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Abstrakt

V této préci vysetiujeme okrajovou ilohu skladajici se z diferencidlni rovnice druhého #ddu, Sturmovy-
Liouvilleovy podminky a podminky integralniho typu. PopiSeme vlastni ¢isla piislusné linedrni
ulohy. Pro okrajovou tlohu predstavime implicitni popis Fuéikova spektra v prvnim kvadrantu a
na zakladé tohoto popisu sestrojime parametrizaci spektra pro specidlni hodnoty parametru.

Kliéova slova: Fucikovo spektrum, nelokalni okrajové podminky, podminky integralniho typu,
Sturmova-Liouvilleova podminka, vlastni ¢isla

Abstract

In this thesis we investigate the boundary value problem consisting of a second order differencial
equation, Sturm-Liouville condition and integral type condition. We are going to describe eigenva-
lues of corresponding linear problem. We introduce an implicit description of the Fucik spectrum
in the first quadrant for the boundary value problem and based on this description we construct a
parametrization of the spectrum for special values of parameters.

Keywords: Fucik spectrum, nonlocal boundary condition, integral type condition, Sturm-Liouville
conditon, eigenvalues
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Chapter 1

Introduction

In this thesis, we are going to investigate the boundary value problem with one Sturm-Liouville
type condition and one non-local boundary type condition

v’ (z) + aut () — Bu~ (x) =0, € (0,1), (11)
u (0) - sinc = u’ (0) - cose, fo dx—'y u’ (0), '
where ¢ € (—g, g] and v € R. Our goal is to find the Fucik spectrum of (1.1)), by which we mean
the set
XY= {(a, B) € R x R : the problem (|1.1)) has a non-trivial solution u}

In the second chapter, (|1.1) is investigated for A = « = 3, which we call a linear version of the
problem ([1.1]). After the introduction of A, the boundary value problem (/1.1 reads
{u” () + A u(z) =0, z¢€/(0, 1)
)-

cosc, fo ) dz = -u'(0) (1.2)

u (0) -sinc =’ (0

and our goal is to find values A, so called eigenvalues, for which the problem (|1.2)) has a non-trivial
solution. We are going to prove, that for ¢ # 0 is A the eigenvalue of (|1.2)), if A is the solution of

1—cosVA+ VA -cote-sinvVi= A~y for A > 0,
or
—1l+4+coshv—=A++vV—=A-cotc-sinhv—-A=—-X\-v for A < 0.
Additionaly, A = 0 is the eigenvalue for the problem (1.2} if and only if

1
= cot —.
Y = co c+2

In the third chapter, the problem (1.1)) is investigated and we provide an implicit description of
the Fuéik spectrum X7 in the first quadrant of the a8-plane. For «, 8 > 0, we have that (a, §) € X7,

if (\f . (f /B, v -vap - cos (Va-p(va,c))

\F+\F> f+f)

or

o (VA.a 275) = (VAva 2005 ) = VB am (VB (1. ).

where functions G, P and p are defined in Deﬁnition Examples of the set X7 for different values
of parameters are in Figure
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In the fourth chapter, we consider the boundary value problem (L.1)) for ¢ = 7 and v € (f%, %) ,
which is
W(z) + aut (z) — fu=(x) =0, w € (0,1),
u(0) =0, fy u(x) dz =7 (0).
We show, that for a, 8 > 0, finding the Fuéik spectrum X% of (1.3) is equivalent to finding the
2
solution of the quadratic equation (for s > 0, given by (4.8)))

(1.3)

ca,(8) - k2 + c14(8) - k+co(s) =0, (1.4)

where we denote k = 2 and cz(s), c1,4(s) and co(s) are given by ({@.10), ({I1) and (£.12)
respectively. Additionaly, we prove, that the equation has for s > 0 and v € (f%, %) only
real solutions.

Lastly, in the fifth chapter, we provide the parametrization of the Fuéik spectrum Y% in the

2
first quadrant of the a/5-plane, which is a curve v : (0,s*) — R and v(s) = (v1(s),v2(s)), with the
description

vi(s) == i3 (s),
va(s) = p3(s)
Functions p1, ps : (0,8*) — R are defined as
9.
s—nm+ 7T+ nm- C2W(S) for 2nm —2r < s <2nmw—m
—C1 (S) + D(’Ya 8)
p(s) = 2.’072 (s
s+7m+2nm- ()Jrﬁ Do) for 2nm — 7w < s < 2nw
—c14(s v,
— D
s—nrT+7m+nmT- c1(5) + (:) for 2nm —2r < s < 2nmw — 7
pia(s) = 2 C2y(s)
— D
nm+(s—nmw+m)- Cl"y(;.); B (.9) for 2nm — 7 < s < 2nmw
-

where n € N, s* =T'(), I is given in (4.33), functions ¢ ~, ¢1,4, o4 are defined by (4.10), (4.11),
(4.12) and D(v,s) is defined by (4.19).

1.1 Literature review

In this section, we provide an overview of papers published previously, which are examining problems
related to the focus of this thesis.

1. Paper The Fucik spectrum for nonlocal BVP with Sturm-—Liouville boundary condition [7]
consideres the boundary value problem

{u”(x) +put(z) —Au~(z) =0, =x€(0,1), (15)

au(0) + (1 — a)u/(0) =0, fol u(s)ds =0,
where pu, A € R and « € [0, 1]. The paper [7] provides us with a description of the Fuéik
spectrum of ([L.5]) for
(a) a =1, see [7, Theorem 1, p.506]
(b) =0, see [1, Theorem 2, p. 506]
(¢) a € (0, 1), see [7, Theorem 3, p. 508]
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2. The paper On Fucik type spectrum for problem with integral nonlocal boundary condition [9]
investigates boundary value problems

' (x) + put(z) — M~ () =0, x€(0,1),
{U(O) =0, u(l)=~ f01/2 u(s) ds (1.6)
and
u'(x) + put(z) = M () =0, x€(0,1),
{u(O) =0, u(l)= 'yfll/2 u(s)ds, (L7)

where p, A, v € R. Analytical descriptions of Fué¢ik spectrums are provided for special values
of parameters,

(a) for v < 0 in problems (1.6 and (1.7, see [9, Lemma 1, p. 264],
(b) for v € [0, 8) in (1.6) and for v € [O, g] in (1.7), see [0 Lemma 2, p. 265]
¢) for v =8 in (L.6) and for v = § in (L.7), see [9, Lemma 3, p. 265
(d) for v > 8 in (L.6) and for v > % in (L.7), see [9, Lemma 4, p. 265].
It also describes branches of the spectrums of the problems (|1.6)) and (L.7), solution of the

problem (|1.6]) is described in [9, Lemma 5, p. 266] and solution of the problem (1.7)) is described
in [9, Lemma 6, p. 268].

3. The paper On the Fucik type problem with integral nonlocal boundary conditions [§] describes
the spectrum of the boundary value problem

{u"(x) +put(z) —Au~(z) =0, =x€(0,1), (18)

1
u(0) = 7f0 u(s)ds = u(1),
where p, A, v € R. Main results of [§] are

(a) the spectrum of (1.8)) does not exists for v < 0 (see [8, Lemma 2.1, p. 3])
(b) location of the branch of the spectrum bolonging to the problem (1.8)) (see [8, Lemma
2.2, p. 3]).

Additionaly some features of branches are provided.

4. The paper On Some Problems with Nonlocal Integral Condition [6] studies the boundary value
problem
{u”(x) +put(z) — M~ (z) =0, z€(0,1), (19)
w(0) =0, wu(l)= 'yfol u(s) ds, '
where u, A, v € R. The paper provides us with a description of the spectrum of the problem
in [6, Theorem 2, p. 115]. Additionaly, properties of the spectrum are described [6]
Section 4, p. 117]. Lastly, the author generalizes into the boundary value problem

u(0) =7 fol u(s)ds, u(l) =rs fol u(s)ds, (1.10)

where u, A\, 71, 72 € R and provides several properties and condition of existence for the
spectrum of the problem (1.10) (see [6, Section 5, p. 124]).

{u”(x) +put(z) — M~ (x) =0, x€(0,1),



Chapter 2

Eigenvalues for the linear problem

In this chapter, we investigate the linear case of the boundary value problem (1.1)), i.e. the problem

{u” () + Au(x)

0, z€(0,1), 21)
) )

u (0) - sinc = u’ (0) - cose, folu(a:) dz =~-u'(0),

where we denoted @ = 8 = \. Our goal is to find values A based on the parameters ~, ¢, for which

the boundary value problem (2.1]) has a non-trivial solution w.

2.1 Eigenvalues for ¢ = 7 and ¢ =0

Firstly, we are going to investigate the problem for special values of parameter ¢ in order to
find a simpler conditions for the eigenvalues A. Let us consider ¢ = 7, for which the Sturm-Liouville
condition w (0) - sinc = u' (0) - cos ¢ changes into the Dirichlet condition, therefore we investigate
the boundary value problem

{u// (z) 4 M (x) =0, xz € (0,1), (2.2)

u(0) = 0, fol u(x) de =v-u'(0).
Theorem 2.1. For the boundary value problem , we have
1. no eigenvalues for v < 0,
2. countably many eigenvalues \, = 4k*w?, k € N, for v =0,
3. finitely many eigenvalues A1, ..., An, n € N, for v > 0. Moreover

(a) for0 <~ < %, eigenvalues Ay, ..., A\, are positive solutions of the equation
YA =1—cos VA, (2.3)

(b) for~= %, we have exactly one eigenvalue A\ = 0 and

(c) for~ > %, we have exactly one eigenvalue A1 < 0 given as a solution of the equation
YA =1—coshv—A\. (2.4)

Proof. We are going to split the proof according to the sign of .

1. Let A > 0. Then the differential equation in the problem (2.2) has a general solution u(z) =
c1sin(vAz) 4 ¢p cos(vVAz), where ¢1,co € R. Using the first boundary condition in (2.2)), we
obtain u(0) = ¢ - 1 = 0 and thus ¢g = 0.
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Using the integral condition in (2.2]), we calculate

1
/ u() de = 7 - (0),
0

V2

s
YA =1 — cos \/X,

Which is the equation . For v € (O, 2) the equation (2.3) has finitely many solutions
A, since the function v is linear and strictly increasing, Where as the function on the rlght
side 1 — cos \f A has the range of [0, 2], as illustrated in Figure 2.1} For v < 0 or v > 3, the
equation (2.3]) has no solutions and lastly, for v = 0, we have YA = O and there are countably
many values of X given by 1 — cos VA =0, i.e. A, = 4k?72, k € N.

c - [—COS(M] zwcl\ﬂ-cos(\f)\-o),

2. Let A = 0. Then the differential equation in has the form of v”(z) = 0 and its general
solution is u(x) = A-(x —x0), where A € R and zp € R. Using u(0) = 0 we obtain the relation
Az = 0. If the parameter A = 0, then the value zg is arbitrary and u(z) = 0. For A # 0, we
have z¢g = 0 and

1
| uwyas =),
0
1
A-/ rdr =v- A,
0
221"
2|,

v =

9

l\D\»—~ -2

Therefore A = 0 is the eigenvalue for the boundary value problem ({2.2)) if and only if v = %

3. Let A < 0. The general solution of the differential equation in (2.2)) has the form of u(z) =
1 sinh(v/—Az) 4 ¢ cosh(v/—Ax), where ¢1,¢9 € R. Using the Dirichlet condition, we have
u(0) = ¢g = 0. Using the integral condition, we obtain

/1u<x>dx:v-u'<o>,

0

e - / sinh(v=Az) dz = ye1 V=X cosh(v/ =X - 0),

cosh(v/—\x) ! B
=5,
yA =1 — cosh(v/=N),

which is the equation . The equation can be also written as v = f()), where we
denoted f(\) := % The existence and uniqueness of the solution A of the equation
v = f()\) is guaranteed for v > 3, since the function f is strictly decreasing for A < 0 and
has the range of (2, +oo) as 111ustrated in Flgure .

O
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Fig. 2.1: Graphic representation of solutions A;, A2, A3 of the equation (2.3]) for v = 0.02.

A\
=

A

0
Fig. 2.2: Graph of the function f(A), A < 0 defined in part 3 of the proof of Theorem [2.1
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The second special value of ¢ we are going to investigate is ¢ = 0. In this case, the Sturm-
Liouville condition becomes the Neumann condition u'(0) = 0 and thus, the integral condition
fol w(z)dxr = v - 4/(0) is independent of the parameter -, since it has the form of fol w(z)dr = 0.
Therefore we investigate the boundary value problem

u' () +Au(z) =0, =x€(0,1), 25)
u'(0) =0, fol u(z) dz = 0. .
Theorem 2.2. The eigenvalues Ay for the boundary value problem (2.5) are given as
e = k2%, keN. (2.6)

Proof. Let us split the proof according to the sign of .

1. For A > 0, the general solution of the differential equation in (2.5) is u(z) = ¢ sin(vAz) +
Co cos(\ﬁx), where ¢1, ¢y € R and the first derivative is v/ (x) = ¢; VA cos(ﬁx)—coﬁ sin(xf)\x).
Thus we have ¢; = 0 due to the Neumann condition. Using the integral condition, we have

1
co/ cos(VAz)dz = 0,
0

‘o sin(v/\x) ' _0
i,
cp - sin VA=0.

There are two possible cases. If ¢y = 0, then we have only the trivial solution u(z) = 0. If
co # 0, then sinvA = 0, and solutions A\, = k%72, k € N, are eigenvalues for the boundary

value problem ([2.5)).

2. For A = 0, the general solution u of the equation v”(z) = 0 in (2.5) is given as u(z) =
A (x — xp), where A, zp € R. The derivative of u can be calculated as u'(z) = A. Therefore
using the Neumann condition, we have A = 0 and there is only the trivial solution u(z) = 0

of the problem ([2.5).

3. For A < 0, the general solution u of the problem (2.5) is given as u(z) = ¢; sinh(v—Az) +
¢ cosh(v/—Ax), where ¢1,co € R and the first derivative is u/(z) = ¢1v/—Acosh(v—Az) +
cov/ —Asinh(y/—Az). Using the Neumann condition, we have u’'(0) = ¢;v/—XA = 0 and thus
Cc1 = 0.

If ¢g = 0, then u(x) = 0, therefore we are going to suppose ¢o # 0. Then using the integral
condition, we obtain

co - /0 1 cosh(v=Az)dz =0
. [sinh(mx)} '

V=X
sinhm_
V=
sinh\/j)\zo,
V=X=0,

which is a contradiction with the assumption A < 0.

207

Co 07

O

Remark 2.3. Fory = 0, the integral condition fol u(z)dz = v-u'(0) in the problem (2.2)) simplifies

to fol u(z)dx = 0. Let us note, that for v = 0, the eigenvalues of (2.2)) have already been studied in
[3] and found eigenvalues i, in [5] match findings in Theorem (2. 1]
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2.2 Eigenvalues for ¢ # 0

After investigating special cases, we can shift our attention to the boundary value problem (2.1
with general parameters ¢ # 0 and v € R.

Theorem 2.4. For the boundary value problem (2.1) with ¢ # 0, the eigenvalues \ are solutions of

1—cosVA+ VA cote-sinvVA= -~y for A >0,
—14coshvV-=A++V—=A-cotc-sinhv—-A=—-X\-vy for A <0.
Moreover, A =0 is the eigenvalue for the problem (2.1) if and only if
1
= cot —.
v =cotc+ 5

Proof. Let us split the proof according to the sign of .

1. For A > 0, the general solution u of the differential equation in the problem (2.1 is u(z) =
c1sin(vAz) + ¢o cos(vAz), where ¢1, ¢y € R. Additionaly, we have

u(0) = co,
u'(2) = e1 VA cos(VAz) — coV A sin(VAz),
u’(O) =C \/X

Using Sturm-Liouville condition in (2.1]), we have

u(0) - sine = /(0) - cosc,

cosine = ;v A cose, (2.7)
o _ syeosc 28)
c1 sinc’ '

where we assume ¢; # 0, since ¢; = 0 implies ¢g = 0 due to (2.7) and we have the trivial
solution u(x) = 0. Using the integral condition in (2.1]), we obtain

1

[ utwrds =+ -u(0)

0
1 1 1 . 1
cl\?/\ [f cos(\f)\x)} . + coﬁ [Sm(ﬁz)}o =y eV,
c1-(1—cosVA) +¢o-sin VA =7 Aey,
1—C08ﬁ+?sinﬁ=A-’y. (2.9)
1
By combining (2.8]) and , we obtain the final condition in the following form
1—cosVA+VA-cote-sinvVi=\-7.

2. For A = 0, the differential equation in the problem (2.1)) simplifies to «(z) = 0 and has a
general solution u(z) = A - (x — ), where A,z9 € R. We have u/(x) = A, and thus, using
the integral condition in (2.1)), we get

A~/0 (x —x0)dr =v- A. (2.10)

For A = 0, we have only a trivial solution u(z) = 0 and thus we assume A # 0. Then the

condition ([2.10) reads

- —xzo=". (2.11)



CHAPTER 2. EIGENVALUES FOR THE LINEAR PROBLEM 10

Now, using the Sturm-Liouville condition in the problem (2.1f), we have

u (0) - sine = u’ (0) - cos e,

—Axg -sine = A - cosc. (2.12)
The condition (2.12)) can be simplified using (2.11)) as
cosc
—To = — )
sinc
! t
— - =cotc
Y 9 )
tc+ L
=cotc+ —.
K 2

3. Lastly, for A < 0, the general solution u of the differential equation in the problem (2.1)) is
u(z) = ¢1 sinh(v/—Ax) 4 ¢o cosh(v/—Az) and additional relations can be calculated based on
u as

u(0) = co,
U (x) = e;vV—Acosh(V—Ax) + covV/—Asinh(vV —\z),
w(0)=c1 V=N

The Sturm-Liouville condition in the problem (£2.1)) reads

u(0) - sine = 4/ (0) - cosc,

co-sine=re¢;-vV—=X\-cose, (2.13)
QO _ el (2.14)
cl sinc

where we assume ¢; # 0. The case of ¢; = 0 implies ¢y = 0 due to (2.13)) and the only solution
is u(x) = 0. The integral condition in the problem ([2.1)) can be written in the following form

/01 u(@) de = 5 -/(0),

\/1_7)\ {sinh(\/jx)]; =5-aV=)N,

1
c——=sinhvV-A=7vy-c1vV-),

\/1_7)\ [cosh(\/jx)}; + ¢ -

cl~\/%~<cosh\/—7/\—1)+co T

1 1 Co 1 .
— hv—-\— + —- hv-A=~-VvV-=A\. 2.1
\/jcos A \/7 o ﬁsm A=r A ( 5)

Combining (2.14) and (2.15]), we obtain the final condition
—1+4+coshv—=A++vV—=A-cotc-sinhv—-A=—-X\-~.

Cy -

2.3 Observation for v = % + cot c

At the end of this chapter, let us introduce a small observation concerning the original problem
(1.1) for the second and fourth quadrant of the a-plane.

Theorem 2.5. For~vy = %Jrcotc and - B < 0, the boundary value problem (1.1)) has only a trivial
solution.
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Proof. Let us take the equation in (I.1)), multiply it with the function v(z) = (z — 1)? and then let
us integrate the result over the interval (0,1)

u" (2) +ou’ (2) = fu (x) =0,
/0(u"(x)-U(x)+au+($)-v(x)—Bu‘(w)-v(m)) dz =0,
1 1 1
z—1)% () — 2(z — Du(z)] u(z)dr+a [ ut(z)- v(r)dr — u (z) - v(z)dz =
o= 1020(e) =2 = Du@)]g + [ 2u@)deta [ 0@ vle)de =5 [ (@) vw)ds o
—u/(0) — 2u u(z)dz +a [ u'(z)- v(z)dr — u” (z) - v(z)dz = 0.
0 =200+ [ 2u@)de+a [ wt@) v@)de—p [0 @) v@)dr =0
Using the condition fol u(z)dz = v -u/(0), the last equation transforms into
1 1
—/(0) — 2u o a | ut(x) v(r)dr — u (z) - v(z)dz = 0. :
(0) = 2u(0) + 2v (0)+/0 (z) - v(z)d 5/0 (z)-v(z)dz =0 (2.16)

In order to investigate the values of a and 3, additional condition on the first three elements of
equation (2.16]) is applied together with the condition u (0) - sine = u' (0) - cos ¢ in (1.1]). For ¢ # 0,

we obtain

—u’(0) — 24/(0) -

u'(0) - (=1 —2cote+2y) =0,
(2.17)

and the last equality is therefore satisfied for

1
3 + cotc=1. (2.18)

Finally, if the condition (2.18) is satisfied, then the equation ([2.16) simplifies to
1 1
a/ ut(x) - v(z)de = ﬂ/ u” (z) - v(x)de,
0 0

which cannot be satisfied for « < 0, 8 > 0 or a > 0, 3 < 0, since both integrals fol ut(z) - v(z)de

and fol u™ (z) - v(z) dz are nonnegative and at least one of them is positive, otherwise u would be
a trivial solution.
O

Values of ¢ and ~, which satisfy the condition are illustrated in Figure For v =
% + cot ¢, we have due to Theorem that the second and the fourth quadrants of the af-plane
are inadmissible areas for the Fu¢ik spectrum X. Moreover, using Theorem [2.4] we obtain that the
point (0,0) belongs to the Fuéik spectrum X for v = % + cot ¢. Thus, if there is a continuous Fucik
curve containing the point (0,0), then it has to be located in the first of the third quadrant.
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20
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Fig. 2.3: Graph of values ¢ and v, which satisfy the condition (2.18]).
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Chapter 3

Implicit description of the Fucik
spectrum in the first quadrant

The goal of this chapter is to provide the implicit description of the parts of the Fuéik spectrum in
the first quadrant of the a-plane for the problem

{u” () +aut (z) = fu™ () =0, x€(0,1),

u (0) -sinc =u'(0) - cose, fol w(z) de =~ -’ (0), (3.1)

where a, 3 >0, c € (—%, g] and v € R, i.e. to describe the set
Y= {(a,ﬂ) € RT x RT : the problem (3.1]) has a non-trivial solution u},

where RT = (0, +00). Let us note, that the problem (3.1)) has already been studied for some

values of parameters v and c. For v = 0, ¢ = 0, the problem is investigated in [4]. Results of [4]

were further generalized for v = 0 and ¢ € (=%, %] in [5]. We are going to generalize procedures

described in these texts in order to find an implicit description of the set iz.
In the first quadrant of the a3-plane, i.e. for o, 8 > 0, let us denote a = \/a and b = /3. The
problem (1.1) then transforms to

u” (z) + a*ut (z) —b*u~ () =0, z€(0,1),

u (0) -sinc =’ (0) - cose, fol u(x) de =~-u' (0),
and the problem of finding pairs («, 3), such that (3.1)) is satisfied, transforms into the problem of
finding pairs (a,b) € R* x RT, such that (3.2) is satisfied. Using the approach justified in [4], we
are going to introduce the initial value problem, solutions u of which include also solutions of the
boundary value problem (3.2)). The initial value problem is defined

u’(z) + a®ut(z) — b*u () =0, x€R,
u(p(a,c)) =0, u'(p(a,c)) =a-b>0,

(3.2)

(3.3)

where p = p(a, ¢) ensures the fulfillment of the u (0) - sinc = v’ (0) - cos ¢ condition and is a greatest
non-positive value of z, such that w(z) = 0. Our goal is to find a function u which satisfies the
problem ([3.3)) and also satisfies the integral condition

1
/0 u(x)dzr =~ - 4'(0). (3.4)

Similarly to the set 23 we can define set of all acceptable pairs in the first quadrant of the
a, b-plane
M = {(a, b) € RT x RT: the solution u of the initial value (3.5)
problem (3.3)) satisfies fol u(z)dr = - u'(O)}.

13



CHAPTER 3. IMPLICIT DESCRIPTION OF THE FUCIK SPECTRUM IN THE FIRST QUADRANT14

Our goal is to find the description of the set M7, since the set ﬁlz can then be described based
on the following lemma.

Lemma 3.1 (Pokorny [5, p. 15]). We have a connection between M7 and XA];V in the folloving way,
(a,b) € MY if and only if (a®,b%) € X7 and (b*,a?) € 37.

3.1 Known results for vy =0

In this section, let us recall some known results, the goal is to provide the reader with a basic
knowledge of results from [5] necessary to follow the results in the next sections.
The problem (3.2)) is examined for v = 0, i.e. we investigate the boundary value problem

{u”(x) +a’ut(z) —b?u= () =0, x€(0,1), (3.6)

u(0) - sine = 4/(0) - cose, fol u(x)dz = 0.

This can be formulated as an initial value problem (3.3) and our goal is to find a solution u
which also satisfies the integral condion

/1 u(z)dz = 0. (3.7)
0

Additional functions can be derived based on the initial value problem (3.3 and the integral
condition (3.7), which will help us to describe the set MY.

Definition 3.2 (Pokorny [5, p. 17]). Let us define p: RT x (—=3,Z] = R as

1 1 T
—=arccot (= tanc) force (—=%,%),
p(a,c) = a (a ) 7(7r 2 2) (38)
0 forc= 3.
Then the function P: Rt x RT xR — R as
P(a,b,t) := b_a E+1 a>0, b>0, teR (3.9)
» A a b T b b ) ) M
and the function G : RT x Rt x R — R, which is 2m-periodic in the third variable
Ya>0Vb>0VteR: G(a,bt+21) =G (a,b,t),
and is defined for a >0, b >0, t € (0,27] as
b cos (%52t — ap) — L cos (ap) + P (a,b,t) fortel,
G (a,b,t) == q ¢ cos (“2—";7 (t —2m) —bp) — gcos (ap) + P (a,b,t —m)  fort e Iy, (3.10)

b cos (%t (t — 2m) — ap) — L cos (ap) + P (a,b,t —27)  fort € I,

a a

where 2% 2% 2ab
Il = 07 M 9 12 = (Tr_'—ap)v 27T+ op 9
a+b a+b a+b
2abp
I3:= |2 —_— 2
3 [W+a+b’ W}’

and p stands for the value of p(a,c) defined in (3.8).
This definition then allows us to formulate the following Corollary introduced in [5].
Corollary 3.3 (Pokorny [5, p. 19]). We have that (a,b) € MO if and only if a,b > 0 and
2ab 2ab
b— | =Plab,— . A1
G (a. 22 ) =P (a2 (3.11)

The equation (3.11)) with the Definition [3.2] of G and P provides an easy and straightforward
way of generating the implicit description of the Fuéik spectrum of the problem (3.6) for a given
parameter c. Examples of spectra can be found in Figures [3.1] and
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(a)c=3 (b) =1z

16

Fig. 3.1: The Fuéik spectrum X0 for different non-negative values of the parameter ¢, sourced from
[5].

100 6 o = 6 100+ 6 o = 6 100 6 o = 5
Qv o Q Qv
100 -50 50 100 b e 50 50 100 -100 -50 50 100
@ @
50) El 50
(a) c=—1.05 (b) ¢ = arctan(—2) (¢) c=-13

Fig. 3.2: The Fuéik spectrum X¥ for different negative values of the parameter ¢, sourced from [5].
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3.2 The problem for c =7 and v € R

Let us consider the boundary value problem (L.1f) for ¢ = 7, i.e. the problem

{uu (x)+au+( ) mr( )=0, =z€(0,1), (3.12)

u(0) =0, fo z) dz =~-u (0),
where a, 8 > 0 and v € R. Similarly to the problem ({3.3)), let us move to the initial value problem

{u”(:c) +a?ut(z) —b*u=(z) =0, =x€R,
(

u(0) =0, v/(0)=1 (8.13)

where a,b,> 0 and v € R and we choose the value of the first derivative u/(0) = 1. Our goal is to
find the solution u, for which there exists a pair (a,b) belonging to the set M7, a special case of
2

the set (3.5))

My = {(a, b) € RT x R™: the solution u of the initial value (3.14)
2
problem (3.13)) satisfies fo x)dr = }

Let u be the solution of the initial value problem ([3.13). Then according to [B, p. 15] is u a
T-periodic function, where T'= = + 7 and we have

L for0<a<T™
u(z) = {a sin(ax) or0 <z _< x (3.15)

—%sin(b(x—%)) for - <z <T.
Now, let us investigate some properties of the set M7 .

2

Lemma 3.4. For y > 1, the set MY is empty.
2

Proof. Let u be the solution of the initial value problem (3.13]), then u is of the form in (3.15)) and
we are going to split the proof according to the value of a.

1. For 0 < a < 7, we show that fo x)de < 3 and therefore the Condltlon fo z)de = v is
not satisfied. Indeed, we obtain 7 > 1 and only the first part in needs to be con81dered,
thus

1 1
sin(ax) 1 1 1—-cos(a)
d — d — = = 3.16
/0 u(z) dx /0 . x 2 [— cos(ax)], 2 ( )

To show, that M < % or after a simple manipulation
a2
0< 5 + cos(a) — 1,
we will define a new function

g(a) ::%2+cos(a)71 for0<a<m

and investigate its properties (see Figure. It holds, that ¢(0) =0, g(mw) = %2 —2>0and
g is also strictly increasing, since we have

g'(a) = a —sin(a),

g"(a) =1 — cos(a).
For the second derivative ¢’ holds, that ¢”(a) > 0 for a € (0, w). Thus the function ¢ is

strictly incrasing on (0, 7). Because we also have ¢’(0) = 0, the function ¢’ is positive on
(0, 7). Therefore the function g is stictly increasing on (0, ).
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(a) Function g (b) Function g’ (c) Function g”

Fig. 3.3: Graphs of the function ¢g and its derivatives, as defined in Lemma

u(x) a(x)
; /\v W A

Ol ()

Fig. 3.4: Graphs of the function u and coresponding functions @ and @, as defined in proofs of
Lemma [3.5| and Lemma [3.6| respectively.

-10 -10

()

(a) Function u (b) Function @ (c¢) Function @

2. Let us assume a > 7. An upper estimate of the integral fol u(z) dz can be calculated as

N |

1

1 1

/ u(z)dr < max u(z) =- < =<
0 z€[0,1] a ™

Therefore fol u(z)dz < 3 and the condition fol u(z) dz = v is not satisfied, since v > 1.

Another special case is for % <v< %7 as illustrated in the following lemma.
Lemma 3.5. For % <y < %, the set M% forms a line a = ag, where aq is the unique solution of
the equation 1 — cos(a) = ay on the interzval (0, 7].
Proof. Let u be a solution of the initial value problem such that
/1u(x)dx—fy and 2 <7< 1
0 w2 T 2
Then v is in the form of and we are going to split the proof according to the value of a.
1. For 0 < a < m, the function u is positive on the interval (0, 1) and we obtain (as in (3.16))

1 cos(a).

1
= d =
~y /0 u(z) dz 2
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8

0 1
™ 27Ta

Fig. 3.5: Graph of the function g, v = 0.3, as defined in part 2 of the proof of Lemma

Thus for a € (0, 7], parameters have to satisfy the relation
1 — cos(a) = a?y.

2. For m < a < 27 we are going to construct an upper estimate @ of the function w in the form
of continuous, Z-periodic function , defined as

a(z) == %sin(ax), for x € (O, g} . (3.17)

The function @ is illustrated in Figure Therefore we have

1 1
’y:/ u(x)dxﬁ/ adx
0 0
= 1
:/ ﬁdx—I—/ udx
0 jus

a

6122+[;b~sin<a'(x;r>) dz
= o (- D)),

3 + cos(a)
:70/2 3
which implies

ya* — cos(a) — 3 < 0.

This inequality cannot be satisfied, since the function g,(a) := ya? — cos(a) — 3, a € (7, 27)
reaches only a positive values (see Figure[3.5]). This can be shown, since
inf gy(a)= inf (ya®—cosa—3) = —a®—cosa—3.
(CES) (CESE) m

™

Also for 7 := % we have

da-
lim g5(s) =0 and 93(0)

2 .
Jim - 2a - = + sin(a) > 0.

3. For 27 < a, we use an upper estimate of the function u as

2
<3

1
<7
— 27 ™

SHE

1
~y :/ u(z)de < max u(x) =
0 z€[0,1]

2

and therefore v < =, which is a contradiction with an assumption v > ﬂ%
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1!
a a
9+(a) g; (a) g (a)
a al ao a as a u
0 \/ T g a0 ?/f'lz a1 ™
™
(a) Function g, (b) Function ¢/, (¢) Function g

Fig. 3.6: Graphs of the function g, and its derivatives, as defined in part 3 of the proof of Lemma

B3t

Finally, to prove that the equation 1 — cos(a) = a?y has only a unique solution on (0, ], let us
define the function g, (a) := va® + cos(a) — 1, a € (0, 7], and investigate its properties (see Figure

. It holds, that

g, (a) = 2ya — sin(a),
(a) = 2 — cos(a),

and gfy’ has a zero point as := arccos(2v). The function gfy/ is negative for 0 < a < ay and positive for
as < a < 7. Therefore the function g'7 is strictly decreasing for 0 < a < as and strictly increasing
for as < a < 7. Since

li ! = ! =2

Jim gi(a) =0, gy(m) =297 >0,
it implies that there exists exactly one zero point a; of gi{ on the interval (0, 7). Therefore gfy is
negative for 0 < a < a; and positive for a; < a < 7 and the inequalities 0 < as < a; < 7 also
hold. Finally, g, is strictly decreasing for 0 < a < a; and strictly increasing for a; < a < 7. Since

liI(I)lJr gy(a) = 0 and g,(m) = y7% — 2 > 0, there exists exactly one point ag € (0,7] such that
a—>

g~(ao) = 0, which finishes the proof.
O

Additionaly, for v < —%7 we have a similar result as in the Lemma

Lemma 3.6. For vy < —%, the set MY is empty.
2

Proof. The proof is similar to the proof of the Lemma The function u, as the solution of the
initial value problem ([3.13) is in the form of (3.15)) and the proof can be split according to the
value of b.

1. For 0 < b < 7, we define the function @ as an lower estimate of the function u, in the form of

continuous, 7-periodic function

() = —% sin (bx), forzx € (07 %] ) (3.18)
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as illustrated in Figure Then we obtain

fy:/olu(m)d:cZ/olu(x)dx

1 1
= 77/ sin(bx) dzx
b Jo

= o5 leos(ba)]}

1 — cos(b)
—
—
27

which contradicts the condition fol u(z)dz = .

2. For m < b, we construct a lower estimate of fol u(z) dz as

/1 u(z)dr > min u(zr) = 1 > ! > 1
0 T z€[0,1] b m 2’

which again contradicts the condition fol u(z)dx = 7.
O

At the end of this section, we are going to sum up our findings conserning the boundary value
problem ([3.12)) with the theorem.

Theorem 3.7. Ifu is a non-trivial solution of the boundary value problem (3.12)) then v € (—%, %) .
Moreover, for o, 8 >0 and v € [ 2 1) , the Fucik spectrum for (3.12)) consists of two lines

72 2
(a=2) (3-33) =0.
where \g is the unique solution of the equation 1 — cos A\ = yA\? on the interval (0, 7.

Proof. The Theorem is a direct consequence of Lemmas and O
Remark 3.8. For a,8 >0 and v = %, the Fucik spectrum for (3.12) consists of two lines

(a — 7r2) (ﬂ — 7T2) =0.
According to Lemmas and [3.6|it remains to investigate the set M7} for v € (=3, ).
2

3.3 Description in the first quadrant

Now, we are going to focus on the first quadrant of the ab-plane (i.e. first quadrant of the aS8-plane)

and generalize the findings of Section for c € (—% %]

Theorem 3.9. We have that (a,b) € MY if and only if a,b > 0 and

2ab 2ab

g (a, b, m) =P <a, b, a—|—b> —-ab-cos(ap(a,c)). (3.19)

Functions G, P and p are defined in the previous section, Definition [3.3
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Proof. Let u be the solution of the initial value problem (3.3]). Then using (3.11) in [5], we have for
all z € R that

2
Gz)=1+—=(b—a)x — F(x), (3.20)

T
where F(z) = [; u(t)dt and G(z) = G (a,b, 2_‘7_%.%) due to (3. 17) in [5]. Let us note that the
function g is given in in Definition [3.2] Now, the equation (3.20) can be also written in the

following form

/Ozu(t)dtzl—ki(b—a)x—g(a p, 200 )

a+b
x 2ab 2ab
t)dt =P b, b, 3.21
/o“() (“ +b> g(a +b> (321
where the function P is given in (3.9)) in Definition Indeed, we have that
2 2 _
Plab. 2abx _b a.l.Qab.erl:Q(b a).x+1.
a+b ab T a+b 7r
Finally, using (3.21)) for z = 1, the integral condition in (3.2)
1
/ w(z)dr = v - u'(0)
0
reads as
2ab 2ab ,
(ab +b>_g(a’b’a+b>_7.u(0)’
2ab 2ab
P (a b, _T_ b) -G (a7 b, a—?—b) =~ -ab - cos(ap(a,c)), (3.22)

where we determined '(0) using (3.6) in [5]. The equation (3.22)) is exactly the implicit equation

(3.19)), which finishes the proof.
O

Theorem [3.9 provides us with a way of numerically generating the set M7, example of a code
used can be found in Appendix [A] Example of the set M can be found in Figure [3.7]

Remark 3.10. Theorem- provides us with a way of generating pairs (a,b whzch belong to the
set M. The Fucik spectrum Z’Y is then easy to obtain based on the Lemma

Remark 3.11. Let us note, that for A > 0 and a = b = /), we have
g (ﬁ, VA, \5\) = oS (\5 - ﬁp) — cos (ﬁp) +1

and

P(ﬁ,ﬁ,ﬁ) = 1.

The condition of the Theorem[3.9 can therefore be manipulated as

cos (ﬁ — \&p) + cos (\F)\p) (=1+~A) =0,

tanc 1 f tanc

Cosfl\f— sm\f - + -
1/\Atan c+1 \/ftan c+1 \/ftan c+1

—VAsin VA - cot e — cos VA + 1 = 7.

(=1+72) =0,

This is exactly the relation for the eigenvalues X\ > 0 described in Theorem [2.7)
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)\2 —-—
= a
0 VAL VA2

Fig. 3.7: The set M7 for ¢ = 7 and v = —0.1.



Chapter 4

Solvability of the problem with the
Dirichlet condition

In this chapter, we consider the following boundary value problem

{ u"(x) + au'(z) — ﬁuf(x) =0, z€(0,1),
u(0) =0, fo ) dz =~ -4/(0),

l) Our goal is to study the structure of the Fucik spectrum 27 for

(4.1)

where o, 5 > 0 and v € (f%
Due to Lemma it is enough to investigate the set M7 for ¢ = 7. Using Theorem for

5
c= 7, we get that (a, b) € /\/l if and only if a,b > 0 and (note that p(a, 7) =0)

2ab 2ab
g<ab +b>—P(a,b,a+b>—7-ab, (4.2)

where G and P are given by (3.10) and (3.9)). Moreover, since p(a, §) = 0, the function G simplifies
as

gcos (“—H’t) - Q + P(a,b,t) fort € (O, 2%}
G(a,b,t) = (4.3)
¢ cos (L2 (t —2m)) — 2 + P(a,b,t — ) forte(gi’g,Q ]
At first, let us denote (as in [4])
b
k:=—->0. 4.4
e (44)
Then P(a,b,t) = P(k,t) :== (k- ) L + 1 and G(a,b,t) = G(k,t), where
- kcos(ik)—k—ﬁ—]:’(k,t) fort € 0,,3’_7_’; ,
G(k,t) = ( } (4.5)
$cos (HE(t—2m)) —k+ P(k,t — ) forte(ii"i,Q }
At second, let us denote (in the same manner as in [4])
2ab
t:= > 0. 4.6
a+b (4.6)
Then the equation (4.2]) can be written as
N - 14 k)2
G (ht) = P (1) —y- T 2 (4.7)

Indeed, we have that

(1+k)2t2_ (1+2)? 4a®0®  (a+b)? 4a%p? b
4k 4 (a+b)? dab (a+0)2 T

23
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Finally, let us introduce the last third substitution (based on the variable s in [4]) in order to
transform (4.7)) to a polynomial equation with respect to k (n € No)

Lkt —2nm) + 2nm — 7 for t € (Qnﬂ—%,an} )
§:= (4.8)
%(t—Zmr)—i—%m—ﬂ fort e (2n7r,2(n+1)7r— %} .

See Figure for the graph of s with respect to ¢. Let us note that for ¢ € (0, +00), we have
that s € (—m, +00).

Lemma 4.1. For k,t > 0, the equation (4.7) can be equivalently written as
con(8) k*+eci,(s) - k+co(s) =0, s>-—m, (4.9)

where s is given by (4.8) and (n € Ng)

2n — n?nly for2nm — 27 < s < 2nmw —,
Con(8) = ) (4.10)
1+coss+2n — (s — nw+m)%y for2nm — 7 < s < 2nm,
c14(s) == —2nm(s —nw + )y for 2nm — 27 < s < 2nm, (4.11)
1+coss—2n— (s —nm+7)%y for2nm — 271 < s < 2nmw — T,
co(s) = 5 o (4.12)
’ —2n —n mey for2nm —m < s < 2nm.

Proof. Let us split the proof according to the value of ¢ > 0.

1. At first, let us assume that ¢t € (2n7r — ﬁr—”k, Qnﬂ, n € N. In this case, we have for s given by

[ES) that

2nmt — 27 < s < 2nw — 7.
Due to 2m-periodicity of G in the second variable ¢, the equation [.7) can be written as
Q(k,t —2nw 4 27) = ]5(14;7t) — - %t{
Lcos (L5 (t — 2nm)) — k + P(k,t — 2nm + 1) = P (k, ) — - LER242

tcos(s—2nm+m) —k+ (k— 1) Z=20T = . (1115)21527
—zcos(s)—k—(k—$)2n—1) = —v- %1@,
cos (s) + k2 + (K2 — 1)(2n — 1) = v - LERZ2, (4.13)

Now, since we have that

tzl_%k(s—Qnﬂ'—Hr)—Fer

the equation (4.13) reads

cos (s) + k> + (K2 —1)(2n—1) = - (1+4k)2 (14%1@(3 —2nm +7) + 2mr)2 . (4.14)
Using simple manipulations, the equation can be rewritten into the following form

(2n — n*72y) - k* = 2n7(s —nm + 1)y -k + 14 coss —2n — (s — nw + 7)%y =0,
which is exactly the equation for s € (2nm — 27, 2nm — 7).

2. At second, let us assume that t € <2n7r, 2(n+ 1)m — 2n }, n € Ny. In this case, we have for

T+k
s given by (4.8) that
2nm — 1w < s < 2nm.
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Fig. 4.1: Graph of the function s, defined by .
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Due to 2m-periodicity of G in the second variable ¢, the equation [.7) can be written as
G(k,t — 2nm) = P (k,t) — - 130042
cos (Y (t — 2nm)) — k+ P(k,t — 2nm) = P (k,t) —y - LHE2,
kcos(s—2nm+m) —k — (k — %) L2m oy (1+k)2t2,

T T4k
kcos(s)+ k+ 2n(k — %) — . (1115)21627
K2 cos (s) + k2 + 2n(k? — 1) = v (HE2, (4.15)

Now, since we have that
t= 2k (s—2nm+7) 4+ 2n7

1+k
the equation (4.15)) reads
k2 K24 2n(k2 — 1) =GR (2k (oo onr) 41
cos (s) + k% +2n(k* = 1) =v- 5 (H—k(s— nmw 4+ ) + mr) . (4.16)

Using simple manipulations, the equation (4.16]) can be rewritten into the following form
(1+coss+2n— (s —nm+7m)%y) - k% —2n7(s —nw + 1)y -k — 2n — n’n?y =0,
which is exactly the equation (4.9)) for s € (2nm — 7, 2n7].
O

Now, before proceeding any further, we are going to use the estimate from below of the function
cos on the interval (—m,0) (see Figure 4.2)) and prove a lemma, which will become useful in the
following text.

Lemma 4.2. For s € (—m,0), we have that 2 (s +m)? — 1 < cos(s).

Proof. Let us define the function f(s) := — 2 (s + )2 41+ cos(s) for —r < s < 0. Our goal is to
show that f(s) >0 for s € (—m, 0).

First of all, we have f/(s) = —2 -2+ (s+m) —sin(s) and f”(s) = —2 —cos(s). For the function
[ follows that f”’(—m) = —2% +1 > 0 and f”(0) = —=% — 1 < 0. Since the function f”(s) is
strictly decreasing, there is exactly one point sq, for which f”/(sg) = 0, as ilustrated in Figure E
The value sy can be expressed as sg = —7 + arccos (%) . The function f” is therefore positive for
s € [—m, sg) and negative for s € (sq, 0].

Based on the values of the function f”, we know that the function f’ is strictly increasing for
s € [—m, so) and strictly decreasing for s € (s, 0]. Since f'(—m) = 0, we know that f’(sg) > 0 and
because f/(0) = f% < 0 and the function f’ is decreasing for s € (sg, 0], there is exactly one point
s1 € (so, 0), where f(s1) = 0, as ilustrated in Figure [£.3b]

Finally, we know based on the values of the function f’, that the function f is increasing for
s € [, s1) and decreasing for s € (s1, 0] (see Figure [£.3a)). Due to f(—m) = 0 and f(0) = 0, we
have that f(s) > 0 for Vs € (—m, 0), which finishes the proof. O

Now we can use Lemma to prove the following statement.

Lemma 4.3. For v € (=1, %), the equation ([4.9) is not solvable for s € (—m,0].

T 202
Proof. For s € (—m,0], the equation (4.9) has the following form
(14 cos(s) — (s +m)%y) - k* =0,
1+ cos(s) = (s +m)%y. (4.17)
For v < 0, the equation (4.17)) cannot be satisfied since 1 + cos(s) > 0. For 0 < v < %, we get

using Lemma [.2] that
1+cos(s) > Z(s+m)? > y(s+ )

and thus, the equation (4.17)) cannot be satisfied. O
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COS s

Fig. 4.2: Graph of an lower estimate (black curve) of the function cos (gray curve) constructed in

Lemma
—0—& D\
T S0 S1 0 S—C7r/;(;\s‘1 0 S—.7r So sll 0l*
f'(s) f"(s)

(a) Graph of the function f(s) (b) Graph of the function f'(s) (c) Graph of the function f”(s)

for s € [-m, 0] for s € [—m, 0].

for s € [—m, 0].

Fig. 4.3: Graphs of the functions f, f and f” used in the proof of the Lemma
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Theorem 4.4. Let v € (f%, %) Then (a,b) € /\/l% if and only if a,b > 0 and
con(8) k4 c14(s) -k +coq(s) =0, (4.18)

where k = 2, s > 0 is given by (4.8) with t = f%'ﬁ, and c.+(5), c1,4(8), co(s) are given by (4.10)),

-; , respectively.

Proof. Let us recall that the equation (4.2)) can be equivalently written as (4.7]). The statement
now follows directly using Lemmas [4.1] and - O

4.1 Discriminant of the quadratic equation (4.18))

The goal of this section is to show, that the quadratic equation (4.18) for s > 0 has a real solution,
i.e. that the discriminant of the corresponding polynomial is positive. Let us denote

1 2
D(y,s) :=c3 L(s) —4-cay(s)-coy(s) for — 3 <v< — and s >0, (4.19)
’ T

which represents the discriminant of the quadratic polynomial in (4.18)). Let us note that D(v,0) =
0. Indeed, we have

D(% O) = Ci,y(()) -4- 02,7(0) : CO,'y(O) =0—4- 02,7(0) -0.
For the discriminant D, we have the following representation

D, 5) 4dn - D1 n(7, ) for 2nm — 27 < s < 2nmw —m,
yS§) =
7 4n - Do (7, s) for 2nm — 1 < s < 2nm,

where

D1 (7, 8) i=4n — 2 — nym(3m + 4s) + 27(s + 1) + (nyr? — 2) cos(s),
Dy (7, 8) i=4n + 2 + nym(5m + 4s) — 27y(s +7)* + (nym? + 2) cos(s).

The representation of D can be verified, for example for s € (2nm — 27, 2n7 — 7|, as

D(y,8) = ¢f (s) =4+ c24(5) - co(5)
= (—2nm(s — nw + m)y)? — 4 (2n — n?7%y) (1 + coss — 2n — (s — nw +7)%y)
=4n - (—2 —2c0s s +4n + 2vs® + 2yn? — dysnw 4+ ysm — 3y + nwy - cos s)
=dn- (4n — 2 — nym(3m + 4s) + 2v(s + m)* + (nyw® — 2) cos(s)) .

Our goal for the next part is to find the lowest value of the function D(v, s) on rectangles [ %, 732] X

[2nm — 27, 2n7 — 7] and [—1, | X[2n7 — 7, 2n7@), n € N. Flrstly, We are going to show, that there
are no stationary points of D = D(v, s) on open rectangles 2n7r 27, 2nm — ) and
(—%, %) X (2nm — 7, 2nw), n € N. See following Lemmas . and

Lemma 4.5. The function Dy, = Dy ,(7,s), n € N, has no stationary point in the open rectangle

(=3, %) x (2n7 — m, 2nm).

Proof. To investigate stationary points of the function Ds,,, let us denote the partial derivative

ag% as g, and calculate its first two derivatives as

gn(s) 1 = 81)2(;5%8) = nm(5m + 4s) — 2(s + )% 4+ nn? cos(s),

gl (s) = 4nt — 4(s + ) — nn? sin(s),

g(s) = —4 — nn? cos(s).
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3 S9 47 3 S9 47 N 47
s s s
0 0 03w
g2(s) 92(s) g2(s)
(a) Function g2 (b) Function g (c) Function g3

Fig. 4.4: Graph of the function g,,, n = 2 defined in the proof of Lemma

The function g, and its derivatives are illustrated in Figure Then for s € (2nm — 7, 2n7) the
function ¢/ has a zero point s, := 2nm — arccos (—%) . Moreover, the function ¢!/ is positive on

n?
(2nm — 7, s,) and negative on (s, 2nmw) and therefore the point s, is a strict maximum of the
function g/, on the interval (2nm — 7, 2nm). We also claim, that g/,(s,) < 0. Indeed, we have that

4 4
gr(sp) =4dnm — 4 - (2n7r — arccos (—2> + 7r) + nr? sin <arccos (—2)>
nmw nm

4 4 \?
= —4(n + 1) + 4 arccos (—2> + 1 — ()
nw

nm?
4
= —4(n + )7 + 4arccos | —— | + Vn?rt — 16
nm

< —dn+Dr+dr+ Vn?rt—16<0

and the last inequality holds, since we have

Vn2rt — 16 < 4(n+ )7 — 4m,
Vn2rt — 16 < 4n,
n’rt — 16 < 1677,2772,
n’rt — 16n*7? < 16,
n?r?(r? — 16) < 16.
Finally, g,, is strictly decreasing on the interval (2nm — 7, 2n7) and also
gn(2nm — 1) = n (51 + 8nw — A7) — 2 (2nw — 7 + )7 + nw? cos (2nw — ) = 0,

therefore the function g, is negative on (2nm — w, 2n7) and the function D, has no stationary
2

point in (f%, F) X (2nw — 7, 2nmw) . O
Lemma 4.6. The function D1, = D1 ,(7,s), n € N, n > 3, has no stationary point in the open
rectangle (—%, %) x (2nm — 27, 2nmw — ).

Proof. Similarly to the proof of Lemma let us define a partial derivative of the function Dy,
and calculate its derivatives as

D
gn(s) = 81(;5%8) = —n7(37 + 4s) + 2(s + )% 4 nn? cos(s),

gl (s) = —4nm + 4(s + ) — nn?
2

sin(s),

gr(s) = 4 — nm? cos(s).
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ga(s) g4 (s)

0 67 52 2% 06 54 7 06 54 o

(a) Function g4 (b) Function g4 (c) Function gy

Fig. 4.5: Graphs of the function g,, n = 4 and its derivatives, defined in Lemma

An example of the function g,, and its derivatives is in Figure The zero point of the function g/

is s, := 2nm — 27 + arccos (3 ) , sp € (2nm — 27, 2nw — 7). Moreover, the function g” is negative

on (2nmw — 27, s,,) and positive on (s,, 2nm — 1) and therefore the point s, is a strict minimum of
the function g/, on the interval (2nm — 27, 2nm — 7). The inequality g/, (s,) > 0 also holds, since

4 4
gr(sn) = —dnm + 4 (2n7r — T 4 arccos (2>> — nn? sin (arccos <2>)
nw nm

4 16
= 4(n — 1)m + 4 arccos <n) —nry /1

w2 n2mt

4
= 4(n — 1)m + 4 arccos <2> —V/n2?mt —16
nm
>4n—Dr+4-1.1—/n?x* =16 >0

and the last step is justified by

Vn?rt — 16 < 4d(n—1)m+ 4.4,
n?n* —16 < 16(n — 1)%7? +4.4% + 8(n — 1) - 4.4,
n? - (% —167%) +n - (327% — 87 -4.4) < 16 + 167> + 4.4% — 87 - 4.4,
16 + 1672 + 4.4% — 87 - 4.4

n

For n = 3, we can numerically verify the inequality (4.20) and for n > 4, the lefthand side of (4.20))
is always negative while the righthand side is positive.
Finally, g, is strictly increasing on the interval (2nm — 27, 2nm — 1) and also

n-(r* —167%) + 3272 — 87 -4.4 <

(4.20)

gn(2nm — 1) = —nw (37 + 8nw — 47) + 2(2nw — 7 4 )2 + nr?

= —8n%7% 4+ nr? + 8n?w? — nr?
f— ()7

cos(2nm — )

therefore the function g, is negative and the function D, , has no stationary point on (f%, %) X
(2nm — 2w, nw — ).

O

Note that in Lemma the assumption of n > 3 is crucial for proving the inequality (4.20]).
Cases of n =1 and n = 2 will be solved separetly in the following Lemmas and

Lemma 4.7. The function D11 = D1,1(v,s) has no stationary point on the rectangle (f%, %) X
(0, 7).
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Proof. Once again, we are going to define the partial derivative of the function D;; and its deri-
vatives as

gi(s) = aDlSW = —7(3m + 4s) 4+ 2(s + 1) + 7% cos(s),

gy (s) = —4m + 4(s + m) — w2 sin(s),

gl (s) =4 — % cos(s).
The function g{ has a zero point s := arccos (%), s2 € (0, 7) and g/ is negative on (0, s2) and
positive on (sz, 7). Thus g} is strictly decreasing on (0, s2) and strictly increasing on (s, 7). At
the same time, ¢g1(0) = 0 and ¢ (w) = 47 > 0, therefore there is exactly one point s; € (0, 7) such
that ¢f(s1) = 0.

Finally, g; is strictly decreasing on (0, s1), strictly increasing on (s1, ) and also g1 (0) = g1(7) =
0. Therefore g1(s) < 0 for s € (0, 7). O

Lemma 4.8. The function D12 = D1 2(7, s) has no stationary point in the open rectangle (—%,
(2w, 37).

Proof. We are going to investigate the partial derivative of the function D; 2 in the form of
g2(s) = 61)1;,5%8) = —271(3m + 4s) + 2(s 4+ )% + 2% cos(s).
Using Lemma [4.2] it is straightforward to show that
g2(s) < —27m(3m + 4s) + 2(s + 7%) + 27° (1 - %(s — 37+ w)) =-2(s—3m)2 <0

and thus the function D;» does not have a stationary point in the open rectangle (—%, %) x

(27, 3m). O
We have described the behaviour of the function D = D(y,s) in the interior of rectangles
(f%, %) X (2nm — 2w, 2nm — ) and (f%, %) X (2nm — m, 2n7) , now we are going to shift our

attention to the border.

Lemma 4.9. On the closed rectangle [—%, %] X [2nm — 7, 2n7], n € N, the function Dy, =

Dy (7, 8) is non-negative and attains its minimum 0 only at the corner point (v,s) = (2, 2nm).

Proof. Let us define the rectangle R,,, on which we are going to investigate properties of the function
Dy as Ry, = [—%, %] X [2nm — 7, 2n7]. According to Lemma D5 ,, has no stationary point
inside the rectangle R,,, therefore Dy ,, restricted to R,, attains its extremes on the boundary OR,,.
On the border of this rectangle, it holds

Dy (7, 2nm —m) = 4n > 0,
Do (v, 2nm) = 2(n + 1)(2 = 77%) 2 0,

D2n

)

1
(—2,3) =24 (s+ )% +4n — %(577—1—45) + (2 - 2) cos(s) > 0,

2 4 9 2n
Ds,y, <7r2’8) =2- p(s—l—w) +4n+ 7(57r+4s) + (24 2n)cos(s) > 0.

It remains to justify last two inequalities.

1. Using Lemma [£.2] we get

D2,n

1 2
(2,s> =24 (s+7m)44n — %(57r+45) + (2 - n;) cos(s)

2 2
22+(s+7r)2+4n7n§(57r+4s)+ (QmT) <1(52mr)2)
T

=: gn(s).



CHAPTER 4. SOLVABILITY OF THE PROBLEM WITH THE DIRICHLET CONDITION 32

Moreover, g, is a quadratic polynomial
4 2 2 8n 2 3 2
gn(s)=|1+n— = |s"+2(m—nr—2n"1+— |s+7 (4n® —3n+1) + 44 4n — 16n
0 7r
and its stationary point is

4w

This means that g, is strictly increasing on [2n7 — 7, 2n7] and thus

1
Dy, <—2,s) > gn(8) > gn(2nm — ) = 4n > 0.

2. Using Lemma [1.2] we get

D2,n

2 4 2
(2,s> =2——(s+ 7)% +4n + —n(57r + 45) + (2 4+ 2n) cos(s)
77 T ™

4 9 2n 2 2
>2—§(s+w) +4n+7(57r+4s)+(2+2n) <7r2(s—2n7r+7r) —1)

=: gn(s).
Moreover, we have
4n 2
gn(s) = — (s — 2nm)
T

and thus g, is strictly decreasing on [2nm — 7, 2n7]. Finally, we obtain
2
D3y =5,8) = gn(s) > gn(2nm) = 0.
7r

O

Lemma 4.10. On the closed rectangle [—%, %] X [2nm — 27, 2nw — 7], n € N, n > 2, the function

Dy, = Din,(v,s) is non-negative and attains minimum 0 only at the corner point (v,s) =
(%, 2nm — 2m).

Proof. Using Lemmas and we obtain that D ,, restricted to the closed rectangle R,, :=

[—%, %} X [2nm — 27, 2n7 — 7| attains its extremes on the boundary OR,,. We have

Dy (7, 2nm — ) = 4n > 0,

Dy (v, 2nm —2m) = 2(n — 1)(2 = y7°) > 0,
2

1
<,s> =2 (s+m)+4n+ %(37r+45) - (2 + ng) cos(s) > 0,

Dln 9

4 2
Din(Z,s)=-2+ —(s+ m)% 4 4n — —n(37r +4s) + (=24 2n) cos(s) > 0.
™ ™
It remains to justify last two inequalities.

1. Using Lemma [£.2] we get

Dln

)

1 2
<2,s> =-2—(s+7m):+4n+ %(3% +4s) — (2 + m;) cos(s)

2 2
2727(8+ﬂ)2+4n+n§(3ﬂ+48)7 <2+n72r) <12(52mr+27r)2>
™

=: gn(s).
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Now, g, is a quadratic polynomial
4 8(n—1
gn(s) = <n—1+2) 52 —2 (W—3n71'+27127r+(n)> s+ (4n® — 8n? 4+ 5n — 1)
7r T

+ 12 — 28n + 16n>

and has a stationary point
9 47
Sp=2TN — T — ———————.
" (n—1)7m2+4

Let us note that s,, € [2n7 — 27, 2n7 — 7). Finally, we get

(4nm? +16)(n — 1)

> 0.
(n—1)7w2+4

1
D (~5:5) 2 09 2 gulo0) =

2. Using Lemma [1.2] we get

4 2

Din(Z,s)=-2+ ;(s + )%+ 4n — %(?m + 4s) + (—2 4 2n) cos(s)

4 , m 2 )

> 2+ 5(s+m) +4dn— —@Br+4s)+(-2+2n) | 5 (s—2n7m+7)" —1
T T T
=: gn(s).

Moreover, we have that

gn(s) = i—z(s — (2nm — 27T))2

and thus g, is strictly increasing on [2nm — 27, 2n7 — «] . Finally, we obtain

Dy (%,s) > gn(s) > gn(2nm — 27) = 0.

O
Lemma 4.11. On the closed rectangle [—3, %] x [0, 7], the function D1y = Dy,1(7,s) is non-
negative and attains its minimum only on the boundary line segment s =0 and vy € [—%, %] .

Proof. Using Lemma we obtain that Dj ; restricted to the closed rectangle Ry := [—3, %] x
[0, 7] attains its extremes on the boundary OR;. We have

Dy (v, m) =4 >0,

D1,1(7,0) =0,
1 5 T 2
D ;4 58] = 2—(s+m)*+ 5(377 +4s)— [ 2+ > cos(s) >0, (4.21)
2 4 , 2 4,
Dy ;4 (7T278) :2+ﬁ(s+7r) —;(37r+43): 5§ > 0. (4.22)

It remains to justify the inequality in (4.21)). Using Lemma we get

1 5 T 2
Dy, 58 =2—(s+m) +§(37r+4s)— 2—1—? cos(s)

>2—(s+m)?+ g(?ﬁr + 45) — (2 + W;) <1 - :232> =: gn(s).

We have

amd thus, we get
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Fig. 4.6: Graph of the function ¢, for v = 0.03.

We have all necessary lemmas to justify the final theorem of this section.

Theorem 4.12. The discriminant D(v,s) of the guadratic polynomial in (4.18) is positive for
8>0and—%<’y<ﬂ%.

Proof. The statement is a direct consequence of Lemmas [4.9] and O

4.2 Solvability of the quadratic equation (4.18))

Due to Theorem [4.12] we know that roots of the quadratic polynomial in (4.18]) are real. Now we
can take a look on their other properties by investigating functions co , c1,, and ¢ . First of all,
we are going to assume only 7 > 0. The case of v < 0 will be discussed at the end of this section.

Lemma 4.13. For0 <y < %, the function co ~ is continuous, decreasing and its range is (—o0, 0).
The function co 4 is illustrated in Figure [£.6}

Proof. Firstly, let us prove the continuity of the function cg . It is easy to verify, that both parts
of the function ¢y, are continuous with respect to s, therefore only the continuity in the points of
connection remains to be examinecﬂ For given n € N, we obtain

lim co,(8) = co,(2n7) = —2n — n?n?y,
s—=2nw— ’

lim ¢o,(s) =1+cos(2nm) —2(n+1) — 2nm — (n+ )7+ )2y = —2n — n’ry,

s—2nm+
and also
lim co.~(8) = co,(2nT —7) = 1+cos(2nm — ) —2n — (2nT — 7 —nw +7)%y = —2n —n’ry,
s—(2nmw—m)—
li = 1l —2n —n’my = —2n — n’n?y.
sa(zigl—anO”(s) NINEan S nonTy

IThe function f is said to be continuous at the point x, if there exist f(zo), lim+ f(z), lim f(z)and at the
T—x0 T—x0—

same time f(zo) = lim+f(m) = lim f(z).
T—TQ T—TO—
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Fig. 4.7: Graph of the function ¢; , for v = 0.03.

The function ¢, is therefore continuous for s € (0, +00).

The function cg is also decreasing. Since the function is given piecewise and it is constant
for s € (2nm — 7, 2n7], we are going to only examine cg , for s € (2nm — 27, 2nm — 7| . We have
co~(8) = —sin(s) — 2y (s —nm + ). Since —sin(s) < 0, =2y < 0 and s —n7r +7 > 0 for s €
(2n7 — 2, 2nm — 7], we obtain ¢; . (s) < 0, and co , is indeed decreasing.

And finally, to determine the range of the function ¢y ~, we calculate

lim ¢ (s) = lim (1 +coss —2 — 327) =0

s—0+ s—0+

and we also claim, that

lim co(s) = —ooﬂ

s——+00

Let us set arbitrary K < 0. Then let ny € N, such that co,(2n;7) = —2n; — nir?y < K. We
can set so = 2n;m and since the function ¢, is decreasing, then Vs > sq : ¢ 4(s) < ¢2,4(50) < K,
which finishes the proof.

]

The function ¢; , (see Figure |4.7) has similar properties as the function cg .

Lemma 4.14. For(0 < v < %, the function ci - is continuous, decreasing and its range is (—00,0).

Proof. First, let us examine the continuity of the function c;,. The continuity on the interval
(2nm — 2w, 2nm] is clear, points of connection remain to be examined. Indeed, we have

lim  c1,(s) = c1,(2n7) = —2n7 (n7 + 7) v = —2n 7y — 2n7y,
s—2nmT—

lim ¢ 4(s) = —2(n+ )7 (2n7 — (n+ D)7 + 7) v = —2n*7y — 2n712y,
s—=2nmw+
and the function c;  is therefore continuous for s > 0.
The function ¢, , is also decreasing, since

c’lﬁ(s) = 2nmy <0 for 2nm — 27 < s < 2nm.

2The function f diverges to —oo for s — 400 by definition if VK < 03sp € RT Vs > 50 : f(s) < K.
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And finally, let us examine the range of the function ¢; . We have

lim ¢ 4(s) = sl_i>r51+ —271ys =0

50+
and
ngrfoo c14(2nm) = nll)rJIrloo —2n7(n+ )7y = —oc.
Therefore SETOO ¢1,(s) = —oo due to the monotony of the function ¢; 4 and thus the range of ¢
is (—o0,0). O

The investigation of properties of the function ¢y, is going to be more challenging than for cg
and ¢, and will be therefore split into several lemmas, however, this knowledge is critial as shown
in the following lemma.

Lemma 4.15. For 0 < v < =2 and s > 0, the quadratic equation ([E.18) is solvable for k > 0 if

2

and only if ca ~(s) > 0. Moreover, if cz.(s) > 0 then the positive solution k of (4.18) is unique.
Proof. For ¢y ,(s) =0, the quadratic equation (4.18) simplifies to the linear one and we have

j= —0a(s),
c1,(s)
since ¢ 4(s) # 0 due to Lemma :4.14 The solution k is therefore negative, since ¢y ~(s) < 0 and
¢1,4(s) < 0 according to Lemmas [4.13| and

Now for ca,(s) # 0, let the quadratic equation (4.18) have solutions k; and ky. We have
according to Vieta’s formulas in [3], that

Ky - ko = M’ k1+k2:_m_ (4.23)
C2,4(8)

The rest of the proof is going to be split according to the sign of ¢ ~(s).

1. Let ¢z4(s) < 0. Then, since cq ,(s) is negative for s > 0 due to Lemma4.13] we have ki, ks < 0
or ki,ks > 0 from the first equation in . At the same time, using the second equation
in (4.23) and Lemma [£.14] we obtain that ki + ko < 0. Therefore k; < 0 and ky < 0 and the
equation (4.18) does not have a positive solution k.

2. Let c24(s) > 0. Then, using Lemmal4.13|and the first equation in (4.23)), we get k1 < 0, k2 >0
or k1 > 0, ko < 0. Therefore there is exactly one positive solution k of the equation (4.18)).
O

2
T2

Lemma 4.16. For 0 <y < the function cy , s continuous.

Proof. The continuity of the function c; , is easy to verify, since

lim ca~(8) = con(2nT — ) = 2n — nPr?y,

s—(2nm—m)—
which is the same value as

lim  coq(s)=1—142n— 2nm—7—nmw+7)°y

s—(2nm—m)+
=20 — (n7)? 7.
In the second point of connection, we have

sjéglﬂf C2~(8) = ca2.4(2nm)

=14+1+2n— 2nr—nr+7)2y
=2+ 2n— (nm+7)° 7,
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Fig. 4.8: Graph of the function ng(7), introduced in Definition

and

lim  co~(s) =2(n+1) — (n+1)*7%y

s—2nm+

=2+2n— (nm+7)°~.
O

In the following definition, we introduce the important natural number ng, that depends on
v. We will show later, that this value ng determines the interval for s, on which the function c;
changes sign.

Definition 4.17. For 0 < vy < %, let us define the value

) 2
ng = E .

The relation between the value of v and ny is illustrated on Figure[£.8] By a simple manipulation
of the definition of ng, we obtain

No

2
<72 <’I7,0+].,
T

2 2

—_— < —. 4.24
(no + 1)m2 <7= nom? (424)

In the following four lemmas, we are going to investigate the sign and the monotony of the
function ¢ .

Lemma 4.18. For 0 <~ < % we have

ca,(s) >0 for s € (0, 2(ng — 1)7).
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Fig. 4.9: Detail of the graph of functions ¢y 4 (gray curve) and its lower estimate é; 4 (black curve).

Proof. For 0 < v < %, we have ng > 2 according to Definition Since the function ¢, is
given piecewice, we are going to split the proof into two sections.
At first, let s € (2nm — 27, 2nm — ] and n € {1,2,...,n9 — 1}. Then we have

o~ (8) = 2n — n’r?y > 0,

—s > .
nmz ~ 7
The last inequality is true due to (4.24)) and n < ng — 1.
In the second part, let us assume s € (2nm — 7, 2n7) and n € {1,2,...,n9 — 1}. Then, using

the Lemma we obtain a lower estimate of ¢z ,(s) in the following way

2
(s+m)2 —2n—(s—nr+m)° v = 2.~ (8).

Ca(s) =1+ cos(s) —2n— (s — nw+m)2y > 3

See Figure for a comparison between functions ¢y, and & . It holds, that &, (s) = %(s +
m) — 2v(s — nm + 7) and the stationary point so of the function ¢, , can be determined as

EIQ’,Y(S()) = 0,
L (s0+m) —2y(so —nm +m) =0,
4 4
S0 <7r2 — 27) =" 2ynm + 2vm,
s (2 — w2y 4 n7r2’y)
—2 4 w2y

So =

For the minimum of the function ¢z, we have

2n
.~ ~ — 1. .
glelnclv(s) = 02’7(50) =2n (1 +n+ — 2) >0 fory# o or n < ng (4 25)
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It remains to justify, that miﬂrg €2,4(s) is positive. Let us manipulate
IS

2n
1+n+7r2'y—2 > 0,
2n < (=1 —n)(r?y —2),
< 2n —2n —2
-n—1 —-n—-1"
2
TSt Dae

The last inequality holds due to .

And finally, for the case not covered by the (4.25), i.e. for n = ng — 1 and v = T
proceed in the similar manner as in the previous case and we get the stationary point sy of the
function ¢, as

we can

5/27,),(80):0,
4
ﬁ(so +7)— s (so—(ng — )w+m) =0,
80:—27'('.
in . () = 0 (s50) = 2(m0 — 1) (14 (o — 1)+ 207D 3} — 90— 1)(mg — ) = 0
211611%{362’7 S) = C24\S0) = Nno o 7r2n027r2 — 9 = no no ng) =

Since é; 4 is the quadratic function with the minimum 0 in —2m, the value é ,(s) is positive for
every point s # —2m.
O

2

Lemma 4.19. For 0 <y < =, we have

ca~(5) <0 for s > 2ngm.

Proof. Firstly, in the case of s € (2nm — 27, 2nm — 7], n € N, n > ng, the function c¢s - is constant
and we have
ca~(8) = 2n — n’r?y.

For this value to be negative, we require that

2n —n’m3y <0,

—s <.
- R

This is true according to (4.24). This specificaly means, that on the first interval for s > 2ng, i.e.
on the interval 2ngm < s < 2nom 4 7, the function c; - is already negative.
In the case of s € (2nm — 7, 2n7), n € N, n > ng, we obtain

ch(8) = —sin(s) — 2y (s —nm + 7).

Since 0 < —sin(s) < 1 and our intent is to show that the function c; - is strictly decreasing, we
require 27 (s —nm 4+ m) > 1 or after a short manipulation s — nm + 7 > % in order to ¢ ., to be

negative. Based on the inequality (4.24) and the relation n > ny we have

1 < 1 < 1 4
2nt ~ 2(ng+ D)1 2(no+ )7

<7
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and using the interval of s, we also have nm < s — nm + 7. Let us summarize

— <nr<S—nmw+m,
2y

and thus c; . (s) <0 for s € (2nm —m, 2n7), n € N, n > ny.
To sum up, the function ¢y, has negative values for 2nom < s < 2nom 4+ 7 and is always
decreasing for s > 2ngm. The assertion of this lemma is therefore justified. O

Lemma 4.20. For 0 < v < ﬁ, the function co  is strictly decreasing on (2nom — m,2nom).

Proof. First of all, let us recall that ng is given in Definition and that for 0 < v < %, we
have that ng > 2. Now, for s € (2ngm — m, 2ngm), we have that

ca~(8) =14 2ng — (s — nom + )%y + cos(s),
ch o (8) = =2(s — nom + 1)y — sin(s),
cy ., (8) = =27 — cos(s).

Let us denote sg := 2ngm — arccos(—27). Then ¢; ., (so) = 0 and moreover, we have that

a 4 .
SE(ZnOI?—ir{,QnO.,T) CQ?’Y(S) 6277(50)

= —2(nom — arccos(—27) + 7) - v — sin (— arccos(—27))
=+/1—4~42 — 2(ng + 1)y + 27y arccos(—27). (4.26)
Let us note that sg is the strict maximum point of ¢} ., on the interval (2nom — 7, 2no7). Now, let

W, #), where ng > 2 is fixed. We claim that

us consider the function v+ ¢5 . (s0), 7 € (
the function v+ ¢, (o) is strictly decreasing. Indeed, using (4.26), we have that

—h o (50) = —2(s0 — nom + )

dry
= 2(arccos(—2v) — (no + 1)7) < 0.
Thus, the supremum of ¢ (so) over all v € (W, #) is reached at the left endpoint

R 2
M= ot Dn?

supcy . (so) = lim ¢ (s0) = /1 =472 — 2(no + 1)myn + 2y arccos(—2).
gl

Y=+

Finally, we show that this supremum is negative

\/1 =472 —2(ng + 1)mn + 2 arccos(—271) < 0. (4.27)

Indeed, taking into account that the first term /1 — 4~¢ in (4.27) is strictly less than 1, it is enough
to justify the following inequality
—2(ng + 1)y + 27 arccos(—2n,) < —1,

—é + Larccos —L < -1
m  (no+ 1)m? (ng + 1)m2 ’

4 4\ (no+ 1)m?
= S IO I U A
arccos ( (o T 1)7r2> < ( + 7r> 1 )

arccos (—(4> < (1 - g) (no + 1)7. (4.28)

ng + 1)mw?

We have that (1 — %) = 0.215 and thus, (4.28) holds for ny > 4. For ng = 2 and ng = 3, we can
verify the inequality (4.28)) numerically. O
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c2,4(5)

2.2 2272y =

2.1— 1272y (

Fig. 4.10: Graph of the function ¢y, for s > 0 (gray curve) and graph of its lower estimate ¢, ., for
s € (2nm — 7, 2nm), n € N (black curves) for v = 5.

_2
nom2?

Lemma 4.21. For v = ng > 2, we have that

c2.~(5) for s € 2nom — 2w, 2ngmw — 7|,

=0
ca4(s) <0 for s € 2nogm — m, 2ngm).

Proof. We are going to prove first, that ¢ ,(s) = 0 for s € [2nom — 27, 2nom — ] . At the point
2ngm — 2w, we have

2
C2,4(2nom — 2m) = 1+ cos(2nom — 2m) + 2(ng — 1) — (2nem — 27 — (no — L)r +7)>— =0
uny

For s € (2nom — 2w, 2nom — 7], the value of ¢3 (s) is

2
o~ (8) = 2ng — nin? - on? 0.

To prove the negativity of the function ¢, on the interval (2nom — 7, 2nom), let us recall, that
02’7(27107'( — 7T) =0
and the function cy , is strictly decreasing on (2nom — m, 2ngm) according to the Lemma O

See Figure for the case of v = %, where the function ¢ , has the value zero on the entire
. o7 3
interval [2nom — 2, 2nem — 7] .

A slight complication will appear for v > # close to the value of %, since in that case, the
function ¢, - is generaly not monotone on (2nom — 27, 2ngm) . More careful investigation is therefore
needed in order to show the uniqueness of the zero point of the function ¢z . Let us denote

_ cos(s1)

T = 2 )



CHAPTER 4. SOLVABILITY OF THE PROBLEM WITH THE DIRICHLET CONDITION 42

where s is the unique solution of the equation tan(s) = s on the interval (7, 27). Let us note that
$1=4.4934 and ~;=0.1086.
For s € (m, 27), we have that

ca~(8) =3 — s?y + coss,
ch(8) = —2s7 — sins,
cy . (8) = =2y —coss.
Let us denote so := 27 — arccos (—27) . Then c5 . (s9) = 0 and moreover, we have that
’ o
jhax | €4(5) = ¢34(50)

= —2v(27m — arccos (—2v)) — sin(27 — arccos (—27))
= /1 —4~2 — 47y + 2y arccos(—27).

Let us note that so is the strict maximum point of ¢} . on the interval (7, 27). Now, we have that
the function v > ¢, (so) is strictly decreasing, since

d%{clzﬁ(so) = —2s¢ = —47 + arccos(—27) < 0.

We also have that
7Tcos(sl)

5 cos(sy) - 81 +sin(sy) =0,

o (s0) =4

which is justified, since we have

47TCOS§51) —cos(s1) - 81 +sin(s1) =0
sin(sy)
cos(s1) '

and the last equation holds true due to the definition of the value s;. Thus, for % < v <7y, we

have ¢ . (s0) > 0. Moreover, for 1 <7 < =2, we have

¢ (50) < 0. (4.29)

In the following lemma, we are going to introduce an estimate from below of the function cos,
which is similar to the estimate in Lemma [£.2] and will become useful later.

Lemma 4.22. For s € (77, %”) , we have that

8(2;7\/5)(5 — )% <1+ coss.
Proof. Let us define f(s) := 8(%;7\/5)(5 — )2 —1—coss for s € (m, I¥) . Our goal is to show that
f is negative on (m %’“ .
We have
16(2 4+ v2 .
f'(s)= (TQ\[)(S — 1) + sin s,
16(2 2
f'(s) = (9+2\[) + cos s.
The function f” has one zero point sy = 27 — arccos (—%@) on (71', %’r), is negative on

(m, so) and positive on (so, %’T) . Therefore the function f’ is strictly decreasing on (7, sg) and

strictly increasing on (807 %ﬂ) .
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162+v2) 3n 1 _ 1648vV2-37v2 < () there

Since we have lim f/(s) = 0 and li% f'(s) = =525 7 o=

s—T+ S_)j_
is exactly one zero point s; € (, %’T) of the function f’ and the function f’ is negative on (7, $1)
and positive on (81, %”) .

. . TR _n_ _ . _ ﬁ_ 1
Lastly, the function f has limits S£T+f(s)—0 1+1=0, 11;1; f(s)=14+% —1 7 =0

s—>T—
and is strictly decreasing on (m, s1) and strictly increasing on (s1, Z%). Therefore f(s) < 0 for
s e (Tr 7—”) . 0

74

Now we can proceed with the investigation in the case of % < v < 71, where the function ¢
is not generaly monotone on the interval (0, 27], more detailed aproach is therefore needed.

Lemma 4.23. For 52; < v < 71, there exists ezactly one s* € (0, 2n] such that c(s*) = 0.

Moreover, the function ¢y, is positive on (0, s*) and negative on (s*, 2] .

Proof. For s € (0, 7|, we have that cs,(s) = 2 — 72y > 0. For s € (7, 27], we have ¢z ,(s) =

3 — 52y + cos(s), which is not generally monotone. However, we will show that ca~(s) > 0 for
s € (7r, %’T} and that cy , is strictly decreasing on (%’r, 271') and cp,(27) < 0, therefore there is

exactly one zero point s* € (0, 27] of ¢z .

1. For m < s < %“, we have using Lemma that

8(2+v2
ca.(8) =1+ cos(s) +2 — 5%y > %(s — )42 — 5%y = g,(s).

To show that the function ¢y, is positive, we investigate the minimum of the function g,.
16(2++/2)

52— (s — m) — 257, therefore the minimum is

The function g, is quadratic and g’ (s) =

8(24+v2)

m and we have

reached at s =

in g (5) = 16(2 +v/2) — 2(17 + 4v2)7%y
SR I 8(2 +v/2) — 92y

The minimum min g, (s) is positive, since both numerator and denominator are positive. At
seR

the right end point of the interval (7, ) we also have

7 242 497
02,7<W>2+ V2B,

4 2 16

2. Now, let us verify that ¢y, is strictly decreasing on (%”7 2m). We have
T 3w
T g T s0= 27 — arccos(—27),

where sg is the zero point of the function cj  and also the strict maximum point of ¢5 ., on
(m, 2m). Moreover the function c5 ., is decreasing on (sg, 27). Since

C/ E :ﬁ_7ﬂ-7/y<07
27\ 4 2 2

we have for s € (%, 27) that ch(s) <0 and ¢y, is strictly decreasing.
3. Finally, we have co ,(27) = 3 — 472y + cos(27m) = 4(1 — 72y) < 0.
O

Now we can formulate the final lemma about the sign and zero point of the function cp . See
Figure for an example of such function ca .
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i
8w

Fig. 4.11: Graph of the function ¢y, for s > 0 (gray curve) and graph of its lower estimate ¢, ., for
s € (2nm — 7, 2n7), n € N (black curves) for v = 0.045.

Lemma 4.24. For 0 <y < % such that v # —2+, we have that

nom2?

c2,(s) >0 for s € 2nom — 27, 2ngm — |
and ca ~ changes sign on (2nom — m, 2nom| . Moreover, there exists exactly one
s* € (2nom — m, 2nom] : ca4(s*) = 0.

Proof. We are going to split the proof into four sections, in the first part we are going to prove,
that ¢ 4(s) > 0 for s € [2nom — 2w, 2ngm — 7], then we prove that the function ¢z, changes sign
on (2ngm — m, 2ngn) for v € (0, %}, in the third part we prove that the function ¢y, changes
sign on (2ngm — m, 2ng7) for v € (%, 71] and in the last part, we show that cy , changes sign on

(2nom — m, 2ngmw] for v € ('yh %) as well.

1. Firstly, to prove that ca 4(s) > 0 for s € [2nom — 27, 2nom — 7], let us recall that the function
€2,y is constant on [2ngm — 27, 2nem — 7] and
ca~(8) =2ng — n2m’y = ng (2 — n0772'y) ,

where 2 — ngm?y > 0, since it means v < —25, which is true according to ([4.24).

Py )

2. Let v € (0, %} . Then we have ¢ - (2nom —m) > 0, due to the previous part 1. We also have
that
ca~(2nom) = 2(ng + 1) — (ng + 1)?7%y < 0.
The last inequality holds true, since it can be written as
2
(?’L() + 1)7T2 ’
which is true due to (4.24]). Since the function ¢z 4 is strictly decreasing on (2nom — m, 2ngm)

due to Lemma .20} we have that cz, changes sign and has exactly one zero point s* on
(2nom — 7, 2ngm).

>
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3. Let v € (%,71] . Then ng = 1 according to Definition |4.17| and the existence and unique-
ness of the zero point s* of the function ¢y, on the interval (2nom — m, 2non] = (m, 27] is

guaranteed by Lemma

4. Let v € (71, %) - In this case, the function ¢y, is strictly decreasing on (m, 27) due to ([4.29).
Now, as in the previous part 2, it is possible to justify that there is exactly one zero point
s* € (m, 2m) of the function ¢y 4.

O

Remark 4.25. Using Lemmas|4.16, [4.18,14.19,14.21} |4.25 and|4.24), let us sum up known properties
of the function ca :

1. ¢y 1is continuous for vy € (0, %)’

2. c2,(s) >0 for s € (0, 2(ng — 1)) and v € (0, 323,

3. ca4(8) <0 for s > 2ngm and for v € (0, %) ,

4. c2.4(s) =0 for s € 2nom — 27, 2ngm — 7| and y = T
5. ca4(s) <0 for s € (2nom —m, 2nom) and v = =,

6. e2(5)

nomw2

c2,4(s) >0 for s € [2nom — 27, 2nom — ] and v € (0, )\ U {3},
no€eN

7. For~ € (07 %), the function o has exactly one zero point s* € (2nom — m, 2nom]| .

Theorem 4.26. For 0 < v < 2 and s > 0, the quadratic equation [{.18)) is solvable for k > 0

2
if and only if s € (0,s*), where s* = 2nom — 2w for v = # and for v < #, s* s the unique
solution of the equation
1+ cos(s) + 2ng = (s — nom + )2, 2nom — 21 < 5 < 2noT. (4.30)
Moreover, for s € (0,s*), the positive solution k of (4.18) is unique.

Proof. Let us split the proof according to the value of ~.

2

1. At first, let us assume that v = - In this case, using Lemmas (4.18} 14.19) and [4.21} we have

Py
that
ca,(s) >0 for s € (0,2nem — 27),
ca~(s) =0 for s € [2ngm — 27, 2ngm — 7,
c2,4(s) <0 for s € (2nom — 7, 2ngm),
ca4(s) <0 for s > 2ngm.

Now, due to Lemma we obtain that the quadratic equation (4.18)) is solvable for & > 0
if and only if s € (0, s*), where s* = 2nom — 2.

Using Lemma we obtain exactly one s* €

2. At second, let us assume that v <

nom? "
(2nom — m, 2ngm) such that ’

>0 for s € [2ngm — 27, s%),
ca~(s)8 =0 for s = s*,
<0 for s € (s*,2ngm].

v < 323), we obtain using Lemma [4.18] that ¢y (s) > 0 for s € (0,2nom — 27). Thus, we have
exactly one s* > 0 such that

Using Lemma we get that co ,(s) < 0 for s > 2ngm. Moreover, in the case of ng > 2 (i.e.
ity

ca~(s") =0,

14 cos(s*) + 2np = y(s* — nom + )2, (4.31)
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and that ¢ (s) > 0 for s € (0,s*) and ¢z (s) < 0 for s > s*. Finally, using Lemma [4.15] we
get that the quadratic equation (4.18]) is solvable for k£ > 0 if and only if s € (0, s*).

O
For the zero point s* of ¢y, given in Theorem [4.26] we can write
I(s™) =,
where the function I' with the range (0, %) is defined as (n € N)
1 2
I(s) := L4 cos(s) + 2n for s € (2nm — 7, 2nm7). (4.32)

(s —nm+m)?

Indeed, for v < —2, we have s* € (2ngm — 7, 2ng7) and thus, we obtain I'(s*) = Licos(s)+2no

nom?’ (s*—nom+m)2
due to (4.31)). Moreover, for v = nOQTrQ, we have s* = 2ngm — 27 and
T(s*) 1+ cos(2nom — 2m) 4+ 2(ng — 1) 24 2np —2 2ng 2
S = = = = =
(2nom — 27 — (ng — 1) + )2 (2nom — T —nom + )2 nin2  new? 7

Let us note that the function I' is invertible and thus, we can formulate the following theorem based
on Theorem [4.26]

Theorem 4.27. For 0 < v < % and s > 0, the quadratic equation (4.18) is solvable for k > 0 if

and only if s € (0,s*), where s* = T71(v) and T is defined in ([4.32)). Moreover, for s € (0,s*), the
positive solution k of (4.18)) is unique.

Graph of the function I'"! is illustrated in Figure The solvability of the quadratic equation
(4.18)) in Theorem can be further generalized also for v < 0. Without any justification, let us
only reveal the extended version of the definition of T'.

Definition 4.28. Let us define the function T': (0,400] = (-3, %) as (n € N)
1+ cos(s) —2n
(s —nm+m)?2

I'(s) ;=< 1+4cos(s)+2n
(s —nm+m)?2

for s € 2nm — 27, 2nw — 7|,

for s € (2nm — 7, 2nm7), (4.33)

0 for s = +oc.
Finally, the solvability result in Theorem can be extended in the following way.

Theorem 4.29. For —% << % and s > 0, the quadratic equation (4.18)) is solvable for k > 0

if and only if s € (0,s*), where s* = T~Y(y) and T is defined in (4.33). Moreover, for s € (0,s*),
the positive solution k of (4.18) is unique.
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Fig. 4.12: Graph of the function s* = I'"}(vy).



Chapter 5

Parametrization of the Fucik
curves

In this chapter, our goal is to find a parametrization of the set XA% in the first quadrant of the

2
af-plane, defined by the solution of the problem (1.1 for ¢ = 7, i.e. the problem

()+ 1()—ﬂu‘(x)=0, .I‘E(O,l) (51)
w0) = 0, [ ue) o v -u (0),
where a, 5 > 0 and v € R.
According to the Lemma it is sufficient to find the parametrization of the set M7% given in
2

B14).

5.1 Parametrization of the set M] for ¢ = 3

Theorem 5.1. For+y € (—%, %) the set M% is a curve  : (O, s*) — R? with the parametrization

2
w(s) == (u1(s), pa(s)), where s* = T'(y), T is given in and functions py, po @ (0,5*) = R
are defined as

9.
s—nw+7m+nmT- c24(%) for2nm — 2w < s < 2nmw — m,
(s) = —c1,4(8) +/D(7,3)
H 2 co.4(5)

s+ 7+ 2nm - for2nm —m < s < 2nm,

—c14(8) +/D(7,9)
—c1,4(8) ++/D(7,9)

pa(s) = . 2'80277(3) -
nr+ (s—nr+m)- 17’7(2-);’%5(% )

where n € N and functions ca ~, ¢1,~, co~ are defined in (4.10)), (4.11), (4.12)) and D(v, s) is defined

Proof. Let us note, that we prove the statement only for 0 < v < % Based on the Theorem
a pair (a, b) belongs to the set M7 if and only if
2

s—nm+7m+nm- for 2nm — 21 < s < 2nmw —

for 2nm — 7w < s < 2nm,

ca,4(8) - K2+ c14(8) k+co(s) =0, (5.2)
where s > 0 is given by (4.8) and
k=2 and t=24. (5.3)

48



CHAPTER 5. PARAMETRIZATION OF THE FUCIK CURVES 49

Let us recall, that functions ¢z -, ¢1,4 and cg -, are defined in (4.10), (4.11) and (4.12)) for n € N as

(s) 2n — n2ﬂ'2’y for 2nm — 2w < s < 2nmw — T,
Ca(8) =
> 1+coss+2n — (s —nw+ )%y for 2nm — 7w < s < 2nm,
c1~(8) = —2n7(s —nmw + )y for 2nm — 21 < s < 2nm,
(s) 1+coss—2n— (s —nm+m)2y for 2nm — 27 < s < 2nmw —m,
C =
0.y —2n — n27r2'y for 2nm — 7w < s < 2nm.

Due to Theorem [4.29] we have that the quadratic equation (5.2)) for k > 0 is solvable if and only if
€ (0, s*). Additionaly, we can use (5.3) to find out the parameters a, b by using

k+ 1)t k+ 1)t

o= XD g p= EELE

o7 5 (5.4)

To find the parametrization of the set M7, we are going to solve the quadratic equation (5.2))
2

for £ > 0. Due to Lemma we have for the quadratic polynomial in (5.2)) that one root k; is

positive and one root k5 is negative. Thus we obtain

761»’7(5) + D("}/,S)

2 c24(s) 7

where D = D(~,s) is defined in (4.19). Now, let us split the proof according to the value of
t > 27 — 2= in the same way as the proof of Lemma

ki = (5.5)

1+k

1. Let t € (2n7r — %7 2n7r] , n € N. Then we have from (4.8 variable s, given by

1+k
s=%(t—2nﬂ')+2nﬂ'—ﬂ'.

By a simple manipulation, we achieve

2
t= 1+k(s—2n7r—|—7r)—|—2mr. (5.6)
By combining (5.5) and (5.6) with (5.4)), we get
. (kl + 1)t
2k
~ 2ky(s—2nm+7) + (k1 + 1) - 2n7
B 2k
= (S*2TL7T+7T)+TMT+E
k1
2-c24(8)
=s—nr+m7+nw- : =: p1(s)
—c14(s) +/D(7,5)
and
- (k1 + 1)t
2
=s—2nm+7+nmw(k +1)
- D
=s—nr+7+nm- c1y(5) + (,5) =: pa(s).

2 c2,4(s)
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2. Let t € (2mr, 2(n+ 1)m — 12+—’Tk , n € N. Then we have from (4.8) variable s, given by

1+k
s:;_T(t—er)—l—%m—ﬁ.

By a simple manipulation, we achieve

t= 12_fk(s—2n7r—|—7r)—|—2mr. (5.7)
By combining and with , we get
_ (k1 + 1)t
2k
=(s—2nm+m)+ kl—:l - 2nm
2-co~(8
=s+m+2nm- — +’7( l))(% ) =: p11(s)
and
- (k1 + 1)t
2

=k -(s—2nm+m7)+nr-(k+1)
=k -(s—nm+7)+nw

—¢14(8) + VD, 9)

=nm (s onm ) )
Y

=: pa(s).

Example of the set M7} obtained using the parametrization u is on Figure
2
Remark 5.2. Based on the Theorem[5.1 and Lemmal[3.1, we have a curve v(s) = (v1(s), 12(s)) s €

(0, s*), which belongs to the set ZA]%, where
2



CHAPTER 5. PARAMETRIZATION OF THE FUCIK CURVES

b
Novas
)\2 -
/\1 -

[ ] '] [ ]

0 \ Y | | | | |

A VA Vs

Fig. 5.1: The set M7 for v = 0.01.
2



Chapter 6

Conclusion

We have obtained the following main results:

1.
2.

We have described eigenvalues of the boundary value problem ((2.2)) (Theorem [2.4)).

We have found the implicit description of the Fuéik spectrum for the boundary value problem
(3-12) (Theorem [3.9).

. We have shown, that the problem of finding the Fué¢ik spectrum of the problem (4.1) can be

equivalently described as the problem of finding solutions of the quadratic equation (4.18)
(Theorem [4.4)).

. We have found conditions under which the quadratic equation (4.18)) has real solutions (The-

orem [4.12) and under which has a positive solution k& > 0 (Theorem [4.26]).

We have found the parametrization of the Fuéik spectrum of the boundary value problem
(5.1) (Theorem [5.1)).
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Appendix A

Example of Mathematica code

The Theorem provides us with a way of numerically generating pairs (a,b) which belong to
the set M7?. Here we want to provide an example of a code using this method in the software
Mathematica.

c = Pi/4;

gamma = 0.2;
size = 50;
precision = 50;

pla., c] := (-1/a) ArcCot[(1/a) Tanl[c]] /; -Pi/2 < ¢ < Pi/2;

pla_, ¢ :=0 /; c == Pi/2;

Pla_, b, t.] := (b/a - a/b)*(t/Pi) + 1;

Gecla-, b_, t_, c] := (b/a)*Cos [((a + b)*t)/(2%b) - axpla, c]] -(b/a)*Cos[axpla, c]]

+ Pla, b, t] /; 0 <t <= (2%b*x(Pi + axpla, cl))/(a + b);

Gela_, b_, t_, c] := (a/b)*Cos[((a + b)*(t - 2*Pi))/(2%a) - bxpla, c]] - (b/a)*Cos[axpla,
c]] + P[a, b, t - Pi] /; (2*bx(Pi + a*pl[a, c]))/(a + b) < t <= 2xPi + (2*axbxp[a, c])/(a
+ b);

Gela_, b_, t_, c] := (b/a)*Cos[(a + b) (t - 2 Pi)/(2 b) - axpla, c]] - (b/a)*Cos[a*pla,
c]] + Pla, b, t - 2 Pi] /; 2*Pi + (2%axbxp[a, c])/(a + b) <= t <= 2 Pi;

Gla_, b, t_, c.] := Gcl[a, b, Mod[t, 2*Pi], c];

ContourPlot[G[a, b, (2*a*b)/(a + b),c] == P[a, b, (2*axb)/(a + b)] - gammaxaxb*Cos[a*pl[a,
cll, {a, 0, size }, {b, 0, size }, PlotPoints -> precision]

Using the code above results in the Figure

o4
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50

40 - i

30 - =

20 - *

10 1

Fig. A.1: Figure of pairs (a,b) belonging to the set M7 generated using the code from Appendix
El in the software Mathematica.
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