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Anotace

V této préci jsou popsany paralelni kabelovy robot z teoretického i praktick-
¢ho hlediska, véetné analyzy pracovniho prostoru, dopredné a zpétné kine-
matické tlohy, generovani trajektorie, softwarového modelovani a konstrukce
hardwarového fyzikalnitho modelu.
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paralelni robot, kabelovy robot, kinematické tlohy, zpétné kinematicka tiloha,
doptredna kinematicka tloha, planovani trajektorie, pick&place manipulator,
zajmové body

Abstract

In this thesis the theory and construction of a wire robot is discussed, in-
cluding the analysis of the workspace, inverse and forward kinematic tasks,
trajectory generation, software model and constructing a physical model to
show the theory in the real world.
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parallel wire robots, cable robots, kinematic tasks, inverse kinematics, for-
ward kinematics, trajectory planning, pick and place manipulator, points of
interest
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Chapter 1

Introduction

Nowadays all kinds of robots are broadly used in our society for different pur-
poses. Common in the industrial environment are manipulators. They are
used to move the end effector (usually some kind of a tool) between points
of interest over a planned trajectory. The end effector tool can interact with
the environment and thus the manipulator is able to complete simple tasks
autonomously or in a cooperation with an operator. Robotic manipulators
are more efficient, accurate and after the initial investment cheaper to main-
tain at their respective tasks than human workers. There is a wide range of
tools that can be used as an end effector, starting with a simple screwdriver
or a brush and ending with a gripper or a suction cup that can be used to
transport any load that’s needed. Because of that, the possible tasks that
robotic manipulators can complete are basically infinite.

Parallel robot is a manipulator that connects the end effector to the base
by several actuators. They have a smaller workspace compared to serial
manipulators, however they are usually stiffer and can achieve given point of
interest with a higher accuracy and repeatability.

Finally a parallel wire robot is a parallel robot that is connected to the
base by wires/cables. The position (and orientation) of the end effector
is achieved by pulling or releasing the wires usually connected to actuated
spools. This solution is cost-effective, safe and allows for a bigger workspace
compared to classical parallel robots thanks to the possibility of coiling the
wires.



Chapter 2

Theory

2.1 Analysis of the workspace

The main restriction of parallel robots is their limited workspace. Classical
parallel robots with rigid legs often have a small workspace limited by how
far the rigid legs can extend and contract. One example of this behaviour
would be the most well-known representative of parallel robots, the Steward
platform. Though Steward platform can support heavy loads, it’s typically
used in applications where the desired motion mostly consists of changes in
the rotation of the platform rather than its position.
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Figure 2.1: The difference between a classical parallel robot (Steward plat-
form on the left side) and a parallel wire robot (right side) - illustration taken
from [1]



Since wire robots don’t have rigid legs, their workspace should naturally
be larger. However by replacing the legs by non-rigid wires, only pulling
forces are available. That creates a new unilateral constraints on the wires
and makes the construction of the robot more complicated. This creates an
outer shell of the wire robot workspace, since no pulling force can move the
efector out of the area defined by the wire spool ends. Since the wires are
not rigid links by themselves, a high enough force has to be applied at all
times to compensate the flexibility of the wires. The acting force on each of
the wires is actually the main constraint to calculate the possible workspace
of the parallel wire robot (also known as the force equilibrium) and it further
limits the workspace. This external force can be increased by wires pulling
on the opposite direction of the observed wire, however the shape and weight
of the efector is also a big factor when calculating the workspace.

One of the possible way to calculate and plot the workspace is to consider
all the possible positions of the end efector and calculate the force acting on
each of the wires in that specific steady state (F}.). If all of the wires satisfy
the minimal (F},;,) and maximal (F,,,) force that is allowed on the wire,
we can consider that point as a part of the force equilibrium workspace.

Foin < F < Fruz (2.1)

After inspecting all of the grid points described by the robot geometry, we
can plot the points which are a part of the workspace. As an example my
setup consists of 4 wires which have their spools positioned in the upper
corners of a 0.5 meter cube. The considered efector is a small cylinder with
the mass of m, = 0.25kg. In figure the visualisation of the workspace
can be observed.

It is apparent that the final force equilibrium is quite small compared
to the dimensions of the cube towards the bottom. That is caused by not
having any wires on the bottom side of the robot, which means the external
forces consist of mostly just the gravitational force. One way to increase the
workspace would be to add another set of actuated spools with wires to the
bottom of the robot. This solution would not only increase the workspace
but also increase the maximal speeds which we could achieve. However this
solution would more or less double the cost of the robot and could not always
be possible.

Another possibility would be to increase the mass of the end efector by
for example using additional weight. This is of course dependant on the
available torque of the actuated spools. Additionally it would of course lower
the possible speed limits of the robot. However it can be a cost-effective



solution for smaller applications. If we increase the weight of the efector to
m, = lkg, we can already see that the size of the workspace has increased
dramatically.

Workspace for wire force 0.5N < F < 20N Workspace for wire force 0.5N < F < 20N

0.5

0.4

0.3

0.2

0.1

0.2

Figure 2.2: Visualisation of the force equilibrium workspace of a 4-wire robot
with a cylinder efector with a mass of m, = 0.25kg (left) or m, = 1kg (right)

Apart from the discrete analysis of the workspace, continuous interval
methods are available as well to compute the force equilibrium workspace of
the parallel wire robot. Such methods are based on solving the constraint
satisfaction problem and finding the solution (workspace). These methods
are further described in [1].

2.2 Inverse kinematic task

The purpose of an inverse kinematic task is to determine the joint vari-
ables (in our case the length of the individual wires) of a specific end-efector
position in the workspace. Solving this fundamental task is mandatory to
precisely control any manipulator. In the case that the kinematic chains
connecting the base and the end efector of a parallel manipulator are simple
(which is the case for cable-driven manipulators), solving the inverse kine-
matic task is not as complex as the inverse kinematic task of a serial manip-
ulator. For wires coiled on a spool, the exit point on the spool is dependant
on the position of the end efector. If the wires are guided by small eyes or
pulleys, the variable exit point can be neglected and only the position of the
eye guidance can be used for any position of the end efector. In that case
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the inverse kinematic task can be simplified and only a few known perime-
ters are needed to specify the exact lengths of each leg of the manipulator.
To compute the length of a specific leg/wire I, the following parameters are
needed:

» Constant distance of the guide eye/pulley from the base / world frame
b

o Constant distance of the wire anchor point from the end efector point
p

e The desired position of the end efector point in the base coordinate
system 7

e The desired rotation of the end efector point in the base coordinate
system R

Assuming the wires are stiff enough and tensioned at all times, the length of
each wire can by computed by thy Pythagoras theorem:

li=[bi —r — R - pills (2.2)

Figure 2.3: Visualisation of the perimeters needed for the inverse kinematic
task



2.3 Forward kinematic task

Forward kinematic task is a fundamental problem of both serial and parallel
manipulators as well. The solution describes the XYZ position r and rotation
R of the end effector in relation to the leg lengths 1. Unlike the inverse
kinematic task, forward kinematics of parallel robots generally do not have
an analytical solution and so the solution is often dependant on numerical
methods. With eye-point guidance (as described in the inverse kinematics)
and tensioned wires, finding the XYZ position of the end efector is equivalent
to finding the intersection of n spheres (where n is the number of wires) with
their center positioned in the eye guidances and their radius equivalent to
the lengths of the specific wires.

The solution can be then computed using the Newton-Rhapson solver if
the number of DoF is the same as the number of wires. If the number of wires
is higher, then an overdetermined system of equations has to be solved (for
example a least-square method can be used). Since a numerical approach is
required, problems such as finding a correct stable solution arise.

2.4 'Trajectory generation

Trajectory generation is a task of defining and creating a trajectory/path,
which the end-efector of the robot should follow with high accuracy. This
trajectory (usually in the XYZ plane) is then transformed using the Inverse
Kinematic Task into the robot’s coordinate system, which allows for an easy
and precise generation of direct commands to the robot’s actuators.

The main reason of having a trajectory is to move between the so called
"points of interest" and also to avoid any obstacles in the way. For pick&place
applications, those points of interest often represent the origin location (where
the load is initially placed), the destination (where we want the load to be
placed) and optionally any points between those two locations (for example
to avoid the obstacles). Usual requirement for the manipulator can be to
either stop in the provided point of interest (origin/destination) or to just
pass through the point and continue without slowing down.



Chapter 3

Simulation Model

3.1 Model Structure

First step in creating the final robot was to realize the different options, limi-
tations and objectives but also the overall purpose of the robot. In this case,
the main objective was to verify the studied theory and to create an exper-
imental model that would be able to follow the specified planned trajectory
to pick and place objects in the robot’s workspace. Because of that, the main
factor was to reduce the cost but still be able to complete said objectives.
For that reason a cubical workspace was used to simplify the construction
and make the final parameters of the robot as much symetrical as possible.

Since the ability to control the 3 diferent rotations is not needed in pick
and place applications, in theory only 3 wires are needed to be able to move
the end efector in a XYZ workspace. That was also how the model was
first developed. Since the wires can only act on the end efector with pulling
forces, the actuated spools were placed at the top of a 0.5x0.5x0.5 m cube
that acted as the robot’s workspace. After this decision, the workspace was
calculated as described in the previous chapter.

To increase the possible floor area and overall workspace of the robot, it
was later decided that an additional actuated spool would be used. This
fourth wire doesn’t allow us to control the robot in any other degree of
freedom, however it does help with increasing the possible workspace and
making it more symmetrical as seen in [3.2



Workspace for wire force 0.5N < F < 20N

Figure 3.1: The calculated workspace of a cable robot with only 3 wires

Workspace for wire force 0.5N < F < 20N

Figure 3.2: The calculated workspace of a cable robot with 4 wires



3.2 Modelling Software

For software simulation, Matlab/Simulink environment (R2019A) together
with the appropriate Simscape library was used. First the basic world frame
+ configuration blocks were added together with the visuals of the robot’s
body. It was decided that a 0.5m x 0.5m x 0.5m XYZ workspace would
be used. To accompany for the walls and electronics that would have to
be put to the upper part of the robot, the actual height of 0.6 m was used
for the walls so that the internal workspace dimensions would match the
requirements.

World Frame + Robot body blocks
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Figure 3.3: The blocks that were used to simulate the robot in the Simulink
environment



3.2.1 Cables

The actuated spool was simulated by a Belt-Cable Spool block connected to
a Revolute Joint block with a desired angle input. The wire was then guided
through a small pulley guide that moved the wire exit point to the desired
respective location and also helped with the accuracy of the final position of
the end efector computed by the inverse kinematic task. The other end of
the wire was terminated by the Belt-Cable End block and connected to the
respective anchor location on the end efector.

SpoolAngle

A

1> B $7<r B t7<r B tFCr

Corner SpoolPos SpoolRot

1/spool.radius

B t7<r B :P>r

PulleyPos

g\ B
Br------7
1
1

==

il

R

R——FE*? B

D)

Figure 3.4: The blocks that were used to simulate the actuated spool and
wire logic

3.2.2 End-efector

A cylindrical end efector with a radius of = 11[mm] and height h = 69[mm)|
was used and connected by four wires to the actuated spools. The wires were
connected to their respective anchor points on the end efector. The anchors
were placed symmetrically at the top part of the cylindrical efector. That
way, the top side of the efector is basically a circumscribed circle of a square
and the corners of that square are the respective anchors. Since no end
efector rotation was required for the application, this anchor placement was
sufficient.
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To get the coordinates of the anchor placement p relative to the end efector
position r, the following formulas have to be used:

roor ]

PURB = lﬁ’jﬁ’h_ =
roor ]

PuLB = l_%:ﬁah- =
T ro ]

PuLr = [—75,—75771_ =
r ro ]

PURF = ljﬁ,_ﬁ,h_ =

% \1/—15 69] (mm] (3.1)
_—\1/—15, % 69] mm] (3.2)
—% —\1/—15,69] ] (3.3)
\1/—15 —%, 69] (mm] (3.4)

Figure 3.5: The anchor placement and calculation on the top side of the end

efector

This type of anchoring help the end efector not to vibrate and wiggle.
However one of the disadvantages is that the ende efector rotation is not
constant. This can be seen by slight tilting at the edges of the workspace.
This could of course be solved by added more cables and henc more degrees

of freedom.
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Figure 3.6: The modeled end efector with wires connected at the anchor
points

12



3.3 Trajectory generation

To simplify the trajectory generation process as much as possible and to be
able to easily create different trajectories, a structured approach was needed
to both generate and implement the trajectory data in Simulink and REXY-
GEN. The following structure of the trajectory data was chosen

0 XO Yb ZO Vo SOEO
ty | X | Y9 | 2y | vy | SoE;
to | Xo | Yo | Zy | v | SoEy

IfN XN YN ZN UN SOEN
Table 3.1: The structure of trajectory points

where to — ¢ represents the time [s], when the efector is required to arrive
at this point, Xo/Yy/Zo— Xn/Yn/Z N represents the XYZ location [m] of the
point, vg — vy represents the maximal velocity (number of pulses per second)
of the stepper motors while approaching this point and finally SoFEy — SoFEy
represents the state of the electromagnet used as the end-efector (0 - off, 1 -
on).

Using this structure, it is possible to enter the required points of interest of
the trajectory. To properly simulate the movement, a trajectory interpolator
was created. The idea was to smooth out the movement between the given
trajectory points in a way that the end efector stops in each of the provided
points and to have a smooth transition. To achieve this, a cubic interpolation
was used between the points with the limiting factor that the velocity in each
of the points was equal to zero.

Any of the trajectory segments restricted by two consecutive points of
interest P(tl) = {X(tl),Y(tl),Z<t1)} and P(tQ) = {X(tg),Y(tQ),Z<t2)} is
given by a cubical polynomial:

Xt)=ay -t +ay -t* +af -t+ap (3.5)
Y(t)=a3 -t*+ay -t*+a] -t+a (3.6)
Z(t)=ai t*+af -t* +af -t +af (3.7)

First let’s calculate the coefficients ag, a2, ai* and a of the polynomial in
the X direction. If we differentiate both sides of the equation (3.5, we get

X'(t)=3-a3 - t*+2-ay -t +ay (3.8)
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Both and stated above have to be satisfied in both points of
interest P(t1) and P(t2). Given that the velocity of the efector in both
points of interest P(t1) and P(t3) is required to be equal to zero, we get the
following system of 4 equations.

X(t) =a3 -t 4+a3 -t7+a -t +ay

X(ty) = a3 -t +a3 -t5+ay -ty +ay

3.9
OzS-a?-t?—i—Z-ag{-tl—i—af (3.9)
:3-a§(-t§+2-a§-t2+af
X(t1) t3 2ty 11 Jaf
X(t)| | 2ty 1| |ax
0 | [3-22 2, 1 0| [af (3.10)
0 3-t2 2-t5 1 0] |af

This system of equation can be solved by simply using the inverse of a matrix
(given that the inverse exists).

-1

az 8t ot 1 X(ty)

X 3 2

afl 1382 2-t; 1 0 0 (3-11)
ay 3:43 2t 1 0 0

This solution can be used as well for the polynomials in the Y and Z direction
as described below.

"a%:" I tz tz t; 1 (Y (t1)]

al | 13-t 2-t 1 0 0 (3.12)
eyl 382 2ty 1 0] L 0 ]

’ag' r ti tz t 117 TZ(t)]

aZ| 1383 2-44 1 0 (3.13)
laZ]  [3-43 2-t, 1 0 0

The calculated coefficients from (3.11f), (3.12)) and (3.13)) can then be used

together with (3.5), (3.6), (3.7) respectively to describe the trajectory in
between the two points of interest P(t;) and P(t3) used to calculate the

coefficients.
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3.3.1 Example Trajectory

As an example of the described cubic interpolation, the following points of
interest were used in an example trajectory.

tfs] | X[m] | Y[m] | Z[m]
0] o 0 |025
10125 0 |025
2 1 0.250 | 0.125 | 0.25
3 0 0 0

Table 3.2: Selected points of interest of the example trajectory

After calculating the coefficients for each of the segments of the trajectory
between the given points of interest, we can plot the whole trajectory. It is
apparent that at the given times, the object/efector is present at the correct
location and the derivative of it’s position (velocity) is equal to zero.

0.95 Points of interest interpolation

AN

0.2

o
-
(&)}

Position [m]

0.1

0.05

1

0 0.5 1 1.5 2 25 3
Time [s]

Figure 3.7: Interpolation of an example trajectory given by points of interest

defined in
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3.4 Model in the loop

As the next step, the inverse kinematic task was implemented as a
Matlab function and used together with the described model in a MIL simu-
lation. As an input, first manual XYZ position sliders were used to move the
end efector in real time. After that a simple circle trajectory at a constant
height was created to further test the functionality of both the model and
the implemented inverse kinematic task.

Jrrrr
025 015 005 005 015 025 0.4649|

¥-Value X 0.3144| ULFIn EfPos
gt —
P 0.125 —» 04649 Utang
025 015 005 005 015 025 5 bo refPos 0.3144 ULBIn 2.983¢-15)
ZVale eieclor fcableLengths > H ULB 0.125]
. . . 025
InverseKinematics 0.25)
URF
‘.mu‘_mm‘_mm‘ulum‘w 7 pulley == pulley URFAng
0 00 0216 0324 043
InverseKinematics
URBIn URBAng

CableDrivenRobot
* ReferencePos

LI

CircleTrajectory

Figure 3.8: Control interface of the cable robot simulation with the inverse
kinematic task and trajectory generation

Circle trajectory tracking

0.3
0.25
X reference
0.2 + Y reference
Z reference
Output position

Position [m]

Time [s]

Figure 3.9: Comparison of the desired trajectory and model output for the
circle trajectory

As seen in (3.9), the model tracks the desired input trajectory in all axes
even for a multi-axis movement.
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Chapter 4

Experimental Physical Model

To test the implemented functionality in practice and to check any differences
in the real life implementation, it was decided that an experimental physical
model would be created. The goal of this experimental model was to learn
about possible ways to implement the electrical and mechanical interface
into the final product and connect them to the software to test the inverse
kinematic task with trajectory generation.

4.1 Electrical Interface

To implement the software, Rexygen studio on RaspberryPi + Monarco Hat
was used. For spool actuators, stepper motors were chosen due to their
higher accuracy in position control. Because of the relatively high sample
period that could be reached on the target platform, the decision was made
to use a communication protocol to control the position of the stepper mo-
tors. Because of this, four JSS57P2N closed loop stepper motors with a
RS232 Modbus RTU control interface were chosen. To connect all 4 stepper
motors to the RaspberryPi, 4 USB-RS232 converters together with a USB
hub were used. Power supply of 24V /15A was enough to properly power up
all of the electronics. In order to have an actuated end efector, a 50N 24V
electromagnet was screwed to the tip of the end efector. This electromagnet
was connected through a relay to the AOUT1 output of the MonarcoHat.
Because of this, an on-demand actuation was achieved from the Rexygen
studio environment.
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In the picture below , we can see the top view of the cable robot.
The respective components are marked with colored circles. The JSS57P2N
stepper motors are marked as red, the RS232-USB converters are marked
as green, the RaspberryPi + MonarcoHat together with the USB hub are
marked as light blue, the relay connected to the end efector is marked as
yellow and the power supply is marked are purple.

Figure 4.1: Electronics of the Cable robot (top view). Red - stepper motors.
Green - RS232-USB converters. Light Blue - RaspberryPi + MonarcoHat +
USB hub. Yellow - efector relay. Purple - Power Supply

From the instruction manual provided by the JSS stepper motor dealer,
the following list of parameters was exported. It shows all of the internal
(closed loop PID controller parameters, filtering times,...) and external (de-
sired position, maximal velocity/acceleration,...) parameters that are possi-
ble to be set and read using the RS232 interface.

18



Modbus Item Address Parameter Name Used Value
0 Model number 57
1 Open/Closed loop 1
2 Motor Type 0
3 Current loop Kp 1000
4 Current loop Ki 200
5 Position loop Kp 300
6 Speed loop Kp 400
7 Speed loop Ki 80
8 Default number of pulses per rev 400
9 Encoder resolution 4000
10 Tracking error alarm threshold 4000
11 Open loop holding current 30
12 Closed loop holding current 60
13 Pulse command filtering time 60
14 Enable level polarity 1
15 Fault output level polarity 0
16 Pulse input mode 0
17 Pulse effective edge 0
18 PEND output function 0
19 PEND output level polarity 0
20 Low acceleration *
21 High acceleration 0
22 Low deceleration *
23 High deceleration 0
24 Low maximum speed *
25 High maximum speed 0
26 Target pulse count *
27 Total number of pulses 0
28 Motion control instruction *
29 Position Mode 1
30 Absolute position is low *
31 Absolute position 0
32 Internal pulse state 1
33 Save parameters 0
34 Factory reset 0

Table 4.1: List of parameters of the JSS57P2N stepper motor (* - Parameter
changed from the control system)

19



To successfully control the JSS stepper motors over the RS232 interface
was problematic and was caused mainly by the scarce retailer specification.
I found a "Protuner" software that was working with similar stepper mo-
tors and tried to connect it to one of the JSS stepper motors using a COM
interface on a Windows PC. Even though most of the parameters are not
well described in the specification, I was able to recognize the most impor-
tant parameters of the stepper motor for our application. Those important
parameters include

« Low acceleration (20), Low deceleration (22) and Low maximum speed
(24) as saturation limits for maximal allowed acceleration, deceleration
and speed respectively

» Target pulse count (26) as the desired absolute position of the stepper
motor

« Motion control instruction (28)

— 0 - Standby
1 - Fixed length motion

— 2 - Continuous motion
— 3 - Deceleration stop
— 4 - Stop immediately

 Absolute position is low (30) to set the current absolute position to a
new value (homing purposes)

Note: The parameter "High maximum speed (25)" was is not being ma-
nipulated in the Protuner software and so here the same parameter 'Low
maximum speed (24)" is used instead. Unfortunately due to the lack of de-
scription in the documentation, the reason for this is unknown. The same
applies to the acceleration and deceleration limits as well.
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4.2 Mechanical Interface

To properly construct the model, Autodesk Fusion 360 was used to model
and visualize each of the end components. For the main body, 30x30 mm
aluminium profiles were precut and used (8x 500mm + 4x 650mm). Plywood
(8mm thickness) was used at the top and bottom as a base for the electronics.
Small holes were made in the top plywood layer to guide the robot cables
to the end efector in order to simplify the inverse kinematics calculation
(as discussed and modelled in previous chapters). The horizontal workspace
remained equal to the Simulink model (500x500 mm).

In order to fixate the position of the stepper motors, 4 holders were 3D-
printed and used to mount the motors. Furthermore, 4 spools with the
diameter of 30 mm were also 3D-printed and used to coil 0.38mm wire. This
wire is both strong and non-flexible to result in as much length accuracy as
possible while also being easy to be coiled and retaining it’s shape. Finally
an end efector was 3D printed as well to house the electromagnet. It has
four holes at the top, each one for a carbine tied to the wire. In the middle
of the end efector, there is space for a 500g weight. This helps to increase
downward force with gravity, making the efector less likely to vibrate from
the motion. All of those modeled parts can be seen below .

(a) Motor Holder (b) Spool (c) End Efector

Figure 4.2: All 3D printed parts for the cable robot
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Figure 4.3: Experimental model visualization from Autodesk Fusion 360

Figure 4.4: Real-life construction of the experimental model.
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4.3 Software

REXYGEN studio 2.50.99.10936 was used to program the RaspberryPi +
Monarco HAT combination. The IP address of the used RaspberryPi was set
t0 192.168.0.202. Only one model task was used with the sample tick time of
5 ms. The basic MonarcoDrv module was used to actuate the electromagnet
at the end efector. To communicate with the JSS57P2N stepper motors and
control their desired position, Modbus RTU communication protocol was
used over an RS232 hardware interface.

CableRobot model
Author: Jan Vaverka
192.168.0.202

Medules H{prev_nextH{prev nextp

MbDrv MonarcoDry

Drivers -D-|prs\: nExt|-D{prE\: nExt|->-|prE\: nExt|-)-|prE» nsxt|-b-|prs\: nExtF

ULF URF ULB URB MNR

Archives
QTask

Leveio | lprey nex
CableRobot_task
Level1

Level2

Level2

EXEC

Figure 4.5: The executive file of the Rexygen project.

In order to properly distinguish each of the motors, REXYGEN’s MbDrv
module was connected and used to program a Master/Slave Modbus com-
munication for each of the motors, with their respective serial address of the
USB port connected. Those addresses are described in the table below .

ULF port | /dev/ttyUSBO
URF port | /dev/ttyUSB1
ULB port | /dev/ttyUSB2
URB port | /dev/ttyUSB3

Table 4.2: USB ports used to connect the stepper motors and to establish
the connection

To correctly initialize the USB ports during the RaspberryPi boot pro-
cess, it is mandatory to connect all of the USB-RS232 converters one by one
AFTER the RaspberryPi is booted up in the order given in
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That way, all of the converters are assigned to the correct port, which
allows the individual motors to be linked correctly to their respective signal
in the REXYGEN environment.

ULF - URF —-ULB — URB

This address is also assigned in the Modbus driver of each of the motors.
The correct Modbus settings for the ULF stepper motor can be seen below,
along with the defined messages that are being sent and received over the
communication. The specific messages refer to the parameters defined by the
stepper motor retailer in (4.1]).

Modbus MASTER over Serial Port

Connection

Port: Jdev fttyUsBO

Baud rate: 38400 <

Parity: None w7

Stopbit: 1 stopbit - Wc db u S

Response timeout [s]: |0.01 =

Retry time [s]: 5.00 T

Frame end time [s]: 0.000 =

Items

[ Show Hexa (for Ttem Addresses and Init Values) [ ] Advanced mode

Name Slave A:E::gs Type Count Init Value Flags Function code ‘_')
1 MaxAccel 1 20 REGISTER_16 1 W 6 - write single register L‘
2 MaxAccel_Act 1 20 REGISTER_16 1 R 3 - read holding registers -
3 MaxDecel 1 22 REGISTER_16 1 w 6 - write single register !
4 MaxDecel_Act 1 22 REGISTER_16 1 R 3 - read holding registers 5
5 MaxVel 1 24 REGISTER_16 1 w 6 - write single register =]
6 MaxVel_Act 1 24 REGISTER_16 1 R 3 - read holding registers
7 PosDesired 1 26 REGISTER_16 1 w 6 - write single register
3 PosDesired_Act 1 26 REGISTER_16 1 R 3 - read holding registers
g MoveCmd 1 28 REGISTER_16 1 [4] Wi 6 - write single register
10 PosCurrent 1 30 REGISTER_16 1 w 6 - write single register
11 PosCurrent_Act 1 30 REGISTER_16 1 R 3 - read holding registers
Cancel

Figure 4.6: Modbus driver settings of the ULF motor
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Each message is either readable or writable relative to the communication.
In the case that one register is able to be written to and read from at the
same time, two messages are created to split the functionality and a x_ Act
suffix is added to the name of the item which reads the register. In the model
task, flags referencing to drivers are marked as yellow.

CNI_Mode

z
3. Deceleration stop
i 4 - Hard stop ULB__MaxVel_Act 777 URB__MaxVel A 777
CNB_Start
ULB_ PosDesired Ay 377 URB_ PosDesired_A; 227
ULB_ FosCument Ad—- 222 URE__PosCument_A 227

[ ULF_MisDecel 5> = |

CNB_TrajeciorySwitch

Mode: ULB_ MaxAccel_Aj 277 URB__MaxAceel_A 777
HemeRsset ?'?‘s":"‘f i
- t
BT ] |, oo ey U mbee A——w[ 77 )| [[Ure_vecee fa—w 7 ||
De i
H:

ul

CNR1 uz y 5_des

W
=

S5wW4

e B
] ChRZ U2y WY _des
v sswi

:

TrajectoryStart 2| 7_des_traj
Velocity| Vel_des traj

EfectorState,

CNR3 Z_des_traj uz ¥ 7_des

10000
ohRs 2yl wel_ce

Trajectoryinput

T [ EEREe 2 y|—m{Efecior_state

@Ol E ] 9 E & @i
HEEE B
2= =[= ==
& x| B

Outputlogic

Figure 4.7: The main task of the Rexygen project. Driver flags are marked
as yellow. User control variables are marked as red.

The task can be split into several parts which be described below. We
already talked about the driver flags which read the required position (in
pulses), current position and current velocity/acceleration limits for each
motor. Following that, we have a Trajectorylnput subsystem, which imports
the required trajectory (also described in the previous chapter). Another
subsystem called OutputLogic is used to calculate the inverse kinematic task
and send the desired position set points to their respective motors. It is also
used to actuate the efector’s electromagnet and set other motor parameters.

Another functionality on the main level is the user control interface, which
is created by four red constants that allow the user to set the current position
of all the motors (HomeReset), activate/stop the motors (CNI__Mode),
start the trajectory motion (CNB_ Start) or select to disable the trajectory
and only move to a constant XYZ position (C'NB_ TrajectorySwitch).
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4.3.1 Subsystem OutputLogic

In this subsystem, the desired position in the XYZ coordinates is saturated
to the physical model dimensions (due to safety). After that, the saturated
position is used to calculate the lengths of the respective wires/tendons of
the cable robot. Since we know exactly the radius of the 3D printed spools
(R = 15mm) and the number of pulses per revolution of the stepper motors
(3200), we can calculate the required absolute pulse position of the motors
simply by using gain blocks.

1
GAIN Len2Rot : k = —— ~ 0.0106 4.1
—ensio > 1R (41)
GAIN _Rot2Pulse : k = 3200 (4.2)
=
yren EAlNZRDlZ GAIN, PUlsEZ 5 —‘_ E% -

ol
5
[i]
H

13735 2
FosOffset1 = CNZ  EQz
URF_ien e
GAIN_Len2Rcot! GAIN_RotZPulse! RTOIZ D02 ="1IRF__PosDesired I:>_ PosCument_WriteEnable
uz y FosGunent_WriteEnable
HomePaos_URF i FosCument_WiitsEnable.
M [ HomeResstz=tsw PosCunent_WriteEnable
¥_ges JjhiHLP SSW1
o LLp
13735
SAT1 [rs725]
PasDffsats |1
e |-| =
GAIN_L=n2Rot3 GAIN_Rof2Pulsed RTOI3 & =1]LE__PosDesired
ﬁ—puz ¥ -
e P i
HormeFos ULE sCE_PosCument_Value] ] P
e
13735
B Ly z PasDftssts 1=
e g} URE_en = < El g T
ATz GAIN_Len2Roté GAIN_RofZFulsed RTOIE & =—TjRB__ PosDesired
uz y
HomePos URE =€H__PosCurrent_Value| e
InverseKinematics =
TRE__
ULF__Maxvel
URF_Maxvel
z
Val_des ULB__Maxvel
URE__MaxVel

Figure 4.8: The OutputLogic subsystem of the main task. Driver flags are
marked as yellow.

Because the Modbus message TargetPulseCount (26) is defined as an un-
signed integer by the retailer, a constant offset is then added to keep the
current position away from zero at all times. This prevents the the desired
position from overflowing and the efector to go in an unwanted direction.
The value of this offset is chosen in such a way that the position set point of
the robot at the homing point ([0;0;0]) is equal to the middle of the 16-bit
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message range (32768). With the currently used parameters in the inverse
kinematic task, an offset of 13735 pulses is needed to achieve this. The fol-
lowing switch is used to set the correct position during homing. Since our
homing point is directly at [0;0;0] (middle of the workspace at the ground
level), then the values of 32768 pulses is used to set the position.

To correctly home the motor, it is needed to manually move the end efec-
tor to the home position at the ground level in the middle of the workspace
before turning the power on. After making sure that all of the wires are
correctly tensed, pressing the HomeReset button will send the homing com-
mand (this should be done directly after every startup to avoid any unwanted
movement).

After a homing command is received, a sequence starts that stops the
movement in case the efector is not idle and starts the movement for on
tenth of a second to correctly set the current position to the motor. If the
motor’s command is not set to Fixed Motion (1) right after changing the
current position, then the motor doesn’t save the position into memory and
the homing will not be successful.

Apart from this functionality, other parameter setting is done in the sub-
system as well, including the acceleration/deceleration settings, velocity set-
ting and efector’s electromagnet actuation.

4.3.2 Subsystem InverseKinematics

To correctly interpret the inverse kinematic task, the InverseKinematics sub-
system was created. As stated in an earlier chapter (2.2)), the inverse kine-
matic task is given by the following expression

li = Hbi—I'—R~piH2 (43)

With b; representing the XYZ eye position of the i-th cable, r representing
the desired XYZ position of the end efector and p; representing the anchor
XYZ position in relation to the end efector tip. Since in this project we
only use four cables and commanding the rotation of the end efector is not
possible, rotational axis R was set to an identity matrix and is not used in
this task. The rest of the parameters are defined in the subsystem mask
and used in CNR blocks to calculate the correct cable lengths.

27



l«» w3 [Eeiex ut
3 ORI 30 2
GAINTS sfua ¥
AncherULB_X u4
CNRTS GAINT2ADDQUADS
i EyeULB_Y Ut
E] vz
GAINTS 33 Y|
3 <z ]
z AncherULB_Y u4 P

CHR14 GAI

£DDQUAD10

EyeOffset_Z
oNRTE 2 2
GAINTT
CNRTT GAINTRDDQUAD
EyeULF_X ut
o u2
GAINT  ofua V|
AnchorlLF_X ud
CNR3 GAIN ADDQUAD1
EyeULF_Y ut
CNR1 u2
GAINZ  ffua ¥
AnchorULF_Y u4
CNRZ GAINZ ADDQL
EyeOfiset_Z u1
CNRA Z - 2
GAINE {3 ¥
us

GNRS GAIl4 ADDQUADZ

EyeURB_X

|

S
GAINT
AncherURE_X
CNRS GAING ADI
EyeURB_Y
LT 2
GAIND
AncherURB_Y.
CNRE GAINE ADI
EyeOffset_Z
I
GAINT

%
@
2
%
I~

CHNRT1

[n}
|
3
(=}

EyeURF_X

CNRTH 35 z
GAINTS

AnchorURF_X

CNR2T GAIN1BDDQUAI

EyeURF_Y

cNR1E Ty 2
GAINZ1

AncherURF_Y

CNR20 GAINZRDDQUA!

EyeOfisel_Z

oW 2 2
GAINZ3

CNR23 GAINZADDQUAD15

Figure 4.9: The InverseKinematics subsystem of the main task.

Parameter name

AnchorOffset Z

AnchorULF X

AnchorULF Y

AnchorURF X

15

AnchorURF Y

AnchorULB X

AnchorULB Y

AnchorURB X

15

AnchorURB_Y

15

EyeOffset_ 7

522

EyeULF X

-247.5

EyeULF_ Y

-247.5

EyeURF X

247.5

EyeURF_Y

-247.5

EyeULB_ X

-247.5

EyeULB_Y

247.5

EyeURB_ X

247.5

EyeURB_Y

247.5

Table 4.3: Parameters used in the
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4.3.3 Subsystem Trajlnput

This subsystem loads the trajectory .csv file previously generated in the Mat-
lab environment and takes care of selecting the correct point for any time of
the simulation.

Tiel TR e T
na GAIN  RTOI “SETEp
SETHSGN SETR
upP
DN Q
nmax E
COUNT
Start trajectory sgain after finishing
f isable)
vec L (Cff to disable) P vp
CNA_Trajectory 5 2 CNB SET Ep

¥7

Trajectory not started

¥8
VTCOR

Figure 4.10: The Trajlnput subsystem of the main task.

The .csv file has the same structure as the one used in the Simulink simu-
lation. However since the position is already regulated by the motor retailer,
only the raw non-interpolated version is used. The trajectory is loaded by
a VTOR block. The VTOR offset parameter is then increased every time
we need to select the next point of interest of the trajectory. To select the
next point, the trajectory index/offset must be increased by 6, since that’s
the number of parameters used for each point, which can be seen in the table
below.

O XO Yb ZO Vo SOEO
tl X1 Yi Zl (%1 SOEl
to | Xo | Yo | Zy | vo | SoEs

tn | Xy | YN | Zn | vy | SoEy
Table 4.4: The structure of trajectory points

To correctly track the time, an integrator is used as an internal clock. Once
the internal clock reaches the time of the next point, the offset is increased
and with it the next point. Once the time of the next point is at 0, it is clear
that we are at the end of the trajectory,the movement can be stopped and the
offset can be reset. It is also possible to continue the trajectory motion from
the start after finishing the trajectory, which results in a periodic motion.
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Chapter 5

Model comparison

To compare the model created in the Matlab/Simulink environment and it’s
physical real-world representation, a complete trajectory was created. It con-
sists of 25 points of interest and is 32 seconds long. With this trajectory, the
cable robot is supposed to handle two plate-like ferromagnetic objects be-
tween two places. The points of interest are defined in . Those points
of interest were interpolated as described in and used as a modified tra-
jectory for the Simulink model.

Since the JSS stepper motors used in the physical model have their own
position controller from the retailer, only the raw points of interest (without
any interpolation) are used to control the position. This means that the
movement between two specific points of interest might not be exactly the
same. In the physical model, this behaviour has to be offset by the velocity
and acceleration/deceleration settings of each motor. Another option would
be to plan the points of interest times in such a way that the stepper motors
are fast enough to reach the next point as closely as possible to avoid any idle
time. In this example, only constant velocity and acceleration/deceleration
setting was used for each point to show the obvious difference between the
trajectories.

In the figure , the actual cable lengths for all cables can be observed
(red), together with the point’s of interest set points (blue) and the inter-
polated trajectory for the Simulink model (magenta). It is clear, that the
physical model is faster to reach the desired set point and remains idle un-
til the next set point comes. This behaviour can be also seen in a video
comparing the Simulink simulation and the Rexygen model measurement.

https://www.youtube.com/watch?v=KF201H832cc
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https://www.youtube.com/watch?v=KF2o1H832cc

t[s] | X[m] | Y[m] | Z[m] | vpmae[pulse/s] | SoE
0.0 0 0 0.250 5000
2.0 | 0.125 0 0.005 20000
2.1 | 0.125 0 0.005 20000
4.0 0 0 0.150 20000
6.0 | -0.125 0 0.005 20000
6.1 | -0.125 0 0.005 20000

8.0 0 0 0.150 20000

10.0 0 0.125 | 0.005 20000
10.1 0 0.125 | 0.005 20000
12.0 0 0 0.150 20000
14.0 0 -0.125 | 0.005 20000
14.1 0 -0.125 | 0.005 20000

16.0 0 0 0.150 20000

18.0 | -0.125 0 0.005 20000
18.1 | -0.125 0 0.005 20000
20.0 0 0 0.105 20000
22.0 | 0.125 0 0.005 20000
22.1 | 0.125 0 0.005 20000

24.0 0 0 0.150 20000

OO PR P OOORFR PR P OOORF FEF PR OOOFHFERFEOO

26.0 0 -0.125 | 0.005 20000
26.1 0 -0.125 | 0.005 20000
28.0 0 0 0.150 20000
30.0 0 0.125 | 0.005 20000
30.1 0 0.125 | 0.005 20000
32.0 0 0 0.150 20000

Table 5.1: Points of interest of the cyclic pick&place trajectory
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Respective cable lengths during the pick&place movement
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Figure 5.1: Time plot showing the desired cable length set points (blue), in-
terpolated lengths (magenta) and actual movement measured from Rexygen

(red)

32



Chapter 6

Conclusion

The aim of this thesis was to study the theory of cable-driven parallel ma-
nipulators and the possibilities to construct mathematical models of such
manipulators. This includes the analysis of the workspace, limitations, kine-
matic tasks and also trajectory generation.

To summarize, parallel manipulators in general are more sturdy and safe,
however in general they have a smaller workspace that is limited by their
construction (e.g Steward platform). This limitation is partially lifted with
cable-driver manipulators, since their actuators consist of an actuated spools
that reels in/out the cables. Out of the two kinematic tasks, the inverse
kinematic task is computationally easier with only one solution computed as
an euclidean norm. The forward kinematic task on the other hand doesn’t
have an analytical solution and has to be solved numerically by finding the
intersection of n-spheres, where n is the number of cables. After solving the
inverse kinematic task, the issue of trajectory generation is solved as well,
since we can transform the coordinates in the XYZ coordinate system into
the manipulator coordinates (in this case the cable lengths), which can then
be used to control the manipulator. To create more complex trajectories, a
csv format structure was created together with an interpolating algorithm.

The simulation model was created in the Matlab/Simulink environment
using the Simscape Multibody library. This allowed me to accurately sim-
ulate the movement of each cable together with the spool actuation and to
test the model together with the trajectory generator in a MiL simulation.
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It was also decided to create a physical real-world model using Rexy-
gen studio. For this purpose, a Fusion360 project was created to plan the
mechanical construction. The main body was constructed from aluminium
30x30 profiles with the base made of plywood. Several components were 3D-
printed using the Ender 3 printer to house the electronics and connect them
to the mechanical construction. As for the electrical interface, RaspberryPi
+ MonarcoHat was used and programmed to control 4 JSS57P2N closed loop
stepper motors using ModbusRTU over an RS232 interface. A strong elec-
tromagnet was used together with a relay to act as an end efector. There was
a difference in the movement between the Simulink model and mechanical
model caused by the internal PID controller of the stepper motors. However
this behaviour could be offset by limiting the internal maximal velocity of
the motors.

Generally the mechanical construction was sufficient and precise enough.
However the Modbus communication is somewhat fragile and slow. To im-
prove the model, another form of control would have to be implemented.
Ideally a stepper motor without any internal controller/driver. That way
a PFM driver and manual control loop would have to be implemented to
achieve smoother movement.

Another upgrade of the model would of course be to add degrees of free-
dom by adding 4 more actuated spools that connect to the end efector from
the bottom. This would add the possibility to control the rotation of the
end efector and allow for a faster movement. However for pick&place appli-
cations, this is not always possible.
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