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Abstrakt

Rough modely frakciondlni stochastické volatility jsou slibné se rozvijejicim oborem vy-
zkumu v oblasti ocetiovani finan¢nich derivati. Prvni ¢ast této prace je tvodem do pro-
blematiky oceriovani opci a rough modeld frakciondIni stochastické volatility. Druha
¢ast se sklada ze dvou ¢lanki na téma simulace a robustnosti studovanych modelt.

Prvni ¢lanek On simulation of rough Volterra stochastic volatility models zkouma me-
tody simulaci zminénych modelt. Porovndvdme Choleského metodu, hybridni schéma,
arDonsker schéma podle jejich pfesnosti a casové narocnosti. Dale uvadime nékteré ne-
dostatky metody redukce rozptylu zvané turbocharging a navrhujeme modifikace me-
tody a nékolik dalsich doporuceni ohledné simulovani zkoumanych modeli pro tcely
oceniovani opci.

Ve druhém ¢lanku Robustness and sensitivity analyses of rough Volterra stochastic vola-
tility models se zabyvame citlivostni studovanych modelt na zmény v opéni struktufe
opc¢nich dat. Empeirickd studie se sklddd z vizudlnich a statistickych metod pomoci kte-
rych studujeme piitomnost zdvislosti mezi odhady parametrti, variabilitu a miru chyb
modelovych cen opci odhadnutych pomoci kalibrovani daného modelu na bootstrapo-
vané data sety, které simuluji zminéné zmény v opc¢ni struktufe dat.

Klic¢ova slova: rough model frakciondlni volatility; rough Bergomi model; Volterra pro-
cess; kalibrace; Monte Carlo simulace; hybridni schéma
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Abstract

Rough fractional stochastic volatility models are a progressive and promising field of
research in derivative pricing. In the first part of this thesis, we give an introduction to
option pricing and we outline the motivation that led to the development of the rough
fractional stochastic volatility models. The second part consists of two papers on the
simulation and the robustness of these models.

The first paper On simulation of rough Volterra stochastic volatility models examines
the simulation of the studied models. It compares the Cholesky method, the hybrid
scheme, and the rDonsker scheme in terms of accuracy and time efficiency. Then,
we show the obstacles of the so-called turbocharging technique of variance reduction
used for Monte Carlo simulation pricing. Finally, we suggest a modification of the
turbocharging technique and give several recommendations for simulating the models
especially when used for pricing options.

In the second paper Robustness and sensitivity analyses of rough Volterra stochastic
volatility models, we study the sensitivity of the models to the changes in the option
data structure. In our empirical study, we use visual as well as statistical methods to
analyze patterns, variation, and errors in model prices estimated by calibrating a given
model to bootstrapped data sets that simulate the changes in the option structure.

Keywords: rough fractional stochastic volatility; rough Bergomi model; Volterra pro-
cess; calibration; Monte Carlo simulation; turbocharged Hybrid scheme






Contents

1 Introduction

2 Path to rough fractional stochastic volatility models

21 Introductiontooptions . . . ... .. ... ... ... L
2.2 Probability background . ... ... ... ... o0 o oL
23 Brownianmotion . ... ... ... Lo o
2.4 Introduction to stochasticcalculus . . . . ... ... ... .. ... ...
2.5 Fractional Brownianmotion . . . . . ... ... ... ..o L.
26 Models . . ... L

2.6.1 Constant volatility — Black-Scholes-Merton model . . . . ... ..

2.6.2 Stochastic volatilitymodels . . . . ... ... ... ... ..., .

3 Attached papers
4 Thesis attachment

Appendices

27

75

77






Chapter 1

Introduction

Option pricing is a part of mathematical finance and financial engineering that evolved
from the increasing needs of market participants in early 1960s. During that period,
financial derivatives were becoming more and more popular for hedging risk of invest-
ments. The reason for that was probably the sudden downswing of stock prices in 1962,
also known as the Flash Crash. The experience of severe losses fueled the further de-
velopment of financial products for the sake of insuring portfolios by hedging its risk
level.

Hedging the risk of an investment means to assure that the position in an asset, e.g., a
stock, is insensitive to the volatility of its spot price, or at least, protected from sudden
price drops over a given period of time. The simplest way to insure a position in a
stock is to pair each share with put option on that given stock. If we want the position
to be immune to, say, more than a 10% drop, we must buy options with the strike of
90% of the current spot price (current market price) of the stock. When the stock price
falls more than 10% at the end of the life of the option contracts, we exercise them. The
profit from doing so will thus cover the loss from the stock position.

However, financial derivatives are not a recent invention as it might seem. There are
signs of contracts, similar to today’s financial derivatives, that were in use in the an-
cient times usually for trading of agricultural products outside the main harvest season
[38]. Since then, the growth of national economies and businesses caused popularity of
derivatives to increase and hence, the theory of pricing of financial contracts began to
shape itself.

The first application of advanced mathematics to a problem in finance is credited to a
French mathematician L. Bachelier. In his Ph.D. thesis named Theory of Speculation [3],
which was published in 1900, he presents a revolutionary idea to model stock price
movements by a scaled random walk. Unfortunately, it was not fully appreciated for a
long time. Nonetheless, the idea was later revisited, as we will see.

Meanwhile, substantial progress was made in the probability theory and stochastic
analysis. For mathematical finance, the development of the mathematical description of
the Brownian motion, in which, among others, A. Einstein and N. Wiener participated,
proved to of great importance. Another important milestone was the formulation of
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the basis of stochastic calculus, pioneered by a Japanese mathematician K. It6. This laid
the foundations for modern mathematical finance.

Surprisingly, the mentioned idea of L. Bachelier was revisited as late as in early 1970s
by P. Samuelson [39]. For the model of random stock price moves, the formerly pro-
posed scaled random walk was replaced by its limit case — the Brownian motion which
was at that time already a anchored by a solid theory. The model of a stock price evolu-
tion is the geometric Brownian motion that we can express as an stochastic differential
equation of the form

dSt = ‘M.Stdt + U'Stth, (11)

where Sy it the initial value of the process S;, coefficients u and ¢ are called drift and
diffusion (or volatility term) respectively, and W; is the Brownian motion. While the
drift conveys the trend of a stock price over time, the diffusion affects the amplitude of
noise around the trend.

The breakthrough was made by Black, Scholes, and Merton [10, 34] in 1973, when they
introduced a model that is now referred to as the Black-Scholes or the Black-Scholes-
Merton (BSM) model that, among other, assumes a constant volatility in (1.1). The big
advantage of the model was, and still is, that we know its analytic solution and hence,
the price of a derivative and its sensitivity to the model parameters (Greeks) can be
computed immediately via a closed-form solution formulas. In fact, the BSM model
sets the entire framework for derivative pricing.

Nonetheless, the BSM model has also drawbacks. Relative simplicity and elegance are
bought out by many assumptions that simplifies the reality too much. One of the most
criticized one has been the assumption of constant volatility. We explain this issue
further in Subsection 2.6.1. As a potential solution to that issue, non-constant volatility
was suggested. Apparent expansion is to take a deterministic function of time instead
of a constant, i.e.,, ¢ = o(t). However, it is usually a difficult task to find a suitable
formula for o(t). A more fruitful improvement was suggested by Dupire [17] in 1994.
His idea was to replace constant volatility by a function of time and the underlying
stock price, o = o (t, S;). Models including such a volatility function are today referred
to as local volatility models. Those models can be quickly calibrated to an exact fit to
market data; however, such models sometimes tend to suffer from overfitting and the
resulting surface of a fitted model may not be arbitrage-free. Nonetheless, the class of
local volatility models became a premonition for stochastic volatility models.

The idea of stochastic volatility models is to consider the volatility of the underlying
stock to be modeled by another stochastic process, i.e., o = o(t,w) = ;. This approach
was originally proposed by Hull and White [27] in 1987. They used the SDE (1.1) as a
stock price model but added another SDE to model the volatility of the stock. Later, in
1993, Heston in [24] introduced a semi-closed-form solution formula for a model where
volatility is modeled by a stochastic process with mean reversion. His main idea was to
reduce the model partial differential equation into ordinary differential equation by the
Fourier transform, solve it, and then transform it back by the inverse Fourier transform.
However, the obtained formula cannot be expressed only using elementary functions
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CHAPTER 1. INTRODUCTION

hence such results are usually referred to as semi-closed solution formulas. Heston’s
approach was then further generalized by adding a jump-diffusion dynamic by Bates
[4] in 1996 and letting the parameters depend on time [35], [19].

Although many SV models have been proposed so far, none of them can be considered
as the ultimately best one. On different datasets, different models may appear better
than others. Moreover, there are still more or less serious inaccuracies of those models
describing the reality. For example, [16] and [1] listed empirical observations of volatil-
ity that are sometimes called the stylized facts about volatility. A particularly important
stylized facts is the long memory property. Based on that, Comte and Renault [14] in
1998 pioneered the fractional stochastic volatility (FSV) model where the volatility pro-
cess is driven by the fractional Brownian motion with the Hurst parameter H > 1/2,
assuming it possesses long memory. This idea was further studied in [13].

However, in 2014, Gatheral, Jaisson, and Rosenbaum published a pre-print' paper
named Volatility is Rough [21] that argues that volatility does not possess long mem-
ory. This claim is based on the estimation of the Hurst parameter from several financial
time-series by a new methodology proposed in the paper. The main result was that
H =~ 0.14 was estimated for major stock indexes (similar results of H € [0.05,0.25] were
obtained for more than 2000 equities in [6]). Based on that, they proposed a new model
named rough FSV (RFSV), which is a modification of FSV when H < 1/2, and later,
Bayer, Friz, and Gatheral [5] introduced rough Bergomi (rBergomi) model — a gener-
alization of the Bergomi model [8]. In Subsection 2.6.2, we will introduce the xRFSV
model that unifies the two models as Merino et al. suggested in [32].

Lofficially published as [22] in 2018.






Chapter 2

Path to rough fractional stochastic
volatility models

This chapter aims to give an introduction to option pricing and outline the motivation
and historical development that led to formulation of the rough fractional stochastic
volatility models.

2.1 Introduction to options

An option is a financial derivative. It means that it is a contract between two parties
whose value depends on an underlying asset or an underlying instrument. The owner
of an option holds the right, but not the obligation, to buy or sell the underlying asset
at a specified strike price K prior to or on a specified date T. There are many types
of options that can be classified into two groups: vanilla options and exotic options.
Vanilla options are the most basic European and American, put and call options, usu-
ally traded at exchanges as standardized contracts. On the other hand, exotic options
are complex instruments tailored to the specific needs of a buyer and they are traded
solely over-the-counter.

We will focus only on European options, and more precisely, on European options whose
underlying asset is a stock that does not pay a dividend. We do so because this type of
option is the easiest to price and therefore, it is usually used as the first step to build a
model. Then, the model can be further expanded to cover a stock paying a dividend, to
price an American option, etc.

The difference between a European and an American option is that a European option
can be exercised only at its maturity T, as opposed to an American option that can be
exercised at any time prior to and including the date T. Because an American option
possesses an additional feature its value is considered bigger than in case of a European
option.

The holder’s payoff of a European call option, i.e., an option providing the right to buy,
at T is given by (St — K)™ = max(St — K, 0), where St is the price of the underlying

5



2.1. INTRODUCTION TO OPTIONS

stock at time T. That means that if the stock price at time T is greater than the strike K,
the holder exercises the option with a profit of St — K and if the stock price is equal to
or less than the strike, the holder does not exercise the option and their profit is 0. The
payoff of a European put option, i.e., an option with the right to sell, is (K — St)™.
The price of a European option at time ¢ can be broken down into two components.
The first one is the option’s intrinsic value at time ¢t which is simply the corresponding
payoff at time ¢ that we described in the previous paragraph. If the payoff is positive,
we say that the option is in-the-money (ITM). If the strike equals to the spot price of
the stock, we say the option is at-the-money (ATM), and finally, when the payoff of the
option is zero and the option is not ATM, we say the option is out-of-the-money (OTM).
The second component of the price of an option is the so-called time value. It is, in fact,
the difference between the market price and the intrinsic value. Hence, we can think
of the time value as the amount which an investor is willing to pay above the intrinsic
value (or how much he discounts the price, if the time value is negative). Therefore, the
time value reflects investors’” believe of the future movements of the underlying stock.
However, as less time is left to expiration, uncertainty of the final payoff of the option
is decreasing and thus the time value converges to zero.
To determine the price of an option, so-called arbitrage-free argument is widely used. The
idea is that an arbitrage opportunity cannot be expected to be found in a liquid financial
market. An arbitrage is a trading strategy such that one starts with zero capital and at
some point later in time, there is certainty that no money is lost and positive probability
of profit. There are several types of an arbitrage but all of them exploits combinations
of long and short positions. Being in a long position (being long) on an asset means
buying and holding an asset. Conversely, being in a short position (being short) means
that the speculator borrows an asset and sells it. After some time, they buys the asset
back and returns it to the lender while they retains the difference between the selling
and buying price.
One simple example of an arbitrage is a geographical arbitrage. Having two similar
markets with difference spot (current market) prices for the same asset, one can buy
the asset at the under-priced market and sell it at the over-priced market at the same
time. The result is making money with (theoretically) no capital and no risk. In option
markets, different types of arbitrages can occur. Two examples are a calendar arbitrage
and a butterfly arbitrage. The former one is an options arbitrage strategy that takes ad-
vantage of discrepancies in extrinsic values across two identical options that differ only
in their maturities. A butterfly arbitrage is similar but instead of exploiting mispricing
in maturities it operates with two identical options that vary only in the strike price.
More about option arbitrages can be find in [20].
Having a call and a put option with strike K and maturity T, both on the same stock S,
which does not pay a dividend, and provided that we know the price of one of them,
we can calculate the price of the second one. This relation is called the put-call parity
and it states that

Ct — Pt = St - K- eir(T*t),

where C;, P; represent the prices of call and put options respectively, S; denotes the
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stock price at time ¢, and r is the risk-free interest rate.

Now, when we understand the basics of European call and put options on a stock, and
as we previously stated that those are of our main concern in this thesis, we refer to
them simply as call and put options. Moreover, it should be clear now, that its prices
depend on the price of the underlying stock, which is however very difficult to predict.
In fact, we are going to treat it as random and we are going to model its evolution by
a stochastic process. Therefore, in the following section, we are going to set up the
necessary theoretic probability background. Nonetheless, we introduce only the most
important terms for us and we do not aim to be exhaustive as it would exceed the scope
of this thesis. For more detailed overview, we recommend [40] or [11].

2.2 Probability background

Let the triplet (Q), F,P) be a complete probability space, where () is a sample space, i.e.,
the set of all possible outcomes, F is a c-algebra that represents the set of events, and
IP is a probability measure. A probability space is complete, if for all sets B € F with
P(B) = 0 and for every A C B holds that A € F.

If a set A € F satisfies P(A) = 1, we say that the event A occurs almost surely (a.s.).
Moreover, the Borel c-algebra on IR, denoted by B, is the c-algebra generated by the
collection of all open intervals in IR thus containing all the intervals.

Definition 1. A real-valued random variable X on () is a mapping X : (2 — R such that
X1 A) ={XecA}={wecQ:X(w) € A}
is an even in F for every A € B.

It means, that a random variable is a function that assigns a union of intervals to an
event from c-algebra F. Equivalently, we say that X is F-measurable. Thus, we can
operate with real intervals (Borel sets), instead of operating with actual events of F
which can be arbitrary objects. Then, the probability distribution of X is the probability
measure jix that assigns to each Borel set B the mass jix(B) = IP{X € B}. Nevertheless,
we usually write simply IP(X € B).

Now, we define the expected value, conditional expected value, and the variance of a
random variable.

Definition 2. Let X be a random variable. The expected value (or expectation) of X =
X(w) is defined as the following Lebesgue integral

E[X] = /Q X(w)dP(w),

whenever the integral exists.



2.2. PROBABILITY BACKGROUND

Definition 3. Let G C F be a 7-algebra, and let X be a random variable. The conditional
expectation of X given G, denoted [E[X|G], is any random variable that is G-measurable
and satisfies

/ E[X|G](w)dP(w) = / X(w)dP(w) forall A€ G,
A A

whenever the integral exists.

Definition 4. Let X be a random variable whose expected value is defined. The variance
of X is defined as
Var[X] = E [(X - IEX)Z] .

Because (X — EX)? is non-negative, Var[X] is always defined, although it may be infi-
nite. The standard deviation of X is \/Var[X].

In the following part, we define a stochastic process and associated terms, necessary for
the theory of option pricing.

Definition 5. A filtration {F;,t > 0} is a collection of c-algebras in F such thatif s < ¢,
then F; C F)).

A filtration contains the information whether an E € F has already happened at time
t. In financial modeling, we can think of a filtration as a model of flow of public infor-
mation.

Definition 6. A stochastic process (also random process) on (Q}, F, P) is an indexed col-
lection of random variables {X;,t € T}.

If the set of indexes is discrete, e.g., T = IN, the process X; is called discrete-time and
analogically, if it the set is continuous, e.g., T = IR, we call X; a continuous-time process.
We will be concerned mainly with the latter case, when T = [0,inf). Additionally, as
random variables X; are, in fact, functions of w € (), we can understand a stochastic
process as a function of two variables, i.e., X; = X(w, ). If we fix a specific value of
t, we obtain a single random variable. Otherwise, if we fix a particular w, we obtain a
deterministic function of ¢, which we call a sample path or a trajectory.

Moreover, we will be interested only in processes that cannot "look into the future" as
such property is natural for applications in finance. The following definition formalizes
the idea.

Definition 7. Let F; be a filtration of /. We say that a stochastic process X; is adapted
to the filtration F; if X; is F;-measurable.

If a process X; is adapted to the 3, it cannot reveal more information at time ¢ than the
o-algebra F; allows.

Now, we introduce martingales and Markov processes, fundamental types of processes
for option pricing modeling. For the following definitions, let F; be a filtration of F
and consider a process adapted to F; as adapted.
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Definition 8. We say that an adapted stochastic process {M;,0 < t < oo} isa
e martingale, if E[M;|Fs] = M, holds a.s. forall 0 <s < t < oo,
e sub-martingale, if E[M;|F;s] > M; holds a.s. forall0 < s <t < oo,
e super-martingale, if E[M;|F;s] < M; holds a.s. forall0 <s <t < oco.

We can think of a martingale process as a model of a fair game (coin flip). No mat-
ter how genius our betting and stopping strategies are, the expectation of the game is
still constant (as long as we cannot look into the future, i.e., as long as the process is
adapted). In case of a sub or super-martingale, there is a tendency to fall or rise respec-
tively. A more general group of processes are called semi-martingales that we define
soon after introducing necessary terms.

Definition 9. A stopping time T with respect to the filtration F; is a random variable
taking values from [0, o0) or inf and satisfying

{t <t} € Fiforallt >0.

The definition above says that a positive real random variable can be considered a stop-
ping time if the decision to stop is based on the information available at time ¢ contained
in the filtration F;.

Definition 10. Let T be a stopping time w.r.t. F; and let {X;,t > 0} be a stochastic
process. Then a stopped process { X}, t > 0} is defined by

Xt, t <,

X;r = Xmin{t,‘r} = {XT > T (2.1)

Simply put, a stopped process X/ is equivalent to the process X; until the time 7. For
t > 1, the stopped process remains constant with the value of X-.

Definition 11. An adapted stochastic process {L;,0 < t < co} is called a local martingale
if there exists a sequence of stopping times {7, }$>_; such that

e {1,} is an increasing sequence a.s.: P(7 < Ty41) = 1,
e {1,} diverges a.s.: P <1im Ty = oo) =1,
n—oo

e the stopped process {L;",0 < t < oo} is a martingale for every n € IN.

Definition 12. A stochastic process {X;,t > 0} is said to be continuous a.s. at t( if

ﬂ’({weﬂ:}i_)@\Xt(w)—Xto(w)| :O}> =1 (2.2)

Additionally, we say that the process X is right-continuous a.s. at ty, resp. left-continuous
a.s. at to, if the limit in (2.2) is right-sided, resp. left-sided.

9



2.2. PROBABILITY BACKGROUND

Definition 13. Suppose that {X;,t > 0} is a stochastic process. The total variation of the
process X on interval [a,b] C [0, ) is the random variable V?(X), defined as

n
V(X)) = lim Xy — Xp
a( ) HP||‘>0]§1‘ k k—1

7

where P = {to,t1,...,ty}, such thata = tp) < f < ... < t, = b, is a partition of the
interval [a, b] whose norm is defined as ||P|| = sup {t; —ti_1}.

i=1,...n
Definition 14. We say that a process { X;, t > 0} has bounded variation on interval [a, b] C
[0, 00), if there exists a finite number M > 0 such that V?(X) < M.

Definition 15. We say that an adapted stochastic process {X;, 0 < t < oo} is a semi-
martingale if it can be decomposed as

Xy =L+ Ay,

where {L;,0 < t < oo} is a local martingale on F; and A; is a Cédlégl process, adapted
to F, that has locally bounded variation.

Remark 16. Every cadlag martingale, super-martingale, and sub-martingale is a semi-
martingale.

Martingales are the crucial objects for option pricing. Based on the theory of risk-
neutral pricing, which operates with martingales, a powerful pricing formula (2.17)
can be derived. We briefly discuss the whole framework in Section 2.6.

Another important property of a stochastic process is the Markovian property.

Definition 17. Let {X;,0 < t < oo} be an adapted stochastic process. Suppose that for
all0 < s <t < oo and for every non-negative, Borel-measurable function f, there exists
another Borel-measurable function g such that

E[f(X¢)|Fs] = 8(Xs)- (23)

Then, we say that the process X; is a Markov process. We also refer to Equation (2.3) as
the Markovian property.

The future value of a Markov process (and thus also its expectation) depends only on
the present value and not on the past values. The reason, why the Markovian property
is important in option pricing is stated in the following Remark which we borrow from
Shreve [40, Corollary 6.3.2].

Remark 18. Solution to stochastic differential equations are Markov processes.

In the following sections we introduce the Brownian motion as an example of a stochas-
tic process used in finance modeling and we summarize the main results of stochastic
calculus. We then define the fractional Brownian motion and employ all the previous
theory in the section Models 2.6.

Lfrom French: "continue a droite, limite a gauche" meaning right continuous with left limits.
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2.3 Brownian motion

The Brownian motion (Bm), sometimes also refer to as the Wiener process, is the fun-
damental object in stochastic analysis. It is named after R. Brown who observed an
irregular motion of pollen particles suspended in water in 1827. Later, L. Bachelier dis-
covered that the Bm is the limit object of discrete random walk in his thesis [3] named
The Theory of Speculation which was likely the first attempt to apply advanced mathe-
matics to a problem in finance. Also, Albert Einstein contributed to the mathematical
description of the Bm by his paper [18] published in 1905. Ultimately, a rigorous math-
ematical description of the Brownian motion was formulated by Norbert Wiener in his
later papers, e.g., [41]. This is why the Bm is also called the Wiener process. His work
was further expanded and simplified by other mathematicians including Kolmogorov
and Lévy. Now, the Bm is widely used in modeling of physical phenomena, in engi-
neering, and in mathematical finance.

Definition 19. The Brownian motion {W;,t > 0} is a real-valued stochastic process
adapted to the filtration F; that has stationary independent Gaussian increments and
whose trajectories are continuous a.s. In other words,

e Bp=0as.,,
* W;(w) is continuous a.s.,

e For s < t, the increment Wy — W; follows the normal distribution N (0, t — s) and
it is independent of F;.

Remark 20. The Brownian motion is a martingale and it is a Markov process.

To show that the Brownian motion is a martingale, we only need to exploit the zero
mean property of its increments.

IE[Wt|.Fs] - IE[Wt - WS + WS|-FS] - IE[Wt _ Ws|fs] +IE[W5|.F.5] — Ws-

The proof of Markovianity of the Bm is more complicated. See, for example, [40, Theo-
rem 3.5.1].

In finance, the Brownian motion is used, for example, in a model of the evolution of a
stock price. It can be used to drive processes to model volatility as well. However, we
will later introduce models that use fractional Brownian motion to model volatility.

2.4 Introduction to stochastic calculus

In this section, we introduce the stochastic calculus (also known as the Itd’s calculus),
the analogy of the standard calculus that operates with stochastic processes. The theory
was pioneered by K. Itd6 during 1950’s and 1960" by defining the stochastic integral
and introducing the identity to find the differential of a time-dependent function of a

11
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stochastic process. This later led to the prolific field of stochastic differential equations
(SDEs) and its application in finance.

The stochastic integral is usually defined in two steps: first for simple processes and
then the definition is extended for non-simple processes. Let P = {t¢, 1, ..., t,} where
0=ty <t <...<t, =T be a partition of interval [0, T]. A process {A;,0 <t < T}
is called a simple process, if it is constant in t on each sub-interval [t;, t;,1). For a simple
process Ay and t; < t < t;1, the stochastic integral I; is defined by

t k-1
I = /0 AW, = Y Ay (Wi, — W) + A, (W; — Wy,).
=0

In the second step, we generalize the stochastic integral It for processes that are allowed
to vary continuously and also to jump.

Definition 21. Let {W;,0 < t < T} be the Brownian motion adapted to the filtration F;
and let {A;,0 < t < T} be an F-adapted cadlag stochastic process, which is continuous
a.s. such that

T 2
E { /0 Atdt] < . (2.4)

Next, let P = {to,t1,...,tn} where 0 = ty) < f; < ... < t, = T be a partition of the
interval [0, T]. The stochastic integral (or the Itd’s integral) of the process A; is defined by
the formula

t t
I = / AdW, = lim [ AW, 0<t<T, 2.5)
0 n—oo 0

where {A"}% , is a sequence of simple processes that converge to A. In this case, we
understand convergence as

T 2
lim E U AT — Ayl dt] — 0.
n—oo 0

Now, we define a stochastic differential equation (SDE) and an It6 process.

Definition 22. Let F; be the filtration that is generated by the Brownian motion W;, let
T be a positive constant, let # : R x [0,T] = Rand ¢ : R x [0,T] — R be measurable
functions, and let Xy be an Fjp-measurable random variable. A stochastic differential
equation is then defined by

dX; = ‘M(Xt, t)dt + O'(Xt, t)th, t e [0, T], (26)

which with an initial condition
Xo=xp €R (2.7)

forms am initial value problem.

Moreover, if fOT u(X;, t)dt < oo and fOT 0?(Xy,t)dt < co then a continuous F;-adapted
process X; satisfying

t t
X; = x0+ / (X, s)ds + / o dWs, te[0,T], 2.8)
0 0

is said to be a (strong) solution to SDE (2.6) with condition (2.7).

12
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A process X; written as (2.8) is called an Itd process (in differential form is given by (2.6)).
It is worth to note that the first integral on the right-hand side of (2.8) is the Lebesgue
integral and the second one is the stochastic integral.

Having the stochastic integral and SDE defined, we now formulate another analogy to
the standard calculus — a chain rule for stochastic differentials that is referred to as Itd s
formula. By C'2(]0, T) x R), we denote the space of function whose first time derivative
and second space derivatives are continuous on [0, T| x R.

Theorem 23. Let V € CY*([0,T) x R) and let {X;,0 < t < T} be an Ité process. Then the
process Yy = V (t, X;) has a stochastic differential

1% oV 102V
Yy = —(t, Xp)dt + ——(t, Xs)dX; + 5 = (£, X;) (dX¢)? 2.
dY: at(' t)d+ax(, t)dt+2ax2(; 1) (dXy) (2.9)
The proof of Theorem 23 can be found for example in [28].
Itd’s formula is an useful tool of the stochastic calculus. To be able to carry out calcula-
tions, we also remind a few practical heuristics to manipulate with stochastic differen-
tials. The well-known rules are:

dt-dt =dt-dW; =0,

2.10
dW; - dW; = dt. (210

In the following example, we see how the It6 's formula together with the heuristics
above can be used to solve an SDE.

Example 24. Consider a stock with spot price Sop > 0, whose price is modeled by the
SDE in the form
dSt = yStdt + UStth, t 2 0, (211)

where i € R is called the drift that conveys the trend of the stock price evolution, and
o > 0is called the diffusion that models the noise around the trend.

Taking the substitution Y; = log(S;), we can us the Itd’s formula to find the differential
of Y;. In this case, V(t,x) = V(x) = log(x). Then, we have

Ly, 1]

J— j— . [ 2

Substituting the differential dS; from (2.11), we get

dt + oS, dW, Sidt + oS, dW;)?
d(log ;) = 5, (dWe (1S S 1dWy)
t

Expanding the quadratic expression and using the rules (2.10) results in
L
d(log S;) = pdt + cdW; — 57 dt.

13
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Now, we integrate both sides:

t t t t1
d(log S = — | Zo?
/0 (log Sy)du /Oydu+/0 odW, /020 du
which results in
L,
log S; — log So = ut + cdW; — 57 t.

After simplification, we can express the solution as

St:SOexp{<y—; 2>t+o*Wt}, t>0. (2.12)

We refer to the resulting process (2.12) as the geometric Brownian motion and we will
encounter it again in Section 2.6.

2.5 Fractional Brownian motion

The fractional Brownian motion (fBm) is a generalization of the Brownian motion (Bm)
that has an extra parameter which affects the autocovariance of the process. Therefore,
its increments need not to be independent, as opposed to the Bm. The fractional Brow-
nian motion was first introduced by Kolmogorov [29] in 1940. It is defined as follows:

Definition 25. The fractional Brownian motion with the Hurst parameter H € (0,1) is a
Gaussian process Bf! = {B[!,t > 0} adapted to the filtration F; such that the following
properties are satisfied:

[ ] B(I)_I :0/
« E[Bf]=0, t>0,
e Cov(Bf,Bl') = E [BJ'BI] = L(1¥1 +s2H — |t —s[*"'), s,t>0.

Notice that when H = 0.5, we obtain the standard Brownian motion. The choice of the
Hurst parameter H other than 0.5 affects the correlation of the process and therefore
"roughness" of its trajectories. For H > 0.5, increments are positively correlated and
it is said, that the process has long memory. In this case, its trajectories are smoother
than those of the Bm. In contrast, for H < 0.5, the increments of the fBm are negatively
correlated and thus the fBm has rougher trajectories. Figure 2.1 shows fBm trajectories
for different values of H.

There are other properties of the fBm that can be derived from its definition. For exam-
ple, we can see that the variance equals #*/ by computing Var[B/'] = Cov[B, B/!] =
t2H Next, consider the increment between times s and ¢, such that t > s. Let us denote
it Y = B — B, Then, we see that Y is stationary as E[Y] = E[B] — E[Bl] = 0 and

14
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Var|Y] = Var[B!!] + Var[BH] — 2Cov[BH, BE] = |t — s|*"!. It can also be shown that fBm
trajectories are continuous a.s. and the process is self-similar for an arbitrary constant
a > 0. It means that the scaled fBm {a H B, t > 0} has the same probability distribu-
tion as the standard fBm {B}?,t > 0}. For more details about properties of the fBm, see
for example [30] or [36].

Additionally, the fBm for H # 0.5 is not a semi-martingale nor a Markov process which
are both useful properties for financial modeling. Therefore, the fBm is usually used for
modeling volatility and not asset prices.

Sometimes, it is useful to represent the fBm in terms of the standard Bm which is some-
times referred to as integral representations. One such representation that we later use
for the simulation of the fBm is of the form

t
Y, = V2H / (t— s)H-3dw,, (2.13)
0

where W is the Brownian motion.

In fact, the process (2.13) is not exactly the fBm representation but it is a process that
is a part of the broader class of processes — the Volterra processes, that behaves locally
like the fBm. This representation is useful because it could be rewritten in terms of
a TBSS process, for which an approximate method called Hybrid scheme is designed,
and therefore, the process (2.13) can be efficiently simulated. We introduce the Hybrid
scheme in Subsection ??.

For the sake of future text, it is useful for us to state gth absolute moment of the fBm.
We borrow the following Remark from [36, Remark 1.2.2.]:

Remark 26. We can express the gth absolute moment of the fBm for g € IN as

E (Wil = 2= (13 1, 214

where T'(-) is the gamma function.
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Figure 2.1: Trajectories of the fractional Brownian motion for different values of H.
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2.6 Models

In order to determine the price of an option, different models were derived in the past.
Probably the most well-known one was introduced by Fisher Black, Myron Scholes [10],
and Robert Merton [34] in 1973. Later, in 1997, Scholes and Merton were awarded the
Nobel Prize in Economics "for a new method to determine the value of derivatives".
Unfortunately, Fisher Black died in 1995 and thus was not eligible for the prize.

The Black-Scholes-Merton (BSM) model laid the theoretical foundation for the whole
framework for pricing options where it is assumed that the value of an option at time ¢
is determined by the time to maturity T — ¢, strike price K, spot price of the underlying
stock Sy, volatility of the underlying stock oy, and the risk-free interest rate r.
Additional assumptions underlying the theoretical framework are the following:

e The risk-free interest rate is constant and known.

e Markets are "frictionless". There are no taxes, no transaction costs, and no restric-
tions on short sales.

¢ The underlying asset has no cash flow, such as dividends when the asset is a stock.
¢ The option valued is an European option.

* Markets are efficient hence the future price of assets cannot be predicted and there
are no arbitrage opportunities.

Then, the price evolution of the underlying stock is modeled by an SDE in the form
dSt = ]/ttStdt + O'tStth, (215)

where S it the initial value of the process S;, coefficients y; and o; are called the drift
and the diffusion (or the volatility term) respectively, and W; is the Brownian motion.
One way to derive a pricing formula is to formulate the model in the form of a partial
differential equation by eliminating the randomness using delta-hedging and solve it.
That is possible for the Black-Scholes-Merton model and partially possible for example
for the Heston model. However, if the original BSM assumptions are relaxed too much
and the model becomes too complex, the PDE is not easy to find. Hence, we introduce
a more general approach that does not require the knowledge of the PDE.

The more general approach is sometimes called the risk-netural pricing and involves
sophisticated mathematical theory. While we do not aim to present the whole theory
here, the reader can for example see [40].

The main idea of the risk-neutral pricing is that we can express the price of a derivative
as the discounted expected value of its future payoff, however, not under the physical
("real") probability measure but rather under the risk-neutral probability measure, under
which drifts of all stock price processes are equal to the risk-free rate 72, i.e.,

dSt = T’Stdt + (TtStth. (216)

2In other words, when all discounted stock price processes are martingales.
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That means that the price of a derivative does not depend on investor’s personal risk
preferences. Moreover, from the fundamental theorem of asset pricing we know that when
the market is arbitrage-free and complete, i.e., every asset can be replicated by a port-
folio of other assets, there exists the unique risk-neutral measure.

To summarize it, having a derivative with payoff V(T) at its maturity T, its price at
time t can be expressed as

V(t) = e " T D Eg[V(T)), (2.17)

where Q is the risk-neutral probability measure and r is the risk-free interest rate.
For a European call option C with strike K and maturity T, the payoff at T is C(T) =
(S(T) — K)™, thus the pricing formula for C at time t can be expressed as

C(t) =e "D Eq [(S(T) - K)*], (2.18)

where S(T) = Sr is the value of the stock price process (2.16) at time t = T.

Formula (2.18) provides a probabilistic price representation that can be exploited to find
the price using Monte Carlo simulations, as we will describe in Subsection ??, as long
as we can simulate the stock price process.

From now, suppose that we operate under the risk-neutral probability measure Q if not
stated otherwise.

While the drift is the risk-free rate under the risk-neutral measure, there are several
different possibilities for the volatility term that lead to different models. In the follow-
ing sections, we cover constant volatility and stochastic volatility models with focus on
fractional stochastic volatility. Another option is to treat volatility as a deterministic
function of time, i.e., 0y = o(t), or alternatively, treat volatility as a function of time
and the spot price 0 = o (t, S¢). The latter leads to a local volatility model pioneered by
Dupire [17].

2.6.1 Constant volatility — Black-Scholes-Merton model

When constant volatility 0; = ¢ of the underlying stock process (2.16) is assumed, we
obtain the standard Black-Scholes-Merton (BSM) model, firstly introduced by Black and
Scholes in [10] and Merton [34] in 1973. The popularity of the BSM model lies in the
elegant theory behind it which nowadays provides the main general framework for
derivative pricing. Another very important fact is that solving the model PDE yields
an analytic closed-form solution.

The solution formula for the BSM model, sometimes known as the Black-Scholes formula,
for the price C; of a European call option with strike K, maturity T, on a stock of the
price S; at time ¢, can be written in the form

Ci = BS(S, K, T,0,7, 1) = S, ®(dy) — Ke " ®(dy), (2.19)

where T = T — f is the time to maturity, ®(-) denotes the cumulative distribution func-
tion of the standard normal distribution, ¢ is the volatility of the stock, r is the risk-free
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interest rate, and

d1:10g<%>;\/(;+022> T’ dz:log(i’)—l—(r—”;)T:dl_aﬁ‘

The constant ¢ can be estimated by the sample standard deviation of log-returns of the
stock.

There are different ways to derive the BS formula®. One of them is to solve the BSM
model PDE with the boundary conditions corresponding to the given derivative, for
example, by transforming it to the heat equation. For the derivation of the BSM PDE,
see, for example, Chapter 1 in [9].

Because the BS formula is a closed-form solution formula, we can instantaneously com-
pute the price of a given derivative and its sensitivities, so called Greeks. Therefore,
BSM model is widely used in practice, despite all its shortcomings.

One of the main drawbacks of the BSM model is some of its assumptions that may be
in many cases too far away from the reality. While the assumptions of the absence of
a dividend paid by the stock and the absence of transaction costs can be generalized,
the assumptions of arbitrage-free complete model and the possibility of borrowing and
lending arbitrary amount of money at the risk-free rate are reasonable for developing
such a model, there is a more serious departure from the reality in the assumption of
constant volatility.

Having market data, i.e., prices of options of different combinations of strikes and ma-
turities, we can use the BS formula also in a somewhat different manner. If we swap
the role of the stock volatility and the price of an option, i.e., we treat the price as the
input, we obtain volatility on the output that we call the implied volatility (implied
by the option market price). Plotting the implied volatility over strikes and maturities
(or sometimes over moneyness M = S;/K instead of strike to make clear whether the
option is ATM, ITM or OTM), we obtain the so-called volatility surface. However, in
real markets with sufficient liquidity, the volatility surface is not usually constant as it
theoretically should be from the assumptions of the BSM model. In fact, curved struc-
ture, which is called the volatility smile, arises along the strike (moneyness) axis. This
indicates that market data are not entirely consistent with the assumption of constant
volatility. For illustration, in Figure 2.2, we can see the volatility surface for the market
call option data of Apple Inc. from May 15, 2015 smoothed by the Gaussian kernel*.
The smile is observable along the moneyness for T — 0.

In general, option prices obtained from the BSM model are more accurate for options
whose strike is near the spot price of underlying (near ATM) but options with strikes
further from the spot price are usually under-priced, especially when the option is near
its expiration. This phenomenon can be observed also in Figure 2.2. This is due to the
assumption of constant volatility in (2.16) that implies the normality of underlying asset

3Rouah, F. D., Four derivations of the Black-Scholes PDE, available online at ht tp: //www. frouah. com/
finance%20notes/Black%20Scholes%20PDE.pdf, cited April 18, 2019.

4We used MATLAB function VolSurface () available at https://www.mathworks.com/
matlabcentral/fileexchange/23316-volatility—-surface.
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Figure 2.2: Volatility surface smoothed by the Gaussian kernel for the market call option
data of Apple Inc. from May 15, 2015.

returns. However, stock returns usually follow a fat-tailed distribution. That means
that rare events are more likely to occur in the reality then the BSM model assumes.
Moreover, the fat tail is usually more prevalent on the left side of the distribution. In
other words, big losses are more common than large gains. Therefore, the prices of
OTM call options and ITM put options, whose combination are typically used to hedge
a long position in a stock, are priced higher by markets than by the BSM model.

For the reasons mentioned above, new models assuming non-constant volatility term
were proposed. Modeling volatility as a stochastic process shall, among others, model
better the skewed or platykurtic stock returns. In the following section, we introduce
the class of such models.

2.6.2 Stochastic volatility models

The assumption of stochastic volatility in the price evolution process (2.16) of the un-
derlying stock that is modeled by a stochastic process as well, leads to the class of
models called the stochastic volatility (SV) models. As we mentioned in earlier, model-
ing volatility by a stochastic process driven by the Brownian motion attempts to model
the distribution of stock returns more accurately, so that such models generate implied
volatility surfaces with smiles. Nonetheless, there are still a few other characteristics of
the volatility (sometimes called the stylized facts) that are not captured by the SV mod-
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els. One of them that has been researched recently is the autocorrelation of the realized
volatility time series. Attempts have been made to model such a phenomenon in the
volatility by a process with memory.

To incorporate the dependence of volatility on its past values into a model, processes
driven by the fractional Brownian motion were suggested. At first, however, with the
intention to obtain a long-memory process, as it was believed, align with the reality.
For that reason, the fBm with H > 1/2 was employed. The class of processes that
arose from this approach is referred to as fractional stochastic volatility models. Later,
Gatheral et al. [21] in their 2014 paper Volatility is Rough argued that volatility should be
modeled by the fBm with H < 1/2 based on an empirical analysis where they estimate
H from realized volatility time series of common stock indexes. To underline that fact,
they named their model rough fractional volatility (RFSV) model.

Another model that uses the the fBm with H < 1/2 is called the rough Bergomi (rBer-
gomi) model introduced by Bayer, Friz, and Gatheral [5]. The model is similar to the
RFSV model. In fact, the two model can be unified into a more general xRFSV model
which we introduce in the next section.

aRFSV model

In this section we introduce the « Rough Fractional Stochastic Volatility («RFSV) model.
It was firstly suggested by Merino et al. [32] as a unifying formula for the RFSV and
rBergomi models. The underlying stock is modeled by an SDE:

dSt = T’Stdt + \/UTtStdZt, t 2 0, (220)

where Sy > 0 is the initial spot price, r > 0 is the risk-free interest rate, and Z; is the
Brownian motion. The process that solves (2.20) can be obtained using the It6’s formula
similarly as in Example 24. The resulting process can be written as

t t
St = Spexp {/0 <r - ;(75> ds +/O \/EdZS} . (2.21)

The volatility process o7, which is involved in the stock price process S;, is of the form
1
0 = 0pexp {gBF — EathZH } , >0, (2.22)

where (Bff,t > 0) is the fBm with Hurst parameter H < 1/2 represented by one of
its integral representations driven by the standard Bm W;, and 0y, € > 0,& € {0,1} are
coefficients.

The model also employs correlation between the stock price and the volatility process
that is obtained by correlating the Bm W; of the volatility process with another Bm
driving the price process, i.e., the process Z; in (2.20) is actually represented by

dZ; = pdW; + /1 — p2dW;, >0, (2.23)
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where p € [—1,1] is the correlation between the volatility increments and the stock
price increments. It is worth to note that Z; is also the Brownian motion.

By choosing the coefficient « = 0 in the volatility process (2.22), we obtain the RFSV
model and on the contrary if x = 1, we get the rBergomi model. Alternatively, values
of « between 0 and 1 might give us a new degree of freedom that can be viewed as a
weight between these two models.

While both cases of the aRFSV model are more likely to align with the stylized facts
of volatility (see [22]) even using relatively small number of parameters (cp,§, p, H),
the issue is the non-markovianity of the model. Because of this, we cannot derive any
semi-closed form solution using the standard It calculus nor the Heston’s framework.
Therefore, to price a European call option, we have to rely on the Monte Carlo simula-
tions.
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Chapter 3

Attached papers

This part consists of two papers that resulted from the work on this thesis.

The first paper gives recommendations on the simulation of rough Voleterra stochastic
volatility models (a generalization of rough fractional volatility models) focusing on the
use of simulations for derivative pricing. We compare the Cholesky, rDonsker methods,
and the Hybrid scheme and give a recommendation on selection of the most suitable
method for a given task taking accuracy and time complexity into consideration. Then,
we show obstacles of the variance reduction method called turbocharging and propose
a simple modification and conditions when the turbocharging is sage to use.

The second paper shows, based on an empirical study, that the rough Volterra stochastic
volatility models do not outperform other stochastic volatility models (Heston, Bates,
AFSV]D) but are remarkably robust, i.e., the models are not sensitive to the changes
in the option data structure when calibrated. The most robust model seems to be the
a«RFSV model which unifies the RFSV model (¢ = 0) and the rBergomi model. The sig-
nificance tests for the roughness parameter H and the weight parameter « showed that
both of the parameters significantly improves the fit of a model when being calibrated.
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1 Introduction

In mathematical finance, it is well known that one of the main issues of the Black-Scholes model lies
in its assumptions about volatility of the modeled instrument’s underlying asset. Opposed to the
model assumptions, the realized volatility time series tends to cluster depending on the spot asset
level and it certainly does not take on a constant value within a reasonable time-frame Cont (2001).
To deal with such aforementioned inconsistencies, stochastic volatility (SV) models were proposed
originally by Hull and White (1987) and later e.g. by Heston (1993). These models do not only
assume that the asset price follows a specific stochastic process, but also that the instantaneous
volatility of asset returns is of random nature as well. Specifically, the latter approach by Heston
became popular in the eyes of both practitioners and academics. Several modifications of this
model have been proposed over the last 20 years, see for example the literature review in Merino,
Pospisil, Sobotka, Sottinen, and Vives (2021).

Although many SV models have been proposed since the original Hull and White (1987) model,
it seems that none of them can be considered as the universal best market practice approach.
Several models might perform well when calibrated to describe complex volatility surfaces, but
can suffer from over-fitting or they might not be robust in the sense described in Pospisil, Sobotka,
and Ziegler (2019). Also, a model with a good fit to an implied volatility surface might not be
in-line with the observed time-series properties. Independent increments of the Brownian motion
turned out to be such a one severe limitation. This helped to boost the popularity of the fractional
Brownian motion (fBm), a generalization of the Brownian motion, which allows correlation of
increments depending on the so-called Hurst index H € (0,1).

The pioneers of the fractional SV models — Comte and Renault (1998), Comte, Coutin, and
Renault (2012) — assumed the Hurst parameter ranged within H € (1/2,1) which implies that the
spot variance evolution is represented by a persistent process, i.e. it would have the long-memory
property. In Alos, Leén, and Vives (2007), a mean-reverting fractional stochastic volatility model
with H € (0,1) was presented. Gatheral, Jaisson, and Rosenbaum (2018); Bayer, Friz, and
Gatheral (2016) came up with a more detailed analysis of rough fractional volatility models that
should be consistent with market option prices, with realized volatility time series, and also provide
superior volatility prediction results to several other models (Bennedsen, Lunde, and Pakkanen
2017). An approach considering a two factor fractional volatility model, combining a rough term
(H < 1/2) and a persistent term (H > 1/2), was presented in Funahashi and Kijima (2017).

Since the well-known monographs on numerical methods for stochastic differential equations
(SDEs) by Kloeden and Platen (1992); Milstein (1995); Milstein and Tretyakov (2004), numerical
SDEs with colored or fractional noise have gained popularity, and there have been several papers
available. For numerical methods for SDEs with color noise, books by Le Maitre and Knio (2010)
or Xiu (2010) might be considered as a good starting point. In order to simulate SDEs with
fractional noise, one can consider for example a natural fractional modification of the classical
Euler-Maruyama and Milstein methods (Deya, Neuenkirch, and Tindel 2012) including multi-
level Monte Carlo methods (Kloeden, Neuenkirch, and Pavani 2011). Similar approach has been
applied to stochastic Volterra equations only very recently, see e.g. preprints by Li, Huang, and Hu
(2020) and Richard, Tan, and Yang (2020). However, it is worth to mention that not all techniques
for simulating fBm (Dieker 2002) are suitable for simulation of the fractional SV models.

In this paper, we consider the aRFSV model recently introduced by Merino, Pospisil, Sobotka,
Sottinen, and Vives (2021). This model unifies and generalizes the RFSV model (o« = 1) and
the rBergomi model (o = 0). For the pricing of European-type options, we employ Monte-Carlo
(MC) simulations. We compare three simulation methods: the Cholesky method (exact method),
the Hybrid scheme, and the rDonsker scheme (both are approximate methods). We show that all
methods are appropriate for the simulation of the model and we compare them all in terms of
accuracy and speed. We also implement a variance reduction method referred to as turbocharging
(McCrickerd and Pakkanen 2018) and analyze its effect on the variance in price estimations. We
believe that its importance is somewhat overestimated in the literature and we show on specific
examples that it does not always work well. As a solution, we propose a simple modification to
overcome theses obstacles.



The structure of the paper is the following. In Section 2, we introduce the studied rough
Volterra stochastic volatility models. In Section 3, we describe the methodology, in particular the
details about Monte-Carlo simulations techniques used (Sections 3.1 and 3.2), as well as the suit-
ability of the so called turbocharging variance reduction technique (Section 3.3). In Section 4, we
present numerical results and compare all the three considered methods. Then, we provide results
for our modified variance reduction techniques. We conclude all obtained results in Section 5.

2 Preliminaries and notation

2.1 Rough Volterra volatility models

Let S = (S, t € [0,T]) be a strictly positive asset price process under a market-chosen risk-neutral
probability measure () that can be represented as

S, = 1S, dt + 045, (det V1= 2 th> , (1)

where Sy is the current spot price, » > 0 is the interest rate, W; and /VIZ are independent standard
Wiener processes defined on a probability space (2, F, Q) and p € [—1, 1] represents the correlation

between the W, and /Wt. Also, recall that for any p € [—1, 1], a process pW; + /1 — p? Wt is also
a standard Wiener process. Let F}V and F}V be the two filtrations generated by W; and W;
respectively and let F; := F}V Uffw (for each ¢ > 0, F; is the minimal sigma algebra that includes

both sigma algebras F}V and F}V).

The stochastic volatility process o is a square-integrable process, adapted to the filtration
generated by W; whose trajectories are assumed to be a.s. cadlag and stricly positive a.e. For
convenience, we let X; = In Sy, ¢ € [0, T] which lead to the differential representation

1 N
dX,; = (r — 50?) dt + oy (,Oth +/1—p2 th) . (2)

From now on, we consider the model represented by Equation (2) with general Volterra volatility
process defined as
o= f(t,Yy), t>0, (3)

where f : [0, +00) xR + [0, +00) is a deterministic function such that o; belongs to L (2 x [0, +0))
and Y = (Y;,t > 0) is the Gaussian Volterra process

Yt:/o K(t,s) dW,, (4)

where K (¢, s) is a kernel such that for all ¢ > 0
¢
/Kz(t,s)ds < 00 (A1)
0

and
F=F". (A2)

Next, denote the autocovariance function of Y; by (¢, s) and the variance of Y; by r(t), i.e.:
r(t,s) == E[Y1Ys], t,s>0,
r(t) :==r(t,t) =E[Y?], t>0. (5)

In particular we assume that X; is the log-price process (2) with o, being the exponential
Volterra volatility process

= 1(6.¥) = ovexp {Xi-jag) ] t20 ©)



where (Y;,t > 0) is the Gaussian Volterra process (4) satisfying assumptions (Al) and (A2), r(t)
is its autocovariance function (5), and o¢ > 0, £ > 0, and « € [0, 1] are model parameters.

Let us now focus on a very important example of a Gaussian Volterra process, namely the
standard fractional Brownian motion (fBm) B which can be represented by

BH — /0 "Kits) AW, (1)

where K (t,s) is a kernel that depends also on the Hurst parameter H € (0,1). Recall that the
autocovariance function of Bf is given by

1
r(t,s) .= E[BE BH] = 5 "+ 27—t —s?M), t,s>0,

and in particular r(t) :=r(t,t) = t*H ¢ > 0.
Nowadays, the most precise Volterra representation of fBm is the one by Molchan and Golosov

(1969)
() F it (=)ot [oteogta]

2HT (2 — H)
v yr

H+ )T (2-2H)

K(t,s)=Cq

However, especially due to its tractability, only the simplified represenation
t
B = \/2H/ (t —s)A=12 aw,. (9)
0

is sufficient to consider (Alos, Mazet, and Nualart 2000). To understand the connection between
Molchan-Golosov and other representations of fBm such as the original Mandelbrot and Van Ness
(1968) representation, we refer readers to the paper by Jost (2008).

Finally, in this paper, we consider the aRFSV model, firstly introduced by Merino, Pospisil,
Sobotka, Sottinen, and Vives (2021), in which the volatility process follows

or = o exp{wﬁ -gagw}, £>0, (10)

where (B},t > 0) is one of the above mentioned representations of fBm and oo > 0, £ > 0 and
a € [0,1] are model parameters together with empirical H < 1/2. For « = 0 we get the RFSV
model (Gatheral, Jaisson, and Rosenbaum 2018), for « = 1 the rBergomi model (Bayer, Friz, and
Gatheral 2016). Values of o between 0 and 1 give us a new degree of freedom that can be viewed
as a weight between these two models.

Remark 2.1. Since fBm is not a semimartingale, it is often useful to consider the so called
approximative fractional Brownian motion (afBm), i.e. a process with the Volterra kernel

K(t,s)=V2H(t —s+e)TV21 oy, €>0,He(0,1).
Then for every € > 0, such a process is a semimartingale and as € tends to zero, afBm converges

to fBm. In such a case:

tAs
r(t,s) = K(t,v)K(s,v)dv,
0

t t
r(t) = / R2(t,v) dv = 2H/ (t— v+ e)2H 1 dy = (1 + )2H — &2,
0 0



Notice that if € = 0, we obtain r(t) = 1, i.c., evactly the variance of the standard fractional
Brownian motion.

While the both cases o € {0,1} of the aRFSV model are more likely to replicate the styl-
ized facts of volatility (Gatheral, Jaisson, and Rosenbaum 2018) even by using relatively small
number of parameters (09, &, p, H), the issue is the non-markovianity of the model. Because of
this, we cannot derive any semi-closed-form solution using the standard Ité calculus nor the Hes-
ton’s framework. Therefore, to price mere vanilla options, we have to rely on Monte-Carlo (MC)
simulations.

3 Methodology

In this section, we introduce the Monte-Carlo simulations methods to simulate the rough Volterra
models, in particuar the «RFSV model. Furthermore, we investigate the suitability of the so-called
turbocharging variance reduction technique (McCrickerd and Pakkanen 2018).

3.1 Monte-Carlo simulations

The price C; at time t of a European call option with the strike K and maturity 7' can be expressed

as
Cr=e " T UEq [(Sr — K)T], (11)

where @ is the risk-neutral probability measure, St is the value of the process (1) at time t = T,
and (St — K)T = max(Sr — K,0). Thus, having M sample paths of the stock price process S
under the risk-neutral measure, the price of a call option (11) can be estimated by

M
O(t) = TS (Sr)i — K)* (12
i=1
where (S7); denotes the i-th realization. The more sample paths we employ, the more accurate
the result is. In fact, the rate of convergence of MC is O(M~1/?).

There are various methods to simulate Volterra processes but we focus on simulation of the
fractional Brownian motion. We often divide these methods into two classes: exact methods and
approximate methods (Dieker 2002). Exact methods usually exploit the covariance function of the
fBm to simulate exactly the fBm (the output of the method is a sampled realization of the {Bm).
The advantage is obviously the exactness, however the simulation using exact methods get much
slower, the more steps we simulate. For example, the Hosking method or the Cholesky method
use a covariance matrix to generate the fBm from two independent normal samples. The matrix
grows with every step and the calculation becomes very time and memory demanding for large
samples. The second class consists of approximate methods that often use some of the integral
representations of the fBm (Stochastic representation method) or they are based on the Fourier
transform and its implementation fast Fourier transform (FFT), such as the spectral method Yin
(1996). For an extensive list of simulation methods of the fBm, see Dieker (2002).

Recently, an approximate method called the Hybrid scheme introduced by Bennedsen, Lunde,
and Pakkanen (2017) has been recognized. The main idea is to discretize the stochastic integral
representation of the process in the time domain and approximate the kernel function by a power
function near zero and by a step function elsewhere. Later, an extension of the Hybrid scheme
consisting of several variance reduction techniques was introduced by McCrickerd and Pakkanen
(2018). Yet another approximation method has been proposed recently by Horvath, Jacquier, and
Muguruza (2017). It is based on the idea of extending the Donsker’s approximation of the Bm to
the fBm.

When we simulate the fBm using either exact or approximate methods, we should investigate
whether the numerical samples satisfy the theoretical properties of the simulated process. In



Section 4, we compare moments estimates to the corresponding exact values. For a deeper analysis
of the quality of approximate samples, see Dieker (2002), Chapters 3 and 4.
We should also mention that there are several sources of potential error (Higham 2001, Sec. 5):

e Sampling error: the error of estimation of an expected value by a sample mean. This error
is sometimes referred to as the standard MC error and it decays with 1/v/ M, where M is
the number of sample paths used.

e Random number generator error: the bias arising from the method of generating pseudo-
random numbers, the lack of independence in the samples, etc.

e Rounding error: the error arising from the limitations of the finite precision arithmetic.

e Discretization error: the error resulting from the fact that a continuous-time process is
represented by a finite number of discrete-time evaluations in the computer.

3.2 Simulation methods

We examine three methods for simulation of the fractional Brownian motion that can be further
used for simulating the aRFSV model. We mention this because not all methods suitable for
simulation of fBm paths can be used for simulation of paths of the aRFSV model. The potential
problem lies in the fact that the Bm driving the stock price process is correlated with the Bm that
is used to simulate the fBm that drives the volatility process. If a method does not use the Bm to
simulate the fBm, i.e., it does not operate with an integral representation of the fBm, it cannot
be properly correlated with the stock price process. The example is Spectral method Yin (1996)
that generates the fBm from a sample of uniformly distributed variables using the Fast Fourier
Transform.

The three methods, we focus on, are the Cholesky method, which is an exact (no approximation
is involved) method, the Hybrid scheme, and the rDonsker scheme which are both approximate
methods. We briefly describe the idea behind the algorithms in the following text.

Since we can simulate only discrete-time processes, we adapt a discrete-time notation Y3, Yz, , . ..
for the values of the fBm at the time moments tg,t1,.... Once the path of the fBm is simulated
for equidistant time steps, realization on another eqidistantly spaced interval is obtained by using
the self-similarity property.

3.2.1 Cholesky method

The Cholesky method is an exact method that exploits the Cholesky decomposition of the covari-
ance matrix of the simulated process. It means that the covariance matrix can be expressed as
LLT | where L is a lower triangular matrix and L7 is its transposition. A matrix L is said to
be a lower triangular matrix if its elements /;; = 0 for every ¢ < j. It can be shown that such a
decomposition exists for every symmetric positive definite matrix.

If we consider a discrete realization of the fBm Yp, Y7, ...,Y,, we can denote the corresponding
covariance matrix I',,, which is a (n + 1) x (n + 1) matrix that can be expressed as
7(0) (1) 72 o y(n)
(1) ~(0) 73) . v(n—1)
r,= |72 103) 70) . y(n=2))
yn) y(n—=1) v(n=2) ...  ~(0)

where y(k) = Cov[BY , BH |1 = E[BYBH |1 = 1[(k+1)2" +(k—1)?" —2kH] is the autocovariance
function of the fBm that is derived from the definition of the fBm (7).



Since I'), is a symmetric positive definite matrix, we can find its Cholesky decomposition.
Then, we have I'), = L, LT, where L,, = (lij)} j—o- By generating a sample vy, ..., v, from ii.d.

standard normal variables (V;)I_,, we can compute

n
H
Bi = Z lik'Uk
k=0

for every i = 1,...,n. Then (0, Bff,..., BH) is a path of the fBm.

For simulating P paths of the fBm, the matrix notation is useful. First, generate P samples
from (V;)?_, and organize the realizations into a matrix X,, = (Uij)?:J(;,jzla where v;; is the jth
realization of V;. Then compute

B=L,X,

and replace the first row of B by zeros. Finally, notice that BT is a P x (n + 1) matrix that
consists of P paths of the fBm B organized in the rows of the matrix BT .

To practically simulate P paths of n steps, we firstly compute the covariance matrix I'), for the
required Hurst parameter H in the form given above. Then, we find the Cholesky decomposition
of I';, by computing the lower triangular matrix L,,. Next generate matrix V' of numbers from the
standard normal distribution. By computing (L, V;,)T we obtain P x (n + 1) matrix of fBm paths
organized by rows.

The price for exact simulation is, however, the time complexity of O(n?), see Asmussen and
Glynn (2007), Chapter XI, Sect. 2.

3.2.2 Hybrid scheme

The Hybrid scheme introduced by Bennedsen, Lunde, and Pakkanen (2017) is an approximate
method that can be used for simulation of a broader class of stochastic processes called truncated
Brownian semi-stationary (TBSS) processes. If X; is such a process, it can be represented as

t
X, = / ot — $)v, AWV, (13)
0

where W is the Brownian motion, g : (0,00) — [0, 00) is a Borel-measurable function (a determin-
istic kernel function), and v = {v,t > 0} is a stochastic process with locally bounded trajectories
that drive the volatility (intermittency) of the process. The authors list more specific assumptions
on g and v in their paper to ensure that the integral (13) is well defined for the whole class of
TBSS processes.

In order to use the Hybrid scheme to simulate the fBm, we recall the Volterra process (4) and
let

t
Y; = \/ZH/ (t —s)7= = aw,,
0

where H € (0, 1) is the roughness parameter. The process Y; is, in fact, a TBSS process that can
be obtained from (13) by substituting

g(z) = V2HzH 7, (14)

and v = 1. Since this Volterra process behaves locally like the fBm (Alos, Mazet, and Nualart
2000), the Hybrid scheme use it as an approximation of the fBm.

The main idea behind the Hybrid scheme, as described in the abstract of the paper by Benned-
sen, Lunde, and Pakkanen (2017), is to approzimate the kernel function g by a power function near
zero and by a step function elsewhere. Then, the resulting approzimation of the process is a com-
bination of Wiener integrals of the power fucntion and a Riemann sum, which is why we call the
method the Hybrid scheme.



We summarize the technical part briefly and specifically only for the Volterra process (3.2.2).
Let G := {t,t — 2.t — 2 ...} be the grid for the discretization of the Volterra process and let
be an integer greater than 1. Then, the discretization of the process (3.2.2) can be represented by

L
n

bk
Y, = Z\/ / (t—s)H2 aw,.
For "large" k > k > 2, we approximate

(t—s)H_§%<b—k>H_%, t—se{k_l,q, (15)

n n n

where by € [k — 1,k]. For "small" k < k, we retain the term (¢ — s)”~2 as is. Proceeding in such
a way, we obtain

1

t—ft g ) s b H-3 t-k41
Z/ (t—s)fzdw, + > (g) / dws | . (16)
t—k

k=r+1

To make a numerical simulation feasible, we truncate the second sum in (16). Furthermore,
the values of by that minimizes the mean square error induced by the discretization are in the

form
Ht3 _ ( — 1)H+3
2=<k (k—1) ),k2H+1.

H+3

For derivation of the optimal b}, see (Bennedsen, Lunde, and Pakkanen 2017, Prop. 2.8). Consid-
ering the truncation and the optimal b}, for (16), we obtain the so-called Hybrid scheme.

We implement the Hybrid scheme similarly as in the (Bennedsen, Lunde, and Pakkanen 2017,
Sec. 3.1). Suppose we simulate the process Y on an equidistant grid ¢; =i7'/n, 1 =0,1,2,...,n,
where n is the number of steps in the interval [0, T1], for some T > 0, i.e., we generate the discrete
samples Y; :=Y;,, i =0,1,2,...,n]. We consider only the first order of approximation (x = 1),
so the numeric scheme for the Volterra process is in the form

o b\ 1z
Y, = ( max{i—1,0},1 + Z ( ) vV?i—k,Q) s (17)

k=2

where W; 1 and W; 2,71 =0,1,...,n — 1 denote two random i.i.d. vectors from a bivariate normal
distribution with zero mean and covariance matrix > given by

1

1 -1
n 1), (#+3)
Y= 1 (H+2)1/ i

2Hn2H

(1+4)al"7)
For the sake of the efficiency, we denote the second term on the right-hand side of (17) by
b*
3]
k=2
where I' x Z stands for discrete convolution and
0, k=1,
= 1
Pe = (”—2>H k=2 i
n ) yeeeyly

Ek::Wk,Q, k:O,l,...,n—l.



The final form of the numeric scheme is
Y;=+V2H (I/Vmax{i—l,O},l + (F * E)z) .

We implemented the Hybrid scheme in MATLAB and we used the Fast Fourier Transform
to compute the discrete convolution. This way the complexity of the method is O(nlogn), see
(Bennedsen, Lunde, and Pakkanen 2017, Remark 3.2).

3.2.3 rDonsker scheme

We now describe the rDonsker scheme as it was introduced by Horvath, Jacquier, and Muguruza
(2017). Following the Section 3.3 therein, we update their Algorithm 3.3 for the purposes of our
studied model.

For a fixed n € N, we consider again the equidistant time partition ¢; = iT'/n, i =0,1,2,...,n,
of [0,T] with T > 0. Let Y/, o7 and X denote the j-th discrete numerical approximation (path),
j=1,..., M, of the Volterra process Y, the volatility process o and the log-stock price process
X respectively, evaluated at the time point ¢;, 1 =0,1,2,...,n.

Algorithm 3.1 (Simulation of the process (4) using the rDonsker scheme).

1. Simulate two N(0,1) matrices {fj,i}jvzl,__wM and {Cj,i}j;17.,.,M with corr(§,i, ;) = p. De-

i=1,..., =1,...,n

AW/ =\/T/n¢ij, i=1,...,nandj=1,..., M.
2. Simulate M paths of the Volterra process Y by

note

Y] =) gtin)AW] =D g(te) AWy, i=1,...,nandj=1,..., M,
k=1 k=1

where g(x) is given by (14). This step is easily implemented using discrete convolution with
complezity O(nlogn) (Horvath, Jacquier, and Muguruza 2017, App. B).
3.2.4 Simulation of the aRFSV model

Once we have simulated numerically the Volterra process Y using once of the above described
method, we still need to simulate the volatility process (3) and the log-price process (2) and
consequently the price process (1).

Algorithm 3.2 (Simulation of the aRFSV model).

1. Simulate M sample paths of the Volterra process Yij, i=1,...,n,7=1,...,M, by one of
the methods described in Sections 3.2.1, 3.2.2 or 3.2.3 respectively.

2. Simulate M sample paths of the volatility process o by
O'g :f(ti,Yij), i=1,....,nand j=1,..., M,
where f is given in (3).

3. Use the forward Fuler scheme to simulate the M sample paths of the log-price process X by

S I T [T , ‘
Xg:Xf_1—<r—§E ai_1>g—|— EE \or_1&k i=1,...,nandj=1,..., M.
k=1 k=1

4. Finally, we obtain the M sample paths of the asset price process S as
8! =exp{X/}, i=1,...,nandj=1,..., M.



3.3 Variance reduction techniques — turbocharging

Monte-Carlo simulations can be time demanding when we want to achieve higher precision. To
further improve its efficiency, one or a combination of more variance reduction techniques can
be implemented. The idea is to reduce the variance of the final estimation, and thus be able to
achieve the same level of precision with smaller samples.

There are several approaches that can be used such as antithetic variates, control variates,
or importance sampling. However, there is not a universal way to implement them. Instead,
according to Glasserman (2003), the greatest gains in efficiency from variance reduction techniques
result from exploiting specific features of a problem, rather than form generic application of generic
methods. To reduce the variance of the price estimator for the aRFSV model, we use the approach
developed by McCrickerd and Pakkanen (2018), called turbocharging.

Pricing a call option with strike K and maturity 7" under the aRFSV model, the idea of
turbocharging is to use a mized estimator for the estimation of the call option price C(t) =
e "(T=YE[(S7 — K)*], instead of the standard MC estimator (12). The mixed estimator is defined
as

M
Clt) = 7 (X + ) — GE[Y)

t
X =BS (S,},K, T,(1— p2)/ o du, 7, t) , (18)
0

t
Y =BS (Stl,K,T,pz <Q_/ Uudu> 7T7t)7
0

where BS(-) is the standard Black-Scholes formula for a call option and instead of using the aRFSV
stock price process Sy (1) with volatility process (6), it operates with its orthogonal separation
into S} and S?, where the process S} solves an SDE of the form

s}
St

1
= (7" — §p20t) dt + p\/Et dW;. (19)

Parameters w and Q are computed after simulation of X and Y as

Zf:l(Y; - Y)Q , (20)

szax{(/otaudu):izl,...,P}.

The mixed estimator (18) is always biased because of non-linearity of BS(-). However, in
McCrickerd and Pakkanen (2018), it is stated that for n = 1000 the bias is never practically
meaningful. We verify that in subsection 4.3. Moreover, we empirically compare variances of the
standard Hybrid scheme and turbocharged Hybrid scheme and test its stability and reliability also
in subsection 4.3.1.

Ultimately, the turbocharging method is not restricted only for the Hybrid scheme. It can
be successfully implemented for the Cholesky method and for the rDonsekr scheme and used for
high-precision pricing (Matas and Pospisil 2021).

4 Numerical results
In this section, we compare the exact Cholesky method (CM) and the approximate methods of
Hybrid scheme (HS) and rDonsker scheme (rDS). We examine the quality of samples obtained

from the Hybrid scheme, examine how much variance is reduced by the turbocharging technique,
and we analyze the price estimation by the Hybrid scheme.
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Figure 1: The sample absolute moments (blue) matching the corresponding theoretical values
E HBtH}q] (black), see (21), of the fBm {B}?,0 <t < 1.2} for H = 0.20. We simulated P = 1000
paths, with granularity n = 4 x 252 steps, using the Hybrid scheme. We denote €, the absolute
error of the end value.

We usually choose the number of steps n discretizing a path we simulate to be multiples of
252, which is the average number of trading days in a year. For example, choosing n = 4 x 252
for the stock price process means that the numerous daily price movements are approximated by
4 steps of the process.

4.1 Quality of fBm samples

As we mentioned earlier in Subsection 3.1, when an approximate method is used to simulate

paths of a random process, we should verify whether the generated samples possess corresponding

theoretical properties. In the case of the fBm, we check whether the absolute! sample moments
fit the theoretical values.

According to Mishura (2008, Remark 1.2.2.), the gth absolute moment of the fBm for ¢ € N

can be expressed as
28 g+ 1\ gm

E[Wy|9] = =T | — ) |t|*7, 21

i = 22r (5 ) (21)

where I'(-) denotes the gamma function. Then, we estimate the ¢-th absolute moment (21) from

a sample of P paths by
P

q
E[|BI["] = 5> (B
t=1
In Figure 1, we see an illustrative example of the sample moments fitting the corresponding
theoretical values for ¢ = 1,...,6. Naturally, as the number of paths in the a sample increases,
the sample moments fit the theoretical values better, see Appendix in Matas (2021).

1We consider absolute moments instead of standard moments because it is more illustrative when visualized.
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Cholesky Method Hybrid Scheme rDonsker Scheme

Mean Variance Mean Variance Mean Variance

0.004806 0.000016 0.005338 0.000014 0.004569 0.000011
0.011143 0.000088 0.011928 0.000078 0.011294 0.000063
0.028106 0.000464 0.028511 0.000514 0.028618 0.000429
0.078726  0.003109 0.077577 0.004037 0.078654 0.003733
0.240790 0.028809 0.238690 0.036784 0.241030 0.038056
0.786010 0.419270 0.797030 0.348610 0.823770 0.436250

ST W

Table 1: The average absolute errors (and its variances) of end values of the gth absolute moment
of the fBm for H = 0.15 and for different values of ¢ calculated from 100 batches, each consisted
of a sample of 10,000 fBm paths on [0, 1] with granularity n = 4 x 252, generated by the Cholesky
method, Hybrid scheme, and the rDonsker scheme. We can see that the samples generated by HS
and rDS are very similar to the samples generated by CM. For other H, results were similar.

We also compared samples generated by CM, HS, and rDS methods. Thus, we compared
approximate methods with an exact method that we considered as a benchmark. We focused only
on the end values as we are interested in pricing European options whose payoff depends only on
the price of the stock at its maturity.

We measured the average absolute error of the end values of the sample mean and sample
absolute moments of the fBm from 30 batches, each consisted of P = 1000 f{Bm paths on [0, 1]
with granularity n = 4 x 252 steps. The results were very similar for different values? of H hence
in Table 1, we summarize the results only for H = 0.15. The conclusion is that based on the
mentioned empirical results, both HS and rDS produce samples very similar to those obtained by
an exact method.

Runtime experiment

Next, we compared runtimes of the CM, HS, and rDS. The asymptotic time complexity of simula-
tion of one path is known for all of the methods we compare. Using the big O notation, the time
complexity of HS and rDS is O(nlogn) and the time complexity of CM is O(n?). It is apparent
that the approximate methods are superior to the CM considering the asymptotic complexity.
However, the asymptotic behavior does not convey which method is more efficient for generating
P paths when P is big.

In fact, the Cholesky method is vectorized implicitly by implementing it using matrix notation.
We only compute the Cholesky decomposition of the covariance matrix of the fractional Brownian
motion and apply it to an n x P matrix of normally distributed random numbers. The result after
transposition is P paths of the fBm organized in P X n matrix. Increasing the number of paths
thus leads to the increase in the time complexity of the matrix multiplication.

Contrarily, neither the HS nor rDS can be easily vectorized. The problem is the discrete
convolution of a Bm path with the convolution kernel. Therefore, the very fast computation of a
fBm path has to be repeated P times in a cycle. Hence, the runtime increases linearly with the
increasing number of paths.

To empirically compare the time efficiency of the three methods, we measured runtimes of
simulations of P fBm paths of n steps using both methods for different values of P and n on a
grid. The results are visualized in Figure 2 where we see that while the rDS is clearly superior for
small samples followed by the HS, from a certain number of paths P, the CM is the most efficient.
The break even value of P is no more than 1000 for the values of n we examined. Since usually
much bigger samples are necessary, the CM appears to be the best choice.

2We examined H = 0.05,0.10,...,0.45.
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Figure 2: Runtimes of the Hybrid scheme, the Cholesky method, and the rDonsker scheme of
simulations for different values of P and n on a grid.
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Conclusion

Both the Hybrid scheme and the rDonsker scheme, despite being an approximate methods, gen-
erate reliable samples of fBm that are very similar to the samples obtained from an exact method
- the Cholesky method. Needless to say, the rDS generates a path much faster. The asymptotic
time complexity of the rDS and the HS scheme is O(n logn) while the asymptotic time complexity
of the Cholesky method is O(n3). However, when we take the number of paths into consideration,
the HS and rDS are not ultimately superior to the CM in runtime. From the experiment, whose
results are visualized in Figure 2, we conclude that it is more time-efficient to simulate less paths
of higher granularity by the rDS or HS while the CM is better for simulation of large number of
paths.

4.2 Simulation of the aRFSV model

In the previous section, we verified that the Cholesky method, the Hybrid scheme, and the rDonsker
scheme produce samples of the fBm of similar preciseness and we also compared the time efficiency
of the three methods. In this section, we simulate the aRFSV model, i.e., the volatility process
and the stock price process. We then analyze the effect of sample size on the pricing ability of the
model and we introduce and examine the variance reduction technique turbocharging. Finally, we
give recommendation on the sample size to guarantee given preciseness of the model prices.

First, we derive formulas for the mean and the variance of the aRFSV volatility process (10).
To compute the mean, consider first the exponential fBm process eS8t Since B is a Gaussian
process with zero mean and variance 2, the random variable e$B!" has the log-normal distribution
with mean 26" for every t > 0 and hence its g-th moment is

E |:(e‘§BtH)q:| _ e%§2q2t2H.
The g-th moment of the volatility process (10) is therefore

E[o]] =E [08 exp (qutH — %a§2qt2H>]

Uge*%aﬁzthE {quBtH}

q _%agzqtzHe%EzqztzH
1,2 _ 2H
= glezt ala—a)t (22)

For illustration, we simulated P = 10, 000 paths of the aRFSV model on [0, 0.6] for n = 2 x 252
discretization steps per unit interval and for model parameters « = 1, H = 0.07,£{ = 1.9, p = —0.9,
and oy = 0.2352 that had been shown by Bayer, Friz, and Gatheral (2016) that are consistent
with the market data set used in the paper. We set Sy = 2.5 and r = 0.05 for the stock price
process. The results are visualized in Figure 3. In each plot, five illustrative trajectories are
visualized together with theoretical mean and variance (green dashed) and sample mean and
variance (red). We can see that for each process, the estimated values are aligned with the
corresponding theoretical values.

4.3 Comparison of the Hybrid scheme and its turbocharged version

To quantify the effect of the turbocharging technique explained in Subsection 3.3 on the variance
of the option price estimation, we use the variance reduction factor that is simply a ratio of the
variance of the prices obtained using the method with the variance reduction implemented and
the variance obtained by the standard method. Its reciprocal value thus convey how many times
the variance in estimated prices using the turbocharged method is smaller than the variance in
estimated prices using a standard method. In this simulation study, we use the Hybrid scheme since
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Simulation of the aRFSV model using the Hybrid scheme

Volterra process

il /‘ ‘ AL A
ﬂb’ll Mﬂ‘\\' { I f.'fa\
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a5 Stock Price Process

Figure 3: The results of simulation of the aRFSV model on [0, 0.6] for n = 2 x 252 discretization
steps and for model parameters o = 1,H = 0.07,£ = 1.9,p = —0.9, and oy = 0.235%. Five
illustrative trajectories of each of the Volterra process, the volatility process, and the stock price
process with Sy = 2.5 and risk-free rate r = 0.05 are visualized. Also, the expectation and the
variance for each process estimated from P = 10,000 paths are plotted. The red curves are
estimations and the green dashed curves are exact values. For the stock price process its sample
standard deviation is plotted only, because we do not know the formula of its variance.
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the turbocharging was introduced in a paper where the HS was utilized, although the turbocharging
can be implemented to other methods as well including the Cholesky method.

We performed analyses of variance reduction by calculating the sample variances of the price
obtained from the standard HS and from the turbocharged HS for different parameters. We ran
simulations of P paths, discretized by n steps per year, in 30 batches and for each batch we
calculated the prices of options for different strikes K.

For example, In Figure 4, we can see how the variance is reduced while the mean does not change
significantly. We chose P = 300 paths with n = 4 x 252 steps per year and model parameters that
are consistent with the SPX index Bayer, Friz, and Gatheral (2016). The variance was reduced

approximately 65,27,10,5,3,3,11,9 times for the strikes 80,90,...,150 respectively. The spot
price Sy was set to 100.

Turbo vs. standard Hybrid scheme
S, =100, P =300, n = 1008/year, T = 0.5000
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Figure 4: The visualization of variance reduction from utilizing the turbocharged Hybrid scheme
(T) compared to the standard Hybrid scheme (S). We simulated the «RFSV model for o = 1,00 =
0.2352, H = 0.07,p = —0.9, and & = 1.9. We generated 30 batches of P = 300 paths, discretized

by 4 x 252 steps, for each strike price K for both methods. The boxplots depict the resulting 30
price estimates.

However, the turbocharging method does not always perform well. For example, choosing
a = 1,00 = 0.62,H = 0.22,p = —0.05,£ = 0.18, and setting the other parameters as before,
the resulting proce estimates are not concentrated around its mean. In fact, the variance is not
reduced but extended and moreover, a bias in the estimation becomes more evident. In Figure
5, we cab see that the more an option is OTM, the more the prices are scattered or completely
wrong. Nonetheless, even more extreme results can be obtained for different choice of parameters.

Based on the findings that the turbocharged HS is not always stable, we further analyzed
variance reduction factors for different combinations of coefficients and parameters in order to
determine, what is the source of the malfunction of the turbocharging and what is the effect of
different parameters on variance reduction.

For that reason, we fixed the spot price Sy = 1 and vary model coefficients oy, &, p, H, the risk-
free rate r and the maturity 7. For each combination, we generated 30 batches, each comprised
of a sample of P = 1,000 paths, discretized by n = 4 x 252 steps per year. From each batch, we
calculated prices using the turbo HS and the standard HS for strikes K = 0.5,0.6,...,1.6. Then,
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Turbo vs. standard Hybrid scheme
SO =100, P =300, n =1008/year, T = 0.5000
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Figure 5: The visualization of variance reduction from utilizing the turbocharged Hybrid scheme
(T) compared to the standard Hybrid scheme (S). Coefficients of the aRFSV model were set to
a = 1,00 = 0.62,H = 0.22,p = —0.05,¢ = 0.18. We generated 30 batches of P = 300 paths
discretized by 4 x 252 steps for each strike price K for both methods. The boxplots depict the
resulting 30 price estimates. It is apparent that in this case, the turbocharging does perform worse
than the standard technique for options that are deep OTM.

we calculated the means and variances of prices obtained from the turbo HS and the standard HS.

The resulting variance reduction factors which are ratios of the variances in prices obtained
from the turbocharged HS and the variances in prices obtained by the standard HS are depicted in
Figure 6 where we can observe that the amount of variance reduced clearly depends the most on p.
Turbocharging appears to be the most effective for —1 < p0. For p =~ 0 and p = —1, the variance
is still reduced except for a few outliers. Nonetheless, for p > 0, the variance is not reduced, i.e.,
the variance reduction factor is greater than 1, in more than 10% of the cases. We can also see
some dependence on £. For £ > 1, the turbocharging becomes less stable. Last but not least, the
coeflicient « also seems to affect the variance reduction. For o = 1, the turbocharging is more
stable than for a = 0.

That leads us to conclude that for pricing a European option, we recommend using the tur-
bocharging method only for p < 0. Otherwise, for p > 0, there is a significant chance, that the
obtained price estimates will be very far from the true prices. In the following section we analyze
the variation and bias of the estimates in a similar way.

4.3.1 Analysis of quality of price estimation using the turbocharged Hybrid scheme

Now, we analyze the effect of turbocharging on variability and bias of model prices. To measure
the variability, we use the coefficient of variation

Vs S, (¢ - cT)?
CcT ’

(23)
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Variance reduction factor for the turbo HS

Figure 6: Results of the variance reduction analysis described in Subsection 4.3 for rBergomi
model @ = 1 (red) and RFSV model a = 0 (blue). Each point depicts the variance reduction
factor computed from 30 batches for the given combination of the model parameters. In each
batch, we simulated P = 1,000 paths, discretized by 4 x 252 steps per [0, 1].

where CiT is the estimated price from the ith batch and

o7 = iEN:c;f
Ni:l

is the sample mean of the price estimates.
We analyzed the bias for the prices obtained using the turbo HS by comparing it to the the
prices obtained by the standard HS. To measure bias, we use the absolute relative error

67 - ¢

e (24)
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where C¢ is the average of price estimates obtained by the standard HS and C7 is the average of
price estimates obtained by the turbocharged HS

The results are visualized in Figures 7 and 8. Comparing the two figures, we see that the
variance were significantly reduced in most cases. However, in the second figure, many outliers
occurred and some negative values were obtained due to the malfunction of the turbocharging
that produced negative prices. The most problematic cases arose for p ~ 0 and £ < 1. Moreover,
it seems that the malfunctions appear for OTM options (K > 1).

The relative errors are plotted in Figure 9. Again, we can see that problems occur when
p > 0, for which the estimation using turbocharging is apparently strongly biased compared to
the estimation using the standard HS. We also see better results for &« = 1 than for a = 0.

4.3.2 Modified turbocharging and the Hybrid scheme

As a solution to the issues described earlier, we propose a modification of the turbocharging
method. It is rather a naive approach that tries to identify the cases when the turbocharging does
not work properly and replace the incorrect estimates by the original estimates (not turbocharged).
To identify that the price of a call option is estimated incorrectly, we propose three natural criteria:

1) the price estimate is non-negative,
2) the price estimate is greater than the spot price of the underlying,

3) the price estimates of options with the same maturity are in descending order for increasing
strike prices.

If at least one of those criteria is violated, suspicious price estimations are replaced by estima-
tions using only the standard pricing method without the turbocharging. Suspicious prices are
considered all prices that violates the first or the second criteria. When the third criterion is
violated, having options with a given maturity 7', the first price of an option with the strike K
that violates the descending order is considered suspicious and all prices of options with maturity
T and strike K > K| are considered suspicious. This way, we reduce the number and intensity of
outliers among price estimates and it is guaranteed that the price estimates are non-negative and
lesser than the spot price. The advantage of this approach is that it can be easily implemented
and it is time-efficient — the pricing is not slowed down.

For illustration, we consider the same coefficients and parameters as for the example of the
turbo HS malfunction in Figure 5 but we use the modified turbocharging instead. We visualized
the results in Figure 10. In that case, modification was activated for the prices of option with
K =120 and all following options with strike K > 120. All those suspicious prices were replaced
by the price estimates using the standard HS.

To test the modification, we ran identical simulation as before. The results are visualized
in Figure 11. We see that the modification eliminated all the negative price estimates and also
majority of outlying positive estimates, especially for & = 1. Moreover, we can observe that almost
all the outlying values are now concentrated around og =~ 0. For a = 0. In general it appears that
the turbocharging works better for a = 1.

However, even though we managed to reduce variance and eliminate majority of cases where
excessive variance can be an issue, we have to remember that for p > 0 the estimation can be
strongly biased. We tested the bias of modified turbo HS but we ended up with similar results as
for the turbo HS that are visualized in Figure 9.

To sum this part up, we found out that the turbocharging method is not stable for every
combination of parameters and model coefficients, especially for p > 0. We proposed a simple
modification but we still recommend to avoid using turbocharging when p > 0 due to strong bias
in the estimation. In fact, we suggest using the turbocharging technique only for p < —0.05. Also,
we recommend avoiding turbocharging for oy ~ 0 and £ > 2 when a = 0 due to higher variance
compared to the standard HS.
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Coefficients of variation of the aRFSV model prices
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Figure 7: Results of the variance analysis for the rBergomi model @ = 1 (red) and the RFSV
model o = 0 (blue). Each point depicts the coefficient of variation (23) computed from 30 batches
for the given combination of the model parameters. In each batch, we simulated P = 1000 paths,
discretized by 4 x 252 points per [0, 1], using the standard HS.
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Coefficients of variation of the aRFSV model prices
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Figure 8: Results of the variance analysis for the rBergomi model @ = 1 (red) and the RFSV
model o = 0 (blue). Each point depicts the coefficient of variation (23) computed from 30 batches
for the given combination of the model parameters. In each batch, we simulated P = 1000 paths,
discretized by 4 x 252 points per [0, 1], using the turbo HS.
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Relative errors of price estimation
standard vs turbo
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Figure 9: Results of the bias analysis for the rBergomi model « = 1 (red) and the RFSV model
a = 0 (blue). Each point depicts the absolute relative error (24) computed from 30 batches for
the given combination of the model parameters. In each batch, we simulated P = 1000 paths,
discretized by 4 x 252 points per [0, 1], using the turbo HS and the standard HS.

22



Modified turbo vs. standard Hybrid scheme
SO =100, P =300, n =1008/year, T = 0.5000

120

100 1

60 .

Price

40 - 1

-
|
-
|
-
|
HH
|
{H
W
-
-
I
I
i
%1

0 |- -
-20

n = O K O £ O K O £ O K

N H O H 5§ g 6 6 6 86 o & o S o o

O 0 o g 6 6 4 494 & 8 ® ®m ¥ ¥ b b

® ® & 6 d 9 o od o oA H d oA oA oS o

T [ 1 (N (S T T T T TR TR THR T TR TR TR

X X X X X X X X X X X X X X X X

Strike K, method

Figure 10: Variance reduction visualization for the modified turbocharged Hybrid scheme w.r.t the
standard Hybrid scheme (S). Coefficients of the aRFSV model are set to a = 1,00 = 0.62, H =
0.22,p = —0.05,& = 0.18. We generated 30 batches of P = 300 paths discretized by 4 x 252 steps
for each strike price K for both methods. The boxplots depict the resulting price estimations.
Compare with Figure 5.

4.3.3 Sample Size

When pricing options, we are usually concerned with the accuracy of obtained model prices. Monte
Carlo simulations converge with O(1/,/(P)), where, in our case, P is the number of trajectories
generated thus a question of how many trajectories we need to have a certain accuracy guaranteed
arises. By employing a simple confidence interval for the future value of the mean of the stock
price process at time T that corresponds to an estimate of the price of an ATM call option with
maturity 7', we can come to a result that when P = 100,000 the length of the 99% confidence
interval is smaller than 0.005. The more OTM an option is, the wider the confidence interval is
but for reasonable strikes compared to the spot price, the length of the confidence interval should
not exceed 0.01. When variance reduction techniques are employed, the number of trajectories
required may be smaller but that depends on the combination of model parameters thus we
recommend using at least P = 100,000 as a safe option even when reduction techniques are used.
Also, we recommend using the Cholesky method since it is more time efficient compared to the
HS or rDonsker scheme.
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Coefficients of variation of the aRFSV model prices
modified turbo HS
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Figure 11: Results of the variance analysis for the rBergomi model @ = 1 (red) and the RFSV
model o = 0 (blue). Each point depicts the coefficient of variation (23) computed from 30 batches
for the given combination of the model parameters. In each batch, we simulated P = 1,000 paths,
discretized by 4 x 252 points per [0, 1], using the modified turbo HS.
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5 Conclusion

The main objectives of the paper were rough Volterra stochastic volatility models, in particular the
aRFSV model that covers both the RFSV and rBerhomi models, and their MC simulations. We
showed that all considered methods (Cholesky method, Hybrid scheme, and rDonskere scheme)
are appropriate for the simulation of the aRFSV model and that the rDonsker and HS is faster for
small samples of densely discretized paths, while the CM is more efficient for larger samples of path.
Although the CM is of cubic complexity, it can get very efficient due to its vector implementation
than the FFT implementation of rDS.

Further, we examined the variance reduction techniques for price estimation fulfilled by the
turbocharging method applied specifically to the HS. We observed that for p < 0, the variance is
reduced significantly; however, for p > 0, the turbocharging is not stable, and the variance is, in
fact, higher in many cases.

We also analyzed variability of the price estimations for different combinations of the model
coefficients. We showed that for certain combinations, the turbocharged HS produces outlying
price estimates and that, in some instances, the estimates are heavily biased. In order to prevent
excessive and incorrect prices from occurring, we proposed a simple modification of the method that
identifies suspicious prices and replaces them with the estimates from the standard HS. Moreover,
we recommended using stricter boundary condition p < —0.05 in order to prevent malfunctions.
Using the modified turbo HS for the aRFSV model under the given condition, the variance is
being reduced around 60 times on average. Moreover, the average coefficient of variation of price
estimation is around 1.5%, while the median around 0.005%.

Writing the paper, several additional questions and issues arose. First of all we showed that
none of the studied simulation methods is “perfect”, however, we may conclude that the com-
bination of CM and modified turbocharging variance reduction techniques is the most suitable
for derivative pricing purposes that use MC simulations of rough Volterra processes. However, it
is worth to mention, that other control variate variance reduction techniques might improve the
simulations even further, but their investigation is still an open issue.

Only recently an approximation of the price for the «RFSV model was proposed by Merino,
Pospisil, Sobotka, Sottinen, and Vives (2021). Promising numerical properties of the approxima-
tion allows to propose a hybrid calibration scheme which combines the approximation formula
alongside MC simulations that were analyzed in this paper.
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1 Introduction

In the field of mathematical finance, the stochastic volatility (SV) models are widely used to
evaluate derivative securities such as options. The SV models do not only assume that the asset
price follows a specific stochastic process but also that the instantaneous volatility of asset returns
is of random nature.

The origin of these models goes back to the paper by Hull and White (1987) however the SV
models became particularly popular thanks to the model by Heston (1993), in which the volatility
is modeled by the mean-reverting square root process. This model became popular among both
practitioners and academics.

Although many other SV models have been proposed since then, it seems that none of them
can be considered to be the universal best market practice approach. Some models may perform
well when calibrated to real market data with complex volatility surfaces but at the same time,
they can suffer from over-fitting or they might not be robust to the changes in the option data
structure as it is described by Pospisil, Sobotka, and Ziegler (2019). Moreover, a model with a
good fit to an implied volatility surface might not be in-line with the observed properties of the
corresponding realized volatility time series.

One sever limitation of the classical SV models might be for example the independence of
increments of the driving Brownian motion. This motivated Comte and Renault (1998), Comte,
Coutin, and Renault (2012), and independently for example Alos, Leon, and Vives (2007) to con-
sider the fractional Brownian motion (fBm) as the driving process since the fBm is a generalization
of the Brownian motion which allows correlation of increments depending on the so-called Hurst
index H € (0,1). For H > 1/2, the increments are positively correlated and the process has the
so-called long memory property. For H < 1/2, the increments are negatively correlated and we
speak about the short memory or more recently about the so-called rough regime. Gatheral, Jais-
son, and Rosenbaum (2018) showed empirically that H < 1/2 by estimating it from the realized
volatility time series of major stock indexes and argues that the RFSV model is more consistent
with the reality.

In this paper, we consider the «RFSV model recently introduced by Merino, Pospisil, Sobotka,
Sottinen, and Vives (2021). This model unifies and generalizes the RFSV model (o = 1) and the
rBergomi model (« = 0). For the pricing of a European call, we employ Monte-Carlo (MC) simu-
lations using the Cholesky method equipped with the control variate variance reduction technique
as it is suggested by Matas and Pospisil (2021).

We then calibrate the model to a real market dataset and analyze its robustness to the changes
in option data structure (options of different combinations of strikes and expiration dates may
be available for trading in different days) using the methodology proposed by Pospisil, Sobotka,
and Ziegler (2019) which is based on data bootstrapping. In this paper authors showed that
pricing using the classical SV models such as Heston (1993) and Bates (1996) models is highly
sensitive to changes in option data structure. More robust results were obtained for the long-
memory approximative fractional SV model, but not for all considered datasets. Then, a natural
question arises: can the RFSV models perform better? Apparently, the answer is yes as we show
in this paper. Since the RFSV models belong to a wider class of the rough Volterra processes, the
presented methodology is applicable to this wider class as well.

The structure of the paper is the following. In Section 2, we introduce the studied rough
Volterra stochastic volatility models. In Section 3, we describe the methodology, in particular the
calibration of considered models to real market data. We describe the bootstrapping of option data,
as well as the details of the robustness and sensitivity analyses. In Section 4, we summarize the
obtained calibration results by comparing all the models in terms of variation in model parameters
and in bootstrapped option model prices. We also test the roughness parameter and the parameter
« for significance. Then, we provide the results of the sensitivity analysis fulfilled by a Monte Carlo
filtering technique, testing whether a given studied model is sensitive to the changes in the option
data structure when being calibrated. We conclude all obtained results in Section 5.



2 Preliminaries and notation

2.1 Volterra volatility process

Let W = (W, t > 0) be a standard Wiener process defined on a probability space (Q, F, Q) and
let W = (FV,t > 0) be the filtration generated by W. We consider a general Volterra volatility

process defined as
Ot = g(t7Y;‘/)» tZO» (1)

where g : [0, +00) xR — [0, +00) is a deterministic function such that o, belongs to L(Q2x [0, +0))
and Y = (Y3, t > 0) is the Gaussian Volterra process

y;:/o K(t,s) dWs, (2)

where K (t,s) is a kernel such that for all ¢ > 0

/Kz(t,s) ds < oo, (A1)
0

and
F=F". (A2)

By r(t,s) we denote the autocovariance function of Y; and by r(¢) the variance

r(t,s) :=E[Y}Y], t,s>0,
H(t) = r(t,1) = E[VZ], >0, 3)

In particular we will model volatility as the exponential Volterra volatility process
e
7= 9(t.Y) = coexp { €% — Laghr()} 120 (@
where (Y;, ¢ > 0) is the Gaussian Volterra process (2) satisfying assumptions (Al) and (A2), r(t)
is its autocovariance function (3), and og > 0, £ > 0 and « € [0, 1] are model parameters.

A very important example of Gaussian Volterra processes is the standard fractional Brownian
motion (fBm) B} (the exponent H has the meaning of index, not power)

Bff = /OtK(t,s) dWs, (5)

where K (t,s) is a kernel that depends also on the Hurst parameter H € (0,1). Recall that the
autocovariance function of B is given by

1
r(t,s) := E[BEBH] = 5 (7 + 27—t — s, t,s>0, (6)
and in particular r(t) := r(t,t) = t*# ¢ > 0.

Nowadays, the most precise Volterra representation of fBm is the one by Molchan and Golosov
(1969)

t
BH .= /KH(t,s)dWS, (7)
0



where

2HT (3 — H)
=i

H+3)T(2-2H)

To understand the connection between Molchan-Golosov and other representations of fBm such
as the original Mandelbrot and Van Ness (1968) representation, we refer readers to the paper by
Jost (2008).

There exists various methods how to simulate the fractional Brownian motion numerically. We
often divide these methods into two classes: exact methods and approximate methods (Dieker
2002). We focus on more accurate exact methods that usually exploit the covariance function
(6) of the fBm to simulate exactly the fBm (the output of the method is a sampled realization
of the fBm) without the necessity to treat the complicated Volterra kernel. In particular, the
Cholesky method use a covariance matrix to generate the fBm from two independent normal
samples. Despite its higher computational complexity, this method has already proved to be the
most suitable for simulation of the volatility models, see below.

2.2 Rough Volterra volatility models

Let S = (S, t € [0,T]) be a strictly positive asset price process under a market chosen risk neutral
probability measure ) that follows the stochastic dynamics:

dS; = rS;dt + 0.5 (P dW; + /1 — p? th) ) ©)

where Sy is the current spot price, r > 0 is the all-in interest rate, W; and Wt are independent
standard Wiener processes defined on a probability space (2, F,Q) and p € [—1, 1] represents the
correlation between Wy and Wt. -

Let 7" and F" be the filtrations generated by W and W respectively and let F := FWUFW.
The stochastic volatility process o, is a square-integrable Volterra process assumed to be adapted
to the filtration generated by W and its trajectories are assumed to be a.s. cadlag and stricly
positive a.e. exponential Volterra volatility process satisfies these properties).

For convenience we let X; =1In.S;, t € [0,T], and consider the model

] N
dx, = (r - —af) dt + oy (det +v1-=p? th) : (10)

2

Recall that Z := pW + /1 — p2W is a standard Wiener process.

In this paper we will study the aRFSV model firstly introduced by Merino, Pospisil, Sobotka,
Sottinen, and Vives (2021). In this model, the volatility is modelled as the exponential Volterra
process with fBm, i.e.

Ot = 00 €Xp {thH — %afzr(t)} , t>0, (11)
where g9 > 0, £ > 0 and a € [0,1] are model parameters together with empirical H < 1/2
that guarantees the rough regime. For @ = 0 we get the RFSV model (Gatheral, Jaisson, and
Rosenbaum 2018), for a = 1 the rBergomi model (Bayer, Friz, and Gatheral 2016).

While both cases of the «RFSV model are more likely to replicate the stylized facts of volatility
(Gatheral, Jaisson, and Rosenbaum 2018) even by using relatively small number of parameters
(00,&, p, H), the issue is the non-markovianity of the model. Because of this, we cannot derive any
semi-closed form solution using the standard Itd calculus nor the Heston’s framework. Therefore, to



price even vanilla options, we have to rely on Monte-Carlo (MC) simulations. For these purposes,
a modified Cholesky method will be used together with the control variate variance reduction
technique as it was described by Matas and Pospisil (2021).

We close this section by mentioning, that there exists yet another pricing approach that takes
advantages of the so called approximation formula derived by Merino, Pospisil, Sobotka, Sottinen,
and Vives (2021). This formula can be used either as a standalone fast approximation or together
with the MC simulations to speed up the calibration tasks. However, in this paper we will focus
on rbustness and sensitivity analyses based on pricing approaches that are as accurate as possible
and this can be achieved currently only by the MC simulations that use exact simulation technique
for fBm.

3 Methodology

In this section, we describe the methodology for calibrations of the rough Volterra models to real
market data and we focus on the robustness and sensitivity analysis.

3.1 Calibration to market data

Model calibration constitutes a way to estimate model parameters from available market data. The
alternative approach suggests estimating the parameters directly from time series data such as for
example Gatheral, Jaisson, and Rosenbaum (2018) did for the Hurst parameter. We understand
model calibration as the problem of estimating the model parameters by fitting the model to
market data with pre-agreed accuracy.

Mathematically, we express the calibration problem as an optimization problem

N
inf G(©), G(6)= ;wi[CP(Ti, K;) = CP™(T;, Ky)P?, (12)

where CK(T;, K;) is the observed market price of the ith option, i = 1,..., N, with time to
maturity 7; and of strike price K;, while w; is a weight and C® (T}, K;) denotes the option price
computed under the model with a vector of parameters ©. For aRFSV, we have © = [0, p, H, &, a].

In fact, the representation of the calibration problem in (12) is a non-linear weighted least
squares problem. To obtain a reasonable output, we have to assume that the market prices are
correct, i.e., there is no inefficiency in the prices, which is usually not the case, especially for
options being further ITM or OTM. To fix this, let us assume that the more an option is traded,
the more accurate the price is. We can then weight the importance of a given option in the least
squares problem by the traded volume of the given option. However, there is also another, and
in fact a more convenient and popular way to implement weights. We can get the information of
uncertainty about the price of an option from its bid-ask spread. The greater the bid-ask spread,
the more uncertainty (and usually less trading volume) there is about the price. Therefore, we will
use functions of bid and ask prices as the weights thus w; = g(CP'd — C2%) where g(z) can be, for
example, 1/2%,1/|x|,1/\/z, etc. Based on the empirical results (Mrazek, Pospisil, and Sobotka
2016), we will consider only the case g(x) = 1/22.

Because the objective function is non-linear, we cannot solve the problem analytically as in
the case of standard linear regression. Hence, we revert to iterative numerical optimizers.

For the minimization of (12), we use the MATLAB function lsqnonlin() that implements
an interior trust region algorithm, described by Coleman and Li (1996). The algorithm assumes,
among other things, that the target function is convex. However, we cannot even show the
convexity of the target function since we have no analytical expression to describe it. Therefore,
if the algorithm ends up in a local minimum, it is not guaranteed that it is the global minimum.

In fact, the target function can have more than one local minimum (the source is the non-
linearity of the model price function). To determine the initial point for gradient-based 1sqnonlin(),



we use another MATLAB function ga() that implements a genetic algorithm minimization ap-
proach. It deploys a predefined number' of initial points across the domain of the function and
then, each point serves as an initial condition for minimization that is performed for a pre-defined
number of steps. Based on genetic rules of random mutation, crossbreeding, and preservation
of the fittest, the most successful points are preserved, perturbated by a random mutation, and
crossbred among themselves. This approach (Mrazek, Pospisil, and Sobotka 2016) has been shown
to produce sound results.

To measure the quality of the fit of a calibrated model, we use the following metrics. Having
N options in the data set, we denote kat the market price of the ith option and C; the estimated
price of the ith option based on the calibrated model. Denoting S, the spot price, the first metric
is the average relative fair value (ARFV) and the second one is the mazimum relative fair value
(MRFV). They can be expressed as

MRFV = max

1
ARFV = =S 10 7 | A
REV NZ So ’ i=1,...,N So

i=1

It is worth to mention that these measures offer a better error understanding than the originally
used average absolute relative error (AARE) and mazimum absolute relative error (MARE)

kat _ kat
MARFE = max

AARE = Z kat ’ i=1,..,N  (Cmkt

3.2 Robustness analysis

We calibrate the aRFSV model the way described in the previous section to a real market dataset.
In the ideal hypothetical case, all combinations of strikes and times to maturity for a given option
would be available, i.e., we would have a continuous price surface to which we would calibrate a
selected model. However, in the reality, we have only a finite number of different options available
to trade and moreover, the combinations of strikes and times to maturities (we call that the option
data structure) changes and even the number of combinations itself changes over time. Therefore
the obtained coefficient estimates can differ, should the model calibration be sensitive to the option
data structure.

In this paper, we understand robustness as the property of a model that conveys the sensitivity
of the model being calibrated to changes in the option structure. To study the robustness of
the aRFSV model, we use the methodology suggested by Pospisil, Sobotka, and Ziegler (2019).
Therefore, our results of the robustness analysis of the aRFSV model are comparable with those
of the Heston, Bates, and the AFSVJD model, presented in the referenced paper.

To analyze robustness, we have to simulate the changes in the option structure. To do this,
we employ bootstrapping of given option structures. Bootstrapping is a technique when ran-
dom samples are selected with replacement from the initial dataset. For example, to bootstrap
the data set (X1, Xs,...,Xs), we need to generate uniformly distributed random integers from
{1,2,...,6}. Suppose the realization is {2, 3,5,4,4,3}. Then, the obtained bootstrapped sample
is (XQ, Xl, X5, X4, X4, Xg)

Mathematically, an option structure is the set of all the combinations of strikes K and times
to maturity 7' available for trading in a given day. Having market data consisting of N options,
the set X = {(K;,T;),i = 1,..., N} is the option structure for the given day where each option
has the market price Ckt = kat(Kl, T;).

By bootstrapping X in total of M times, we obtain M new option structures A7, ..., Xj;. Then
each &, together with the option prices from the initial dataset assigned to the corresponding
combinations of strikes and times to maturities, produces bootstrapped sample B;. Next, we
calibrate the model separately to each B; and obtain estimates of the model parameters and

IWe use 150 points.



model prices for each. Let us denote @ the parameter estimates obtained from the bootstrapped

sample B;, and I = [C . CN] where CJ CJ (K;,T;), is the vector of corresponding model
prices.
Having the results of the calibrations from By, ..., Bys, we can compute the bootstrap estimates

of the parameters and models prices. The bootstrap estimate of a parameter is the mean across
all the estimated parameters:

M

Z (13)

and the bootstrap estimate of a model price of the ith option is

= |

Next, we look at the variance of the errors of the price estimates of the ith option ’C’f — Cimkt’.

However, to be able to better compare the variances among different options, we normalize the
error. Then, let us denote

~Jj mkt
‘q. e

V; = Var kat

(14)

the variance of the normalized errors of the ith option. It is also useful to examine the bootstrap
relative error (BRE) for the ith option:

il o

BRE" = kat kat

(15)

We analyze variation in coefficients visually by plotting a scatter plot matrices. Denoting d
the number of model coefficients being calibrated, the scatter plot matrix is a d X d matrix, where
histograms for each coefficient are on the diagonal, and 2D scatter plots of corresponding values
of coefficients elsewhere. Hence, from a scatter plot matrix, we get a grasp of the distributions of
coeflicients and also whether there is any dependence between pairs of coefficients and variation
in the estimates.

3.3 Sensitivity analysis

In this paper, we use a similar method to carry out a sensitivity analysis introduced by Pospisil,
Sobotka, and Ziegler (2019) based on the ideas of Saltelli, Ratto, Andres, Campolongo, Cariboni,
Gatelli et al. (2008). In short, we aim to test whether the «RFSV model is sensitive to changes
in option structure through a given parameter.

In our context, we chose the following Monte-Carlo filtering technique?: To each vector of
calibrated model parameters obtained from the bootstrapped data, we calculate the average rel-
ative fair value (ARFV) as a quality measure for the calibrated model fit. Then, we separate
the calibrated models into three groups: (I) the calibrated models with the corresponding values
of the ARFV up to the third octile, (IT) the models with the ARFV between the third and the
fifth octile, and (III) the models with the ARFV above the fifth octile. Next, for each calibrated
parameter, we compare the distribution of the parameter estimates corresponding to models from
group (I) with the distribution from group (III). We use the Kolmogorov-Smirnov test for the
comparison. The null hypothesis is that the parameter estimates from group (I) comes from the
same distribution as those from group (III).

2For more details on Monte-Carlo filtering approaches see, for instance Saltelli, Ratto, Andres, Campolongo,
Cariboni, Gatelli et al. (2008).



4 Numerical results

In this section we present the results of the calibration and the robustness analysis of the «RFSV
model. For that purpose, we used the same real market dataset as in the paper by Pospisil,
Sobotka, and Ziegler (2019).

4.1 Data description

We operate with a real market dataset that consists of market prices of call options on Apple Inc.
stock (NASDAQ: AAPL) quoted on four days of 2015: 04/01, 04/15, 05/01, 05/15. Naturally, the
combinations of strikes and times to maturity of the options (the option data structure) change
over time. There are 113 options in the option chain on the first day. The second day, the total
number of different options rises to 158, the next day to 201, and the last day decreases to 194.

For convenience we visualize the data from May, 15, in Figure 1, in order to give some per-
spective. For each listed call option with the strike K and time to maturity 7', a disk is plotted
with center in (K,T). The diameter of the disk relates to the price of the option.

Data structure for 2015-05-15 (194 options)
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Figure 1: Call option data structure for AAPL dataset from May, 15, 2015. The positions of disks
are given by the combinations of the strikes K on the z-axis and the maturities 7" on the y-axis of
the options listed at the time. The diameter of each disk relates to the corresponding close price.

4.2 Calibration routine

In order to calibrate the aRFSV model, we use the Cholesky method with the modified tur-
bocharging method introduced by Matas and Pospisil (2021) and we follow the recommendation
given there to employ at least P = 150,000 paths discretized by n = 4 x 252 per interval [0, 1],



so the pricing method assures sufficient accuracy. Then, we are able to price any option with
T < Thax from the paths, which were already simulated, by truncating them to corresponding
interval [0, 7).

We tried to use different weights® for the target function (12), but the best results were obtained

for the weight type
1

T e o 16)
which aligns with the results in Mrazek, Pospisil, and Sobotka (2016) for other SV models. For
that reason, we present only the results for this type of weights. To compare weighted prices with
the market prices, see Figure 2 and 1.

Data structure for 2015-05-15 (194 options)
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Figure 2: Example of the options call data structure for AAPL call option prices from May, 15,
2015, weighted by (16). The positions of disks are given by the combinations of the strikes K on
the z-axis and the maturities 7" on the y-axis of the options listed at the time. The diameter of
each disk relates to the corresponding weighted close price. Compare with Figure 1.

4.3 Overall calibration

First, we summarize the results of the calibrations to the market data. Then, we compare the
results to those obtained for other SV models in Pospisil, Sobotka, and Ziegler (2019) where
different SV models were analyzed using similar methods and the identical dataset. For the
comparison, we adopt Table 1 from the mentioned paper as Table 1. It contains AAREs of of the
calibrated Heston, Bates, and AFSVJD models. Lastly, we test the significance of the H and «
parameters.

= L0(0) =y, and @) = .

3Having w; = g(CPid — C2%%), we tried g(z)



Table 1: Average (AARE) of overall calibrations of the Heston, Bates, and AFSVJD models for
the same dataset as we use, reprint of (Pospisil, Sobotka, and Ziegler 2019, Table 1).

Trading day 1/4/2015 15/4/2015 1/5/2015 15/5/2015

Heston 5.15% 3.79% 6.58% 3.39%
Bates 3.73% 3.57% 5.77% 3.41%
AFSVID 2.21% 2.16% 5.89% 3.20%

Table 2: Lower and upper bounds for the model coefficients we considered for the overall calibra-
tion.

Coeflicient oy p H 13 @

Lower bound 0.01 -1 0.05 0.01 0
Upper bound 0.20 -0.05 0.25 3 1

For the MATLAB function ga(), we set the number of initial points on 150 and the number
of iterations on 5, as more than 5 did not make much significant improvement. For 1sqnonlin(),
which is ran after ga() and which further minimizes its output, we set the tolerance on the value of
the target function on 10~¢ and the tolerance on the norm of the difference between two subsequent
points on 10~7. Although the global optimization part is heavily time consuming, it is crucial in
the situations when any initial guess is available to be used for the local optimization part that is
significantly faster for obvious reasons. The whole procedure takes just a couple of minutes on a
personal computer and no supercomputing power is necessary.

The bounds of the coefficients considered for the calibration are summarized in Table 2. While
the bounds oy > 0 and p > —1 are naturally arising from the definition of the «RFSV model,
the upper bound for oy and the bounds for ¢ were determined based on several test calibrations
such that they provided a suitable area for the genetic algorithm while not limiting the calibration
procedure in finding the global maximum. The upper bound p > —0.05 is based on the recom-
mendation given in Matas and Pospisil (2021) and the range for the Hurst parameter was set as
0.05 < H < 0.25 which is, according to Bennedsen, Lunde, and Pakkanen (2016), a common range
for H based on estimates for 2000 different equities.

Table 3: Average (AARE) of overall calibrations of the RFSV, rBergomi, and «RFSV models.

Trading day 1/4/2015 15/4/2015 1/5/2015 15/5/2015

RFSV  27.03% 7.00% 7.38% 7.48%
rBergomi  6.46% 6.99% 9.74% 15.63%
aRFSV  5.74% 6.70% 9.71% 11.20%

Table 3 presents the results of the overall calibration procedure for the studied models. We can
see that for the first two days, rBergomi provides better fits than RFSV. For the next two days,
the situation reverses and the fits obtained by RVSF are superior to those obtained by rBergomi.
An interesting result is that the «RFSV model that unifies the two models by introducing a new
parameter « that fulfills the role of the weight between the models fits the data in the most
consistent way. We discovered that for the first two days, the parameter « is closer to 1 which
corresponds to the rBergomi model and the next two days, a leans towards 0 thus the RFSV
model. However, the aRFSV model does not always provide the best fit.

Comparing the values of AARE in Table 3 to those obtained for other SV models tabulated
in Table 1, we can observe that the rough models do not provide better fits than the SV models.
Nevertheless, rough models, as we will see in the next sections, are much more robust compare to
the SV models.
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Figure 3: The market and model prices (left) and s (right) for the rBergomi model (first row) and
the RFSV model (second row) on April 01.

To illustrate the difference in the fit of two different models on one day, we visualized the model
prices, the market prices, and the s in Figure 3. We chose April 01 because there is the biggest
difference in the AARE of rBergomi and RFSV (second row). Above the K — T plane we plotted
the market and model prices together (left side) and the corresponding s (in the right). On this
day, the rBergomi model provides much better fit than the RFSV model.

4.3.1 Parameter significance testing

We also test for parameter significance. We are particularly interested whether the parameters H
and « have any affect on the model fit, i.e., whether the fit of the «RFSV model is better/worse
when H (resp. «) is being calibrated compared to the model with fixed H (resp. «). We consider
the fixed value of H being 1/2, thus it constituted a model with the volatility process being driven
just by the Bm instead of the fBm. To test the significance of a, we compare the fit of the aRFSV
model with the rBergomi model which corresponds to a = 1.

If we had a deterministic pricing formula, we could simply calibrate the models and compare
the fit directly. But since the pricing involves randomness (Monte Carlo simulations), we need
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Table 4: The overall calibration results.

Overall calibration of the RFSV model

day og P H £ Q@ AARE MARE WRSS ARFV
Overall calibration of the rBergomi model

4-01 0.0782 -0.1792 0.2324 0.9875 1 6.46%  28.60%  0.0226  0.3983%

4-15 0.0700 -0.1771 0.0518 0.8858 1 6.99%  48.92%  0.0282  0.2825%

5-01 0.0615 -0.0755 0.1047 0.3520 1 9.74%  94.17%  0.0516  0.4439%

5-15  0.0470 -0.1243 0.0634 0.3126 1 15.63% 107.46% 0.0443  0.4111%

Overall calibration of the aRFSV model
4-01 0.0714 -0.1830 0.2336 0.8229 0.8213 5.74%  49.76%  0.0286  0.3357%
4-15 0.0714 -0.1830 0.1434 0.3910 0.9721 6.70%  64.83%  0.0384 0.2683%
5-01 0.0553 -0.0578 0.1038 0.9510 0.3796 9.71%  55.56%  0.0522  0.4451%
5-15 0.0433 -0.3302 0.1607 1.1077 0.2585 11.20% 80.82%  0.0247  0.2800%

to conduct a statistical test to decide whether the difference in the fit measured by the ARFV
is significant. We thus conducted 100 simulations to that resulted in different prices and thus a
sample of different values of the ARFV for a given calibrated model. We then used the two-sample
t-test to compare the mentioned pairs of models.

We first used this method to compare the rBergomi model with H being calibrate and with H
fixed to 1/2. For all the four days, rBergomi provided significantly better fit. Then we compared
the aRFSV model with the rBergomi model which corresponds to e = 1. Again, the null hypoth-
esis was rejected for all the days. It is worth to mention that all the p-values were smaller than
0.001.

4.4 Robustness analysis

To analyze the robustness of the studied models, we ran calibrations on 200 bootstrapped samples
as described in Subsection 3.2 and examined errors and the variation in the prices and coefficients.
For the initial points for the bootcalibrations, we chose the parameters estimated by the overall
calibration (Table 4) while keeping the other calibration procedure parameters the same as before.
First, we examine the errors of prices and its variation with respect to the changing option
structure and then we analyze the variation in the model parameter estimates. Lastly, we present
the result of the sensitivity analysis.

4.4.1 Prices — errors and variation

We examined how the model prices, which we obtained from bootcalibrations, differ from the
market prices and the variances of the distances (absolute errors). For that reason we plotted the
bootstrap relative errors BRE (15) and the variances of the s V' (14).

Figure 4 depicts the values of BRE and V for the option structure on April 1 produced by
the aRFSV model (first row) and the rBergomi model (second row). For both models, the largest
errors and concentrates on the right side relative to the spot price which is natural since deep
OTM options have zero intrinsic value hence all the value comes from the time component, i.e.
the probability that a given option will be exercised with a profit at the expiration time. The
time component is difficult to model since it often depends on unique market circumstances thus
it involves the biggest portion of uncertainty. Comparing the two models for this particular day,
rBergomi provides much better fit than «RFSV and also rBergomi is less sensitive to the changes
in the option structure since the variances are smaller.

Complete results for all the three models for each day are available in similar format in Ap-
pendix of the thesis Matas (2021). From comparing all the figures, we can see the same pattern
of the bigger errors for the OTM option. However, an interesting result is that the «RFSV model
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has the smallest variation (sometimes by even more than two orders of magnitude) of the errors
for all the days which suggests that the aRFSV model may the most robust of the three models.
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Figure 4: Option data structure from April 1, where the diameter of the size of a disk depicts
the bootstrap relative error (BRE) (15) (left column) and the variance of the (14) (right column)
corresponding to an option of a given combination of K (x-axis) and T (y-axis). The top row
belongs to the RFSV model and the bottom one to rBergomi.

4.4.2 Variability of estimations of model coefficients

In order to analyze the variability of the estimated model coefficients obtained from the bootcali-
brations, we plot and examine scatterplot matrices.

Figure 5 illustrates the model parameter estimates of the «RFSV model obtained from the
bootcalibrations. Since the 5-dimensional parameter space is visualized as a matrix of 2D scatter
plots, we can visually examine any patterns between the parameter estimates, while the histograms
on the diagonal can provide some insight about the distributions of the parameter estimates. We
can observe that there are no visible patterns and the distributions are symmetric with positive
kurtosis which are both good properties for estimates. Also, notice that the variation around the
bootstrap estimate is of a very small order of magnitude.

In fact, the scatter plot matrix in Figure 5 is very similar to the scatter plot matrices for
other models and days. There are no visible patterns suggesting dependency between any two
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Figure 5: A scatter plot matrix of the parameter estimates from bootcalibrations of the aRFSV
model for May 1. The red stars represent the bootstrap estimates (13), while the black crosses

represent the estimates from the overall calibration.
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parameter estimates, all the distribution are symmetric with positive kurtosis, and the variation
around bootstrap estimates is remarkably low, especially compared to similar scatter plot matrices
for the Heston, Bates, and AFSVJD models presented in Pospisil, Sobotka, and Ziegler (2019).
Therefore, we can conclude that the fractional SV models are more robust than the mentioned SV
models.

4.5 Sensitivity analysis

We conducted the sensitivity analysis as described in Subsection 3.3, i.e., for each parameter
in a given day and for a given model, we tested the null hypothesis that the distribution of
the parameter estimates corresponding to the 3/8 "worst" bootcalibrations is the same as the
distribution of the parameter estimates belonging to the 3/8 "best" bootcalibrations, using the
KS test.

The KS test did not reject the null hypothesis for any of the parameter-model-day combination.
That shows that the studied models are not sensitive to changes in the option structure when being
calibrated. Although considerable variation in the values of the ARFV is still prevalent, the results
of the sensitivity analysis suggest that the variation comes mainly from the changes in the option
structure, independently of the parameter estimates.

5 Conclusion

First, we compared the fits of the studied rough SV models between each other and also with the
Heston, Bates, and AFSVJD models in terms of the average absolute relative error. We concluded
that for the used data sets, none of the fractional SV models is superior but aRFSV appears to
be the most consistent. When RFSV performs better for a given data set, the parameter « is
closer to 0 and when rBergomi provides better fit, the parameter « is closer to 1. Based on our
comparison of the AARE, the studied rough models do not appear to be superior to the Heston,
Bates, and AFSVJD models.

Then we presented the parameter estimates of the overall calibrations and tested the param-
eters H and « for significance. The two-sample t-test confirmed that both the parameters very
significantly improve the model fit when calibrated for all the four data sets used.

Next, we analyzed the robustness of the rough SV models based on plots of BRE, variances
of absolute relative errors across the bootstrapped data sets, and the scatter plot matrices of the
parameter estimates. While the BREs were higher for the OTM option in all cases, an interesting
results was that the aRFSV had the smallest variation (sometimes by more than two orders of
magnitude) of the errors for all days compared to the two other studied models. The scatterplot
matrices revealed that there are no patterns suggesting that any pair of parameter estimates would
be dependent and the variance of the estimates turned out to be remarkably small, especially
compared to the standard SV models. We concluded that the rough SV models are very robust
and the aRFSV the most of them.

Lastly, we tested the sensitivity of the models to the changes in the option structure when
being calibrated, We used a Monte Carlo filtering technique and the KS test. The statistical
procedure did not show that the fit of a given model is significantly sensitive to the changes in the
option structure. Thus, we concluded that the still prevalent variation in the errors comes from
the changes in the option structure, independently of the parameter estimates.

Writing the paper, several additional questions and issues arose. Regarding calibration, we
could estimate some of the model coefficients from time series, e.g., the Hurst parameter H can be
estimated by the method proposed in Gatheral, Jaisson, and Rosenbaum (2018), or the coefficient
p can be estimated as the correlation between stock price returns and realized volatility changes.
We could then analyze the robustness of the models for such cases in a similar fashion. Another
possibility is to try a different approach for the calibration itself. Instead of the deterministic
gradient-based trust region approach of 1sqnonlin(), we could employ a stochastic approximation
approach or even a deep-learning method developed by Horvath, Muguruza, and Tomas (2019).
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In the paper by Merino, Pospisil, Sobotka, Sottinen, and Vives (2021), an approximation
of the option price in the aRFSV model was derived and numerical experiments therein pro-
pose a promising hybrid calibration scheme which combines the approximation formula alongside
MC simulations. Since the aim of this paper was to study the model as accurately as possible,
we avoided the usage of approximation formula in our robustness and sensitivity analyses tests,
however, repeating the same experiments with the usage of approximation formula should be
straightforward.
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Chapter 4

Thesis attachment

On the attached CD, we created the following file structure:

01_data

e 02_simulation

¢ 03_pricing

e (04 _calibration

¢ 05_sensitivity

* (06_significance_testing

¢ (07_results_bootcalibrations
¢ DP_text.pdf

e README.txt

In the first six folders, there are tagged mfiles' and in the seventh folder there are all the
results from bootcalibrations that we present in this thesis. The pdf file DP_text.pdf is
the text of this thesis. The last file README.txt contains general information about the
content of the CD. There is also a separate README.txt file in each folder with more
information about the content in detail.

IMATLAB codes.
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Moments Matching the Theoretical Moments of fBm
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Figure 1: Sample absolute moments (blue) matching the corresponding theoretical val-
ues E [!Bth (black), see (2.14), of fBm {B/1,0 < t < 1.2} for H = 0.20. There were

simulated P = 100,000 paths, with granularity n = 4 x 252 steps, using the Hybrid
scheme. We denote €,¢ the absolute error of the end end value.

Complete results of the robustness analysis

The following figures present the complete results of the robustness analysis.
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