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ABSTRACT

Highly resolved flow simulation data is becoming more common. These simulations frequently feature high tur-
bulence with complex flow patterns. Finding these regions often requires expert knowledge, and in more complex
cases, flow patterns of interest may remain hidden. The concept of statistical complexity was shown to be suitable
to indicate regions of interest within flow data with limited prior knowledge. One way to determine the statistical
complexity of flow fields is via the local vector field entropy and the correlation. In this work, we improve the
method for calculating the Shannon entropy in vector fields. To this end, we introduce a robust entropy compu-
tation that takes the scale of the corresponding regions into account. The improved method uses a novel way to
determine the distributions required for the entropy calculation and is applicable to unstructured domains. We val-
idate our method with analytic flow fields and apply it to fluid simulation data, visualizing the results via volume
rendering. This work shows the applicability of our technique to highlight regions of interest in turbulent flows.
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1 INTRODUCTION

Three-dimensional flow simulations have become
increasingly complex [TLME21|]. Feature detection
methods (e.g., vortex identification) and 2D cuts with
color mappings of physical properties, e.g., velocity
or pressure, are most common for visual analy-
sis [BCP+12[ZH15]]. Even though these visualizations
are helpful, they require expert knowledge of specific
configurations to understand which flow features in
which regions are of interest and how to detect them
with appropriate parameters.

Our goal is to provide a tool to assist the researcher in
identifying regions of interest in individual time steps,
which the researcher can further investigate purpose-
fully. To this end, we apply the concept of statistical
complexity based on the Shannon entropy [NT12]
of vector directions which Xu et al. [XLS10] suc-
cessfully applied to flow fields. Even though the
Shannon entropy could be applied directly, Arbona et
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al. [ABMP14] argue that complete chaos and complete
order should have similar value to the analysis. In
contrast, entropy exhibits minimal values for complete
order and maximum values for complete chaos.

Our primary focus is improving on the Shannon entropy
computation. After providing a background on statis-
tical complexity and Shannon entropy, we discuss the
interpretation of statistical complexity in flow fields in
general and provide arguments for the usefulness of this
type of analysis for turbulent flows. We then discuss the
methodology which distinguishes itself from the com-
mon approach by: (I) applying a neighborhood scheme
suitable for unstructured domains, (II) utilizing the con-
cept of information gain to set neighborhood sizes for
the entropy computation dynamically, and (III) intro-
ducing a binning scheme to reduce overestimated com-
plexity values. We validate our method with analytic
datasets and apply it to a Direct Numerical Simulation
(DNS) dataset. The results are visualized via volume
rendering.

2 RELATED WORK

In the context of environmental sciences, a recent sur-
vey conducted by Bujack and Middel [BM20] gives
a broad overview of various flow visualization tech-
niques.

Geometric approaches based on the visualization
of integral structures, e.g., streamlines or path-
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lines, were discussed by McLoughlin [MLP+09].
Feature-based visualization approaches aim to detect
and represent specific flow patterns like vortices
[HalO5, JWMSS|, TH95]], shock waves [WXWHI13] ,or
splat events [NNE+20, INSG+20].

Methods based on vector field topology visualize the
topological skeleton consisting of critical points and
segment the flow domain into regions of similar be-
havior [HH89, HH91|, [LHZP07]. Lagrangian coher-
ent structures (LCS) can be interpreted as an unsteady
analogy to flow topology and were extensively studied
[Hall5, HS 11} HYOO].

As flow visualizations often depend on the chosen ref-
erence frame, a body of research concerned with this
issue was published in recent years [BPKB 14, I GGT17,
RG20,[WGS05! [ WGS07].

Statistical complexity was introduced by Crutchfield
and Young [[CY89] and later refined by Lopez-Ruiz et
al. [LRMCO35]] who separated the influences of entropy
and structure.

Jaenicke et al. [JWSKO7] have shown the usefulness of
visualizing the statistical complexity computed via cel-
lular automata in multifield data. They have also proven
that statistical complexity can automatically detect flow
features [JBTSO08,JS10]. Arbona et al. [ABMP14] pro-
pose a method to apply the concept of statistical com-
plexity to 3D vector data based on the product of Shan-
non entropy and local correlation.

Xu et al. [XLS10] applied the Shannon entropy to
vector fields. They base the entropy at a point on
the variance of the orientations of the vectors located
in its neighborhood. Xu et al. [XLS10] did not
directly visualize this information but used it to seed
streamlines in information-rich regions instead. Wang
et al. [WYMOS|] determine the entropy of dataset
chunks to customize the level of detail used for their
visualization. Furuya and Itoh [FIO8|], as well as
Lee et al. [LMSCI11], applied information-theoretic
techniques to select a small number of streamlines out
of a set optimally representing the original data. Tao et
al. [TMWS12] and Ma et al. [MW W +14] used entropy
to create automated camera cruises through possibly
significant flow regions based on their entropy. An
overview of how information-theoretic techniques can
be utilized for visualization can be found in the book
by Wang and Chen [CEV+16].

3 BACKGROUND

This section provides a background on entropy, statisti-
cal complexity, and how these concepts can be applied
to flow fields.

3.1 Entropy of Velocity Fields

The Shannon entropy [NT12] describes the information
content of a single variable. Its calculation is based on
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the distribution of the values of said variable. For any
given variable X with the possible outcomes {x,..,x, }
the Shannon entropy is:

N
H(X) ==} p(xi)log(p(x)), (1)

where p(x;) denotes the probability with which the vari-
able X takes the value x;. H(X) becomes minimal if the
variable always assumes the same value and becomes
maximal when all potential outcomes share the same
possibility.

Xu et al. [XLS10] adapted the concept of entropy for
vector fields. The entropy of single points is based on
the variance of the orientations of vectors in their neigh-
borhood. They do not specify in detail how a neigh-
borhood is defined. As they use a manually set natural
number as a parameter, we assume neighborhoods are
grid-based. To generate the required distribution, they
use vector orientations. They discretize a sphere and
evaluate which vector orientation corresponds to which
segment of the sphere. Note that the segments corre-
spond to the bins of a histogram. To avoid bias, they
utilize the technique proposed by Leopardi [Leo06] di-
viding the sphere surface into equally sized regions of
similar shape. This technique divides the sphere into
almost circular top and bottom areas as well as multiple
rings with several quadrangular segments.

3.2 Statistical Complexity of Velocity
Field

Arbona et al. [ABMP14] expanded upon the concept of
vector field entropy with their definition of statistical
complexity by taking local correlation into account. In
their study, Arbona et al. [ABMP14] aim to determine
the complexity at multiple scales, which they accom-
plish by utilizing meshes of varying sizes for the com-
putation of the complexity field. They then compute
the correlation between the mean velocity within a cell
and its neighboring cells. The statistical complexity is
then the product of the correlation and the entropy ac-
quired using the method from Xu et al. [XLS10]. Their
results show that complex structures become more vis-
ible when visualizing statistical complexity instead of
the vector field entropy. This work and the velocity
vector entropy computation by Xu et al. [XLS10] are
the foundations of our research.

3.3 Information in Turbulent Flows

Visualizing entropy and statistical complexity gives in-
sights into a flow with minimal prior knowledge. Xu
et al. [XLS10] state that the entropy of a vector field
should be suitable to identify critical points in non-
converging flows. They show that it can also emphasize
structures like regions near separation lines. This prop-
erty is a result of the inherent nature of entropy. Low
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entropy values represent that the orientations of vectors
in a neighborhood only vary slightly. Thus low entropy
regions depict the more laminar parts of a flow. With
rising variations in the flow directions, the correspond-
ing entropy values climb as well. Turbulent flow fields,
expected to result in high entropy values, exhibit struc-
ture depending on the chosen configuration and refer-
ence frame. High entropy values, emphasizing regions
of high disorder, are not sufficient to visualize poten-
tial regions of interest, as highly turbulent regions will
always be favored. On the other hand, statistical com-
plexity gives more nuance to the visualization, reducing
the impact of the pure disorder. As a result, using statis-
tical complexity, we aim to visualize regions containing
critical points and other complex flow patterns like co-
herent structures.

4 METHOD

We improve the computation of the entropy [XLS10]|]
by making it more robust and applicable to irregular
grids as well as utilizing dynamically computed neigh-
borhood sizes. We adapt the method from Arbona et
al. [ABMP14] from a cell-based to a point-based ap-
proach.

Our method takes a velocity field v(x,¢) as input and
computes the statistical complexity:

C(x,1) = H(x,1)D(x,1), @

where H(x,1) is the entropy and D(x,?) is the velocity
correlation at a point X € G in the flow domain G C R3
attime r € R.

4.1 Neighborhood Definition

The computation of H(x,7) and D(x,r) requires a
neighborhood definition. As stated before, we assume
that the neighborhoods applied by Xu et al. [XLS10]|
depend on the grid of the flow domain. Neighborhoods
based on grids can introduce a directional bias when
the spacings between points are not equal along the
axes. Furthermore a grid based approach may not
suitable for non-uniform grids.

Our goal is to find a neighborhood definition free of
directional bias which is applicable to any grid type.
The neighbors should preferably be distributed equally
in space so that the results of the entropy calculation are
uninfluenced by the orientation of the field. In the fol-
lowing when we mention dodecahedra we always refer
to convex, regular deodecahedra.

We base our neighborhood definition on dodecahedron
vertices as they are equally distributed on the surface of
a sphere and thus share the same distance to the point
in its center. Even though all platonic solids share this
property, we use the dodecahedron as it has the most
vertices of them, leading to a fine resolution of the
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Figure 1: Neighborhoods of size two in green around
the red point for (a) the old and (b) the new neighbor-
hood definition

neighborhood. We define the neighborhood n,(x) C G
as the union of the vertices of d equidistant layers of do-
decahedra (cf. [Figure T)). The faces of neighboring do-
decahedra layers are parallel. Note that, the number of
points contained in the neighborhood is |n;(x)| = 20d,
as a single dodecahedron contains 20 vertices. We ob-
tain a neighborhood consisting of points with uniform
radial and angular spacing.

The neighborhood vectors used for the computation are
then acquired via interpolation. To prevent aliasing due
to undersampling, we respected the Nyquist frequency
and chose the distance between two neighboring do-
decahedra layers to be 0.4 of the minimal cell edge
distance within the domain. Note that the density of
neighborhood points decreases as the distance to x in-
creases. This is justifiable as it creates differences be-
tween points in small areas of turbulence surrounded
by a laminar field and points in small laminar areas sur-
rounded by a turbulent field. The first case should re-
sult in higher entropy values which our method captures
correctly.

4.2 Binning Strategy

As mentioned before Xu et al. [XLS10] segment a
sphere into equal-sized areas using Leopardis algo-
rithm [Leo06]. This introduces a bias, as flows in the
direction of the poles are more robust to small varia-
tions in orientation than their orthogonal counterparts.
Binning, in general, can lead to vectors with small
variances in orientation being assigned to different
bins. Especially in laminar flows, small variation can
lead to an overestimated statistical complexity. An
example of the artifacts resulting from this is shown in
Section[3.11

To avoid bias introduced through the shape of the seg-
ment bins, we used the triangular faces of an icosahe-
dron as the base for our segmentation, as they all share
the same shape and size. Each of these faces can be sub-
divided into four equilateral triangles of the same area.
The user can set the number of subdivisions s € N. Us-
ing this subdivision strategy, we can provide different

consistent binning resolutions as shown in
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Figure 2: Icosahedral binning scheme using no (a), one
(b) and two (c) subdivisions

To solve the issue of overestimated complexity values
for small orientation variances, we apply a randomized
rotation to the binning icosahedron. We then repeat the
entropy calculation multiple times with different rota-
tion angles. The number of iterations k can be set by the
users. As the entropy of the velocity direction should
be invariant to rotation, we can assume that high val-
ues result from overestimation. Therefore, after k iter-
ations, we store the minimal value. The quality of the
results increases in proportion to the chosen number k
as artifacts resulting from small variances are not robust
against variations of the binning. Note that the random
rotations introduce noise. To reduce the noise without
further increasing k, we repeat the same number of it-
erations for points with a higher statistical complexity
value than all their edge neighbors. The effects of our
binning technique are discussed in Section [5}

4.3 Dynamic Neighborhoods

Choosing appropriate neighborhoods is challenging, as
two different regions might require a different number
of dodecahedron layers d to highlight regions of interest
of varying scales. To solve this, we introduce a local dy-
namic neighborhood size utilizing relative entropy. The
general concept is that we only need to add additional
layers to the neighborhood if their vectors contain new
information. Beginning with the second layer, we cal-
culate the relative entropy [KL51]] between the current
orientation distribution of the neighborhood and the dis-
tribution containing the vectors of the next layer. We
define the distributions as follows.

For each triangular bin, we compute the number of
neighbors |;(x,7)| where the corresponding (scaled)
vectors intersect the triangle before and after adding an-
other dodecahedron layer. This is divided by the num-
ber of all neighbors |ny(x,?)|, resulting in:

lAqg(x,1)| | |41 (x,1)]
S e R LPA
man) 7 = i @

where p;(x,t) is the estimate of the probability for
neighbors of point x belonging to bin i. p;(x,) de-
notes the estimate of the probability after adding the
additional dodecahedron layer. As p;" (x,7) = 0 implies

pi(X,I)
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pi(x,t) = 0, absolute continuity is provided, enabling
us to apply relative entropy:

N

KL(x,t) = i(x, 1)1 Pi%1) 4
( 7t) ;pl( 7t) ngp;L(th)’ ( )
where N = 204 is the number of bins resulting from s
subdivisions of the 20 icosahedron faces (cf. [Figure 7).
High relative entropy values indicate more significant
differences between the two distributions. If KL(x,?) is
higher than a user defined threshold », we repeat the
process by setting p;(x,7) to p;(x,t) and adding the

next layer.

4.4 Entropy and Correlation

We can now compute the entropy as follows:

H(x,t)=—

N
y pi(X,[)logzPi(Xat)» (5

i=1

where p;(x,t) is the distribution after the relative en-
tropy has fallen below the threshold » and N = 20 x
4% is the number of bins. The correlation is com-
puted by adapting the cell-based strategy from Arbona
[ABMP14] to our point based approach:

1 N

D)=Ly VD)

Sv(x, )2 +v(x;,1)? 2

where x; € n(x,?) is the i'" neighbor vertex position in

the neighborhood of point x. Note that close to bound-
aries, neighborhood points can be out of bounds and
have to be excluded from the calculation. To prevent
the correlation values from being influenced by a vary-
ing number of neighborhood points, we set N to 20d.

We can now compute the statistical complexity using
Note that the results of the presented
method are invariant to the magnitude of the velocity
vectors.

4.5 Visualization

Developing a novel and suitable visualization for the re-
gions of interest is not within the scope of this work. As
the statistical complexity C(x,¢) is a scalar field, several
established visualization techniques are available. For
an in-depth interactive analysis of the results, we apply
volume rendering [DCHS88]. This is a GPU-based ray
casting technique that renders volumes with different
transparencies based on their scalar values. We explore
the range of the results and emphasize values exhibit-
ing structure. It is to note that the utilized colormap can
be adjusted in real-time. An example of the resulting
visualization is shown in

5 EVALUATION

In this section, we present the results of our evaluation.
First, we show that our method produces the expected
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Figure 3: A comparison of the statistical complexities
of vpo(x) for r=0.01,s=1land k=5

results when applying it to analytic test cases. Then we
conduct a parameter study to provide suggestions for
finding suitable input parameters. Finally, we investi-
gate the performance of our method.

5.1 Application to Analytic Fields

To evaluate our method, we conducted experiments on
analytical 3D data sets. We construct the steady fields:

VSO(X) = [xay’Z]T vI‘Ot(X) = [ya —X, O]Ta @)

where vso(X) is a source and vpoi(x) is a rotation.
Additionally we constructed a steady Crawfis tornado
[Cra03] we denote as vc(x). The values were then
sampled on a 50 x 50 x 50 grid within the domain
[—24.5,24.5] x [-24.5,24.5] x [—24.5,24.5].

IFigure 3|shows a comparison between the classical bin-
ning method and our binning scheme applied to vyot (X).
The left image demonstrates that the classic binning can
produce artifacts. This is consistent with the results
shown in Figure 3 in [XLS10]. These artifacts, how-
ever, are not robust against the binning scheme and are
reduced. Note that, as a downside, noise is introduced.
This is a clear improvement, as the noise in the right
figure is clearly identifiable, whereas the artifacts in the
left figure could imply structure in an unknown dataset.
We discuss the effect of the number of iterations in the
following section.

IFigure 4] shows volume rendering visualizations of the
results of our statistical complexity approach in com-
parison to streamlines seeded uniformly in the field. As
expected, the center of the source field and the rotation
center of vpot(X) are the regions with the highest sta-
tistical complexity. The rotation center of the Crawfis
tornado is also clearly visible. Note that the mantle-like
surface around the tornado is inherent to the dataset and
also appears when applying vortex identification meth-
ods.

Through these experiments, it becomes clear that visu-
alizing the statistical complexity is a useful method to
highlight critical points, vortex cores, and other poten-
tial regions of interest.
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Figure 4: A comparison of the visualization of stream-

lines and the statistical complexities C(x,¢) of analytic
datasets for parameters r = 0.01,s=1and k=5

5.2 Parameter Study
5.2.1 Information Gain and Bin Resolution

The most impacting parameters in our method are the
relative entropy threshold utilized during the dynamic
neighborhood size computation and the number of sub-
divisions of the icosahedron faces used for binning. In
this experiment, we compared the results of our algo-
rithm for the Crawfis tornado defined on a 100 x 100 x
100 grid for combinations of these parameters. We ap-
ply five iterations (k = 5) to provide a robust visualiza-
tion. For this analysis, we base the evaluation on the
quality on the following criteria: (1) the highest statisti-
cal complexity values lie exclusively in the vortex core
line, and (2) medium values should be located around
the vortex core and on the mantle shaped surface (cf.

The results in show that a relative entropy
threshold of » = 0.1 is too high since the information

gained through adding a new layer is rarely enough to
surpass it. This leads to small neighborhoods which
may not be able to capture the behavior of the flow cor-
rectly (cf. [Table 1)). [Figure 3| (first row) shows that no
clear distinction between regions with different statisti-
cal complexities is possible and our criteria are not met.

A relative entropy threshold of 0.01 delivers the desired
results as it allows the neighborhoods to grow to viable
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Figure 5: Visualization of the statistical complexity on a 100 x 100 x 100 Crawfis tornado dataset with k =5 and

varying r and s

[dmin,dmax] || s=0 s=1 s=2
r=0.1 2.4 | 2.6 |29

r=001 || 2,13 | [3,21] | [2.30]
r=0001 | [2,34] | [2,52] | [2,88]

Table 1: Neighborhood size d intervals resulting from
specific subdivision numbers s and information gain
thresholds » on the Crawfis tornado dataset (the table

corresponds to|Figure 5))

sizes. Subdivision of s = 1,2 seems sufficient as the dif-
ference between areas of different statistical complexity
values becomes clearly visible.

For a threshold of 0.001 the neighborhood sizes become
larger, accentuating large-scale features. Increasing the
subdivision intensifies the phenomenon further (cf.

ble 1).

As a strategy for parameter selection, we recommend
exploring the parameter space of the threshold r, start-
ing with small values, e.g., r =~ 0.001. Choosing a small
initial value reduces the risk of false negatives. By in-

https://www.doi.org/10.24132/CSRN.3201.5

creasing the threshold, structures may persist, inform-
ing the user of potential regions of interest.

Subdividing the surface of the icosahedron one and two
times is both viable. While the first approach short-
ens the calculation time, the second one should perform
better for stronger turbulences as it can capture finer de-
tails of the behavior of a flow.

5.2.2  Number of Iterations

We conducted another experiment to determine a rec-
ommendation for the number of iterations needed to
create reliable results. We used the 100 x 100 x 100
Crawfis tornado. The relative entropy threshold was set
to 0.01, and we subdivided the icosahedron one time
since these parameter settings have produced satisfac-
tory results in the previous test.

[Figure 6|displays the statistical complexity field after a
different amount of iterations. The visual noise is dras-

tically reduced after three iterations, but some is still
present. After five iterations, most of the higher sta-
tistical complexity values are near the vortex core and
the mantle surface. Increasing the number of iterations
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Figure 6: Results of the parameter study on a 100 x
100 x 100 Crawfis tornado dataset with r = 0.01 and
s =1 for varying k

further still improves the quality and reliability of the
results, albeit decreasingly less.

In order to evaluate the relationship between the statis-
tical complexity and the number of iterations, we com-
puted
1 N
6k:NZ|Ck(Xi,t)_Ck+l(Xiat)|a ®)
i=1
where N is the number of grid points and x; € G is a
grid point. As depicted in [Figure 7| we can observe
that the &; values decrease and approach zero when k
grows. Thus when using our method there always is a
tradeoff between the runtime of the algorithm and the
robustness of the results. In practical applications, five
to seven iterations should be sufficient as the quality of
the results only increases marginally afterward.

0.3
L 021 .
“ 01} |
(1= ! 1 i T ——
0 4 8 12 16 20
number of iterations k
Figure 7: Relationship between & and k

5.3 Performance

In this section, we measure the scalability of our
method. The test was conducted on a Linux system
with Ubuntu 20.04.3 LTS, 32 GB of RAM and a
32x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz.
Since the calculation of the statistical complexity is
performed individually for every grid point, we can
utilize OpenMP for parallelization. It is to note that our
method is still not fully optimized. We tried to avoid
unnecessary calculations but making the algorithm run
on GPUs could introduce a drastic speedup as one of
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the most frequently used operations is a test for triangle
intersections.

During our experiment, we measured the runtimes
of our method for its application on Crawfis tor-
nados defined on n X n X n structured grids with
n = 50,100,150,200. We set the relative entropy
threshold to 0.01, subdivided the icosahedron faces
used for the binning one time, and let the algorithm run
through three iterations. As shown in [Figure §|a linear
increase in the number of grid points leads to a linear
increase in runtime.

100

50 -

runtime in s

0 \ \ | |
0 2 4 6 8

number of grid points in 10°

Figure 8: Relationship between runtime and grid points

We repeated the the same tests for crawfis tornados
defined on n x n x n unstructured domains with n =
50,100. The runtimes were increased by a factor of
6.32 and 7.88, respectively, compared to the structured
grids.

6 APPLICATION TO VON KARMAN
VORTEX STREET

We applied our method to a turbulent DNS dataset of
a von Kdrmdn vortex street as it is a well-studied con-
figuration. The dataset was simulated with the Gerris
flow solver [Pop04] and made publicly available by the
ETH Ziirich [BRG19]. The dataset contains a constant
flow that hits a half-cylinder, leading to vortex shed-
ding. The flow is defined on a 640 x 240 x 80 grid and
has a Reynolds number of 6400. The dataset contains
151 timesteps depicting the build-up of the flow. At
around timestep 90, the flow starts to span the whole
domain.

We computed the statistical complexities of three
timesteps in the later stages of the flows development.
The regions with the highest complexities can be found
directly around the cylinder. Behind the cylinder,
structures of high statistical complexity emerge in
regular intervals on alternating sides. With advancing
time, more of these structures form as the existing ones
move with the general direction of the flow akin to the
vortices of a von Kdrman vortex street.

We also compared the results of our method with the
vortices detected by the A, vortex criterion. A clear re-
lation is visible between the regions with the highest
statistical complexity values and the A, vortices in the
first third of the field behind the cylinder. Further be-
hind the cylinder, some vortices coincide with regions
of middle to lower complexity values, whose magnitude
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Figure 9: Visualization of the statistical complexities for » = 0.01, s = 2 and k = 5 of multiple timesteps of the
von Kédrman vortex street compared with results of A, vortex criterion displayed as red
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Figure 10: Visualization of the statistical complexities for s = 2 and k = 5 of timestep 120 of the von Karman

vortex street [Pop04] for different r

is probably diminished through them lying in areas of
high turbulence. The statistical complexity, in general,
behaves as expected and captures the behavior of the
flow.

We also ran some test on how the statistical complex-
ity behaves for different relative entropy thresholds r.
We did not change the degree of subdivision s of the
binning icosahedron as we deem 320 bins to be an ap-
propriate number to capture the behavior of a turbu-
lent flow. The number of algorithm iterations was set
to k = 5 since the results of Section indicate that
increasing this number further has no significant influ-
ence on the quality of the visualization. As seen in [Fig-
changing r has the same influence on the statis-

https://www.doi.org/10.24132/CSRN.3201.5

tical complexity values as we observed in Section [5.2]
For high relative entropy thresholds r, the regions with
the highest complexities shrink and finer structures are
hardly visible anymore. Lower r-values lead to bigger
regions of high complexity.

7 CONCLUSIONS

This paper presented an improvement of the statisti-
cal complexity calculation for three-dimensional flow
fields by making the entropy computation more robust.
We achieved this by presenting a new neighborhood
definition applicable to any grid type, determining dy-
namic neighborhood sizes based on the concept of in-
formation gain, and introducing a novel binning ap-
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proach to reduce overestimated complexity values and
artifacts. By applying our method to analytical datasets,
we evaluated our approach and showed that the statis-
tical complexity is suited to identify critical points and
other regions of interest. We have further shown that
the direct visualization of the improved statistical com-
plexity via volume rendering gives meaningful insights
into the behavior of a flow for DNS data. Thus the pro-
posed method provides an additional tool for the visual
analysis of such data.

In the future, we want to apply our method to a more
complex DNS dataset and evaluate the applicability of
our method to the expert domain. In addition, we will
develop a visualization technique suitable for the visu-
alization of statistical complexity, taking into account
the neighborhood sizes. This should enable perceiving
regions of interest of different scales. Lastly, we will
conduct research on the utilization of statistical com-
plexity in different reference frames and especially in-
vestigate how to make our method translation invariant.
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