
POSTER: Fast and Precise Binary Instance Segmentation of
2D Objects for Automotive Applications

Ganganna Ravindra,
Darshan

CMORE Automotive
GmbH

Germany, D-88131
Lindau

darshangr4293@
gmail.com

Dinges, Laslo
Otto-von-Guericke-

University
Germany, D-39016

Magdeburg
Laslo.Dinges@ovgu.de

Ayoub, Al-Hamadi
Otto-von-Guericke-

University
Germany, D-39016

Magdeburg
Ayoub.Al-

Hamadi@ovgu.de

Baranau, Vasili
CMORE Automotive

GmbH
Germany, D-88131

Lindau
vasili.baranov@gmail.com

ABSTRACT
In this paper, we focus on improving binary 2D instance segmentation to assist humans in labeling ground truth
datasets with polygons. Humans labeler just have to draw boxes around objects, and polygons are generated
automatically. To be useful, our system has to run on CPUs in real-time. The most usual approach for binary
instance segmentation involves encoder-decoder networks. This report evaluates state-of-the-art encoder-decoder
networks and proposes a method for improving instance segmentation quality using these networks. Alongside
network architecture improvements, our proposed method relies upon providing extra information to the network
input, so-called “extreme points”, i.e. the outermost points on the object silhouette. The user can label them
instead of a bounding box almost as quickly. The bounding box can be deduced from the extreme points as well.
This method produces better IoU compared to other state-of-the-art encoder-decoder networks and also runs fast
enough when it is deployed on a CPU.

Keywords
Extreme points, IoU, Encoder-Decoder, Instance binary segmentation.

1 INTRODUCTION
Visual recognition tasks are currently active research
topics in the areas of autonomous driving, biomedical
image processing, and scene understanding. To ac-
complish automatic visual recognition based on deep
learning, training a deep neural network to learn to
extract features from images is essential. To do this
there is a need for a lot of annotated training data.
For this, manual labeling is used, which is very time-
consuming. It includes locating manually the precise
positions, drawing bounding boxes, assigning labels,
and drawing polygons around the objects. Hence, this
process is tardy, requires a lot of manpower for labeling
enormous data and human labelers are prone to errors
as well. The objective of this paper was to develop a
fast and precise system that can perform binary instance
segmentation so that human labelers are significantly
assisted in the task of manual 2D semantic segmenta-
tion of road-scene objects.
Instance segmentation task is simultaneously solving
both tasks of object detection and semantic segmenta-
tion [Khe17, Hua19], it is needed to locate in an image
every object from a predefined set of classes as well as
to give a binary mask for each of these objects. Other
flavor of instance segmentation is binary segmentation
[Ron15], here it is only a single object that has to be

RGB
Channels

Extreme
points

Channel

4 channel input

Figure 1: Extreme points channel along with RGB
channels.

segmented, i.e. pixels are classified as foreground and
background because the segmentation happens only in
the object bounding box, which has to be obtained from
a detection algorithm or manual annotation.

Initial manual annotation of data is crucial for train-
ing deep learning models. A typical manual annotation
is drawing polygons around each object of interest. It
will be possible to significantly assist human labelers
in the task of manual 2D semantic segmentation (i.e.
specifying polygons around each object of interest in
a scene), if we develop a fast and accurate system-a

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.38 302

O
U
T
P
U
T

U-Net
architecture

RGB Extreme points

Input (4 channels)

Figure 2: Extreme points input in the U-Net architec-
ture.

neural network-for binary instance segmentation (fore-
ground/background). The network shall produce a sil-
houette of an object (e.g., a car or a person) when a user
specifies a corresponding 2D bounding box.
In order to speedup manual drawing of polygons
around objects, this paper investigates state-of-the-art
encoder-decoder architectures for binary instance seg-
mentation and proposes a method with extreme points
as shown in Figure 1. By providing only the bounding
box or extreme points (see below), one can generate
polygons through our binary instance segmentation
algorithm inside the C.LABEL labeling tool developed
by CMORE Automotive GmbH (where the present
research was performed). The proposed method sig-
nificantly assists human labelers in the task of manual
2D semantic segmentation of road-scene objects by
automatically generating polygons around each object
of interest in an image. This paper also focuses on de-
ploying the proposed method on a normal CPU rather
than using it in a GPU (human annotators often do not
have access to GPUs) such that it shall run fast enough
and also occupy little hard drive and RAM space. In
this way, it can be easily deployed with the labeling
tool. Our target was inference time ≤ 200 ms on a CPU.

2 NETWORK ARCHITECTURE
Our approach is built upon the encoder-decoder archi-
tecture with skip connections, U-Net [Ron15]. The U-
Net architecture consists of a encoder path to capture
the context, a symmetrical decoder path that enables ac-
curate object detection, and skip connections [Ron15].
The main idea of encoder-decoder networks is to sup-
plement a usual encoder network by successive lay-
ers, where pooling operators are replaced by upsam-
pling operators [Ron15]. This results in increase in
the resolution than the encoded representation. The
high-resolution features from the encoder path are ad-
ditionally combined with upsampled decoder features
[Ron15]. The decoder network can learn to produce
more accurate output based on the information from
skip connections [Ron15]. The output of the model is
the binary mask of the object in an image.
We modified the U-Net architecture in several ways:
(i) by using depth-wise separable convolutions instead

of convolutions [Cho17]; (ii) by using residual blocks
[Hez16] instead of normal convolutions; (iii) by using
dense blocks [Hua17] instead of normal convolutions;
(iv) by using contextual convolutions [Ono18]; and (v)
by using semantically similar skip connections [Zho18]
in order to improve the performance with U-Net. These
modifications didn’t lead to significant segmentation
quality improvements under our inference time restric-
tion (≤ 200 ms on a CPU), that’s why we explored pro-
viding more input data to the network.

To provide more input data to the network, we pass ex-
treme points information [Man18] to the network along
with the normal RGB input (RGB is a standard choice)
(cf. Figure 1 and Figure 2). The main intention is to in-
crease the precision of the segmented masks by letting
the network use extra information. The extreme points
are left, right, top, bottom –most pixels of the object,
i.e. the points where the object touches its bounding
box. The technique of using extreme points for binary
segmentation was introduced in [Man18]. That paper
demonstrates the networks accepting RGB channels +
extreme points perform better than equivalent networks
that accept RGB channels only. Extreme points are rep-
resented with a binary mask in the additional channel.
In the original paper, a 2D Gaussian is applied to each
of these points in the binary mask. In this work we
used drawing circle around every point. Marking ex-
treme points is as fast or faster as marking bounding
boxes. That is why we can rely on this information in
our work.

The use of an additional channel along with the input
3-channel image in the U-Net architecture [Ron15] is
shown in Figure 2. The convolution architecture is the
same as U-Net but the basic filter depth used is f = 16
in the first level. The filter size is progressively in-
creased in the encoder as: f , 2 f , 4 f , 8 f , and 16 f . Sim-
ilarly, the filter size in decoder is decreased from 16 f
as 8 f , 4 f , 2 f , and f . The input size is proportionally
decreased in every level in the encoder using max pool-
ing operation as 128× 128, 64× 64, 32× 32, 16× 16,
and 8× 8. In the same way in decoder the input size
is increased using upsampling operation from 8× 8 as
16× 16, 32× 32, 64× 64, and 128× 128. The final
output size is 128×128.

3 TRAINING
The network is trained from scratch with a total 83,403
instances for training and 15,926 instances for valida-
tion from the Cityscapes dataset [Cor16], simultane-
ously for the 9 most prevalent classes from the dataset
(“car”, “traffic sign”, “bicycle”, “person”, “rider”, “mo-
torcycle”, “traffic light”, “truck”, and “bus”). The in-
stances are re-scaled to 128×128 pixels before feeding
into the network.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.38 303

We choose Intersection Over Union (IoU) and “bor-
der error” as the evaluation metric. The “border er-
ror” is the per-pixel distance from the predicted object
boundary to the ground truth boundary. For compari-
son, we calculate different flavors of IoU, such as av-
erage IoU (aIoU- the IoU that is calculated for each
validation batch and then averaged for all the batches
to produce aIoU of that epoch), mean IoU (mIoU- the
IoU that is calculated by averaging class-based IoUs),
and instance IoU (iIoU- the IoU that is calculated by
averaging IoUs calculated per single instance) as intro-
duced in [Kir19]. The extreme points channel is cre-
ated during training as an additional channel with a bi-
nary mask and passed to the network along with a RGB
channels. We apply the following data augmentations
to instances during training: flip and rotation. We use
several loss functions: differentiable IoU loss as intro-
duces in [Kir19], combination of the IoU loss and bi-
nary cross entropy [Igl18], and our custom loss func-
tion that approximates the average distance error (see
below). Our custom loss function showed better results
than other loss functions. The average distance error is
the line integral

∫
border EDT (s)ds/L, where EDT is the

Euclidean Distance Transform and L is the ground truth
boundary length. We approximate L as

√
Ag, and the

approximate average distance error ∆d is given by

∆d =
Au −Ai√

Ag
, (1)

∆d =
|y ∪ y′| − |y ∩ y′|√

Ag
, (2)

where Au and Ai is the area of union and area of in-
tersection of the groundtruth and predicted masks re-
spectively, y is the predicted pixel probabilities, y′ is
the groundtruth binary labels, Ag is the area of the
groundtruth boundary, ∩ is the intersection operation
and ∪ is the union operation.

During validation and during training, the average IoU
(aIoU) is calculated as the metric. After a network is
trained and the best epoch is selected, we calculated
the mean IoU (mIoU), instance IoU (iIoU), and per-
pixel distance. The aIoU, mIoU, iIou, and per-pixel
distance (border error) are calculated in images scaled
to the network input size (128 × 128 pixels). Data
augmentation techniques are used only during training
(metrics are calculated over the validation dataset after
each epoch). During evaluation (testing the model after
training) over the validation dataset, data augmentation
techniques are switched off to calculate per-pixel dis-
tance, mIoU, and iIoU. The discussed approaches are
trained on one Nvidia GeForce GTX 1080 Ti GPU and
are deployed during inference on an Intel(R) Core(TM)
i5-6300U CPU for measuring the time taken for seg-
menting objects.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Distance to groundtruth pixels

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

P
re

d
ic

te
d

b
o
u
n
d
a
ry

p
ix

e
ls

in
%

U-Net (w/o data aug)

U-Net

Residual blocks

Dense blocks

Contextual conv.

U-Net++

Extreme points

Figure 3: Comparison of per-pixel distance distribu-
tions for the discussed approaches.

4 RESULTS

The network is trained from scratch with the “Adam”
optimizer and the learning rate of 1× 10−3 using the
average distance loss function. In this method, the net-
work is trained for 100 epochs with a batch size of 32,
while we observed in experiments that training starts to
converge after 18–20 epochs and the best results are ob-
tained within this range. We have used early stop crite-
ria and selected the best model. The per-pixel distance
is calculated over the validation dataset after training,
using the best model from the network.

The comparison of the border error in different U-Net
variants studied is shown in Figure 3. The approach
with extreme points has a higher probability of error
at 0 px, which implies a higher accuracy of the model.
In Table 1, the comparison of aIoU for the best models
over the validation dataset shows that the approach with
extreme points performs better than other approaches
used in this work with, 89.16% IoU. The mIoU and
iIoU, which are calculated after training (data augmen-
tation is switched off) are 90.65% and 87.25% for the
network with extreme points, respectively. These re-
sults evidently show that adding extreme points leads
to higher quality of segmentation. The comparison of
per-class mIoUs of the most interesting classes for the
discussed U-Net variants trained with data augmenta-
tions and the average distance loss is shown in Table
2. The table also demonstrates that the approach with
extreme points produces the best results for all the dis-
played classes. In Figure 4 one can see a qualitative
evaluation with examples of the important car and per-
son classes.

We found out that all the architecture modifications ex-
cept the extreme points one perform almost identically
to the basic U-Net architecture. If inference time is kept
fixed, changes in the architecture do not seem to be able
to significantly improve network accuracy. But, provid-
ing additional user input (extreme points) allowed the
network to produce significantly better results, on the
other hand.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.38 304

Approach aIoU(%) iIoU(%) mIou(%)
Inference
Time (ms)

U-Net 84.45 86.38 83.36 ~140
Residual

blocks 85.11 86.47 83.88 ~180

Dense blocks 85.88 86.99 84.92 ~320
Contextual

conv. 85.12 86.75 83.70 ~240

U-Net++ 85.47 86.10 82.73 ~380
Extreme

points 89.16 90.65 87.25 ~140

Table 1: Comparison of performance metrics of U-Net
variants trained with the average distance loss

Approach car bus bicycle person rider motor-
cycle

U-Net 90.39 90.22 77.09 80.43 75.30 76.98
Residual

blocks 90.42 89.91 76.68 80.97 75.58 76.63

Dense
blocks 90.52 91.01 77.20 81.13 75.77 77.04

Contextual
conv. 90.57 91.07 76.72 80.41 75.95 75.50

U-Net++ 90.85 91.25 77.27 81.29 75.66 76.69
Extreme

points 92.49 93.26 81.16 84.92 80.08 81.54

Table 2: Comparison of per-class mIoUs for U-Net
variants trained with the average distance loss

Figure 4: Results of our method for the car and person
class (turquoise surface is ground truth, yellow contour
the prediction).

5 CONCLUSION

Our method with extreme points in the U-Net [Ron15]
architecture achieves good performance and clearly
outperforms the other approaches discussed in this
paper. Our approach achieves 3.7 points gain of aIoU,
4.5 points gain of iIoU and 4.5 points gain of mIoU
over the basic U-Net architecture. The inference
time for binary instance segmentation is the same
for the basic U-Net and U-Net with extreme points
approaches, which is about 140 ms. In this work,
we also introduced a new custom loss function that
matches the per-pixel error slightly better than the
differentiable IoU loss. This improved architecture is
already being integrated into the manual annotation
tool of CMORE Automotive GmbH with deep learning
assistance capabilities, C.LABEL. For commercial use,
the network was retrained on an internal dataset.

One possible approach to further improve the accuracy
of segmentation results is to use Generative Adversarial
Networks (GANs) [Goo14], where the generator shall
produce a binary segmentation and the discriminator
shall distinguish true segmentation masks from gener-
ated ones. The discriminator shall essentially learn the
evaluation metric on its own.

6 REFERENCES
[Cho17] F. Chollet, “Xception: Deep learning with

depthwise separable convolutions,” 2017 IEEE
Conference on CVPR.

[Cor16] M. Cordts, M. Omran, and et al., “The
cityscapes dataset for semantic urban scene un-
derstanding,” in Proc. of the IEEE Conference on
CVPR, 2016.

[Goo14] I. Goodfellow, J. Pouget-Abadie, and et al.,
“Generative adversarial nets,” in Advances in
Neural Information Processing Systems 27. Cur-
ran Associates, Inc., 2014, pp. 2672-2680.

[Hez16] K. He, X. Zhang, and et al., “Deep resid-
ual learning for image recognition,” 2016 CVPR.
IEEE Conference on CVPR.

[Hua19] Z. Huang, L. Huang, and et al., “Mask scoring
r-cnn,” 2019 IEEE Conference on CVPR, 2019.

[Hua17] G. Huang, Z. Liu, and et al., “Densely con-
nected convolutional networks,” 2017 IEEE Con-
ference on CVPR.

[Igl18] V. Iglovikov, S. Seferbekov, and et al., “Ter-
nausnetv2: Fully convolutional network for in-
stance segmentation,” 2018 IEEE/CVF Confer-
ence on CVPRW, 2018.

[Khe17] K. He, G. Gkioxari, P. Dollar, and R. Gir-
shick, “Mask r-cnn,” 2017 IEEE International
Conference on Computer Vision (ICCV), 2017.

[Kir19] A. Kirillov, R. Girshick, and et al., “Panoptic
feature pyramid networks,” 2019.

[Man18] K.-K. Maninis, S. Caelles, and et al., “Deep
extreme cut: From extreme points to object
segmentation,” 2018 IEEE/CVF Conference on
CVPR.

[Ono18] D. Onoro-Rubio and M. Niepert, “Contextual
hourglass networks for segmentation and density
estimation,” 2018.

[Ron15] O. Ronneberger, P. Fischer, and T. Brox, “U-
net: Convolutional networks for biomedical im-
age segmentation,” MICCAI 2015, pp.234-241,
2015.

[Zho18] Z. Zhou, M. M. Rahman Siddiquee, and et al.,
“Unet++: A nested u-net architecture for medical
image segmentation,” Lecture Notes in Computer
Science, pp. 3-11, 2018.

ISSN 2464-4617 (print)
ISSN 2464-4625 (DVD)

Computer Science Research Notes
CSRN 3201 WSCG 2022 Proceedings

https://www.doi.org/10.24132/CSRN.3201.38 305

