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It is well known that incomplete bainitic transformation during austempering treatment is mainly caused 
by the supersaturation of austenite with carbon. Such supersaturated austenite becomes more stable and 
further stabilization is led by silicon alloying. Stable austenite does not transform and re-mains in the 
structure as so-called residual austenite. Therefore, carbides, which are desirable in a conventional bai-
nitic structure, cannot be formed and carbide free bainite is formed. The positive effect of silicon and 
carbon on austenite stabilization in CFB structures has already been demonstrated and described. But 
chromium is another element that is crucial in the incomplete bainitic trans-formation. The influence of 
chromium on the development of microstructure in unconventional AHS steels during austempering is 
discussed in detail in the experiment in this paper.  
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 Introduction 

Austempering of higher-silicon steels leads to in-
complete bainite transformation [1]. In such a case, 
the progress of austenite to bainite transformation is 
rather specific. The addition of silicon suppresses the 
precipitation of carbides during austenite decomposi-
tion into the bainitic structure [2, 3]. Such carbides 
would absorb a significant portion of carbon atoms 
that have been rejected from newly-formed regions of 
bainitic ferrite. Instead of precipitating as carbides, 
carbon diffuses into bordering austenite. The increa-
sing concentration of carbon in untransformed auste-
nite is the major cause of the suspension of bainite 
transformation. Once the amount of carbon in the 
austenite phase approaches a certain level, the trans-
formation stops completely. The resulting 
microstructure consists of bainitic ferrite, retained 
austenite and/or fresh martensite in relative proporti-
ons governed primarily by the isothermal treatment 
temperature [4]. The main requirement for the proces-
ses described above is sufficient stability of untrans-
formed austenite, which must not decompose during 
the subsequent isothermal treatment [5]. Its decompo-
sition could be supported by adding silicon to the steel 
[6]. However, it seems that the presence of other all-
oying elements – manganese and especially chromium 
- is crucial for the full exploitation of the benefits of 
this element. The experimental program aimed to in-
vestigate the influence of chromium content on the 
development of unconventional bainitic structures re-
sulting from the bainitic transformation incomple-
teness phenomenon. The results of the experimental 

programme indicated that low chromium content may 
be the cause of lower stability of untransformed aus-
tenite in the isothermal annealing phase, which is likely 
to result in its gradual decomposition. Consequently, 
the instability of untransformed austenite may lead to 
the suppression of the bainitic transformation incom-
pleteness phenomenon, even though the experimental 
steel contains sufficient silicon to safely suppress car-
bide precipitation. 

 Experimental programme 

Specimens of experimental steels 42SiCr (0.42%C, 
0.62%Mn, 2%Si, 1.33%Cr) and 42SiMn (0.42%C, 
0.62%Mn, 2%Si, 0.03%Cr) with initial ferritic-pearlitic 
structure were homogeneously annealed in a furnace 
with a protective atmosphere of argon at 1200°C for 
3 h and then freely cooled in air before the actual ex-
periment [7, 8]. The samples were then subjected to 
normalization annealing at 950°C for 1 hour with free 
cooling to room temperature. After machining the 
partially decarburized surface layers, the samples were 
subjected to the proposed heat treatment procedures, 
which consisted of heating to austenitizing tempera-
ture of 950°C with a holding time of 600 s and sub-
sequent quenching to bainite isothermal annealing 
temperatures of 485, 470, 450, 420, 380 and 340°C 
with a holding time of 2000 s (Fig. 1).  

The quenching rate was 50°C/s for 42SiCr steel 
and 110°C/s for 42SiMn steel. The higher quenching 
rate for the 42SiMn steel was to minimize the forma-
tion of allotriomorphic ferrite during cooling from the 
austenitization temperature. The isothermal annealing 
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temperatures for bainite were chosen so that the evo-
lution of the bainite structures could be monitored 
over the entire temperature interval of bainite forma-
tion (505 °C to 305°C), which was determined by 
calculations performed in JMatPro software (Fig. 2 a, 
b). The heating rate to austenitization temperature was 
20°C/s. After isothermal treatment to bainite, samples 
from both steels were cooled at 50°C/s to room tem-
perature (with three repetitions for each regime). The 
processed specimens were used to prepare test speci-
mens for metallography by polishing and etching in 
3% Nital etchant. 

 

Fig. 1 Diagram of heat treatment sequences for experimental 
specimens 

 
Fig. 2 TTT diagrams of 42SiCr and 42SiMn steels - a) 42SiCr b) 42SiMn 

Microstructure evaluation was performed using 
TESCAN VEGA SB Easy Probe, and Zeiss SEM - 
FIB Cross Beam Auriga. Thermal processing of the 
samples was carried out on a thermomechanical sim-
ulator MTS 810 equipped with induction-resistance 
heating [9]. 

 Results and discussion 

The regime at 485°C/2000 s applied to 42SiCr 

steel led to a microstructure consisting of lath marten-
site and bainitic ferrite (Fig. 3, 6-a). Sequence AT 
485°C/2000 s applied to 42SiMn steel produced a 
microstructure consisting mostly of bainite, a small 
amount of allotriomorphic ferrite and martensite 
(Figs. 3, 8-a). Morphology of the bainite regions was 
profoundly different from the microstructures in 
42SiCr steel. In 42SiCr, bainitic ferrite had a form of 
separate needles. 42SiMn contained sheaves of bainite 
plates. 

 

Fig. 3 Light micrographs of specimens of 42SiCr and 42SiMn steels after austempering sequence AT 485°C/2000 s – 500×; B 
– bainite, M – martensite, AF – Allotriomorphic ferrite 
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Fig. 4 Light micrographs of specimens of 42SiCr and 42SiMn steels after austempering sequence AT 420°C/2000 s – 500×; B 
– bainite, M – martensite, AF – Allotriomorphic ferrite 

 

Fig. 5 Light micrographs of specimens of 42SiCr and 42SiMn steels after austempering sequence AT 340°C/2000 s – 500×; B 
– bainite, M – martensite, AF – Allotriomorphic ferrite 

 

Fig. 6 Micrographs of specimens of 42SiCr and 42SiMn steels after austempering sequence AT 485°C/2000 s – 5000×; a) 
42SiCr, b) 42SiMn; B – bainite, M – martensite, AF – allotriomorphic ferrite, URA – unstable retained austenite, C – car-

bides 
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An important difference between the 
microstructures of the steels was the volume fraction 
of bainite. In the 42SiCr steel, bainite was a minor 
component in contrast to the 42SiMn steel. The bai-
nitic transformation in the 42SiCr steel did not lead to 
complete decomposition of austenite, but stopped at 
an early stage of austempering by the incomplete bai-
nitic transformation phenomenon caused by the alloy-
ing elements Si, Cr. These alloying elements have a po-
sitive effect on the stability of austenite during isother-
mal heat treatment. The difference between the real 
structure evolution in 42SiCr steel compared with the 
evolution with the calculated TTT diagram was pro-
bably due to the thermodynamic model of the TTT 
diagram calculation. This model was based on the pre 

cipitation of carbide particles during the isothermal 
formation of bainitic ferrite, which normally leads gra-
dually to the complete decomposition of primary aus-
tenite. In the real process, carbide formation was 
suppressed due to the presence of Si. Therefore, car-
bon diffusing from the bainitic ferrite into its surroun-
dings caused the gradual stabilization of the residual 
untransformed austenite. As the carbon content of 
austenite increased, the Bstart temperature decreased 
until it equalled the actual austempering temperature. 
Thereafter, the bainitic transformation stopped. Thus, 
the microstructure in the austempering phase consis-
ted of bainite and untransformed austenite. The un-
transformed austenite was then converted to marten-
site during the final quenching step. 

 

Fig. 7 Micrographs of specimens of 42SiCr and 42SiMn steels after austempering sequence AT 470°C/2000 s – 5000×; a) 
42SiCr, b) 42SiMn;  B – bainite, M – martensite, AF – allotriomorphic ferrite, URA – unstable retained austenite, C – car-

bides 

 

Fig. 8 a) 42SiMn steel – detail micrograph – sequence AT 485°C/2000 s; B – bainite, M – martensite, URA – unstable reta-
ined austenite, C– carbides; b) 42SiMn steel – detail micrograph – sequence AT 470°C/2000 s; B – bainite, URA – un-stable 

retained austenite, C – carbides 
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The structure of 42SiCr steel after sequence AT 
470°C/2000 s is a mixture of martensite and bainite 
(Fig. 7-a). Like in sequence AT 485 °C/2000s, trans-
formation of austenite to bainite was incomplete, with 
a majority of austenite still being present at the end of 
the isothermal hold. Austenite then transformed to 

lath martensite upon the final quench. In 42SiMn, 
sequence AT 470°C/2000s produced a microstructure 
in which bainite was the dominant phase, with what 
was assumed to be unstable retained austenite, and 
carbide precipitates, martensite grains, and a small 
amount of allotriomorphic ferrite (Fig. 7-b, 8-b). 

 

Fig. 9 Micrographs of austempered specimens of 42SiCr and 42SiMn steels after sequence AT 450°C/2000s – 5000×; a) 
42SiCr, b) 42SiMn; B – bainite, M – martensite, AF – allotriomorphic ferrite, RA – retained austenite, URA – unstable reta-

ined austenite, C – carbides 

 

Fig. 10 Micrographs of austempered specimens of 42SiCr and 42SiMn steels after sequence AT 420°C/2000 s – 5000×; a) 
42SiCr, b) 42SiMn; B – bainite, M-A – M-A constituent, AF – allotriomorphic ferrite, RA – retained austenite, URA – un-

stable retained austenite, C – carbides 

In the case of isothermal annealing, partial decom-
position of austenite into bainite took place in 42SiCr 
steel. In 42SiMn steel, annealing led to an extensive 
austenite-bainite transformation. The actual extent of 
the austenite-bainite transformation was much larger 
than the extent which had been expected based on the 
amount of silicon – 2 wt % of Si.  

The regime of AT 450°C/2000 s produced mar-
tensite and bainite and what was presumed to be reta-

ined austenite in 42SiCr steel (Figs. 9-a, 11-a). The is-
othermal treatment temperature was lower than in 
sequences AT 485°C/2000 s and 470°C/2000 s. As a 
result, the volume of the bainite fraction was larger. 
Despite that, a significant volume of retained austenite 
occurs in the structure up to the quenching phase. Du-
ring quenching, the RA transformed to martensite. In 
42SiMn, regime AT 450°C/2000 s led to a 
microstructure consisted of bainite, which dominated 
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in the microstructure, a portion of allotriomorphic fer-
rite and martensite and areas of presumed retained 

austenite and/or carbides were also present in the 
structure (Figs. 9-b, 12-a).

 

Fig. 11 a) 42SiCr steel – detail micrograph; sequence AT 450°C/2000 s; b) 42SiCr steel – detail micrograph; sequence AT 
420°C/2000 s; B– bainite, M – martensite, M-A – M-A constituent, RA – retained austenite 

 

Fig. 12 a) 42SiMn steel – detail micrograph; sequence AT 450°C/2000, b) 42SiMn steel – detail micrograph – sequence AT 
420°C/2000 s; B – bainite, URA – unstable retained austenite, C – carbides 

 

Fig. 13 Micrographs of austempered specimens of 42SiCr and 42SiMn steels after sequence AT 380°C/2000 s – 5000×; a) 
42SiCr, b) 42SiMn; B – bainite, M-A – M-A constituent, RA – retained austenite, M – martensite, URA – unstable retained 

austenite, SRA – stable retained austenite 
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A mixture of bainite, martensite and grains of the 
M-A constituent and/or retained austenite was made 
in 42SiCr by sequence AT 420°C/2000 s (Figs. 4, 10-
a, 11-b). Specimens of 42SiMn steel contained bainite, 
a minor amount of allotriomorphic ferrite, unstable 
retained austenite and/or carbide precipitates, and a 
small amount of retained austenite. No martensite was 
found in the microstructure (Figs. 4, 10-b, 12-b). 

In 42SiCr steel, sequence AT 380°C/2000 s led to 
bainitic ferrite, suspected retained austenite and M-A 
constituent (Figs. 13-a, 15-a). The suspected retained 
austenite had a form of thin films along bainitic ferrite 
needles. The suspected M-A constituent appeared to 

form small islands, mostly along prior austenite grain 
boundaries and between bainite needle sheaves. 
42SiMn contained bainite and a small amount of allot-
rio-morphic ferrite and suspected M-A constituent 
(Figs. 13-b, 16-a). The reduced temperature of isother-
mal treatment resulted in appreciable refinement of 
the bainitic structure. Analogous conclusions apply to 
sequence AT 340°C/2000 s. In 42SiCr steel, sequence 
AT 340°C/2000 s produced bainitic ferrite, what was 
suspected to be M-A constituent and small grains of 
retained austenite (Figs. 5, 14-a, 15-b). In 42SiMn 
steel, sequence AT 340°C/2000 s led to bainitic ferrite 
and carbide precipitates. (Figs. 5, 14-b, 16-b). 

 
Fig. 14 Micrographs of specimens of 42SiCr and 42SiMn steels after austempering sequence AT 340°C/2000 s – 5000×; a) 

42SiCr, b) 42SiMn; B – bainite 

 

Fig. 15 a) 42SiCr steel – detail micrograph; sequence AT 380°C/2000 s; B – bainite, M-A – M-A constituent, RA – re-ta-
ined austenite; b) 42SiCr steel – detail micrograph; sequence AT 340°C/2000 s; B – bainite, M-A – M-A constituent, RA – 

retained austenite 
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Fig. 16 a) 42SiMn steel – detail micrograph – sequence AT 380°C/2000 s; B – bainite, URA – unstable retained austenite, 
SRA – stable retained austenite b) 42SiMn steel – detail micrograph – sequence AT 340°C/2000 s; B – bainite, CP – carbide 

precipitates 

 Conclusion 

The paper deals with the influence of austempering 
of chromium alloyed medium carbon steels on the de-
velopment of their microstructure. The investigated 
experimental steels were AHSS 42SiCr and 42SiMn. 
Samples of these steels were heat-treated on a thermo-
mechanical simulator. The heat treatment regimes inc-
luded austenitization at 950 °C for 600 seconds, 
followed by cooling to bainitic transformation tempe-
ratures of 485, 470, 450, 420, 380 and 340 °C, at which 
the samples were maintained for 2000 seconds. The 
isothermal treatment was followed by cooling to room 
temperature.  

During austempering, the bainitic transformation 
of the 42SiCr steel with 1.33 wt.% chromium stopped 
before full completion. The rate of progression of the 
transformation depended on the temperature of iso-
thermal processing. After isothermal processing at 
485, 470 and 450 °C, the resulting microstructure con-
sisted mainly of fresh martensite, bainitic ferrite and 
small grains of untransformed austenite, or M-A com-
ponent. The proportion of bainitic ferrite increased 
with decreasing isothermal processing temperature. At 
even lower processing temperatures, 420, 380 and 340 
°C, the presence of martensite gradually minimized 
while the proportion of bainite increased. A comple-
tely different microstructural evolution process was 
observed for the 42SiMn steel, which contained 0.03 
wt.% chromium. Isothermal processing regimes 
carried out at 485, 470 and 450 °C led to a 
microstructure dominated by bainitic ferrite accompa-
nied by a small amount of martensite and unstable un-
transformed austenite, part of which eventually disin-

tegrated in parallel with carbide precipitation. Lowe-
ring the isothermal processing temperatures to 420, 
380 and 340 °C led to the formation of bainitic 
structures whose morphology was similar to that of 
42SiCr steel.  In the 42SiMn steel, extensive austenite 
to bainite decomposition occurred during all isother-
mal endurance phases. 

The differences in microstructural evolution in 
austempered 42SiCr and 42SiMn steels suggest that 
not only sufficient silicon but also chromium was 
most likely important for the incompleteness of the 
bainitic transformation. In the case of 42SiMn steel, 
the absence of chromium manifested itself in the mar-
ked instability of the untransformed austenite during 
isothermal maintenance. In general, the addition of 
chromium to 42SiCr may have been the cause of the 
re-decrease in silicon diffusivity. As a consequence, si-
licon was difficult to precipitate from the untransfor-
med austenite. This phase, therefore, retained suffi-
cient stability, leading to an incomplete bainitic trans-
formation. 
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