prove the necessary tools. The first lemma represents the
main idea of this section.

Lemma 5.1 (Disbalance Lemma). Suppose that X, Y are disjoint vertices
of G, c ∈ [k− 1] and d ∈ [n]. The pair XY is not an edge of G if one of the
following conditions holds:

(i) |[d, c]X | > c and |[d, c]Y | < c, or

(ii) |[d, c)X | > c and |[d, c)Y | < c.
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Proof. Assume condition (i). For the sake of a contradiction, assume that
XY is an edge of G, and consider the standard XY -alternator C ′∪D′, where
C ′ = {c′1, . . . , c′`} and D′ = {d′1, . . . , d′`}. (Recall our convention, introduced
on page 6, that the elements of C ′ are listed in increasing order and those of
D′ in decreasing order.)

Suppose first that

for each j ∈ [`], [d′j, c
′
j] ⊆ [d, c] or vice versa. (2)

For 0 ≤ j ≤ `, let XjYj be the result of switching XY along ([d′i, c
′
i])i∈[j].

Let
β(XjYj) =

∣∣∣∣[d, c]Xj

∣∣− ∣∣[d, c]Yj

∣∣∣∣ .
Since X`Y` is an interlacing pair, we have β(X`Y`) ≤ 1. We claim that
for j > 0, it holds that β(XjYj) = β(Xj−1Yj−1). This is clear if [d, c] ⊆
[d′j, c

′
j], for then the effect of the switch at [d′j, c

′
j] within [d, c] is just to

interchange membership in Xj−1 and Yj−1. On the other hand, if [d′j, c
′
j] ⊆

[d, c], then [d′j, c
′
j] isXj−1Yj−1-admissible by Observation 2.3(ii), and therefore∣∣[d, c]Xj

∣∣ =
∣∣[d, c]Xj−1

∣∣ and similarly
∣∣[d, c]Yj

∣∣ =
∣∣[d, c]Yj−1

∣∣. The claim follows.
Since XY = X0Y0, we have shown that β(XY ) ≤ 1. This contradiction

with condition (i) implies that our assumption (2) does not hold.
Thus, let j be the least index such that

∣∣[d, c] ∩ {c′j, d′j}∣∣ = 1.
Suppose that d′j /∈ [d, c]. Since |[d, c]X | > c and c′j ∈ [d, c], we have∣∣[d′j, c]X∣∣ > c. On the other hand,

∣∣[d′j, c′j]X∣∣ = c′j, and thus∣∣(c′j, c]X∣∣ ≥ c+ 1− c′j. (3)

Since X is an independent set in Cn, we have
∣∣(c′j, c]X∣∣ ≤ (c−c′j +1)/2. Com-

bining this with (3), we derive c < c′j, a contradiction with the assumption
that c′j ∈ I.

The argument for the case c′j /∈ [d, c] is similar. Analogously to (3), we

find that
∣∣(c, c′j]Y ∣∣ ≥ c′j − c + 1. On the other hand, (c, c′j]Y is independent

and thus its size is at most (c′j − c)/2, an improvement by 1/2 coming from
the fact that c′j /∈ Y as c′j is a control element for XY . As a consequence, the
resulting bound c > c′j +1 is even stronger than its analogue in the preceding
case.

A similar computation works for condition (ii).

The next two propositions describe properties of irregular vertices which
are later used to assign colours to them or argue that the colouring is valid.

Proposition 5.2. Let X be an essential vertex of G. If X is not regular,
then there exists i ∈ [m] satisfying one of the following:
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ci−1 ci

di−1 di

Figure 8: The set Ui, defined above Proposition 5.3, consists of all elements
of A ∪ B contained in the shaded area. The dotted lines show control pairs
of the standard AB-alternator, the dashed lines represent parts of the cycle
Cn.

(a) {ci, di} is a balanced pair in X,

(b) X is min-heavy on [di, ci) or on (di, ci],

(c) X is max-light on [di, ci) or on (di, ci].

Proof. Suppose that X is not regular. If there exists j ∈ [m] such that X is
heavy or light on [dj, cj) or (dj, cj], then an index i satisfying (b) or (c) can
be obtained by making an appropriate extremal choice of j. We can thus
assume that X is balanced.

Since X is not regular, it contains an element from C ∪D — say, d` ∈ X.
(A symmetric argument works in the other case.) Being balanced, X contains
c` elements of [d`, c`), and therefore |(d`, c`)X | = c`− 1. Since |(d`, c`]X | = c`,
we have c` ∈ X. Thus, {c`, d`} is a balanced pair in X.

For convenience, we set d0 = c1, c0 = d1, dm+1 = cm and cm+1 = dm for
the rest of this section. For i ∈ [m+ 1], we define

Ui = (di, di−1)W ∪ (ci−1, ci)W .

(See the illustration in Figure 8.) Note that for each i, Ui ⊆ A ∪ B and |Ui|
is even, namely

|Ui| =


2c1 if i = 1,

2(k − cm) if i = m+ 1,

2(ci − ci−1) otherwise.
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Proposition 5.3. Let X be an essential vertex of G and i ∈ [m].

(i) If X is min-heavy on [di, ci) (respectively, (di, ci]), then either i > 1
and {ci−1, di−1} is a balanced pair in X, or X contains more than half
of the elements in the set Ui ∪ {di} (respectively, Ui ∪ {ci}).

(ii) If X is max-light on [di, ci) (respectively, (di, ci]), then either i < m
and {ci+1, di+1} is a balanced pair in X, or X contains more than half
of the elements in the set Ui+1 ∪ {ci} (respectively, Ui+1 ∪ {di}).

Proof. We prove (i) only for the case of X min-heavy on [di, ci) since the
other case is completely analogous. For i = 1, the claim is trivially true since
X is heavy on [d1, c1) = U1 ∪ {d1}. Suppose then that i > 1.

Since X is heavy on [di, ci), |[di, ci)X | ≥ ci + 1. Let us assume that X
contains less than half of the elements of the (odd-sized) set Ui∪{di}— that
is, |X ∩ (Ui ∪ {di})| ≤ ci − ci−1. Hence

|[di−1, ci−1]X | ≥ ci−1 + 1. (4)

On the other hand, X is heavy on neither [di−1, ci−1) nor (di−1, ci−1], so
|[di−1, ci−1)X | ≤ ci−1 and |(di−1, ci−1]X | ≤ ci−1. Comparing with (4), we see
that ci−1, di−1 ∈ X. Furthermore, |[di−1, ci−1)X | = ci−1, so {ci−1, di−1} is a
balanced pair in X.

The proof of (ii) is similar and we only comment on the case of X max-
light on [di, ci) and i < m. We have |[di, ci)X | ≤ ci−1. If X contains less than
half of the elements in Ui+1 ∪ {ci}, then |(di+1, ci+1)X | ≤ (ci − 1) + (ci+1 −
ci) = ci+1 − 1. However, X is not light on [di+1, ci+1) nor on (di+1, ci+1],
so ci+1, di+1 ∈ X and |[di+1, ci+1)X | = ci+1. It follows that {ci+1, di+1} is a
balanced pair in X.

Let X be an essential vertex of G and let d ∈ [n]. By Lemma 3.2, there
is at most one element c ∈ [k − 1] such that |[d, c]X | = c and c /∈ X. If
such an element exists, we call it the depth of d in X and define δ(X, d) = c;
otherwise, we let δ(X, d) = k.

This notion will only be used for vertices X containing a W -gap. For
such a vertex, a W -gap (s, t) in X is topmost if t is as large as possible. The
depth δ(X) of X is defined as δ(X, t), where (s, t) is the topmost W -gap in
X. (See the examples in Figure 9.)

In a series of lemmas, we infer now the basic properties of this newly-
introduced notion.

Lemma 5.4. Let X be an essential vertex of G. If (s, t) is the topmost
W -gap in X and δ(X) < k, then k ≤ s < t.
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Figure 9: Essential vertices X of XG(12, 3) (shown with red boxes) with
different depths and different topmost W -gaps (s, t). The vertices A and B
are the same in all cases (black and white dots, respectively). (a) The depth
of X is 1, (s, t) = (9, 11). (b) The depth of X is 2, (s, t) = (9, 11). (c) The
depth of X is k = 3, (s, t) = (2, 4).

Proof. Let δ(X) = δ(X, t) be denoted by δ. We show that δ /∈ [s, t). Suppose
the contrary. Then

δ = |[t, δ]X | = |[t, s]X | = k

since (s, t) is a W -gap in X, a contradiction with δ < k.
Additionally, it is straightforward to show that δ 6= t: otherwise, the

definition of depth would imply that |[δ, δ]X | = δ and hence δ = 1 and
δ ∈ X, contradicting the property δ /∈ X which is immediate from the same
definition.

Thus, δ ∈ (t, s). We have

k = |[t, s]X | = |[t, δ)X |+ |(δ, s]X | ≤ δ + (s− δ),

which implies that k ≤ s. Furthermore, it must be that s < t, for otherwise
t < δ and we could not have |[t, δ)X | = δ.

Part (ii) of the following lemma shows that adjacent essential vertices
having W -gaps have different depths, so it makes sense to colour such a
vertex according to its depth.

Lemma 5.5. Let X, Y be adjacent essential vertices of G such that X has
a W -gap and δ(X) < k. Then the following hold:

(i) δ(X) /∈ X ∪ Y ,

(ii) if Y has a W -gap, then δ(X) 6= δ(Y ).
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Proof. Let (s, t) be the topmost W -gap in X. Consider the standard XY -
alternator C ′ ∪D′. Lemma 3.1(ii) implies that (s, t) contains an element of
C ′ ∪ D′. By Lemma 5.4, k ≤ s < t and therefore there is an element d′ ∈
(s, t)D′ . Let c′ be the corresponding control element in C ′. Since |[t, c′]X | =
|[d′, c′]X | = c′ and c′ /∈ X, c′ is the depth of X.

Part (i) follows from the observation that by the definition ofXY -alternator,
c′ /∈ X ∪ Y .

We prove (ii). Suppose that Y has a W -gap and the topmost W -gap in Y
is (s′, t′). Furthermore, suppose that the depth of Y is also c′. By Lemma 5.4
again, we have k ≤ s′ < t′. By symmetry, we may assume that t′ < t, and
therefore t′ < s. According to the definition of depth,

|[t′, c′]Y | = c′ = |[t, c′]X | .

Since t′ < s, we have |[s, c′]Y | ≤ c′ − 1 while |[s, c′]X | = c′ + 1. Lemma 5.1
implies that X and Y are non-adjacent, a contradiction.

In the three lemmas that follow, we will be concerned with the depth of
regular vertices.

Lemma 5.6. If X is a regular vertex of G that has a W -gap, then δ(X) /∈ C.

Proof. Suppose for the sake of contradiction that X is regular and δ(X) ∈ C;
say, δ(X) = ci, where i ∈ [m]. Let (s, t) be the topmost W -gap in X. Thus,
|[t, ci]X | = ci and |[s, ci]X | = ci + 1. Since X is regular, di /∈ {s, t} and X is
balanced on (di, ci], i.e., |(di, ci]X | = ci. Hence s < di < t, contradicting the
assumption that (s, t) is a W -gap. The lemma follows.

Suppose that X is a regular vertex. As already mentioned, the only subset
of [n] which may be a regular vertex of G adjacent to X in G is the set of
the elements of A ∪ B not contained in X — that is, (A ∪ B) \ X. We let
this set be denoted by X∗. Observe that if X∗ is a vertex of G, it is indeed
regular.

Lemma 5.7. Let X be a regular vertex of G such that X and X∗ are adjacent
vertices and X has a W -gap. Let C ′ ∪ D′ be the standard XX∗-alternator.
The following hold:

(i) every W -gap in X contains an element of C ′ or an element of D′ but
not both,

(ii) if some W -gap in X contains an element of D′ then the topmost W -gap
in X has this property too,
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(iii) δ(X) < k if and only if some W -gap in X contains an element of D′.

Proof. (i) Let (s, t) be a W -gap in X. Furthermore, let C ′ = {c′1, . . . , c′`} and
D′ = {d′1, . . . , d′`}. By Lemma 3.1(ii) (applied to the edge XX∗), (s, t)C′∪D′ 6=
∅. Suppose (for the sake of a contradiction) that (s, t) contains elements from
both C ′ and D′; then it must either contain both c′1 and d′1, or contain both
c′`, d

′
`. Suppose the latter. By Lemma 3.1(i), [k, d′`]X∪X∗ 6= ∅. Since c′` < k and

X ∪X∗ = A ∪ B, we find that [c′`, d
′
`]A∪B 6= ∅, contradicting the assumption

that (s, t) is a W -gap. The argument for the case c′1, d
′
1 ∈ (s, t) is analogous.

(ii) Suppose that a W -gap (s, t) in X contains an element of D′ and that
(s′, t′) is the topmost W -gap in X. By Lemma 5.4, k ≤ s < t; since t ≤ t′ by
the choice of (s′, t′), it follows that s ≤ s′ because (s′, t′) is a W -gap. Hence
k ≤ s′ < t′ and (s′, t′) must contain an element of D′ by (i).

(iii) If δ(X) < k and (s′, t′) is the topmost W -gap in X, then Lemma 5.4
implies that k ≤ s′ < t′, so (s′, t′) contains no element of C ′. By (i), it
contains an element of D′.

Conversely, suppose that a W -gap (s, t) contains an element d′i of D′

(i ∈ [`]). By (ii), we may assume that it is the topmost W -gap in X. For
the control element c′i corresponding to d′i, we have c′i /∈ X and

|[t, c′i]X | = |[d′i, c′i]X | = c′i,

so the depth of X, which is defined as δX(t), is c′i < k.

The last in our series of lemmas complements Lemma 5.5(ii) in the sense
that for X regular, the depths of X and X∗ (when defined) are different even
if they may equal k. However, the proof of this last lemma is quite a bit
longer.

Lemma 5.8. Let X be a regular vertex of G such that X∗ is a vertex of G
adjacent to X, X has a W -gap and δ(X) = k. Then X∗ has a W -gap and
δ(X∗) < k.

Proof. Let C ′ ∪D′ be the standard XX∗-alternator, where C ′ = {c′1, . . . , c′`}
and D′ = {d′1, . . . , d′`}.

Let (s, t) be the topmost W -gap in X. By parts (i) and (iii) of Lemma 5.7,
(s, t) contains an element of C ′. Let the least such element be c′j. Consider
the corresponding element d′j ∈ D′ and let (s∗, t∗) be the (X ∪ X∗)-gap
containing d′j. In a series of claims, we will prove that (s∗, t∗) is a W -gap in
X∗ and derive that δ(X∗) < k.

Claim 4. The elements s∗ and t∗ belong to X∗.
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We show first that t∗ ∈ X∗. Note that t∗ is the first and s is the last
element of [d′j, c

′
j]X∪X∗ , and that s ∈ X. The claim follows in case j = 1, for

by the definition of XG(n, k), X and X∗ alternate on [d′1, c
′
1] and |[d′1, c′1]X∪X∗|

is even. If j > 1, then none of t∗ and s belong to [d′j−1, c
′
j−1] by the choice

of j and by Lemma 3.1(i). Since switching along the sequence ([d′p, c
′
p])p∈[j−1]

changes XX∗ to a pair alternating on [d′j, c
′
j], and t∗ and s are unaffected by

the switching, we have t∗ ∈ X∗ as claimed.
By Lemma 3.1(i), d′j is the only element of C ′ ∪ D′ in (s∗, t∗). Since

t∗ ∈ X∗, part (ii) of the same lemma implies that s∗ ∈ X∗.

Claim 5. (s∗, t∗) is a W -gap.

Suppose by way of contradiction that the claim does not hold. Since
(s∗, t∗) is an (X ∪X∗)-gap and W = A ∪B ∪ C ∪D = (X ∪X∗) ∪ (C ∪D),
the interval (s∗, t∗) must contain an element of C ∪D.

Suppose first that for some q ∈ [m], cq ∈ (s∗, t∗). Since the interval (s∗, t∗)
contains an element of C as well as an element of D′, it contains either the
element k or the element n. This leads to two symmetric cases.

Let us consider in detail the case k ∈ (s∗, t∗). We have cq > c′j, for
otherwise (s∗, t∗) would contain t and fail to be an (X∪X∗)-gap. For a similar
reason, we must have dq /∈ (s∗, t∗), since by Lemma 3.1(ii), the interval [k, dq]
contains at least two elements of A ∪B = X ∪X∗.

Putting the above observations together, we find that

c′j < cq < d′j < dq. (5)

Informally, the control pairs
〈
c′j, d

′
j

〉
and 〈cq, dq〉 (of an XX∗-alternator and

an AB-alternator, respectively) ‘cross’ each other. We will derive a contra-
diction by an argument similar to that used to establish Lemma 5.1.

The interval [dq, cq] contains 2cq elements of A ∪B. On the other hand,

|[dq, cq]A∪B| = |[dq, cq]X∪X∗| ≤
∣∣[d′j, cq]X∪X∗∣∣

=
∣∣[d′j, c′j]X∪X∗∣∣+

∣∣[c′j, cq]X∪X∗∣∣ ≤ 2c′j + (cq − c′j − 1),

which implies that cq < c′j, a contradiction.
The other case, namely n ∈ (s∗, t∗), can be obtained by a completely

symmetric argument. This time, the inequalities analogous to (5) are cq <
c′j < dq < d′j, and a computation similar to the above yields c′j < cq, which
provides a contradiction.

We have thus ruled out the possibility that (s∗, t∗) contains an element
of C. Thus, it must contain an element, say dr, of D (r ∈ [m]). Consider the
corresponding element cr of C.
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Since (s∗, t∗) contains no elements of X ∪X∗ = A∪B, we have [dr, c
′
j]A =

[d′j, c
′
j]A and similarly for B in place of A. Hence,∣∣[dr, c′j]A∪B∣∣ =

∣∣[d′j, c′j]A∪B∣∣ =
∣∣[d′j, c′j]X∪X∗∣∣ = 2c′j.

By Lemma 5.1(i), we must have
∣∣[dr, c′j]A∣∣ =

∣∣[dr, c′j]B∣∣ = c′j. Since the same
equality is true with c′j replaced by cr (by the definition of AB-alternator),
Lemma 3.2 implies that c′j = cr. Consequently, cr ∈ (s, t), so contrary to the
assumption, (s, t) is not a W -gap. This proves the claim.

Since the W -gap (s∗, t∗) in X∗ contains d′j ∈ D′, Lemma 5.7(iii) implies
that δ(X∗) < k. Thus, the proof of the lemma is complete.

One last piece of terminology we will need in order to lay out the colouring
rules is the following. For i ∈ [m + 1], an essential vertex X of G is skew
at di if X contains the largest element of (di+1, di)W and the second smallest
element of (di, di−1)W . (By Lemma 3.1(i), each of the latter two sets contains
at least two elements.)

We are now ready to define a colouring of G using the following set of
colours: {

i : i ∈ [n] \ (A ∪B)
}
∪
{

0
}
.

Since |A| = |B| = k, the total number of colours is n− 2k + 1.
A vertex X of G is assigned a colour by the following rules, in the stated

order of precedence:

(R1) If X is inessential and therefore contains an element of [n] \W , then it
gets colour j , where j is the least such element.

(R2) If X contains a balanced pair, then X gets colour ci , where i ∈ [m] is
least such that {ci, di} is a balanced pair in X.

(R3) If X is min-heavy or max-light on (di, ci] for some i ∈ [m], then X gets
colour ci .

(R4) If X is min-heavy or max-light on [di, ci) for some i ∈ [m], then X gets
colour di .

(R5) If X has a W -gap and δ(X) = j, then X gets colour j if j ∈ [k − 1] \
(A∪B), and colour 0 otherwise (that is, if j = k or j ∈ [k−1]∩(A∪B)).

(R6) If X is skew at di for some i ∈ [m], then X gets colour di , where i is
least with this property.

(R7) If none of the above applies, X gets colour 0 .
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We will now show that each colour class of this colouring is an independent
set in G.

Proposition 5.9. Rules (R1)–(R7) determine a valid colouring of G.

Proof. We will discuss each colour class in turn. If j ∈ [n] \ (W ∪ [k − 1]),
then colour j is only assigned by Rule (R1), namely to those vertices that
contain element j. The colour class is therefore independent.

Claim 1. If j ∈ [k − 1] \W , then the colour class of j is independent.

Colour j may be assigned to X by Rules (R1) and (R5) if X satisfies
one of the following conditions:

� j ∈ X,

� X has a W -gap and δ(X) = j.

Suppose that vertices X, Y both get colour j . We prove that they are non-
adjacent in G.

Case 1.1: j ∈ X.
If j ∈ Y , then X and Y are not disjoint and XY is not an edge. If Y

has a W -gap and δ(Y ) = j, then δ(Y ) ∈ X ∪ Y , so XY is not an edge by
Lemma 5.5(i).

Case 1.2: X has a W -gap and δ(X) = j.
By symmetry and the preceding case, we may assume that Y contains a

W -gap and δ(Y ) = j. In this case, X and Y are non-adjacent by Lemma 5.5(ii).
The proof of Claim 1 is complete.

At this point, it remains to consider all the colours j with j ∈ C ∪ D
and the colour 0 . This is done in the following three claims.

Claim 2. For i ∈ [m], the colour class of ci is independent.

Colour ci is assigned by Rules (R2), (R3) and (R5) to essential vertices
X satisfying one of the following:

� X contains a balanced pair {ci, di},

� X contains no balanced pair and X is min-heavy on (di, ci],

� X contains no balanced pair and X is max-light on (di, ci],

� X has a W -gap and δ(X) = ci.
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By Proposition 5.2 and the position of Rule (R5), it may be assumed
that if X has a W -gap, then X is regular. But then Lemma 5.6 shows that
δ(X) /∈ C. We may therefore assume that all vertices assigned colour ci

satisfy one of the first three conditions above.
Let X and Y be vertices of G assigned colour ci . We prove that XY is

not an edge of G.

Case 2.1: X contains a balanced pair {ci, di}.
If Y contains {ci, di} as well, then X and Y are intersecting and therefore

non-adjacent in G.
Suppose that Y is min-heavy on (di, ci]. We may assume that ci /∈ Y for

otherwise X and Y intersect. Thus, |(di, ci)Y | > ci while |(di, ci)X | = ci − 1.
Lemma 5.1(ii) (with c = ci and d = di+1) implies thatX, Y are non-adjacent.

Finally, if Y is max-light on (di, ci], then a symmetric argument applies.
We may assume that di /∈ Y , and therefore |[di, ci]Y | < ci while |[di, ci]X | =
ci + 1. Again, it follows from Lemma 5.1(ii) that XY is not an edge.

Case 2.2: X is min-heavy on (di, ci].
By symmetry and the preceding case, we may assume that {ci, di} is not

a balanced pair in Y . In addition, it may be assumed (by the position of
Rule (R2)) that Y does not contain any balanced pair.

If Y is min-heavy on (di, ci], then X and Y intersect by Proposition 5.3(i).
On the other hand, if Y is max-light on (di, ci], then |(di, ci]Y | < ci. Since

X is min-heavy on this interval, we have |(di, ci]X | > ci, so Lemma 5.1(i)
(with c = ci and d = di + 1) shows that X, Y are non-adjacent.

Case 2.3: X is max-light on (di, ci].
It may be assumed that Y is max-light on (di, ci] as well. Furthermore,

as in the preceding case, Y may be assumed to contain no balanced pair.
Proposition 5.3(ii) then implies that X and Y intersect.

This concludes the proof of Claim 2.

Claim 3. For i ∈ [m], the colour class of di is independent.

Note that since di > k by the definition of AB-alternator, Rule (R5) does
not assign colour di . Thus, colour di is only assigned by Rules (R4) and
(R6) to vertices X satisfying one of the following:

� X contains no balanced pair and is min-heavy on [di, ci),

� X contains no balanced pair and is max-light on [di, ci),

� X is regular and skew at di.
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Suppose that X, Y are vertices of G assigned colour di . We may assume
that X and Y are disjoint. We prove that X and Y are non-adjacent in G,
beginning with the case of X satisfying the last condition above.

Case 3.1: X is regular and skew at di.
We will assume that i > 1, the i = 1 case being analogous. By the

position of Rule (R5), X has no W -gap. Consider the set S = Ui ∪ {di} and
recall that |S| = 2(ci − ci−1) + 1. Since X is regular, |X ∩ S| = ci − ci−1.

We distinguish three subcases according to the type of Y .
Suppose that Y is min-heavy on [di, ci). By Proposition 5.3(i), |Y ∩ S| =

ci − ci−1 + 1, so the sets X ∩ S and Y ∩ S partition S. Now di /∈ X (since
X is regular), so di ∈ Y . Since C ∪ D is the standard AB-alternator, the
smallest element of (di, di−1)W is di + 1. We have di + 1 /∈ X as X is skew at
di and has no W -gap. It follows that {di, di + 1} ⊆ Y , a contradiction with
the independence of Y in Cn.

Suppose next that Y is max-light on [di, ci). Let d− be the last element
of (di+1, di)W . (Recall our convention that dm+1 = cm, see page 21.) Since
d− ∈ X, we have d− /∈ Y . Furthermore, |[d−, ci)X | = ci + 1 as X is regular
on [di, ci), while |[d−, ci)Y | < ci. Lemma 5.1(ii) implies that X and Y are
non-adjacent in G.

Finally, if Y is skew at di, then X and Y both contain the second smallest
element of (di, di−1)W , a contradiction.

Case 3.2: X is min-heavy on [di, ci).
It may be assumed that Y is min-heavy or max-light on [di, ci).
The set Y cannot be min-heavy on [di, ci) for by Proposition 5.3(i), X

and Y would intersect. If Y is max-light on [di, ci), then |[di, ci)Y | < ci and
|[di, ci)X | > ci, so XY is not an edge by Lemma 5.1(ii).

Case 3.3: X is max-light on [di, ci).
By the preceding cases, Y may be assumed to be max-light on [di, ci).

Proposition 5.3(i) implies that X and Y intersect, a contradiction.
The proof of Claim 3 is complete.

Claim 4. The colour class of 0 is independent.

Colour 0 is assigned by Rule (R5) to vertices X having a W -gap and
having depth in the set [1, k − 1]A∪B ∪ {k}, and by Rule (R7) to vertices
satisfying none of the conditions in Rules (R1)–(R6). Let us say that X is
of type (R5) or (R7) accordingly. All of these vertices are regular (hence
subsets of W ) by Proposition 5.2; additionally, type (R7) vertices have no
W -gap, and are not skew at any di (i ∈ [m]).

Recall that for a regular vertex X, we defined X∗ = (A ∪ B) \ X and
noted that this is the only candidate for a regular vertex adjacent to X in G.
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d−d′d′′

(a) The vertices d′, d′′ and d−.
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ci c

d

di+1

ci+1

(b) The vertices c
and d.

Figure 10: Notation used in the proof of Claim 4. The black and white dots
represent the elements of A and B, respectively. The elements of X are not
shown. Dotted lines represent control pairs of the standard AB-alternator,
dashed lines are irrelevant portions of the cycle Cn.

Our colouring procedure assigns a colour different from 0 to every irregular
vertex. Suppose then that X is regular and X∗ is a vertex of G (and therefore
a regular vertex), and both get colour 0 . We intend to show that X and X∗

are non-adjacent.

Case 4.1: X is a vertex of type (R5).
If δ(X) = k then X is not adjacent to X∗ by Lemma 5.8. On the other

hand, if δ(X) ∈ [1, k − 1]A∪B, then δ(X) ∈ A ∪ B = X ∪ X∗ and therefore
XX∗ is not an edge by Lemma 5.5.

By symmetry, this leaves us with the following case.

Case 4.2: X and X∗ are both of type (R7).
We suppose that X and X∗ are adjacent and intend to reach a contradic-

tion by showing that X equals A or B (in which case the same holds for X∗).
The set (d1, c1)W consists of 2c1 elements and each of X and X∗ contains c1
of them. Since none of X and X∗ has a W -gap, they alternate on (d1, c1).
Thus, we may assume by symmetry that (d1, c1)X = (d1, c1)A.

We prove by induction that for each i, 0 ≤ i ≤ m, that (di+1, di)X =
(di+1, di)A; recalling the convention that c1 = d0, the base case is established.
Consider i ≥ 1. Let d− be the largest element of (di+1, di)W , and let d′, d′′ be
the smallest and second smallest element of (di, di−1)W , respectively. (Recall
that each of these sets has size at least 2 by Lemma 3.1(i).) The notation is
illustrated in Figure 10.
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By the induction hypothesis, (di, di−1)X = (di, di−1)A. Since X is not
skew at di, we have d− ∈ X if and only if d′′ /∈ X. The same holds for A,
which is also not skew at di. Furthermore, d′′ belongs to X if and only if it
belongs to A, because X and A agree on (di, di−1). Summarising, d− ∈ X if
and only if d− ∈ A. Since each element of (di+1, di)W belongs to X or X∗, and
since X and X∗ have no W -gap, this implies that (di+1, di)X = (di+1, di)A as
required.

By the above, [k, n]X = [k, n]A. Since X∗ is regular, [k, n]X∗ = [k, n]B.
To prove that X = A, it remains to show that (ci, ci+1)X = (ci, ci+1)A for

each i ∈ [m− 1]. We proceed by induction on i, starting with the case i = 0
which is already proved.

Let i > 0. We may assume that (ci, ci+1)W 6= ∅, for otherwise we are
done. By Lemma 3.1(ii) and the assumption that X,X∗ are adjacent, di is
contained in a control pair for the edge XX∗. Since X and X∗ are regular,
it follows from Lemma 3.2 that the control pair must be 〈ci, di〉. Let d be the
largest element of (di+1, di)W and let c be the smallest element of (ci, ci+1)W .

Since switching along the sequence ([dj, cj])j∈[i] transforms the pair AB
to a pair alternating on [di+1, ci+1], and since |[di, ci]A∪B| is even, the element
c belongs to A if and only if d belongs to B. We know from the induction
hypothesis and the preceding part of the proof that [di, ci]X = [di, ci]A, so
a similar argument shows that c ∈ X if and only if d ∈ X∗. Knowing that
[k, n]B = [k, n]X∗ , we may combine these equivalences and infer that c ∈ A
if and only if c ∈ X.

Since X and X∗ have no W -gap and cover (ci, ci+1)W , this determines
(ci, ci+1)X and shows that

(ci, ci+1)X = (ci, ci+1)A,

completing the proof of the induction step as well as the whole proof that
X = A and X∗ = B. Since the edge AB does not exist in G, this finishes
the proof of Claim 4.

The proof of Proposition 5.9 is complete.
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Matoušek, pages 505–526. Springer, 2017.
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