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A B S T R A C T   

Background and objective: Diabetes mellitus manifests as prolonged elevated blood glucose levels resulting from 
impaired insulin production. Such high glucose levels over a long period of time damage multiple internal or
gans. To mitigate this condition, researchers and engineers have developed the closed loop artificial pancreas 
consisting of a continuous glucose monitor and an insulin pump connected via a microcontroller or smartphone. 
A problem, however, is how to accurately predict short term future glucose levels in order to exert efficient 
glucose-level control. Much work in the literature focuses on least prediction error as a key metric and therefore 
pursues complex prediction methods such a deep learning. Such an approach neglects other important and 
significant design issues such as method complexity (impacting interpretability and safety), hardware re
quirements for low-power devices such as the insulin pump, the required amount of input data for training 
(potentially rendering the method infeasible for new patients), and the fact that very small improvements in 
accuracy may not have significant clinical benefit. 
Methods: We propose a novel low-complexity, explainable blood glucose prediction method derived from the 
Intel P6 branch predictor algorithm. We use Meta-Differential Evolution to determine predictor parameters on 
training data splits of the benchmark datasets we use. A comparison is made between our new algorithm and a 
state-of-the-art deep-learning method for blood glucose level prediction. 
Results: To evaluate the new method, the Blood Glucose Level Prediction Challenge benchmark dataset is utilised. 
On the official test data split after training, the state-of-the-art deep learning method predicted glucose levels 30 
min ahead of current time with 96.3% of predicted glucose levels having relative error less than 30% (which is 
equivalent to the safe zone of the Surveillance Error Grid). Our simpler, interpretable approach prolonged the 
prediction horizon by another 5 min with 95.8% of predicted glucose levels of all patients having relative error 
less than 30%. 
Conclusions: When considering predictive performance as assessed using the Blood Glucose Level Prediction 
Challenge benchmark dataset and Surveillance Error Grid metrics, we found that the new algorithm delivered 
comparable predictive accuracy performance, while operating only on the glucose-level signal with considerably 
less computational complexity.   

1. Introduction 

Glucose is a fuel used by cells for energy production. However, in 
order to utilize glucose, cells need insulin. Insufficient insulin produc
tion, therefore, leads to elevated blood glucose (BG) levels [1]. Diabetes 
Mellitus is a group of heterogeneous diseases, which manifest with 
elevated blood glucose level [2]. With Type 1 Diabetes Mellitus (T1D), 
the pancreas produces no or negligible traces of insulin. With Type 2 
Diabetes Mellitus (T2D), cells develop insulin resistance. Due to this 
resistance, cells need considerably increased amounts of insulin, but the 

pancreas does not produce enough of it. In addition to other therapies 
such as multiple daily injections, both T1D and T2D can be treated with 
an external but bodily worn insulin pump [3,4] which delivers addi
tional insulin to subcutaneous tissue from an external reservoir. The 
insulin pump may either independently deliver a specified basal rate of 
insulin according to a schedule specified by the patient or doctor (the 
so-called open loop artificial pancreas), or it may be linked wirelessly to 
a continuous glucose monitoring system (CGMS) and adapt the insulin 
pump rate in real time according to BG changes (the so-called closed 
loop version of artificial pancreas). Since the former approach may 
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require additional insulin boluses at meal times along with manual basal 
rate adjustments depending on the circumstances (e.g. exercise), the 
closed loop approach is the more desirable approach of the two because 
of the potential for less patient/doctor intervention and monitoring, and 
much less need for manual insulin rate adjustments. 

However, since insulin deficiency leads to elevated BG (possibly 
causing a hyperglycemic episode), closed loop treatments involving 
excessive amounts of insulin may clear too much glucose from the blood, 
increasing the risk of a hypoglycemic episode. Therefore, the insulin 
pump in the closed loop setting must deliver a precisely regulated 
amount of insulin to avoid both hypo- and hyperglycemia. Moreover, 
chronically elevated BG progressively damages the patient’s organs. 
This creates a need for a sophisticated algorithm to precisely calculate 
the amount of insulin needed at any time. Moreover and adding to the 
challenge, insulin pump controllers are low-power devices with limited 
computing power and therefore algorithms that consume high amounts 
of energy to make calculations are not desirable. 

To explain further how CGMS works, substances such as glucose and 
insulin diffuse across capillary walls from blood to interstitial fluid, 
which bathes cells of the subcutaneous tissue. CGMS measures glucose 
levels in the interstitial fluid of subcutaneous tissue, also known as 
interstitial glucose (IG). It does not measure the blood glucose directly. 
In particular, CGMS sensors have a tiny needle that is inserted into the 
subcutaneous tissue that the measures electric current produced by a 
chemical reaction with the IG. For technological reasons (such as the 
way the CGMS needle is designed) and additionally for physiological 
reasons, IG usually lags behind BG. Modern CGMSes therefore attempt 
to estimate current BG from the needle measurements in order to 
partially eliminate these physiological and technological lags. Never
theless, the process is complicated as insulin moderates activity of 
GLUT-x glucose transporters with a non-linear diffusion rate of glucose 
gain and clearance from interstitial fluid [5–7]. Consequently, intersti
tial glucose is a delayed and distorted image of BG, making BG predic
tion a non-trivial task. Generally, we can assume a mean lag about 8 and 
10 min for adolescents and adult patients respectively [8]. 

To clarify, in this paper BG denotes glucose levels measured in a 
blood sample. IG denotes a CGMS estimate of BG which, as discussed 
above, can differ from true BG. In the practice, the T1D patient 
sporadically (up to 4 times a day [9]) draws a drop of blood to measure 
BG in order to calibrate the CGMS. The BG measurement is sporadic due 
to the associated pain and discomfort. Alternatively, the patient can use 
a factory calibrated sensor [10,11]. CGMS is minimally invasive and 
provides continuous readings. Therefore, IG is the suitable glucose-level 
time series, on which to base the prediction and against which to 
calculate the prediction error, using a specific error metric. Currently, 
the ISO 15197 and FDA 2014 standards specify the desired CGMS ac
curacy [12]. Specifically, one of the ISO 15197:2013 requirements is 
that 95% of the measurement errors do not exceed 15% relative error. 
Relative error is defined as absolute difference between estimated (e.g. 
predicted) and measured glucose level, divided by measured glucose 
level. Average relative error between 3.25% and 5.25% has a nearly 
100% probability of satisfying this ISO 1597:2013 requirement [13]. 

When calculating a glucose-level prediction, the prediction horizon 
(PH) is the time distance of the predicted level since the current level. 
Longer PH suffers from the possibility of unanticipated events such as 
meal intake, patient-administered insulin boluses or increased physical 
activity. Therefore, the prediction error is directly proportional to PH. 
To compare different prediction methods, PH is usually 30 or 60 min in 
the literature [14]. 

To predict IG, a researcher can devise a model that either utilizes the 
knowledge of physiological effects (for example, a first order differential 
model with components corresponding to physiological compartments 
such as the liver etc), or alternatively make less/no use of glucose 
physiology and instead utilize statistical, regression and/or artificial 
intelligence (AI) methods. In such a case, the researcher treats the IG 
readings from a CGMS as a time series and assumes that the past is 

sufficiently similar to the future in order to make the predictions work. 
AI methods largely include neural networks (NN) [15–17] i) as such 
methods have proven the most accurate. 

While direct NN based prediction from IG time series is an intriguing 
research problem, additional information such as the typical timing of 
meals, their carbohydrate content (CHO), and other information such as 
exercise times, can also be used; alternatively these additional physio
logical data can be used to correct the predictions of the AI model. This 
leads to a sophisticated and complex system with intriguing possibilities. 
In recent years, a BG-prediction challenge (BGLP) has run, with re
searchers competing to develop BG prediction models [14]. Each iter
ation of the competition attracted a substantial number of entries, most 
of which concerned deep learning for regression based approaches. Only 
a few entries focus on other ideas such as classification, such as [16]; or 
using alternative machine learning models. 

In the challenge, many entries chose energy-intensive approaches as 
such as deep learning. The best BGLP 2020 method is a complex neural 
network [15]. While accurate, such complexity suggests that the model 
predictions cannot be reliably explained or understood. Explainable 
models, on the other hand, can be further validated using analytical 
methods, to increase the safety of the entire insulin-delivery system. 

Diabetes healthcare professionals have already agreed on a threshold 
relative error, below which a BG prediction system is clinically accurate 
enough. Errors can be further quantified by clinical impact. Three such 
approaches are the Clarke Error Grid Analysis [18], Parkes error grid 
[19] and Surveillance Error Grids (SEG) [20]. SEG is the most recent 
one. Each of these error analysis approaches defines a 2D grid of pre
dicted BG levels vs actual BG levels. The grid is then divided into 
different zones of prediction error, accordingly to their safety. For 
example, one type of prediction error may be insignificant enough that 
the clinical action resulting from it makes no change, regardless of what 
the relative prediction error is. On the other hand, prediction error may 
be so wrong that it leads to a harmful clinical treatment. 

Utilising the SEG approach, 30% relative prediction error is known to 
satisfy its safe zone. The BGLP challenge uses mean relative error 
(MARD) and root mean square error (RMSE) to establish a ranking of the 
competing methods. Contrary to this approach, we trade the precision 
below the 30% SEG relative error for a significantly reduced computa
tional complexity. In this paper, we prove feasibility of this approach. 

Computational costs are important for real-time devices such as 
artificial pancreas [21]. Therefore, we adapted the Intel P6 branch 
predictor algorithm into a proposal of a predictive method that is 
explainable, has low computational costs and clinical accuracy compa
rable to the best BGLP 2020 method, and does not have the negative 
properties of the deep NN solutions to this problem. We call the resulting 
algorithm Pattern Prediction. 

2. Methods 

Patients with diabetes need BG to be kept within a desired range, to 
avoid hypoglycemic episodes and long periods of elevated BG, including 
hyperglycemic episodes. As a response to various activities such as meal 
ingestion, increased physical activity, insulin dosage, and internal 
events of the glucose metabolism, there are certain, recurring patterns of 
BG change. Due to the blood and interstitial glucose relationship, we can 
observe these recurring patterns in IG as well. 

2.1. Pattern prediction 

To detect ingested meals in the IG signal [22,23], classified recent IG 
movements as accelerating/decelerating/steady, increase/decrease or a 
constant pattern. In the IG signal, each pattern is defined to occur be
tween zero IG derivatives of the first or second order. 

To reduce the computational cost, we propose sampling the most 
recent 15 min of IG signals with three levels at 5 min intervals. The 5 min 
interval period matches frequently used CGMS sensor frequencies. We 
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derived the 15 min interval from empirical data as longer intervals did 
not improve the results with the proposed patterns. 

As the IG signal is noisy due to various physiological effects, when 
the CGMS sensor needle measures the electrical current, CGMS smooths 
the measured signal [24]. Therefore, we do not apply any additional 
smoothing but consider two IG levels equal, if their absolute difference is 
not greater than 0.1 mmol/L. 

Using boolean acc symbol as an indicator, let us denote a detected 
acceleration/deceleration as following: 

acc = |IGt− 10 − IGt− 5| < |IGt− 5 − IGt− 0| (1)  

Let us now define the following further boolean indicators, which will 
simplify the pattern definitions that follow: 

aeb = |IGt− 10 − IGt− 5| <= 0.1 (2)  

alb = (IGt− 10 < IGt− 5) & !aeb (3)  

agb = (IGt− 10 > IGt− 5) & !aeb (4)  

bec = |IGt− 5 − IGt| <= 0.1 (5)  

blc = (IGt− 5 < IGt) & !bec (6)  

bgc = (IGt− 5 > IGt) & !bec (7) 

In this set of indicator definitions, a, b and c refer to a sequence of 
three IG sensor readings, while e, l and g refer a relationship between a 
pair of these readings. For example, alb defines an indicator that is true 
whenever the first sensor reading is less than the second sensor reading 
by more than a margin of 0.1 mmol/L. 

Next, we define the patterns that we use. These patterns are similar to 
those in Ref. [22]; but we additionally define convex and concave pat
terns. Each pattern can be defined intuitively as a logical combination of 
the indicators defined in Equations (1)–(7), and the exact pattern defi
nitions are given in Table 1. Examining this table, we can see that all of 
the patterns besides “Steady” can be grouped into corresponding pairs. 
For example, the pattern “Acceleration” (defined as an accelerating in
crease across all three time points) and the pattern “Deceleration” are 
inverses. Similarly, “Convex” (defined as a peak at time t − 5) can be 
paired with “Concave” (defined as a trough at t − 5). We also make 
subtle distinctions between IG movements in the same direction. For 
example, both the “Deceleration” and “Decrease” patterns indicate 
decreasing IG readings, but with different degrees of rapidity in both 
cases. 

Fig. 1 illustrates different patterns and the principle as a particular 
combination of pattern and discretized IG identifies particular IG levels, 
from which the pattern-prediction method predicts future IGt+ PH. 

Future IGt+ PH follows IGt with the PH delay. To predict it, we 
adopted the two-level adaptive branch-predictor algorithm described by 
Ref. [25]. Superscalar processors such as Intel P6 use this predictor to 
guess future program branching. In a computer program’s machine 
code, there are conditional jumps and call instructions at specific 

addresses. For such an address, the processor maintains a sequence of 
taken/not taken branch history. Such a sequence makes an integer of an 
arbitrary length. The processor then interprets this integer as an index 
into a pattern table. The pattern table comprises 2-bit saturating coun
ters, which determine branch prediction per each pattern. 

With a healthy subject, the body keeps BG within the desired range 
by applying various regulation mechanisms such as insulin and glucagon 
triggered reactions to the changing BG. With diabetes, either the patient 
or artificial pancreas regulates BG by following certain rules on insulin 
dosing. This regulation process has a strong resemblance to a computer 
code with jumps conditioned on specific BG levels and its changes. 
Therefore, we consider the proposed approach as feasible. 

While a superscaler processor predicts a boolean value when 
executing a conditional computer code, we predict a floating-point 
number that represents glucose level. As this makes our task harder, 
we made the following considerations:  

● As the instruction address, we used discretized IGt.  
● As the branching history pattern, we use the pattern lookup ordinal 

number as described in Table 1. 
● To enable floating-point number prediction, we replaced each satu

rating counter with a single prediction - i.e.; parameters which we 
can determine using an external solver. 

The IG discretization is necessary to limit computational and mem
ory requirements of the pattern prediction method. Arbitrarily, let us 
consider a glycemic range between a low glucose level threshold of 3.0 
mmol/L (LG) and a high glucose level threshold of 13.0 mmol/L (HG). 
Further, let us discretize the LG-HG range to 30 uniformly spaced slots. 
As a result, we effectively discretize the overall glucose-level range into 
32 different slots - any glucose level equal or below LG, 30 glucose levels 
between LG and HG, and any glucose level equal or greater than HG. 

Glucose levels below LG or greater than HG require immediate 
attention, which has to lead to a corrective action to avoid serious hypo- 
or hyperglycemia. In such cases, the entire system cannot be left unsu
pervised as it has already failed to keep the patient safe. Therefore, we 
limit the prediction to indicate levels between these two dangerous 
states only, because any autonomous function of the system is no longer 
trusted outside of these extreme levels. 

The pattern prediction method has 9 patterns per 32 discretized IG 
levels. This makes 9 × 32 = 288 parameters, which we can determine 
with an external solver such as Meta-Differential Evolution (MetaDE) 
[26,27]. For the fitness function to be optimised by MetaDE, we used 
average relative error plus an unbiased estimation of standard deviation 

Table 1 
Detected IG patterns.  

Pattern Condition Lookup Ordinal 
Number 

Deceleration agb & bgc & acc 0 
Decrease agb & bgc & !acc 1 
Convex agb & !bgc 2 
Steady-Decrease aeb & bgc 3 
Steady-Increase aeb & blc 4 
Concave alb & !blc 5 
Increase alb & blc & !acc 6 
Acceleration alb & blc & acc 7 
Steady, no significant 

change 
None of the above conditions 
apply. 

8  

Fig. 1. Illustration of pattern identification to glucose-level prediction.  
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of relative errors to quantify the difference between the measured and 
predicted glucose-level signal. 

2.2. Experimental setup 

We used the SmartCGMS framework [28] as the platform to imple
ment the pattern-prediction method. SmartCGMS is a continuous 
glucose monitoring and controlling software framework. It is capable of 
reading various input signals such as IG, temperature, accelerometer, 
heart rate etc. Data can come from either real physical wearable devices 
or from simulated devices replaying previously recorded sensor read
ings. Stacks of further iterative processing are then applied to transform 
the input signals into other signals. To illustrate with a use case relevant 
to this work, SmartCGMS can periodically read the current IG signal to 
predict future IG, then use this prediction signal as an input to produce 
insulin pump control commands. 

First, we executed the best BGLP 2020 method [15] to obtain 
state-of-the-art benchmark results, which could be viewed as an upper 
limit on IG predictive performance without regard to the interpretability 
or energy consumption of the model. We downloaded the original public 
implementation of this method by its author. 

The BGLP 2020 dataset comprises data from years 2018 and 2020. 
We executed the state of the art baseline method on data of both years at 
specified lookaheads. This produced a series of timestamped glucose 
level predictions for the test data for each prediction horizon. 

For each patient in the BLGP dataset, there are two files of multi
variate time series data. Respectively, they are the training and testing 
data with the testing data occurring chronologically immediately after 
the training data. The approximate sizes of these data splits are 134,790 
training examples and 31,671 testing examples, with CGM sensor 
readings every 5 min for most of the period covered by the data, though 
gaps in the time series do exist and must be accounted for [14,29]. 
further describe the BGLP dataset in detail. We created a SmartCGMS 
configuration that replayed the training glucose levels only and from 
this data constructed pattern prediction models for each patient. The 
models effectively store the most recent glucose levels for each pattern 
as discretized IG. 

Next, we configured SmartCGMS to merge BGLP testing data with 
the predictions of the best BGLP2020 method. Then, we replayed the 
merged data to compute IG predictions with the pattern prediction 
method. To obtain minimum required prediction accuracy, we also 
shifted the IG signal in time by the respective PH. Eventually, this 
SmartCGMS configuration produced a single log, which contained time- 
stamp, IG, time-shifted-IG and IG prediction by both methods - the 
BGLP2020 best method and the pattern prediction method. We repeated 
this procedure for PH from five to 60 min, stepping the PH up in in
crements of 5 min. 

A key advantage of the BGLP competition is the availability of the 
public dataset. The BGLP organizers acquired the dataset with no prior 
consideration of any of the competing methods. This allows a fair 
comparison of different methods. With SmartCGMS, we strengthened 
this as SmartCGMS allows a strict isolation of the prediction method 
from the input data. With SmartCGMS, the method receives the input 
signals continuously without exposing the entire dataset at once. It be
haves exactly as would a real CGMS sensor. 

Eventually, we processed the log with all the predictions. In the IG 
signal, there are discontinuities caused by various reasons. For example, 
there could be signal loss or the CGMS-sensor needle may loose its grip. 
SmartCGMS ensures that all discontinuities are handled properly and in 
exactly the same manner for all predictive methods. Moreover, this 
particular SmartCGMS configuration ensures that all predicted levels 
less than LG and greater than HG are considered equal. As a result, we 
achieve a completely fair comparison of different methods. 

3. Results 

When recording predictions of the evaluated prediction methods, we 
produced a sorted sequence of tuples of the form (time stamp, IG, time 
shifted IG, BGLP2020 best method prediction, pattern-prediction 
method prediction). All the levels share exactly the same time stamp. 
Then, we calculated relative errors for each prediction method and 
sorted them by prediction method. Relative error as a metric was dis
cussed previously, and the specific definition of relative error for our 
application is given by Equation (8). 

relative_error=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if IGmeasured<LG& IGpredicted<LG

0 if IGmeasured>HG& IGpredicted>HG

|IGmeasured − IGpredicted|

IGmeasured
otherwise

(8)  
By sorting the predictions of the different methods by relative errors, 

we can then calculate the empirical cumulative distribution function of 
relative error (ECDF) for each prediction method [30]. In Fig. 2, we 
plotted percentiles of a particular relative error as a function of PH. In 
particular, we plotted the percentiles for the following relative errors: 
10%, 15%, 20% and 30%. Examination of the figure shows that for 
relative errors under 30%, the deep learning approach has the best 
predictive performance, followed by the pattern prediction method, 
followed by the time shift method. As the relative error increases, 
however, the gap between the NN method and pattern prediction nar
rows. By the 30% relative error mark, pattern prediction outperforms 
the deep learning approach with clinically useful predictions being 
made approximately 38 min in advance in contrast to the deep learning 
approach with useful predictions up to approximately 34 min in the 
future. 

Fig. 3 gives average relative error, average relative error plus stan
dard deviation of relative errors and relative error at 95% percentile. 
These markers relate to the ISO 15197 and FDA 2014 standards, as 
discussed in the first section. This plot tells a similar story to that shown 
in Fig. 2: pattern prediction and the best BGPL competition method are 
close in predictive performance at short PHs but diverge after the 30 min 
PH mark (with the exception of the average metric), and both methods 
consistently outperform timeshift. 

Tables 2 and 3 break PH and 30% relative-error percentile down to 
the individual patients. Table 2 gives the percentage of predictions with 
relative error less than 30% for 25, 30 and 35-min PHs. Table 3 gives the 
maximum possible PH, for which at least 95% of predicted IG has 

Fig. 2. Sliced ECDFs of the particular prediction signals.  
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relative error less or equal to 30%. The tables show that pattern pre
diction on average is equivalent to the NN method at the 25 min PH, but 
exceeds the NN method at the 30 and 35 min PHs. 

Fig. 4 explains the source of prediction errors for a single patient, 
comparing the pattern prediction algorithm’s prediction to the best 
BGLP 2020 method’s predictions to the actual IG readings. This dem
onstrates the method-design issues of trading the accuracy for low 
computational complexity. From this figure, we can see that the NN 
approach tracks the IG levels reasonably well, but occasionally wrongly 
anticipates rises in BG levels where none occur. The pattern prediction 
method, on the other hand, tends to oscillate its predictions more, most 
likely due to the effect of the glucose level discretization. Both methods 
however correctly signal transitions of IG across the high glucose level 
threshold. 

4. Discussion 

Our results (shown in Figs. 2 and 3) indicate that the BGLP2020 best 
method outperforms the pattern-prediction method for the 10%, 15% 
and 20% relative errors. With 30% relative error, the pattern-prediction 
method is better than BGLP2020 best method for all PHs with the respect 
to SEG. A consensus of healthcare professionals, reflected in SEG, 
defined 30% relative error as clinically accurate enough. 

Interestingly, time-shifted IG produced prediction results that could 
often be used reliably up to 25-min PH. This confirms the necessity to 
include time-shifted IG as a baseline method giving a minimal required 
predictive performance when evaluating any IG prediction method. 

The pattern prediction method exhibits a certain oscillation due to 
the discretization effect, as mentioned above (see Fig. 4). Fig. 5 depicts 
the possibility of post-processing the prediction signal, particularly with 
weighted moving average. Suitable post-processing is a subject to future 
research, including error rate grid analysis. 

To summarise, we successfully reused an existing body of a cross- 
domain knowledge on branch prediction for IG prediction. We adop
ted a relatively early approach to branch prediction from the Intel P6 
processor due to its simplicity. Over time, more effective predictors 
appeared for processors. However, not all of the newer branch predictors 
can be adopted due to the taken/not taken branch nature of the problem. 
Nevertheless, some of the ideas in the more advanced branch predictors 
could possibly be used to improve the prediction accuracy of our pattern 
prediction algorithm further, such as indirect-branch predictors. 

Furthermore, the pattern prediction method uses the IG signal only. 
Thus, it is resilient to human behavior such as unannounced meals and 
wrongly calculated or misreported insulin boluses that can often occur 
when patients are required to frequently enter information. 

Fig. 3. Relative-error markers.  

Table 2 
Cumulative probabilities [%] of 30% relative error with 25, 30 and 35-min 
prediction horizons. 
(greater is better).  

Patient ID Time-Shift Pattern Prediction BGLP Best 

BGLP 2018 
559 96–95 – 93 98–97 – 96 98–96 – 94 
563 98–97 – 96 99–98 – 98 99–98 – 98 
570 99–99 – 98 100–99 – 99 99–99 – 98 
575 93–90 – 88 97–95 – 94 96–95 – 93 
588 98–96 – 95 99–98 – 98 99–98 – 98 
591 93–90 – 87 97–95 – 93 96–95 – 93 
BGLP 2020 
540 91–87 – 83 97–95 – 92 96–94 – 90 
544 98–96 – 94 99–98 – 97 97–96 – 94 
552 96–93 – 90 99–98 – 97 99–98 – 96 
567 93–90 – 88 98–97 – 96 98–95 – 93 
584 96–95 – 93 98–97 – 96 98–97 – 95 
596 96–94 – 92 98–98 – 96 97–96 – 95 
Average 96–93 – 91 98–97 – 96 98–96 – 95 
Minimum 91–87 – 83 97–95 – 92 96–94 – 90 
Count of ≥95 8–6 – 3 12–12 – 10 12–11 – 6  

Table 3 
Maximum prediction horizon [minute] with relative error less or equal to 30% 
for at least 95% of predicted levels (greater is better).  

Patient ID Time-Shift Pattern Prediction BGLP Best 

BGLP 2018 
559 30 35 30 
563 35 50 50 
570 45 60 45 
575 20 30 30 
588 35 45 45 
591 20 30 30 
BGLP 2020 
540 20 30 25 
544 30 40 30 
552 25 40 40 
567 20 35 30 
584 30 35 35 
596 25 40 35 
20 PH Count 4 0 0 
25 PH Count 2 0 1 
≥30 PH Count 6 12 11  

Fig. 4. Subject 544, 30-min prediction horizon.  
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When comparing the methods in the terms of hardware re
quirements, the BGLP2020 best NN has total of 55,524 parameters. The 
pattern prediction method has 288 parameters plus an additional 10 wt 
used for smoothing Weighted Moving Average signal. This makes 298 
parameters, which is approximately a half percent of the quantity of 
floating-point parameters required by the NN. Additionally, in the BGLP 
Challenge dataset, there are a total of only 31,671 test examples. Given 
the number of parameters in the NN, there is a high risk that a NN could 
easily be overfit to the data. On the other hand, we are sure that our 
pattern prediction model is not overfit due to the order of magnitude less 
parameters. 

Finally, when making predictions and due to the high number of 
parameters, the NN requires many floating-point operations to predict a 
single glucose level. The proposed pattern prediction is merely a two- 
level look-up table, and the weighted moving average would be the 
most complex computation done. 

Due to the difficult interpretability of long-short term memory NNs, 
Cappon et al. adopt Shapley Additive exPlanations (SHAP) [31] to 
interpret deep learning model predictions. Using SHAP, they were able 
to identify impact of each input feature on model output obtained. 
Nevertheless, they approach is still NN and therefore the 
pattern-prediction approach is considerably less computationally 
intensive. In our opinion, the pattern-prediction approach is also intui
tive to healthcare professionals and patients. 

5. Limitations 

One of the practical issues are the missing glucose levels due to 
sensor dropouts (for example, when the sensor battery runs out). One 
possible approach is to incorporate prior regularization in the model 
parameters identifications, which can handle the missing levels [32]. In 
our approach, SmartCGMS automatically detects discontinuities due to 
sensor gaps and applies the proposed model only when there is a 
contiguous time series of sensor reading inputs available. This obviates 
the need to impute missing values, and therefore we do not need to be 
concerned with the effectiveness of different imputation methods. 
Methods with a larger input window would have a more pressing need to 
handle missing values, however. Since the pattern prediction model 
requires only three past values, the prediction restarts after 15 min since 
the last discontinuity. Such a short period should not lead to an unex
pected, rapid change of glucose level unless the patient is already in a 
critical state, when the patient should already be under a medical su
pervision anyway as its insulin-pump controller cannot be no longer 

trusted. 
A period of CGMS sensor dropout is dynamic. It ranges from minutes 

to hours. With smaller periods, it is possible to reconstruct the missing 
glucose levels [26]. With larger periods, the reconstruction reliability 
decreases. By letting SmartCGMS to handle the discontinuities as 
described, it leads to a less complex program code. Otherwise, we would 
have to implement a specific decision-making based on the period 
length, thus increasing the program code complexity. 

6. Conclusion 

To conclude, we have demonstrated that a simple, explainable 
method can produce acceptable clinical accuracy. As insulin pump 
controllers are low power devices with reduced computational power, 
we argue that we need to pay more attention to the practical design 
issues once we reach the acceptable clinical accuracy. Such issues 
include input data size, energy required for model inference, memory 
and computing power requirements, and explainable predictions. Such 
characteristics enable a static analysis of the model that in turn enables 
patient’s safety by design. NNs, on the other hand, are less safe because 
the only issue usually addressed is accuracy. 

In the near future, we expect an emerging need for a future minia
turization of medical devices. While such a miniaturization would 
improve patient satisfaction with easy hiding of the CGM sensor and 
insulin pump, it would also require new algorithms that would consume 
less power. Our approach points towards this direction. 
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