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Abstract—The modular addition is used as a non-linear
operation in ARX ciphers because it achieves the requirement
of introducing non-linearity in a cryptographic primitive while
only taking one clock cycle to execute on most modern archi-
tectures. This makes ARX ciphers especially fast in software
implementations, but comes at the cost of making it harder to
protect against side-channel information leakages using Boolean
masking: the best known 2-shares masked adder for ARM
Thumb micro-controllers takes 83 instructions to add two 32-bit
numbers together. Our approach is to operate in bitsliced mode,
performing 32 additions in parallel on a 32-bit microcontroller.
We show that, even after taking into account the cost of bitslicing
before and after the encryption, it is possible to achieve a higher
throughput on the tested ciphers (CRAX and ChaCha20) when
operating in bitsliced mode. Furthermore, we prove that no
first-order information leakage is happening in either simulated
power traces and power traces acquired from real hardware,
after sufficient countermeasures are put into place to guard
against pipeline leakages.

Index Terms—Boolean masking, modular addition, side-
channel, bitsliced, ARM Thumb

I. INTRODUCTION

The modular addition is used as a cryptographic primitive
in add–rotate–XOR (ARX) ciphers, because it is a non-
linear operation with some degree of diffusion that can
be achieved (for some modulo) in a single clock cycle
on most processor architectures. For example, the addition
modulo 4294967296 (or 32-bit modular addition) can be
executed with a single instruction on ARM cores commonly
found in cheap Microcontroller units (MCUs). Thanks to the
properties of the modular addition, ARX ciphers such as
Chacha20 can perform encryption and decryption operations
efficiently without hardware acceleration.

The disadvantage of using modular addition as a cryp-
tographic primitive is that it becomes harder to protect the
cipher against side-channel attacks using Boolean masking.
Jungk et al. [1] explains these challenges, and contributes
the fastest known 2-share masked software threshold im-
plementation of the modular adder for the ARM Thumb-2
architecture. In particular, the adder proposed by Jungk et
al. [1] takes 83 instructions to perform the 32-bit modular
addition of two input numbers, each provided as 2 shares,
without causing first order side channel information leakage
through power traces simulated through Micro-Architectural
Power Simulator (MAPS).

A. Boolean Masking

Boolean masking protects against side channel attacks up
to the (n− 1)-th order by splitting the input and the output
of the cryptographic operation in n shares. In other words,
probing a side-channel (such as power utilization) at up to

n− 1 points in the circuit and in time does not give enough
information to derive secret data (such as the key) from a
masked cryptographic implementation.

The input x is masked by performing an exclusive-or
(XOR) operation with (n−1) random numbers (r1, ..., rn−1),
then the masked input will be composed of n + 1 shares:
(r1, ..., rn−1, x ⊕ r1 ⊕ ... ⊕ rn−1), noting that the original
input information is still obtainable by XORing together all
the n shares. The encryption and decryption algorithms are
then implemented to operate on the n shares with care to
not leak information by ensuring that the power utilization
of each operation (estimated for example by the Hamming
weight of each value being written in a core register) is not
correlated to any secret information. In particular, [2] and
[3] give tools on how to prevent that the construction of
a Boolean masked algorithm leads to information leakage
though side-channels. Finally, the output of the cryptographic
algorithm can be obtained by XORing the n output shares.

B. Bitslicing

Bitslicing has been used in cryptography to protect against
cache timing attacks on S-Boxes on algorithms such as AES,
as well as to implement Boolean Masking in other ciphers
[4].

In a bitsliced realization of an algorithm, the variables are
”sliced” along the bits so that a n-bit variable will be sliced in
n parts that will be stored in n different registers. Since each
register is only be able to contain one bit of each variable, the
remaining bits of the registers are used to execute multiple
parallel copies of the algorithm, such as encrypting multiple
blocks of plaintext in parallel.

C. Search of Boolean maskings

Gross et al. [5] and Biryukov et al. [6] show how exhaus-
tive search can be used to find the optimal first-order Boolean
masking of the AND and OR operations. However, the time for
the exhaustive search approach grows exponentially with the
number of input variables, the required shares, and available
instructions on the desired architecture.

An upper bound can be estimated on the size of the
search space by evaluating the maximum number of different
columns that can be written within the truth table where the
inputs are the input shares, which is 2(2

(n·m)) where m is the
number of inputs and n is the number of shares. As each
expression which combines the inputs will result in one of
these 2(2

(n·m)) columns, searching a Boolean masking within
corresponds to searching a group of n of these columns that
when XORed together give the desired unmasked output, as
well as the list of operations that leads from the input columns
to this output.
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Fig. 1. First-order leakage-free shared full adder network implemented using
12 ARM Thumb-2 instructions. The NOT gate is not counted since ARM
has the BIC instruction that can perform the AND and NOT operations in
one instruction.

When the problem is the AND operation with 2 inputs and
2 shares, the total number of possible combinations of the
shared inputs is 216 and the algorithm described in [6] finds
an optimal implementation with just 6 ARM instructions in
11539239 iterations. When the problem is a Full Adder with
3 inputs (A, B and Carry) and 2 shares, the total number
of possible combinations of the shared inputs is 264, and the
algorithm does not find a solution in several days of execution
on a modern personal computer.

II. CONTRIBUTION

Our contribution is a masked full adder with no first-order
leakages, which takes three inputs (A, B and Ci), and returns
two outputs (S and Co), using the bitwise operations found
on any inexpensive ARM Thumb-2 core. This full adder can
be iterated across all the bits of a bitsliced variable as a
simple ripple carry adder, summing 32 variables in parallel
on the target architecture. The definition of the output of the
full adder is:

S = A⊕B ⊕ Ci (1)

Co = ((A⊕B) ∧ Ci) ∨ (A ∧B) (2)

The first and most obvious way to implement the full adder
would be to take the SecAnd and SecOr gadgets from [6]
and simply using them to realize the circuit in formulas 1 and
2. This would lead to a full adder with no first-order leakage
realized in 22 instructions (6 instructions for each AND and
OR gate, 2 instructions for each XOR gate, with one XOR gate
shared amongst the two formulas). Therefore 22 is the upper
bound on the number of instructions necessary to implement
the masked full adder.

Each of the two outputs can be considered as a separate
problem, but the sum output S is simple to realize because
it is only made of XOR operations and any partition of the
input shares in two groups is a suitable masking of S as
long as either group is not empty and not equal to an input
variable. Meanwhile, output Co is harder to realize since it
is a non-linear function of the inputs.

A. Search algorithm

Our search algorithm is an optimization of the one used in
[6], but caches a truth table column for each node to be able
to instantly check for leakage though the technique explained
in [3] where all the rows of a truth table are grouped by their
secret (unmasked) input and summed group-wise to easily

compare if the Hamming weight is uniform across different
secret inputs.

A first basic unguided version of our exhaustive search
algorithm tries to create a massive truth table where all the
possible combinations of the inputs fulfilling the conditions
from [3] are stored.

Each column is stored as a tuple (n, f, x, y), where n is
a 64-bit integer encoding the binary values of the truth table
(note that 64=26 and 6 is the number of binary inputs), f is a
binary operation selected from the pool of available bitwise
operations available on the target architecture, and x, y are
the indices of the two columns selected as operands for the
operation such that n = f(nx, ny) if nx and ny are the value
of n for the columns at positions x and y. This way it will
be possible to calculate what was the sequence of operations
necessary for reaching each column in the truth table.

At the start of the algorithm, the truth table will only
contain 6 columns representing the identity function of the
6 inputs (a0, a1, b0, b1, c0, c1). At each iteration, the truth
table is extended by adding all the columns which can be
obtained by combining any two present columns with any
of the available operations, excluding those columns which
don’t fulfill the condition of equal Hamming weights between
unmasked groups from [3]. If a column is found which has
identical binary values to one that was already found, it is
not added to the table, since by construction the previous one
had a lower cost in instructions (logic gates). Whenever the
combination of two columns with a XOR operation results in
one of the searched outputs (S or Co), that output is removed
from the list of searched outputs, and the algorithm terminates
when the searched outputs list is empty.

The algorithm described until now is already much faster
than the one used in [6], but it is still takes an exceedingly
large number of iterations to find a full adder and runs out of
memory within a few hours on a modern personal computer.

To further optimize the algorithm, we remember that a
masked S output can be obtained by dividing the 6 inputs in 2
groups and then XORing the inputs within each group. Since
these XOR operations are going to be necessary regardless of
how the output Co will be computed, we first perform an
exhaustive search with just the XOR operation to find all the
114 possible columns in the truth table that can be generated
with just this instruction. We call this first set of columns
obtainable only through linear operation (XOR) the ”Linear
Expansion Layer”. Multiple ways to compute S are found
in this ”Linear Expansion Layer”, but the decision on which
one to use will be made after Co is found to reuse as many
nodes as possible between the two necessary outputs.

Then, we use these columns as a start for a single iteration
of the algorithm, but this time all the bitwise operations
allowed by the target instruction set will be iterated (for ARM
Thumb-2, these are EOR, AND, ORR, BIC, ORN). The set
of columns obtained though this iteration will be called the
”Non-Linear Layer” of the logic net.

At this point, a non-uniform 4-share Co output can already
be found between the columns of the non-linear layer. To
collapse the shares into an uniform 2-share output, we just
run the search algorithm for one more iteration using only
the XOR operation as was done for the linear expansion layer,
generating a new set of columns called ”Share Collapsing
Layer”, which finally contains a 2-share Co output.

Now, starting from the found output shares of Co, we
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Fig. 2. T-Test performed on 100000 traces acquired from CRAX encryptions
simulated using the MAPS software. As the t-test line never exceeds the
[−5, 5] interval, it can be assumed that no first-order information leakage is
taking place.

can explore the truth table backwards using the values x
and y from the stored tuples described earlier, and finally
construct the first-order-leakage-free full adder network. The
found adder is made out of 12 instructions, 11 of which are
necessary to compute Co. The resulting network is shown in
figure 1.

Algorithm 1 2-shares masked full adder
Require: A = a0 ⊕ a1;B = b0 ⊕ b1;C

i = c0 ⊕ c1
Ensure: S = s0 ⊕ s1;C

o = c0 ⊕ c1
1: t1 ← a1 ⊕ c1
2: t2 ← c0 ⊕ t1
3: t3 ← a1 ⊕ b1
4: t4 ← a0 ⊕ b1
5: t5 ← a1 ⊕ b0
6: t6 ← t4 ⊕ t2
7: t7 ← t5 ∧ t2
8: t8 ← t4 ∧ ¬t2
9: t9 ← t3 ∨ a0

10: t10 ← a0 ∧ b0
11: t11 ← t9 ⊕ t10
12: t12 ← t8 ⊕ t7
13: s0 = b0; s1 = t6
14: c0 = t11; c1 = t12

III. EVALUATION

To prove that the computed logic network does not leak
cryptographic material, a bitsliced realization of the CRAX
and ChaCha20 encryption algorithms was realized and tested
both on a simulator (MAPS) and on a real hardware MCU
(STM32F103C8T6).

32 of the shown full adder networks are combined in
sequence to form the 32-bit adder that is necessary for the
tested algorithms. On the first full adder in the sequence, the
Ci input must be initialized with a random bit in each slice to
preserve the uniformity property of the input; this is expected
and consistent with the randomness requirements obtained by
[1].

A. Leakage evaluation

Figure 2 shows a t-test obtained from the power traces
acquired from the MAPS simulation, with pipeline leakage
simulation disabled, as this was the methodology used to
test for leakage by [1]. When implementing the described
logic network in a software implementation, one must pay
attention to prevent compiler optimizations from optimizing
the masking away, as well as to avoid accidentally leaking
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Fig. 3. T-Test performed on 10000 traces acquired from an
STM32F103C8T6 MCU, leakage is visible and is shown by the spikes of
the t-test line surpassing the threshold of 5.
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Fig. 4. T-Test performed on 10000 traces acquired from an
STM32F103C8T6 MCU using the hardened bitsliced CRAX algorithm to
protect against pipeline and other micro-architectural leakages.

information through register reuse. This is achieved by pro-
gramming the masked cryptographic primitives directly in
assembly and using different registers for operating on shares
of the same secret variable.

Pipeline leakages as well as other internal register leak-
ages are expected to be different for every different MCU
manufacturer, so these hardware-specific results are hard to
compare across different publications. Figure 3 shows that the
presented algorithm still exhibits leakages when tested on a
real STM32F103C8T6 MCU, thus a hardened version of the
adder was developed specifically to fix leakages caused by
the pipeline registers and the Memory Data Register (MDR).

Three different types of leakages were exhibited on the
real hardware and required hardening.

• The guidelines from [7] were used to avoid these
leakages through the A and B registers used to cache
the operands of the Arithmetic logic unit (ALU) by the
pipeline.

• Variables being cached on the stack memory caused
leakage through the reuse of MDR which was solved
by inserting dummy LDR and STR instructions to clear
it.

• Some NOP instructions were added before branch in-
structions in loops to prevent speculative loads of some
registers in the pipeline which caused leakages.

This new hardened version takes almost double the number
of cycles to perform an encryption, but does not leak even
on real hardware (see figure 4).

B. Performance Evaluation

To ensure that the presented results are comparable with
the previous research, the adder was tested by implement-
ing the ChaCha20 encryption algorithm without hardening
against pipeline leakages, as done in [1].
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Fig. 5. Throughput of the Chacha20 algorithm protected through either the
Jungk et al. [1] masked adder or through the bitsliced adder presented in
this paper, for different message sizes. As expected, the bitsliced algorithm
is more performant when the message size is larger.

TABLE I
CODE SIZES, MEMORY UTILIZATION AND THROUGHPUT OF THE TESTED

IMPLEMENTATIONS OF CHACHA20.

Implementation Code Memory Cycles
per byte

Unprotected Optimized 3174 228 160.8
Unprotected Jungk et al. 488 56 215.7
Masked Jungk et al. 1212 316 947.2
Proposed Bitsliced Masked 1024 2260 701.5

Figure 5 shows that the presented algorithm is only ben-
eficial when the message size is larger than 1152 B, due to
the introduction of the cost of bitslicing.

Table I further shows another disadvantage of this bitsliced
approach, highlighting that the memory usage is much larger
than the non-bitsliced approaches. This is explained by ob-
serving that in order to efficiently exploit the parallelism of
bitslicing, it is necessary to keep in memory multiple blocks
of the cipher at the same time (in the case of ChaCha20, 8
blocks are processed in parallel on a 32-bit ARM Thumb-2
processor).

Finally, figure 6 shows a comparison of the number of
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Fig. 6. Benchmark results for software implementations of the ChaCha20
and CRAX encryption algorithms using different adders. For the proposed
bitsliced masked implementations, the number of cycles is presented both
including and excluding the bitslicing operation.

cycles necessary to encrypt a 512 bytes payload with both
CRAX and ChaCha20 using different implementations, high-
lighting the overhead introduced by the bitslicing.

IV. CONCLUSION

We showed how it is possible to construct an optimized
2-shares Boolean masked full adder using 12 instructions
instead of 22 by using a modified version of the algorithm
presented by [6].

In optimal situations (plaintexts larger than 1200 B or
whose size is a multiple of 512 B) the proposed full adder al-
lows for implementing the ChaCha20 and CRAX encryption
algorithms up to 26% faster than the best known 2-shared
masked adder [1] on inexpensive ARM Thumb-2 micro-
controllers.

We also highlighted two big weaknesses of this approach:
for small payloads, when the parallelism of bitslicing isn’t
exploited, the proposed algorithm is 24 times slower than
the best known, and in every situation it uses 7 times more
memory on the stack, which could be a problem in low power
controllers.

While ARX ciphers have been historically difficult to
protect efficiently against side-channel attacks using Boolean
masking in software, our contribution helps reduce the num-
ber of cycles necessary for an encryption operation, which are
especially precious in low power embedded microcontrollers
such as the one we performed our tests on.
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