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ABSTRACT
Typically, prostate evaluation is done by using different imaging sequences of magnetic resonance imaging. Dy-
namic contrast enhancement, one of such scanning modalities, allow to spot higher vascular permeability and
density caused by the malignant tissue. Authors of this paper investigate the ability to identify malignant prostate
regions by the functional data analysis and standard machine learning techniques. The dynamic contrast enhanced
images of the prostate are divided into the regions and based on those time-signal intensity curves are calculated.
Two classification approaches: functional k-Nearest Neighbors and machine learning Support Vector Machine are
used to model signal curve behavior on temporal variation matrix and timestamp based prostate region division
of image data. Preliminary research shows that both functional data analysis and machine learning classification
methods are able to identify highest saturation timestamp that gives best tissue classification results on timestamp
based dynamic contrast enhanced region map obtained by Simple Linear Iterative Clustering algorithm. Cancer
region classification results are better when the dynamic contrast enhanced images are subdivided into regions at
each timestamp than when using a temporal variation matrix.
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1 INTRODUCTION
Prostate cancer is one of the leading causes of cancer
death worldwide. Among males, prostate cancer has
second highest incidence rate after lung cancer accord-
ing to the research given in paper [Bra20]. Although
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death rates have been decreasing in some countries, it
remains a considerable disease affecting many patients.
Due to nature of cancer, early diagnosis and treatment
is critical. Preliminary identification of cancer involves
Prostate-Specific Antigen (PSA) screening measuring
concentration of a protein produced by the prostate, and
the concentration is elevated inpatients with prostate
cancer. Due to high level of false-negative and false-
positive cases in PSA testing which lead to incorrect
biopsies, a less invasive and more reliable procedure is
needed. With the introduction of PI-RADS in the pa-
per [Alq20], a structured reporting scheme for multi-
parametric (mp) prostate Magnetic Resonance Imaging
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(MRI) based on literature evidence given in the same
paper and consensus expert opinion, the interpretation
and performance of prostate cancer evaluation has con-
siderably improved. Cancer evaluation is done by using
different types of imaging (T2 Weighted images (T2W),
Diffusion Weighted Images (DWI), Apparent Diffu-
sion Coefficient map (ADCmap), Dynamic Contrast-
Enhanced (DCE) images, etc.), each having own acqui-
sition methods and purpose. Radiologists typically use
at least several imaging sequences for more accurate di-
agnosis.

This research is focused solely on DCE sequence.
Prostate DCE MRI data is gathered by capturing imag-
ing sequences of the entire region of prostate during
an intravenous injection of a contrast agent (typically
gadolinium). Over a course of several minutes, a set
of cross-sectional images is created at different time
moments, usually every few seconds. The role of the
contrast agent is to evaluate angiogenesis of tumor in
DCE imaging. Since blood vessels are essential to
cancer growth, tumors typically have higher vascular
permeability and density which attracts higher amount
of contrast medium as it is described in paper [Low11].
After acquiring such data, each cross-sectional image
can be segmented into regions by using algorithm such
as Simple Linear Iterative Clustering (SLIC) algorithm.
Those regions can then be aggregated to single value
by calculating mean, median or another metric of
each region. Therefore, collected data can be fitted to
functions fxy : T → I, where T is set of time points in
which observations were made, I - set of aggregated
intensity values and x, y are coordinates of the pixel.
Functional Data Analysis (FDA) can be applied on
these functions to detect, characterize, and monitor
tumors together with machine learning methods.

A lot of work was already done in prostate cancer lo-
calization research by using T2W sequences for exam-
ple in the paper [Juc16]. Moreover, DWI sequences
were used to solve prostate cancer segmentation and
severity evaluation problems. Examples of such pa-
pers are [Hot16], [WuC15] and [Bar15]. However, re-
cent improvement in DCE MRI technology, described
in paper [Cha18], create a motive to research DCE
MRI sequences. The example of such paper is [Liu19].
However, in this paper only machine learning with-
out FDA approach is tested. Therefore, the aim of
this paper is to investigate a dynamic contrast imag-
ing evaluation method for cancerous prostate zones lo-
calization in with focus to compare FDA and classical
machine learning classification approaches while val-
idating algorithms identifies cancerous zones with the
ground truth samples obtained by histological tissue
analysis after biopsy. The data for the investigation was
provided by the Lithuanian National Cancer Institute
(NVI) under the terms of bioethical agreement.

2 WORKFLOW

The structure of analysis workflow consists of data
preparation, data preprocessing, segmentation, curve
construction, data visualization, functional data analy-
sis modeling and machine learning modeling steps, Fig.
1. The data used for investigation consists of four types:
DCE MRI images (an example of single slice and 3 dif-
ferent timestamps is given in Fig. 2), prostate region
masks (see Fig. 3), cancer region masks (see Fig. 4),
and biopsy results.

The peculiarity of the MRI DCE image construction is
that during the scan patient’s prostate is scanned nu-
merous times observing contrast agent saturation in tis-
sue. Fast tissue region contrast saturation and fast agent
washout may indicate malignant tissue region. As the
maximum contrast saturation timestamp is not known
prior, thus in this research experiments are conducted
with two different data acquisition for magnetic reso-
nance images approaches: segmenting temporal vari-
ance matrix calculated between all timestamps and seg-
menting each timestamp separately.

The block labeled as Data in Fig. 1 corresponds to data
used in experiment. Examples of data types of data,
used in experiment, are shown in Fig. 2, Fig. 3 and
Fig. 4. In the Fig. 5 the overlay of these data types and
biopsy masks is provided. More detailed characteristics
of data types are explained in this section.

Figure 1: Analysis workflow structure.
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Figure 2: Example of DCE images of a single slice in
different timestamps.

2.1 DCE MRI
DCE MRI data are grayscale images that are captured
during an MRI procedure. Such images indicate the dis-
tribution of contrast agent in a particular cross-section
of patient’s pelvic region. The differentiating aspect of
dynamic contrast imaging compared to other image se-
quence types is its bi-dimensional nature. DCE MRI
sequence has a temporal dimension indicating the time
moment when the DCE image was recorded ("times-
tamp"), and a spatial dimension linking the DCE im-
age to a location of the cross-section in patient’s body
("slice"). This allows to interpret the data in a 3D time
series-based manner.

As stated earlier DCE MRI modality is the primary
target of this research. This dataset contains 135660
anonymized images of 144 patients. Each patient hav-
ing on average 41 slices (total range: 25 - 102) and 26
timestamps (total range: 5 - 55). For the case analysis
and classification one patient data having explicit can-
cerous regions confirmed by biopsy were selected as
not all of the patients have histological registration per-
formed yet. This patient has 26 slices with prostate and
31 timestamps. Authors plan to generalize the investi-
gation on all patients after finished histology registra-
tion.

2.2 Prostate region masks
Prostate masks are binary image-type data which indi-
cates the region of prostate for each DCE MRI slice (all
timestamps of the same slice have the same prostate re-
gion). Such masks were segmented manually by med-
ical experts at NVI. Since MRI covers an area both
above and below the prostate, some prostate masks are
blank (i.e., are black).

Figure 3: Prostate mask of a single slice.

Figure 4: Cancerous region mask.

2.3 Cancer region masks
Similarly, to prostate region masks, cancer region
masks are binary images showing the location of can-
cer tumor which are manually segmented by experts
and may be blank. Tumors can be of three types:
malignant, clinically insignificant, and benign. Cancer
masks indicate only the suspected region of cancer
according to medical experts. Factual tumor type is
diagnosed through a biopsy.

2.4 Biopsy results
Each patient underwent on average 15 biopsies (total
range: 3 - 25), each biopsy showing tumor type and tu-
mor severity based on a Gleason score [Alq20]. The
biopsy outcome data is split into two datasets of differ-
ent format:

• Tabular: contains numerical identifier of patient,
slice, biopsy, three Gleason scores (first, second, and
combined).

• Mask: multi-label mask showing the location of
biopsies; each biopsy has a numerical identifier link-
ing to the tabular dataset.

While biopsies provide ground truth label for tumors,
there are two flaws:

Figure 5: Overlay image combines middle image of
Fig. 2, Fig. 3, Fig. 4 and biopsy mask images: prostate
region (blue), cancer region (green), malignant biopsy
(red), clinically insignificant or benign biopsy (yellow).
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• Biopsies provide information only in a point-wise
manner. The gaps between biopsies are essentially
missing data where ground truth information is un-
available.

• To perform a biopsy, a medical expert inserts a nee-
dle into prostate and extracts a tissue sample for ex-
amination. The needle punctures several slices with-
out knowing which slice exactly the tissue was taken
from. Such process introduces a systematic uncer-
tainty, for instance, a slice having no tumors may
show positive diagnosis if cancerous tissue was ex-
tracted from a different slice above or below.

2.5 Data preparation
Before workflow data preparation is performed. The
first step of data preparation is extracting metadata from
each image object (MRI, cancer masks, biopsy masks).
Extracted metadata parameters are patient ID, times-
tamp ID, slice ID, resolution, maximum pixel intensity,
minimum pixel intensity, mean pixel intensity. This in-
formation allows to detect incompatible data (e.g. dif-
fering image resolution) or missing data (e.g. MRI im-
ages containing only pixels of identical value). The sec-
ond step is biopsy aggregation which is the collection
and aggregation of biopsy information from multiple
CSV-type files into single source for more convenient
processing.

2.6 Data preprocessing
The next step of workflow is data preprocessing. Data
preprocessing consist of 2 steps. The first step is mask
rescaling which is transformation of prostate and cancer
mask files into binary format compatible with used al-
gorithms and the other step is image rescaling which is
transformation of MRI images into appropriate format
with 8-bit pixel precision (256 grayscale values).

2.7 Segmentation
As mentioned before experiments in this research are
done with two different approaches. The first approach
is using Temporal variation matrix (TVM) calculated
between all timestamps. The first step is calculating
TVM. This step is a construction of a matrix with iden-
tical resolution as source MRI image which represents
statistical variance of signal value of each pixel between
all timestamps of a selected slice. TVM shows regions
with high (bright) and low (dark) change in signal in-
tensity over time which is used for region of interest
segmentation. Example of a TVM is shown in Fig. 6
which is calculated from slice whose timestamp exam-
ples are displayed in the Fig. 2.

The next step is TVM segmentation by applying SLIC
algorithm, introduced in paper [Ach12], to separate the
prostate region into segments. Selected SLIC algorithm

Figure 6: Temporal variation matrix calculated from
all timestamps of slice whose timestamp examples are
given in Fig. 2.

parameters are 50 and 7 for segment number and com-
pactness respectively. Those parameters were selected
using expert judgement based on the following criteria:

• Number of segments parameter should be high
enough to have separation between cancerous and
healthy tissue, but low enough to remain com-
putationally relevant and keep segments visually
distinguishable.

• Compactness parameter should capture similar in-
tensities, but still prioritize color proximity in fa-
vor of maintaining circular shape because cancerous
growth typically does not have irregular formation.

Acquired segment locations are projected back into
MRI images that were used for TVM construction (ex-
ample of TVM segments in Fig. 7). Lastly, segment-
level aggregation is performed by calculating the means
of pixel intensities inside each segment.

Figure 7: Segmented and zoomed TVM displayed in
Fig. 6.

The second approach is segmenting each MRI image
separately. The first step is segmentation of each MRI
image by applying SLIC algorithm to separate the
prostate region into segments in each timestamp sepa-
rately. Resulting in the number of segmentations which
is equal to number of timestamps. The parameters
chosen for SLIC algorithm are the same as for the
first approach. Then each segmentation is projected
to all timestamps e.g.: patient, for which MRI scan

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.7 51



was applied 30 times, will have 30 timestamps. Each
timestamp is segmented resulting in 30 segmentations.
Each segmentation is projected to all 30 timestamps.
Further workflow is applied for each segmentation sep-
arately. Lastly, segment-level aggregation is performed
by calculating the means of pixel intensities inside each
segment.

2.8 Curve construction
The resulting time series of each segment contains in-
formation of mean intensity of intensities within each
segment at the given timestamp. The greater intensity
indicates higher concentration of contrast agent. As ex-
plained in the introduction, the malignant tissue accu-
mulates contrast agent faster than a healthy one. There-
fore, these time series are used to construct functional
data which later on is transformed to represent mean
intensity growth speed within each region.
Each segment’s aggregated intensity values are used to
construct a single time series curve. Prior to this step,
each segment is labeled into binary classes. Positive
class 1 is assigned to segments which has an intersec-
tion with cancerous region mask ≥ 50%, overlaps with
at least one malignant biopsy and does not overlap with
any other biopsy. Negative class 0 is assigned to seg-
ments which does not overlap with malignant or clini-
cally insignificant biopsies and does not have intersec-
tion with cancerous region mask. Meanwhile, the re-
maining segments are not used in the training or valida-
tion. These segments are either:

• have clinically insignificant or malignant biopsy
while no overlap with cancerous region mask.

• have < 50% overlap with cancerous region mask.

• have ≥ 50% overlap with cancerous region mask but
no malignant biopsy.

The example of labeled segments is displayed in the
Fig. 8. Segments marked with green contour have neg-
ative class, while red contour - positive class. Segments
with orange contour have overlap ≥ 50% with cancer-
ous region mask and no overlap with malignant biopsy.
Furthermore, segments with white contour either have
intersection < 50% with cancerous region mask or no
overlap with cancerous region mask but have other than
benign biopsy. Segments with green and red contour
are used in modeling while the rest are not. The curves
of discrete points of this example are displayed in Fig.
9.
Afterwards, the time axis of those curves of discrete
points are normalized to interval [0, 1]. The resulting
curves of discrete points are then smoothed by using B-
spline basis function whose calculation is presented in
the paper [DeB72]. The parameters of this calculation
are:

Figure 8: Example of segment classification where seg-
ments marked with red contour have class 1, segments
with green contour - class 0 and segments with white or
orange contours are not used in modeling.

• Order - the order of polynomial function, called B-
splines. The used value for this parameter is 4.

• basis function number - number of basis functions to
use for calculation. The used value for this parame-
ter is 18.

These parameters were obtained by calculating the best
Generalized Cross Validation (GCV) score on a sin-
gle patient by using grid search-type algorithm. Tested
combination of parameters are 2, 3, 4, 5 for order and
5, 6, ..., 29, 30, 35, 40 for basis function number. Func-
tional data, related to Fig. 9, are displayed in Fig. 10.

Furthermore, in curve construction step, derivatives of
first degree are calculated from functional data. These
calculations are described in the paper [But76] and
these derivatives are interpreted as velocity of intensity
change over time. The first degree derivatives of func-
tional data, related to Fig. 10, are displayed in Fig. 11.

Lastly, these 1st degree derivatives of functional data
are registered by using landmark registration The cho-
sen landmarks are the points in t axis in which func-
tional data has a maximum value. The registrations are
performed for each patient and segmentation separately.
Registered functional data related to Fig. 11 are dis-
played in Fig. 12.

Figure 9: Example of curve created from discrete points
where red curves are curves of class 1, green curves -
of class 0 while orange is not used in modeling.
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Figure 10: Functional data displayed in Fig. 9 and cre-
ated by using B-spline.

2.9 Functional data analysis modeling
In this workflow, 2 different approaches of SLIC region
classification are tested. The first is Functional Data
Analysis approach. In this approach model is created by
using k-Nearest Neighbors (kNN) algorithm and using
functional data as training set. The neighboring param-
eter was obtained by the grid search. Seven neighbors
were depicted as the optimal choice.

2.10 Machine learning modeling
The second approach of this workflow to classify SLIC
regions is modeling by using Machine learning method
- Support Vector Machine (SVM) algorithm. Training
set used for training is extracted features from func-
tional data derivatives: integrated depth, modified band
depth, maximum intensity, time of maximum intensity
and 10 uniformly spaced intensities from discretized
curve derivative in interval [0.05, 0.95].

Due to the unbalanced class problem SVM model is
validated by using cross validation method - stratified
5 k-folds.

3 RESULTS
In the Table 1, metrics of results of SLIC zone classifi-
cation with different approaches are shown. For preci-

Figure 11: 1st degree derivatives of curves displayed in
10.

Figure 12: Registered functional data displayed in Fig.
11.

sion, recall and F1 metrics the positive class is cancer-
ous region and referred as 1. Classes are highly unbal-
anced, the number of data points with class 1 for TVM
approach is 63 while for single timestamp segmentation
- 64. Meanwhile, the number of data points with class 0
for TVM approach is 1184 while for single timestamp
segmentation - 1185.

For segmenting in each image separately approach mul-
tiple different are obtained as number of different ways
to segment the prostate to regions is equals to number
of timestamps. In the Table I., the chosen timestamps
for each FDA and modeling approach are the one which
achieve the best results. For FDA modeling it was 10th
timestamp and for ML modeling - 8th.

Number of SVM models are equal to number of folds
used in stratified K-folds method which is 5. The met-
rics of these models are aggregated by calculating mean
and standard deviation STD. The best results is pro-
duced by the kNN functional data classifier.

4 CONCLUSION
Preliminary research investigating MRI-DCE modality
scans by applying functional data analysis and machine
learning methods was presented in the paper. The re-
sults obtained by the comparison of the machine learn-
ing and FDA methods allows authors to conclude:

• Both FDA and ML based classification approaches
gives best results at almost the same tissue saturation
timestamp while using non-TVM intensity map.

• Grid search of neighboring parameter indicated that
the seven neighbors is an optimal choice giving best
classification results.

• Timestamp base SLIC application outperforms
TVM intensity mapping giving FDA kNN classi-
fication precision of 1, recall 0.65, and F1 score -
0.71.
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Metric FDA modeling ML modeling

TVM Best timestamp
SLIC segmentation TVM Best timestamp SLIC segmentation

Set - - Training Testing Training Testing
- - Mean STD Mean STD Mean STD Mean STD

Precision 0.929 1 0.969 0.016 0.8 0.267 0.960 0.08 0.7 0.4
Recall 0.413 0.625 0.504 0.036 0.303 0.125 0.719 0.109 0.5 0.316

F1 0.571 0.714 0.663 0.034 0.428 0.153 0.817 0.085 0.567 0.327
Balanced
accuracy 0.706 0.778 0.752 0.018 0.649 0.062 0.859 0.055 0.75 0.158

Specificity 0.998 1 0.999 0.0004 0.996 0.005 0.9998 0.0004 0.999 0.002
Table 1: Modelling results

• SLIC algorithm applied to TVM intensity mapped
images in ML modeling produces more stable test-
ing results in terms of standard deviation than those
obtained by SLIC applied best timestamp.

Obtained results shows potential points of further action
for the modeling results improvement:

• Class discrimination can be improved by incorporat-
ing data from the functional boxplot analysis.

• More extensive search of new features, feature
combinations, feature transformations may improve
model learning.

• Extensive search of more suitable model parameters
may improve model learning.

• Proposed workflow needs to be applied on all 144
patient data as currently not all of them has histo-
logical tissue analysis performed. Moreover, a lot
of patients DCE image data results in unusual func-
tional data. This may indicate faults in data or lim-
itations of the proposed workflow. Therefore, those
cases have to be examined.

• underrepresented classes strongly affect model’s
ability to segregate different classes. Thus resam-
pling techniques such as over-sampling as well as
configuring balancing class weights during model
training may improve class discrimination and shall
be used in further experiments with greater number
of patients.

• Further experiments have to be conducted with
greater number of patients to determine the times-
tamp for segmentation which achieves the most
accurate results.
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