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Abstrakt

V této práci vyšetřujeme okrajovou úlohu skládaj́ıćı se z diferenciálńı rovnice druhého řádu, Sturmovy-
Liouvilleovy podmı́nky a podmı́nky integrálńıho typu. Poṕı̌seme vlastńı č́ısla př́ıslušné lineárńı
úlohy. Pro okrajovou úlohu představ́ıme implicitńı popis Fuč́ıkova spektra v prvńım kvadrantu a
na základě tohoto popisu sestroj́ıme parametrizaci spektra pro speciálńı hodnoty parametr̊u.

Kĺıčová slova: Fuč́ıkovo spektrum, nelokálńı okrajové podmı́nky, podmı́nky integrálńıho typu,
Sturmova-Liouvilleova podmı́nka, vlastńı č́ısla

Abstract

In this thesis we investigate the boundary value problem consisting of a second order differencial
equation, Sturm-Liouville condition and integral type condition. We are going to describe eigenva-
lues of corresponding linear problem. We introduce an implicit description of the Fuč́ık spectrum
in the first quadrant for the boundary value problem and based on this description we construct a
parametrization of the spectrum for special values of parameters.

Keywords: Fuč́ık spectrum, nonlocal boundary condition, integral type condition, Sturm-Liouville
conditon, eigenvalues
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Chapter 1

Introduction

In this thesis, we are going to investigate the boundary value problem with one Sturm-Liouville
type condition and one non-local boundary type condition{

u′′ (x) + αu+ (x)− βu− (x) = 0, x ∈ (0, 1) ,

u (0) · sin c = u′ (0) · cos c,
∫ 1

0
u (x) dx = γ · u′ (0) ,

(1.1)

where c ∈
(
−π2 ,

π
2

]
and γ ∈ R. Our goal is to find the Fuč́ık spectrum of (1.1), by which we mean

the set
Σγc :=

{
(α, β) ∈ R× R : the problem (1.1) has a non-trivial solution u

}
.

In the second chapter, (1.1) is investigated for λ = α = β, which we call a linear version of the
problem (1.1). After the introduction of λ, the boundary value problem (1.1) reads{

u′′ (x) + λu (x) = 0, x ∈ (0, 1) ,

u (0) · sin c = u′ (0) · cos c,
∫ 1

0
u (x) dx = γ · u′ (0)

(1.2)

and our goal is to find values λ, so called eigenvalues, for which the problem (1.2) has a non-trivial
solution. We are going to prove, that for c 6= 0 is λ the eigenvalue of (1.2), if λ is the solution of

1− cos
√
λ+
√
λ · cot c · sin

√
λ = λ · γ for λ > 0,

or
−1 + cosh

√
−λ+

√
−λ · cot c · sinh

√
−λ = −λ · γ for λ < 0.

Additionaly, λ = 0 is the eigenvalue for the problem (1.2) if and only if

γ = cot c+
1

2
.

In the third chapter, the problem (1.1) is investigated and we provide an implicit description of
the Fuč́ık spectrum Σγc in the first quadrant of the αβ-plane. For α, β > 0, we have that (α, β) ∈ Σγc ,
if

G
(√

α,
√
β,

2
√
αβ√

α+
√
β

)
= P

(√
α,
√
β,

2
√
αβ√

α+
√
β

)
− γ ·

√
αβ · cos

(√
α · p(

√
α, c)

)
or

G
(√

β,
√
α,

2
√
αβ√

α+
√
β

)
= P

(√
β,
√
α,

2
√
αβ√

α+
√
β

)
− γ ·

√
αβ · cos

(√
β · p(

√
β, c)

)
,

where functions G, P and p are defined in Definition 3.2. Examples of the set Σγc for different values
of parameters are in Figure 1.1.
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Fig. 1.1: The set Σγc for α, β > 0, c = π
8 and different values of γ.
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In the fourth chapter, we consider the boundary value problem (1.1) for c = π
2 and γ ∈

(
− 1

2 ,
2
π2

)
,

which is {
u′′(x) + αu+(x)− βu−(x) = 0, x ∈ (0, 1),

u(0) = 0,
∫ 1

0
u(x) dx = γ · u′(0).

(1.3)

We show, that for α, β > 0, finding the Fuč́ık spectrum Σγπ
2

of (1.3) is equivalent to finding the

solution of the quadratic equation (for s > 0, given by (4.8))

c2,γ(s) · k2 + c1,γ(s) · k + c0,γ(s) = 0, (1.4)

where we denote k = b
a and c2,γ(s), c1,γ(s) and c0,γ(s) are given by (4.10), (4.11) and (4.12)

respectively. Additionaly, we prove, that the equation (1.4) has for s > 0 and γ ∈
(
− 1

2 ,
2
π2

)
only

real solutions.
Lastly, in the fifth chapter, we provide the parametrization of the Fuč́ık spectrum Σγπ

2
in the

first quadrant of the αβ-plane, which is a curve ν : (0, s∗)→ R and ν(s) = (ν1(s), ν2(s)), with the
description

ν1(s) := µ2
1(s),

ν2(s) := µ2
2(s).

Functions µ1, µ2 : (0, s∗)→ R are defined as

µ1(s) =


s− nπ + π + nπ · 2 · c2,γ(s)

−c1,γ(s) +
√
D(γ, s)

for 2nπ − 2π < s ≤ 2nπ − π

s+ π + 2nπ · 2 · c2,γ(s)

−c1,γ(s) +
√
D(γ, s)

for 2nπ − π < s ≤ 2nπ

µ2(s) =


s− nπ + π + nπ ·

−c1,γ(s) +
√
D(γ, s)

2 · c2,γ(s)
for 2nπ − 2π < s ≤ 2nπ − π

nπ + (s− nπ + π) ·
−c1,γ(s) +

√
D(γ, s)

2 · c2,γ(s)
for 2nπ − π < s ≤ 2nπ

where n ∈ N, s∗ = Γ(γ), Γ is given in (4.33), functions c2,γ , c1,γ , c0,γ are defined by (4.10), (4.11),
(4.12) and D(γ, s) is defined by (4.19).

1.1 Literature review

In this section, we provide an overview of papers published previously, which are examining problems
related to the focus of this thesis.

1. Paper The Fuč́ık spectrum for nonlocal BVP with Sturm–Liouville boundary condition [7]
consideres the boundary value problem{

u′′(x) + µu+(x)− λu−(x) = 0, x ∈ (0, 1) ,

αu(0) + (1− α)u′(0) = 0,
∫ 1

0
u(s) ds = 0,

(1.5)

where µ, λ ∈ R and α ∈ [0, 1] . The paper [7] provides us with a description of the Fuč́ık
spectrum of (1.5) for

(a) α = 1, see [7, Theorem 1, p.506]

(b) α = 0, see [7, Theorem 2, p. 506]

(c) α ∈ (0, 1), see [7, Theorem 3, p. 508]
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2. The paper On Fuč́ık type spectrum for problem with integral nonlocal boundary condition [9]
investigates boundary value problems{

u′′(x) + µu+(x)− λu−(x) = 0, x ∈ (0, 1) ,

u(0) = 0, u(1) = γ
∫ 1/2

0
u(s) ds

(1.6)

and {
u′′(x) + µu+(x)− λu−(x) = 0, x ∈ (0, 1) ,

u(0) = 0, u(1) = γ
∫ 1

1/2
u(s) ds,

(1.7)

where µ, λ, γ ∈ R. Analytical descriptions of Fuč́ık spectrums are provided for special values
of parameters,

(a) for γ < 0 in problems (1.6) and (1.7), see [9, Lemma 1, p. 264],

(b) for γ ∈ [0, 8) in (1.6) and for γ ∈
[
0, 8

3

]
in (1.7), see [9, Lemma 2, p. 265]

(c) for γ = 8 in (1.6) and for γ = 8
3 in (1.7), see [9, Lemma 3, p. 265]

(d) for γ > 8 in (1.6) and for γ > 8
3 in (1.7), see [9, Lemma 4, p. 265].

It also describes branches of the spectrums of the problems (1.6) and (1.7), solution of the
problem (1.6) is described in [9, Lemma 5, p. 266] and solution of the problem (1.7) is described
in [9, Lemma 6, p. 268].

3. The paper On the Fuč́ık type problem with integral nonlocal boundary conditions [8] describes
the spectrum of the boundary value problem{

u′′(x) + µu+(x)− λu−(x) = 0, x ∈ (0, 1) ,

u(0) = γ
∫ 1

0
u(s) ds = u(1),

(1.8)

where µ, λ, γ ∈ R. Main results of [8] are

(a) the spectrum of (1.8) does not exists for γ < 0 (see [8, Lemma 2.1, p. 3])

(b) location of the branch of the spectrum bolonging to the problem (1.8) (see [8, Lemma
2.2, p. 3]).

Additionaly some features of branches are provided.

4. The paper On Some Problems with Nonlocal Integral Condition [6] studies the boundary value
problem {

u′′(x) + µu+(x)− λu−(x) = 0, x ∈ (0, 1) ,

u(0) = 0, u(1) = γ
∫ 1

0
u(s) ds,

(1.9)

where µ, λ, γ ∈ R. The paper provides us with a description of the spectrum of the problem
(1.9) in [6, Theorem 2, p. 115]. Additionaly, properties of the spectrum are described [6,
Section 4, p. 117]. Lastly, the author generalizes (1.9) into the boundary value problem{

u′′(x) + µu+(x)− λu−(x) = 0, x ∈ (0, 1) ,

u(0) = γ1
∫ 1

0
u(s) ds, u(1) = γ2

∫ 1

0
u(s) ds,

(1.10)

where µ, λ, γ1, γ2 ∈ R and provides several properties and condition of existence for the
spectrum of the problem (1.10) (see [6, Section 5, p. 124]).



Chapter 2

Eigenvalues for the linear problem

In this chapter, we investigate the linear case of the boundary value problem (1.1), i.e. the problem{
u′′ (x) + λu (x) = 0, x ∈ (0, 1) ,

u (0) · sin c = u′ (0) · cos c,
∫ 1

0
u (x) dx = γ · u′ (0) ,

(2.1)

where we denoted α = β = λ. Our goal is to find values λ based on the parameters γ, c, for which
the boundary value problem (2.1) has a non-trivial solution u.

2.1 Eigenvalues for c = π
2 and c = 0

Firstly, we are going to investigate the problem (2.1) for special values of parameter c in order to
find a simpler conditions for the eigenvalues λ. Let us consider c = π

2 , for which the Sturm-Liouville
condition u (0) · sin c = u′ (0) · cos c changes into the Dirichlet condition, therefore we investigate
the boundary value problem {

u′′ (x) + λu (x) = 0, x ∈ (0, 1) ,

u(0) = 0,
∫ 1

0
u (x) dx = γ · u′ (0) .

(2.2)

Theorem 2.1. For the boundary value problem (2.2), we have

1. no eigenvalues for γ < 0,

2. countably many eigenvalues λk = 4k2π2, k ∈ N, for γ = 0,

3. finitely many eigenvalues λ1, . . . , λn, n ∈ N, for γ > 0. Moreover

(a) for 0 < γ < 1
2 , eigenvalues λ1, . . . , λn are positive solutions of the equation

γλ = 1− cos
√
λ, (2.3)

(b) for γ = 1
2 , we have exactly one eigenvalue λ1 = 0 and

(c) for γ > 1
2 , we have exactly one eigenvalue λ1 < 0 given as a solution of the equation

γλ = 1− cosh
√
−λ. (2.4)

Proof. We are going to split the proof according to the sign of λ.

1. Let λ > 0. Then the differential equation in the problem (2.2) has a general solution u(x) =
c1 sin(

√
λx) + c0 cos(

√
λx), where c1, c0 ∈ R. Using the first boundary condition in (2.2), we

obtain u(0) = c0 · 1 = 0 and thus c0 = 0.

5
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Using the integral condition in (2.2), we calculate∫ 1

0

u(x) dx = γ · u′(0),

c1 ·

[
−cos(

√
λx)√
λ

]1
0

= γc1
√
λ · cos(

√
λ · 0),

−cos
√
λ√

λ
+

1√
λ

= γ
√
λ,

γλ = 1− cos
√
λ,

Which is the equation (2.3). For γ ∈
(
0, 1

2

)
, the equation (2.3) has finitely many solutions

λ, since the function γλ is linear and strictly increasing, where as the function on the right
side 1 − cos

√
λ has the range of [0, 2] , as illustrated in Figure 2.1. For γ < 0 or γ ≥ 1

2 , the
equation (2.3) has no solutions and lastly, for γ = 0, we have γλ = 0 and there are countably
many values of λ given by 1− cos

√
λ = 0, i.e. λk = 4k2π2, k ∈ N.

2. Let λ = 0. Then the differential equation in (2.2) has the form of u′′(x) = 0 and its general
solution is u(x) = A ·(x−x0), where A ∈ R and x0 ∈ R. Using u(0) = 0 we obtain the relation
Ax0 = 0. If the parameter A = 0, then the value x0 is arbitrary and u(x) ≡ 0. For A 6= 0, we
have x0 = 0 and ∫ 1

0

u(x) dx = γ · u′(0),

A ·
∫ 1

0

xdx = γ ·A,[
x2

2

]1
0

= γ,

γ =
1

2
.

Therefore λ = 0 is the eigenvalue for the boundary value problem (2.2) if and only if γ = 1
2 .

3. Let λ < 0. The general solution of the differential equation in (2.2) has the form of u(x) =
c1 sinh(

√
−λx) + c0 cosh(

√
−λx), where c1, c0 ∈ R. Using the Dirichlet condition, we have

u(0) = c0 = 0. Using the integral condition, we obtain∫ 1

0

u(x) dx = γ · u′(0),

c1 ·
∫ 1

0

sinh(
√
−λx) dx = γc1

√
−λ cosh(

√
−λ · 0),[

cosh(
√
−λx)√
−λ

]1
0

= γ
√
−λ,

γλ = 1− cosh(
√
−λ),

which is the equation (2.4). The equation (2.4) can be also written as γ = f(λ), where we

denoted f(λ) := 1−cosh
√
−λ

λ . The existence and uniqueness of the solution λ of the equation
γ = f(λ) is guaranteed for γ > 1

2 , since the function f is strictly decreasing for λ < 0 and
has the range of

(
1
2 , +∞

)
, as illustrated in Figure 2.2.
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Fig. 2.1: Graphic representation of solutions λ1, λ2, λ3 of the equation (2.3) for γ = 0.02.
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Fig. 2.2: Graph of the function f(λ), λ < 0 defined in part 3 of the proof of Theorem 2.1.
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The second special value of c we are going to investigate is c = 0. In this case, the Sturm-
Liouville condition becomes the Neumann condition u′(0) = 0 and thus, the integral condition∫ 1

0
u(x) dx = γ · u′(0) is independent of the parameter γ, since it has the form of

∫ 1

0
u(x) dx = 0.

Therefore we investigate the boundary value problem{
u′′ (x) + λu (x) = 0, x ∈ (0, 1) ,

u′(0) = 0,
∫ 1

0
u (x) dx = 0.

(2.5)

Theorem 2.2. The eigenvalues λk for the boundary value problem (2.5) are given as

λk = k2π2, k ∈ N. (2.6)

Proof. Let us split the proof according to the sign of λ.

1. For λ > 0, the general solution of the differential equation in (2.5) is u(x) = c1 sin(
√
λx) +

c0 cos(
√
λx), where c1, c0 ∈ R and the first derivative is u′(x) = c1

√
λ cos(

√
λx)−c0

√
λ sin(

√
λx).

Thus we have c1 = 0 due to the Neumann condition. Using the integral condition, we have

c0

∫ 1

0

cos(
√
λx) dx = 0,

c0 ·

[
sin(
√
λx)√
λ

]1
0

= 0,

c0 · sin
√
λ = 0.

There are two possible cases. If c0 = 0, then we have only the trivial solution u(x) ≡ 0. If
c0 6= 0, then sin

√
λ = 0, and solutions λk = k2π2, k ∈ N, are eigenvalues for the boundary

value problem (2.5).

2. For λ = 0, the general solution u of the equation u′′(x) = 0 in (2.5) is given as u(x) =
A · (x− x0), where A, x0 ∈ R. The derivative of u can be calculated as u′(x) = A. Therefore
using the Neumann condition, we have A = 0 and there is only the trivial solution u(x) ≡ 0
of the problem (2.5).

3. For λ < 0, the general solution u of the problem (2.5) is given as u(x) = c1 sinh(
√
−λx) +

c0 cosh(
√
−λx), where c1, c0 ∈ R and the first derivative is u′(x) = c1

√
−λ cosh(

√
−λx) +

c0
√
−λ sinh(

√
−λx). Using the Neumann condition, we have u′(0) = c1

√
−λ = 0 and thus

c1 = 0.

If c0 = 0, then u(x) ≡ 0, therefore we are going to suppose c0 6= 0. Then using the integral
condition, we obtain

c0 ·
∫ 1

0

cosh(
√
−λx) dx = 0

c0 ·
[

sinh(
√
−λx)√
−λ

]1
0

= 0,

c0 ·
sinh
√
−λ√
−λ

= 0,

sinh
√
−λ = 0,
√
−λ = 0,

which is a contradiction with the assumption λ < 0.

Remark 2.3. For γ = 0, the integral condition
∫ 1

0
u(x) dx = γ ·u′(0) in the problem (2.2) simplifies

to
∫ 1

0
u(x) dx = 0. Let us note, that for γ = 0, the eigenvalues of (2.2) have already been studied in

[5] and found eigenvalues λk in [5] match findings in Theorem 2.1.
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2.2 Eigenvalues for c 6= 0

After investigating special cases, we can shift our attention to the boundary value problem (2.1)
with general parameters c 6= 0 and γ ∈ R.

Theorem 2.4. For the boundary value problem (2.1) with c 6= 0, the eigenvalues λ are solutions of

1− cos
√
λ+
√
λ · cot c · sin

√
λ = λ · γ for λ > 0,

− 1 + cosh
√
−λ+

√
−λ · cot c · sinh

√
−λ = −λ · γ for λ < 0.

Moreover, λ = 0 is the eigenvalue for the problem (2.1) if and only if

γ = cot c+
1

2
.

Proof. Let us split the proof according to the sign of λ.

1. For λ > 0, the general solution u of the differential equation in the problem (2.1) is u(x) =
c1 sin(

√
λx) + c0 cos(

√
λx), where c1, c0 ∈ R. Additionaly, we have

u(0) = c0,

u′(x) = c1
√
λ cos(

√
λx)− c0

√
λ sin(

√
λx),

u′(0) = c1
√
λ.

Using Sturm-Liouville condition in (2.1), we have

u(0) · sin c = u′(0) · cos c,

c0 sin c = c1
√
λ cos c, (2.7)

c0
c1

=
√
λ

cos c

sin c
, (2.8)

where we assume c1 6= 0, since c1 = 0 implies c0 = 0 due to (2.7) and we have the trivial
solution u(x) ≡ 0. Using the integral condition in (2.1), we obtain∫ 1

0

u(x) dx = γ · u′(0),

c1
1√
λ

[
− cos(

√
λx)
]1
0

+ c0
1√
λ

[
sin(
√
λx)
]1
0

= γ · c1
√
λ,

c1 · (1− cos
√
λ) + c0 · sin

√
λ = γ · λc1,

1− cos
√
λ+

c0
c1

sin
√
λ = λ · γ. (2.9)

By combining (2.8) and (2.9), we obtain the final condition in the following form

1− cos
√
λ+
√
λ · cot c · sin

√
λ = λ · γ.

2. For λ = 0, the differential equation in the problem (2.1) simplifies to u′′(x) = 0 and has a
general solution u(x) = A · (x − x0), where A, x0 ∈ R. We have u′(x) = A, and thus, using
the integral condition in (2.1), we get

A ·
∫ 1

0

(x− x0) dx = γ ·A. (2.10)

For A = 0, we have only a trivial solution u(x) ≡ 0 and thus we assume A 6= 0. Then the
condition (2.10) reads [

x2

2
− xx0

]1
0

= γ,

1

2
− x0 = γ. (2.11)



CHAPTER 2. EIGENVALUES FOR THE LINEAR PROBLEM 10

Now, using the Sturm-Liouville condition in the problem (2.1), we have

u (0) · sin c = u′ (0) · cos c,

−Ax0 · sin c = A · cos c. (2.12)

The condition (2.12) can be simplified using (2.11) as

−x0 =
cos c

sin c
,

γ − 1

2
= cot c,

γ = cot c+
1

2
.

3. Lastly, for λ < 0, the general solution u of the differential equation in the problem (2.1) is
u(x) = c1 sinh(

√
−λx) + c0 cosh(

√
−λx) and additional relations can be calculated based on

u as

u(0) = c0,

u′(x) = c1
√
−λ cosh(

√
−λx) + c0

√
−λ sinh(

√
−λx),

u′(0) = c1 ·
√
−λ.

The Sturm-Liouville condition in the problem (2.1) reads

u(0) · sin c = u′(0) · cos c,

c0 · sin c = c1 ·
√
−λ · cos c, (2.13)

c0
c1

=
√
−λcos c

sin c
, (2.14)

where we assume c1 6= 0. The case of c1 = 0 implies c0 = 0 due to (2.13) and the only solution
is u(x) ≡ 0. The integral condition in the problem (2.1) can be written in the following form

∫ 1

0

u(x) dx = γ · u′(0),

c1 ·
1√
−λ

[
cosh(

√
−λx)

]1
0

+ c0 ·
1√
−λ

[
sinh(

√
−λx)

]1
0

= γ · c1
√
−λ,

c1 ·
1√
−λ
·
(

cosh
√
−λ− 1

)
+ c0 ·

1√
−λ

sinh
√
−λ = γ · c1

√
−λ,

1√
−λ

cosh
√
−λ− 1√

−λ
+
c0
c1
· 1√
−λ

sinh
√
−λ = γ ·

√
−λ. (2.15)

Combining (2.14) and (2.15), we obtain the final condition

−1 + cosh
√
−λ+

√
−λ · cot c · sinh

√
−λ = −λ · γ.

2.3 Observation for γ = 1
2 + cot c

At the end of this chapter, let us introduce a small observation concerning the original problem
(1.1) for the second and fourth quadrant of the αβ-plane.

Theorem 2.5. For γ = 1
2 + cot c and α ·β < 0, the boundary value problem (1.1) has only a trivial

solution.
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Proof. Let us take the equation in (1.1), multiply it with the function v(x) = (x− 1)2 and then let
us integrate the result over the interval (0, 1)

u′′ (x) + αu+ (x)− βu− (x) = 0,∫ 1

0

(
u′′ (x) · v(x) + αu+ (x) · v(x)− βu− (x) · v(x)

)
dx = 0,

[
(x− 1)2u′(x)− 2(x− 1)u(x)

]1
0

+

∫ 1

0

2u(x) dx+ α

∫ 1

0

u+(x) · v(x) dx− β
∫ 1

0

u−(x) · v(x) dx = 0,

−u′(0)− 2u(0) +

∫ 1

0

2u(x) dx+ α

∫ 1

0

u+(x) · v(x) dx− β
∫ 1

0

u−(x) · v(x) dx = 0.

Using the condition
∫ 1

0
u(x) dx = γ · u′(0), the last equation transforms into

− u′(0)− 2u(0) + 2γu′(0) + α

∫ 1

0

u+(x) · v(x) dx− β
∫ 1

0

u−(x) · v(x) dx = 0. (2.16)

In order to investigate the values of α and β, additional condition on the first three elements of
equation (2.16) is applied together with the condition u (0) · sin c = u′ (0) · cos c in (1.1). For c 6= 0,
we obtain

−u′(0)− 2u′(0) · cos c

sin c
+ 2γu′(0) = 0,

u′(0) · (−1− 2 cot c+ 2γ) = 0,

(2.17)

and the last equality is therefore satisfied for

1

2
+ cot c = γ. (2.18)

Finally, if the condition (2.18) is satisfied, then the equation (2.16) simplifies to

α

∫ 1

0

u+(x) · v(x) dx = β

∫ 1

0

u−(x) · v(x) dx,

which cannot be satisfied for α < 0, β > 0 or α > 0, β < 0, since both integrals
∫ 1

0
u+(x) · v(x) dx

and
∫ 1

0
u−(x) · v(x) dx are nonnegative and at least one of them is positive, otherwise u would be

a trivial solution.

Values of c and γ, which satisfy the condition (2.18) are illustrated in Figure 2.3. For γ =
1
2 + cot c, we have due to Theorem 2.5 that the second and the fourth quadrants of the αβ-plane
are inadmissible areas for the Fuč́ık spectrum Σ. Moreover, using Theorem 2.4, we obtain that the
point (0, 0) belongs to the Fuč́ık spectrum Σ for γ = 1

2 + cot c. Thus, if there is a continuous Fuč́ık
curve containing the point (0, 0), then it has to be located in the first of the third quadrant.



CHAPTER 2. EIGENVALUES FOR THE LINEAR PROBLEM 12

0.5

20

−20

20

1
2

− 1
2

γ

1
2 + cot c

0
c

Fig. 2.3: Graph of values c and γ, which satisfy the condition (2.18).



Chapter 3

Implicit description of the Fuč́ık
spectrum in the first quadrant

The goal of this chapter is to provide the implicit description of the parts of the Fuč́ık spectrum in
the first quadrant of the αβ-plane for the problem{

u′′ (x) + αu+ (x)− βu− (x) = 0, x ∈ (0, 1) ,

u (0) · sin c = u′ (0) · cos c,
∫ 1

0
u (x) dx = γ · u′ (0) ,

(3.1)

where α, β > 0, c ∈
(
−π2 ,

π
2

]
and γ ∈ R, i.e. to describe the set

Σ̂γc :=
{

(α, β) ∈ R+ × R+ : the problem (3.1) has a non-trivial solution u
}
,

where R+ = (0, +∞). Let us note, that the problem (3.1) has already been studied for some
values of parameters γ and c. For γ = 0, c = 0, the problem is investigated in [4]. Results of [4]
were further generalized for γ = 0 and c ∈

(
−π2 ,

π
2

]
in [5]. We are going to generalize procedures

described in these texts in order to find an implicit description of the set Σ̂γc .
In the first quadrant of the αβ-plane, i.e. for α, β > 0, let us denote a =

√
α and b =

√
β. The

problem (1.1) then transforms to{
u′′ (x) + a2u+ (x)− b2u− (x) = 0, x ∈ (0, 1) ,

u (0) · sin c = u′ (0) · cos c,
∫ 1

0
u (x) dx = γ · u′ (0) ,

(3.2)

and the problem of finding pairs (α, β), such that (3.1) is satisfied, transforms into the problem of
finding pairs (a, b) ∈ R+ × R+, such that (3.2) is satisfied. Using the approach justified in [4], we
are going to introduce the initial value problem, solutions u of which include also solutions of the
boundary value problem (3.2). The initial value problem is defined{

u′′(x) + a2u+(x)− b2u−(x) = 0, x ∈ R,
u(p(a, c)) = 0, u′(p(a, c)) = a · b > 0,

(3.3)

where p = p(a, c) ensures the fulfillment of the u (0) · sin c = u′ (0) · cos c condition and is a greatest
non-positive value of x, such that u(x) = 0. Our goal is to find a function u which satisfies the
problem (3.3) and also satisfies the integral condition∫ 1

0

u(x) dx = γ · u′(0). (3.4)

Similarly to the set Σ̂γc we can define set of all acceptable pairs in the first quadrant of the
a, b-plane

Mγ
c :=

{
(a, b) ∈ R+ × R+ : the solution u of the initial value (3.5)

problem (3.3) satisfies
∫ 1

0
u(x) dx = γ · u′(0)

}
.

13
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Our goal is to find the description of the set Mγ
c , since the set Σ̂γc can then be described based

on the following lemma.

Lemma 3.1 (Pokorný [5, p. 15]). We have a connection between Mγ
c and Σ̂γc in the folloving way,

(a, b) ∈Mγ
c if and only if (a2, b2) ∈ Σ̂γc and (b2, a2) ∈ Σ̂γc .

3.1 Known results for γ = 0

In this section, let us recall some known results, the goal is to provide the reader with a basic
knowledge of results from [5] necessary to follow the results in the next sections.

The problem (3.2) is examined for γ = 0, i.e. we investigate the boundary value problem{
u′′(x) + a2u+(x)− b2u−(x) = 0, x ∈ (0, 1) ,

u(0) · sin c = u′(0) · cos c,
∫ 1

0
u(x) dx = 0.

(3.6)

This can be formulated as an initial value problem (3.3) and our goal is to find a solution u
which also satisfies the integral condion ∫ 1

0

u(x) dx = 0. (3.7)

Additional functions can be derived based on the initial value problem (3.3) and the integral
condition (3.7), which will help us to describe the set M0

c .

Definition 3.2 (Pokorný [5, p. 17]). Let us define p : R+ ×
(
−π2 ,

π
2

]
→ R as

p(a, c) :=

{
− 1
aarccot

(
1
a tan c

)
for c ∈

(
−π2 ,

π
2

)
,

0 for c = π
2 .

(3.8)

Then the function P : R+ × R+ × R→ R as

P (a, b, t) :=

(
b

a
− a

b

)
t

π
+ 1, a > 0, b > 0, t ∈ R, (3.9)

and the function G : R+ × R+ × R→ R, which is 2π-periodic in the third variable

∀a > 0 ∀b > 0 ∀t ∈ R : G (a, b, t+ 2π) = G (a, b, t) ,

and is defined for a > 0, b > 0, t ∈ (0, 2π] as

G (a, b, t) :=


b
a cos

(
a+b
2b t− ap

)
− b

a cos (ap) + P (a, b, t) for t ∈ I1,
a
b cos

(
a+b
2a (t− 2π)− bp

)
− b

a cos (ap) + P (a, b, t− π) for t ∈ I2,
b
a cos

(
a+b
2b (t− 2π)− ap

)
− b

a cos (ap) + P (a, b, t− 2π) for t ∈ I3,
(3.10)

where

I1 :=

(
0,

2b (π + ap)

a+ b

]
, I2 :=

(
2b (π + ap)

a+ b
, 2π +

2abp

a+ b

)
,

I3 :=

[
2π +

2abp

a+ b
, 2π

]
,

and p stands for the value of p(a, c) defined in (3.8).

This definition then allows us to formulate the following Corollary introduced in [5].

Corollary 3.3 (Pokorný [5, p. 19]). We have that (a, b) ∈M0
c if and only if a, b > 0 and

G
(
a, b,

2ab

a+ b

)
= P

(
a, b,

2ab

a+ b

)
. (3.11)

The equation (3.11) with the Definition 3.2 of G and P provides an easy and straightforward
way of generating the implicit description of the Fuč́ık spectrum of the problem (3.6) for a given
parameter c. Examples of spectra can be found in Figures 3.1 and 3.2.
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Fig. 3.1: The Fuč́ık spectrum Σ0
c for different non-negative values of the parameter c, sourced from

[5].
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Fig. 3.2: The Fuč́ık spectrum Σ0
c for different negative values of the parameter c, sourced from [5].
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3.2 The problem for c = π
2 and γ ∈ R

Let us consider the boundary value problem (1.1) for c = π
2 , i.e. the problem{

u′′ (x) + αu+ (x)− βu− (x) = 0, x ∈ (0, 1) ,

u (0) = 0,
∫ 1

0
u (x) dx = γ · u′ (0) ,

(3.12)

where α, β > 0 and γ ∈ R. Similarly to the problem (3.3), let us move to the initial value problem{
u′′(x) + a2u+(x)− b2u−(x) = 0, x ∈ R,
u(0) = 0, u′(0) = 1

(3.13)

where a, b,> 0 and γ ∈ R and we choose the value of the first derivative u′(0) = 1. Our goal is to
find the solution u, for which there exists a pair (a, b) belonging to the set Mγ

π
2
, a special case of

the set (3.5)

Mγ
π
2

=
{

(a, b) ∈ R+ × R+ : the solution u of the initial value (3.14)

problem (3.13) satisfies
∫ 1

0
u(x) dx = γ

}
.

Let u be the solution of the initial value problem (3.13). Then according to [5, p. 15] is u a
T -periodic function, where T = π

a + π
b and we have

u(x) =

{
1
a sin(ax) for 0 < x ≤ π

a ,

− 1
b sin

(
b
(
x− π

b

))
for π

a < x ≤ T.
(3.15)

Now, let us investigate some properties of the set Mγ
π
2

.

Lemma 3.4. For γ ≥ 1
2 , the set Mγ

π
2

is empty.

Proof. Let u be the solution of the initial value problem (3.13), then u is of the form in (3.15) and
we are going to split the proof according to the value of a.

1. For 0 < a ≤ π, we show that
∫ 1

0
u(x) dx < 1

2 and therefore the condition
∫ 1

0
u(x) dx = γ is

not satisfied. Indeed, we obtain π
a ≥ 1 and only the first part in (3.15) needs to be considered,

thus ∫ 1

0

u(x) dx =

∫ 1

0

sin(ax)

a
dx =

1

a2
[− cos(ax)]

1
0 =

1− cos(a)

a2
. (3.16)

To show, that 1−cos(a)
a2 < 1

2 or after a simple manipulation

0 <
a2

2
+ cos(a)− 1,

we will define a new function

g(a) := a2

2 + cos(a)− 1 for 0 ≤ a ≤ π

and investigate its properties (see Figure 3.3). It holds, that g(0) = 0, g(π) = π2

2 − 2 > 0 and
g is also strictly increasing, since we have

g′(a) = a− sin(a),

g′′(a) = 1− cos(a).

For the second derivative g′′ holds, that g′′(a) > 0 for a ∈ (0, π). Thus the function g′ is
strictly incrasing on (0, π). Because we also have g′(0) = 0, the function g′ is positive on
(0, π). Therefore the function g is stictly increasing on (0, π).
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π

π

g(a)

a
0

(a) Function g

π

π

g′(a)

a
0

(b) Function g′
π

2

g′′(a)

a
0

(c) Function g′′

Fig. 3.3: Graphs of the function g and its derivatives, as defined in Lemma 3.4.
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Fig. 3.4: Graphs of the function u and coresponding functions ũ and ū, as defined in proofs of
Lemma 3.5 and Lemma 3.6 respectively.

2. Let us assume a > π. An upper estimate of the integral
∫ 1

0
u(x) dx can be calculated as∫ 1

0

u(x) dx ≤ max
x∈[0,1]

u(x) =
1

a
<

1

π
<

1

2
.

Therefore
∫ 1

0
u(x) dx < 1

2 and the condition
∫ 1

0
u(x) dx = γ is not satisfied, since γ ≥ 1

2 .

Another special case is for 2
π2 ≤ γ < 1

2 , as illustrated in the following lemma.

Lemma 3.5. For 2
π2 ≤ γ < 1

2 , the set Mγ
π
2

forms a line a = a0, where a0 is the unique solution of

the equation 1− cos(a) = a2γ on the interval (0, π] .

Proof. Let u be a solution of the initial value problem (3.13) such that∫ 1

0

u(x) dx = γ and
2

π2
≤ γ < 1

2
.

Then u is in the form of (3.15) and we are going to split the proof according to the value of a.

1. For 0 < a ≤ π, the function u is positive on the interval (0, 1) and we obtain (as in (3.16))

γ =

∫ 1

0

u(x) dx =
1− cos(a)

a2
.
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Fig. 3.5: Graph of the function gγ , γ = 0.3, as defined in part 2 of the proof of Lemma 3.5.

Thus for a ∈ (0, π], parameters have to satisfy the relation

1− cos(a) = a2γ.

2. For π < a < 2π we are going to construct an upper estimate ũ of the function u in the form
of continuous, πa -periodic function ũ, defined as

ũ(x) :=
1

a
sin(ax), for x ∈

(
0,
π

a

]
. (3.17)

The function ũ is illustrated in Figure 3.4. Therefore we have

γ =

∫ 1

0

u(x) dx ≤
∫ 1

0

ũdx

=

∫ π
a

0

ũdx+

∫ 1

π
a

ũdx

=
2

a2
+

∫ 1

π
a

b · sin
(
a ·
(
x− π

a

))
dx

=
2

a2
− 1

a2

[
cos
(
a ·
(
x− π

a

))]1
π
a

=
3 + cos(a)

a2
,

which implies
γa2 − cos(a)− 3 ≤ 0.

This inequality cannot be satisfied, since the function gγ(a) := γa2 − cos(a)− 3, a ∈ (π, 2π)
reaches only a positive values (see Figure 3.5). This can be shown, since

inf
γ∈[ 2

π2 ,
1
2 )
gγ(a) = inf

γ∈[ 2
π2 ,

1
2 )

(
γa2 − cos a− 3

)
=

2

π2
a2 − cos a− 3.

Also for γ̃ := 2
π2 we have

lim
a→0+

gγ̃(s) = 0 and
dgγ̃(a)

da
= 2a · 2

π2
+ sin(a) > 0.

3. For 2π ≤ a, we use an upper estimate of the function u as

γ =

∫ 1

0

u(x) dx ≤ max
x∈[0,1]

u(x) =
1

a
≤ 1

2π
<

2

π2

and therefore γ < 2
π2 , which is a contradiction with an assumption γ ≥ 2

π2 .
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Fig. 3.6: Graphs of the function gγ and its derivatives, as defined in part 3 of the proof of Lemma
3.5.

Finally, to prove that the equation 1− cos(a) = a2γ has only a unique solution on (0, π], let us
define the function gγ(a) := γa2 + cos(a)− 1, a ∈ (0, π] , and investigate its properties (see Figure
3.6). It holds, that

g′γ(a) = 2γa− sin(a),

g′′γ (a) = 2γ − cos(a),

and g′′γ has a zero point a2 := arccos(2γ). The function g′′γ is negative for 0 < a < a2 and positive for
a2 < a ≤ π. Therefore the function g′γ is strictly decreasing for 0 < a < a2 and strictly increasing
for a2 < a ≤ π. Since

lim
a→0+

g′γ(a) = 0, g′γ(π) = 2γπ > 0,

it implies that there exists exactly one zero point a1 of g′γ on the interval (0, π) . Therefore g′γ is
negative for 0 < a < a1 and positive for a1 < a < π and the inequalities 0 < a2 < a1 < π also
hold. Finally, gγ is strictly decreasing for 0 < a < a1 and strictly increasing for a1 < a ≤ π. Since
lim
a→0+

gγ(a) = 0 and gγ(π) = γπ2 − 2 ≥ 0, there exists exactly one point a0 ∈ (0, π] such that

gγ(a0) = 0, which finishes the proof.

Additionaly, for γ ≤ − 1
2 , we have a similar result as in the Lemma 3.4.

Lemma 3.6. For γ ≤ − 1
2 , the set Mγ

π
2

is empty.

Proof. The proof is similar to the proof of the Lemma 3.4. The function u, as the solution of the
initial value problem (3.13) is in the form of (3.15) and the proof can be split according to the
value of b.

1. For 0 < b ≤ π, we define the function ū as an lower estimate of the function u, in the form of
continuous, π

b -periodic function

ū(x) := −1

b
sin (bx) , for x ∈

(
0,
π

b

]
, (3.18)
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as illustrated in Figure 3.4. Then we obtain

γ =

∫ 1

0

u(x) dx ≥
∫ 1

0

ū(x) dx

= −1

b

∫ 1

0

sin(bx) dx

=
1

b2
[cos(bx)]

1
0

= −1− cos(b)

b2

> −1

2
,

which contradicts the condition
∫ 1

0
u(x) dx = γ.

2. For π < b, we construct a lower estimate of
∫ 1

0
u(x) dx as∫ 1

0

u(x) dx ≥ min
x∈[0,1]

u(x) = −1

b
> − 1

π
> −1

2
,

which again contradicts the condition
∫ 1

0
u(x) dx = γ.

At the end of this section, we are going to sum up our findings conserning the boundary value
problem (3.12) with the theorem.

Theorem 3.7. If u is a non-trivial solution of the boundary value problem (3.12) then γ ∈
(
− 1

2 ,
1
2

)
.

Moreover, for α, β > 0 and γ ∈
[

2
π2 ,

1
2

)
, the Fuč́ık spectrum for (3.12) consists of two lines(
α− λ20

) (
β − λ20

)
= 0,

where λ0 is the unique solution of the equation 1− cosλ = γλ2 on the interval (0, π] .

Proof. The Theorem 3.7 is a direct consequence of Lemmas 3.4, 3.5 and 3.6.

Remark 3.8. For α, β > 0 and γ = 2
π2 , the Fuč́ık spectrum for (3.12) consists of two lines(
α− π2

) (
β − π2

)
= 0.

According to Lemmas 3.4, 3.5 and 3.6 it remains to investigate the set Mγ
π
2

for γ ∈
(
− 1

2 ,
2
π2

)
.

3.3 Description in the first quadrant

Now, we are going to focus on the first quadrant of the ab-plane (i.e. first quadrant of the αβ-plane)
and generalize the findings of Section 3.2 for c ∈

(
−π2 ,

π
2

]
.

Theorem 3.9. We have that (a, b) ∈Mγ
c if and only if a, b > 0 and

G
(
a, b,

2ab

a+ b

)
= P

(
a, b,

2ab

a+ b

)
− γ · ab · cos (ap(a, c)) . (3.19)

Functions G, P and p are defined in the previous section, Definition 3.2.
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Proof. Let u be the solution of the initial value problem (3.3). Then using (3.11) in [5], we have for
all x ∈ R that

G(x) = 1 +
2

π
(b− a)x− F (x), (3.20)

where F (x) =
∫ x
0
u(t) dt and G(x) = G

(
a, b, 2ab

a+bx
)

due to (3.17) in [5]. Let us note that the

function G is given in (3.10) in Definition 3.2. Now, the equation (3.20) can be also written in the
following form ∫ x

0

u(t) dt = 1 +
2

π
(b− a)x− G

(
a, b,

2ab

a+ b
x

)
,∫ x

0

u(t) dt = P

(
a, b,

2ab

a+ b
x

)
− G

(
a, b,

2ab

a+ b
x

)
, (3.21)

where the function P is given in (3.9) in Definition 3.2. Indeed, we have that

P

(
a, b,

2ab

a+ b
x

)
=
b2 − a2

ab
· 1

π
· 2ab

a+ b
· x+ 1 =

2(b− a)

π
· x+ 1.

Finally, using (3.21) for x = 1, the integral condition in (3.2)∫ 1

0

u(x) dx = γ · u′(0)

reads as

P

(
a, b,

2ab

a+ b

)
− G

(
a, b,

2ab

a+ b

)
= γ · u′(0),

P

(
a, b,

2ab

a+ b

)
− G

(
a, b,

2ab

a+ b

)
= γ · ab · cos(ap(a, c)), (3.22)

where we determined u′(0) using (3.6) in [5]. The equation (3.22) is exactly the implicit equation
(3.19), which finishes the proof.

Theorem 3.9 provides us with a way of numerically generating the set Mγ
c , example of a code

used can be found in Appendix A. Example of the set Mγ
c can be found in Figure 3.7.

Remark 3.10. Theorem 3.9 provides us with a way of generating pairs (a, b) which belong to the
set Mγ

c . The Fuč́ık spectrum Σ̂γc is then easy to obtain based on the Lemma 3.1.

Remark 3.11. Let us note, that for λ > 0 and a = b =
√
λ, we have

G
(√

λ,
√
λ,
√
λ
)

= cos
(√

λ−
√
λp
)
− cos

(√
λp
)

+ 1

and
P
(√

λ,
√
λ,
√
λ
)

= 1.

The condition of the Theorem 3.9 can therefore be manipulated as

cos
(√

λ−
√
λp
)

+ cos
(√

λp
)

(−1 + γλ) = 0,

cos
√
λ

1√
λ

tan c√
1√
λ

tan2 c+ 1
+ sin

√
λ

1√
1√
λ

tan2 c+ 1
+

1√
λ

tan c√
1√
λ

tan2 c+ 1
(−1 + γλ) = 0,

−
√
λ sin

√
λ · cot c− cos

√
λ+ 1 = γλ.

This is exactly the relation for the eigenvalues λ > 0 described in Theorem 2.4.
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a

b

a = b

Mγ
c

√
λ1
√
λ20

√
λ1

√
λ2

Fig. 3.7: The set Mγ
c for c = π

4 and γ = −0.1.



Chapter 4

Solvability of the problem with the
Dirichlet condition

In this chapter, we consider the following boundary value problem{
u′′(x) + αu+(x)− βu−(x) = 0, x ∈ (0, 1),

u(0) = 0,
∫ 1

0
u(x) dx = γ · u′(0),

(4.1)

where α, β > 0 and γ ∈
(
− 1

2 ,
2
π2

)
. Our goal is to study the structure of the Fuč́ık spectrum Σ̂γc for

c = π
2 . Due to Lemma 3.1, it is enough to investigate the setMγ

c for c = π
2 . Using Theorem 3.9 for

c = π
2 , we get that (a, b) ∈Mγ

π
2

if and only if a, b > 0 and (note that p(a, π2 ) = 0)

G
(
a, b,

2ab

a+ b

)
= P

(
a, b,

2ab

a+ b

)
− γ · ab, (4.2)

where G and P are given by (3.10) and (3.9). Moreover, since p(a, π2 ) = 0, the function G simplifies
as

G(a, b, t) =


b
a cos

(
a+b
2b t
)
− b

a + P (a, b, t) for t ∈
(

0, 2bπ
a+b

]
,

a
b cos

(
a+b
2a (t− 2π)

)
− b

a + P (a, b, t− π) for t ∈
(

2bπ
a+b , 2π

]
.

(4.3)

At first, let us denote (as in [4])

k :=
b

a
> 0. (4.4)

Then P (a, b, t) = P̃ (k, t) :=
(
k − 1

k

)
t
π + 1 and G(a, b, t) = G̃(k, t), where

G̃(k, t) =

 k cos
(
1+k
2k t

)
− k + P̃ (k, t) for t ∈

(
0, 2kπ

k+1

]
,

1
k cos

(
1+k
2 (t− 2π)

)
− k + P (k, t− π) for t ∈

(
2kπ
k+1 , 2π

]
.

(4.5)

At second, let us denote (in the same manner as in [4])

t :=
2ab

a+ b
> 0. (4.6)

Then the equation (4.2) can be written as

G̃ (k, t) = P̃ (k, t)− γ · (1 + k)2

4k
t2. (4.7)

Indeed, we have that

(1 + k)2

4k
t2 =

(1 + b
a )2

4 ba

4a2b2

(a+ b)2
=

(a+ b)2

4ab

4a2b2

(a+ b)2
= ab.

23
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Finally, let us introduce the last third substitution (based on the variable s in [4]) in order to
transform (4.7) to a polynomial equation with respect to k (n ∈ N0)

s :=


1+k
2 (t− 2nπ) + 2nπ − π for t ∈

(
2nπ − 2π

1+k , 2nπ
]
,

1+k
2k (t− 2nπ) + 2nπ − π for t ∈

(
2nπ, 2(n+ 1)π − 2π

1+k

]
.

(4.8)

See Figure 4.1 for the graph of s with respect to t. Let us note that for t ∈ (0,+∞), we have
that s ∈ (−π,+∞).

Lemma 4.1. For k, t > 0, the equation (4.7) can be equivalently written as

c2,γ(s) · k2 + c1,γ(s) · k + c0,γ(s) = 0, s > −π, (4.9)

where s is given by (4.8) and (n ∈ N0)

c2,γ(s) :=

{
2n− n2π2γ for 2nπ − 2π < s ≤ 2nπ − π,
1 + cos s+ 2n− (s− nπ + π)2γ for 2nπ − π < s ≤ 2nπ,

(4.10)

c1,γ(s) := −2nπ(s− nπ + π)γ for 2nπ − 2π < s ≤ 2nπ, (4.11)

c0,γ(s) :=

{
1 + cos s− 2n− (s− nπ + π)2γ for 2nπ − 2π < s ≤ 2nπ − π,
−2n− n2π2γ for 2nπ − π < s ≤ 2nπ.

(4.12)

Proof. Let us split the proof according to the value of t > 0.

1. At first, let us assume that t ∈
(

2nπ − 2π
1+k , 2nπ

]
, n ∈ N. In this case, we have for s given by

(4.8) that
2nπ − 2π < s ≤ 2nπ − π.

Due to 2π-periodicity of G̃ in the second variable t, the equation (4.7) can be written as

G̃(k, t− 2nπ + 2π) = P̃ (k, t)− γ · (1+k)
2

4k t2,

1
k cos

(
1+k
2 (t− 2nπ)

)
− k + P̃ (k, t− 2nπ + π) = P̃ (k, t)− γ · (1+k)

2

4k t2,

1
k cos (s− 2nπ + π)− k + (k − 1

k ) · π−2nππ = −γ · (1+k)
2

4k t2,

− 1
k cos (s)− k − (k − 1

k )(2n− 1) = −γ · (1+k)
2

4k t2,

cos (s) + k2 + (k2 − 1)(2n− 1) = γ · (1+k)
2

4 t2. (4.13)

Now, since we have that
t = 2

1+k (s− 2nπ + π) + 2nπ

the equation (4.13) reads

cos (s) + k2 + (k2 − 1)(2n− 1) = γ · (1+k)
2

4

(
2

1+k (s− 2nπ + π) + 2nπ
)2
. (4.14)

Using simple manipulations, the equation (4.14) can be rewritten into the following form

(2n− n2π2γ) · k2 − 2nπ(s− nπ + π)γ · k + 1 + cos s− 2n− (s− nπ + π)2γ = 0,

which is exactly the equation (4.9) for s ∈ (2nπ − 2π, 2nπ − π].

2. At second, let us assume that t ∈
(

2nπ, 2(n+ 1)π − 2π
1+k

]
, n ∈ N0. In this case, we have for

s given by (4.8) that
2nπ − π < s ≤ 2nπ.
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1π

2π

3π

4π

5π

6π

7π

8π

0

−1π

2π 4π 6π 8π

2π − 2π
1+k

4π − 2π
1+k 6π − 2π

1+k 8π − 2π
1+k

t

t

t− π

t− 2π

s(t)

Fig. 4.1: Graph of the function s, defined by (4.8).
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Due to 2π-periodicity of G̃ in the second variable t, the equation (4.7) can be written as

G̃(k, t− 2nπ) = P̃ (k, t)− γ · (1+k)
2

4k t2,

k cos
(
1+k
2k (t− 2nπ)

)
− k + P̃ (k, t− 2nπ) = P̃ (k, t)− γ · (1+k)

2

4k t2,

k cos (s− 2nπ + π)− k − (k − 1
k ) · 2nππ = −γ · (1+k)

2

4k t2,

k cos (s) + k + 2n(k − 1
k ) = γ · (1+k)

2

4k t2,

k2 cos (s) + k2 + 2n(k2 − 1) = γ · (1+k)
2

4 t2. (4.15)

Now, since we have that
t = 2k

1+k (s− 2nπ + π) + 2nπ

the equation (4.15) reads

k2 cos (s) + k2 + 2n(k2 − 1) = γ · (1+k)
2

4

(
2k
1+k (s− 2nπ + π) + 2nπ

)2
. (4.16)

Using simple manipulations, the equation (4.16) can be rewritten into the following form

(1 + cos s+ 2n− (s− nπ + π)2γ) · k2 − 2nπ(s− nπ + π)γ · k − 2n− n2π2γ = 0,

which is exactly the equation (4.9) for s ∈ (2nπ − π, 2nπ].

Now, before proceeding any further, we are going to use the estimate from below of the function
cos on the interval (−π, 0) (see Figure 4.2) and prove a lemma, which will become useful in the
following text.

Lemma 4.2. For s ∈ (−π, 0), we have that 2
π2 (s+ π)2 − 1 < cos(s).

Proof. Let us define the function f(s) := − 2
π2 (s+ π)

2
+ 1 + cos(s) for −π ≤ s ≤ 0. Our goal is to

show that f(s) > 0 for s ∈ (−π, 0) .
First of all, we have f ′(s) = − 2

π2 · 2 · (s+π)− sin(s) and f ′′(s) = − 4
π2 − cos(s). For the function

f ′′ follows that f ′′(−π) = − 4
π2 + 1 > 0 and f ′′(0) = − 4

π2 − 1 < 0. Since the function f ′′(s) is
strictly decreasing, there is exactly one point s0, for which f ′′(s0) = 0, as ilustrated in Figure 4.3c.
The value s0 can be expressed as s0 = −π + arccos

(
4
π2

)
. The function f ′′ is therefore positive for

s ∈ [−π, s0) and negative for s ∈ (s0, 0] .
Based on the values of the function f ′′, we know that the function f ′ is strictly increasing for

s ∈ [−π, s0) and strictly decreasing for s ∈ (s0, 0] . Since f ′(−π) = 0, we know that f ′(s0) > 0 and
because f ′(0) = − 4

π < 0 and the function f ′ is decreasing for s ∈ (s0, 0], there is exactly one point
s1 ∈ (s0, 0), where f ′(s1) = 0, as ilustrated in Figure 4.3b.

Finally, we know based on the values of the function f ′, that the function f is increasing for
s ∈ [−π, s1) and decreasing for s ∈ (s1, 0] (see Figure 4.3a). Due to f(−π) = 0 and f(0) = 0, we
have that f(s) > 0 for ∀s ∈ (−π, 0) , which finishes the proof.

Now we can use Lemma 4.2 to prove the following statement.

Lemma 4.3. For γ ∈
(
− 1

2 ,
2
π2

)
, the equation (4.9) is not solvable for s ∈ (−π, 0].

Proof. For s ∈ (−π, 0], the equation (4.9) has the following form(
1 + cos(s)− (s+ π)2γ

)
· k2 = 0,

1 + cos(s) = (s+ π)2γ. (4.17)

For γ ≤ 0, the equation (4.17) cannot be satisfied since 1 + cos(s) > 0. For 0 < γ < 2
π2 , we get

using Lemma 4.2 that
1 + cos(s) ≥ 2

π2 (s+ π)2 > γ(s+ π)2

and thus, the equation (4.17) cannot be satisfied.
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2
π2 (s+ π)2 − 1

cos s

1

−1

0−π
s

Fig. 4.2: Graph of an lower estimate (black curve) of the function cos (gray curve) constructed in
Lemma 4.2.

s0 s1 0−π s

f(s)

(a) Graph of the function f(s)
for s ∈ [−π, 0] .

s0 s1 0−π s

f ′(s)

(b) Graph of the function f ′(s)
for s ∈ [−π, 0] .

s0 s1 0−π s

f ′′(s)

(c) Graph of the function f ′′(s)
for s ∈ [−π, 0] .

Fig. 4.3: Graphs of the functions f, f ′ and f ′′ used in the proof of the Lemma 4.2.
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Theorem 4.4. Let γ ∈
(
− 1

2 ,
2
π2

)
. Then (a, b) ∈Mγ

π
2

if and only if a, b > 0 and

c2,γ(s) · k2 + c1,γ(s) · k + c0,γ(s) = 0, (4.18)

where k = b
a , s > 0 is given by (4.8) with t = 2ab

a+b , and c2,γ(s), c1,γ(s), c0,γ(s) are given by (4.10),
(4.11), (4.12), respectively.

Proof. Let us recall that the equation (4.2) can be equivalently written as (4.7). The statement
now follows directly using Lemmas 4.1 and 4.3.

4.1 Discriminant of the quadratic equation (4.18)

The goal of this section is to show, that the quadratic equation (4.18) for s > 0 has a real solution,
i.e. that the discriminant of the corresponding polynomial is positive. Let us denote

D(γ, s) := c21,γ(s)− 4 · c2,γ(s) · c0,γ(s) for − 1

2
≤ γ ≤ 2

π2
and s ≥ 0, (4.19)

which represents the discriminant of the quadratic polynomial in (4.18). Let us note that D(γ, 0) =
0. Indeed, we have

D(γ, 0) = c21,γ(0)− 4 · c2,γ(0) · c0,γ(0) = 0− 4 · c2,γ(0) · 0.

For the discriminant D, we have the following representation

D(γ, s) =

{
4n ·D1,n(γ, s) for 2nπ − 2π < s ≤ 2nπ − π,
4n ·D2,n(γ, s) for 2nπ − π < s ≤ 2nπ,

where

D1,n(γ, s) := 4n− 2− nγπ(3π + 4s) + 2γ(s+ π)2 + (nγπ2 − 2) cos(s),

D2,n(γ, s) := 4n+ 2 + nγπ(5π + 4s)− 2γ(s+ π)2 + (nγπ2 + 2) cos(s).

The representation of D can be verified, for example for s ∈ (2nπ − 2π, 2nπ − π], as

D(γ, s) = c21,γ(s)− 4 · c2,γ(s) · c0,γ(s)

= (−2nπ(s− nπ + π)γ)
2 − 4

(
2n− n2π2γ

) (
1 + cos s− 2n− (s− nπ + π)2γ

)
= 4n ·

(
−2− 2 cos s+ 4n+ 2γs2 + 2γπ2 − 4γsnπ + γsπ − 3γnπ2 + nπ2γ · cos s

)
= 4n ·

(
4n− 2− nγπ(3π + 4s) + 2γ(s+ π)2 + (nγπ2 − 2) cos(s)

)
.

Our goal for the next part is to find the lowest value of the function D(γ, s) on rectangles
[
− 1

2 ,
2
π2

]
×

[2nπ − 2π, 2nπ − π] and
[
− 1

2 ,
2
π2

]
×[2nπ − π, 2nπ] , n ∈ N. Firstly, we are going to show, that there

are no stationary points of D = D(γ, s) on open rectangles
(
− 1

2 ,
2
π2

)
× (2nπ − 2π, 2nπ − π) and(

− 1
2 ,

2
π2

)
× (2nπ − π, 2nπ) , n ∈ N. See following Lemmas 4.5, 4.6, 4.7 and 4.8.

Lemma 4.5. The function D2,n = D2,n(γ, s), n ∈ N, has no stationary point in the open rectangle(
− 1

2 ,
2
π2

)
× (2nπ − π, 2nπ) .

Proof. To investigate stationary points of the function D2,n, let us denote the partial derivative
∂D2,n

∂γ as gn and calculate its first two derivatives as

gn(s) : =
∂D2,n(γ, s)

∂γ
= nπ(5π + 4s)− 2(s+ π)2 + nπ2 cos(s),

g′n(s) = 4nπ − 4(s+ π)− nπ2 sin(s),

g′′n(s) = −4− nπ2 cos(s).
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3π 4πs2
s

g2(s)

0

(a) Function g2

3π 4πs2
s

g2(s)

0

(b) Function g′2

3π

4πs2
s

g2(s)

0

(c) Function g′′2

Fig. 4.4: Graph of the function gn, n = 2 defined in the proof of Lemma 4.5.

The function gn and its derivatives are illustrated in Figure 4.4. Then for s ∈ (2nπ − π, 2nπ) the
function g′′n has a zero point sn := 2nπ − arccos

(
− 4
nπ2

)
. Moreover, the function g′′n is positive on

(2nπ − π, sn) and negative on (sn, 2nπ) and therefore the point sn is a strict maximum of the
function g′n on the interval (2nπ − π, 2nπ) . We also claim, that g′n(sn) < 0. Indeed, we have that

g′n(sn) = 4nπ − 4 ·
(

2nπ − arccos

(
− 4

nπ2

)
+ π

)
+ nπ2 sin

(
arccos

(
− 4

nπ2

))

= −4(n+ 1)π + 4 arccos

(
− 4

nπ2

)
+ nπ2 ·

√
1−

(
4

nπ2

)2

= −4(n+ 1)π + 4 arccos

(
− 4

nπ2

)
+
√
n2π4 − 16

< −4(n+ 1)π + 4π +
√
n2π4 − 16 < 0

and the last inequality holds, since we have√
n2π4 − 16 < 4(n+ 1)π − 4π,√
n2π4 − 16 < 4nπ,

n2π4 − 16 < 16n2π2,

n2π4 − 16n2π2 < 16,

n2π2(π2 − 16) < 16.

Finally, gn is strictly decreasing on the interval (2nπ − π, 2nπ) and also

gn(2nπ − π) = nπ (5π + 8nπ − 4π)− 2 (2nπ − π + π)
2

+ nπ2 cos (2nπ − π) = 0,

therefore the function gn is negative on (2nπ − π, 2nπ) and the function D2,n has no stationary
point in

(
− 1

2 ,
2
π2

)
× (2nπ − π, 2nπ) .

Lemma 4.6. The function D1,n = D1,n(γ, s), n ∈ N, n ≥ 3, has no stationary point in the open
rectangle

(
− 1

2 ,
2
π2

)
× (2nπ − 2π, 2nπ − π) .

Proof. Similarly to the proof of Lemma 4.5, let us define a partial derivative of the function D1,n

and calculate its derivatives as

gn(s) :=
∂D1,n(γ, s)

∂γ
= −nπ(3π + 4s) + 2(s+ π)2 + nπ2 cos(s),

g′n(s) = −4nπ + 4(s+ π)− nπ2 sin(s),

g′′n(s) = 4− nπ2 cos(s).
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s4 7π6π0
s

g4(s)

(a) Function g4

s4 7π6π0
s

g′4(s)

(b) Function g′4

s4 7π6π0
s

g′′4 (s)

(c) Function g′′4

Fig. 4.5: Graphs of the function gn, n = 4 and its derivatives, defined in Lemma 4.6.

An example of the function gn and its derivatives is in Figure 4.5. The zero point of the function g′′n
is sn := 2nπ − 2π + arccos

(
4
nπ2

)
, sn ∈ (2nπ − 2π, 2nπ − π). Moreover, the function g′′ is negative

on (2nπ − 2π, sn) and positive on (sn, 2nπ − π) and therefore the point sn is a strict minimum of
the function g′n on the interval (2nπ − 2π, 2nπ − π) . The inequality g′n(sn) > 0 also holds, since

g′n(sn) = −4nπ + 4

(
2nπ − π + arccos

(
4

nπ2

))
− nπ2 sin

(
arccos

(
4

nπ2

))
= 4(n− 1)π + 4 arccos

(
4

nπ2

)
− nπ2

√
1− 16

n2π4

= 4(n− 1)π + 4 arccos

(
4

nπ2

)
−
√
n2π4 − 16

> 4(n− 1)π + 4 · 1.1−
√
n2π4 − 16 > 0

and the last step is justified by √
n2π4 − 16 < 4(n− 1)π + 4.4,

n2π4 − 16 < 16(n− 1)2π2 + 4.42 + 8(n− 1) · 4.4π,
n2 · (π4 − 16π2) + n · (32π2 − 8π · 4.4) < 16 + 16π2 + 4.42 − 8π · 4.4,

n · (π4 − 16π2) + 32π2 − 8π · 4.4 < 16 + 16π2 + 4.42 − 8π · 4.4
n

. (4.20)

For n = 3, we can numerically verify the inequality (4.20) and for n ≥ 4, the lefthand side of (4.20)
is always negative while the righthand side is positive.

Finally, gn is strictly increasing on the interval (2nπ − 2π, 2nπ − π) and also

gn(2nπ − π) = −nπ(3π + 8nπ − 4π) + 2(2nπ − π + π)2 + nπ2 cos(2nπ − π)

= −8n2π2 + nπ2 + 8n2π2 − nπ2

= 0,

therefore the function gn is negative and the function D1,n has no stationary point on
(
− 1

2 ,
2
π2

)
×

(2nπ − 2π, nπ − π) .

Note that in Lemma 4.6, the assumption of n ≥ 3 is crucial for proving the inequality (4.20).
Cases of n = 1 and n = 2 will be solved separetly in the following Lemmas 4.7 and 4.8.

Lemma 4.7. The function D1,1 = D1,1(γ, s) has no stationary point on the rectangle
(
− 1

2 ,
2
π2

)
×

(0, π) .
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Proof. Once again, we are going to define the partial derivative of the function D1,1 and its deri-
vatives as

g1(s) :=
∂D1,1(γ, s)

∂γ
= −π(3π + 4s) + 2(s+ π)2 + π2 cos(s),

g′1(s) = −4π + 4(s+ π)− π2 sin(s),

g′′1 (s) = 4− π2 cos(s).

The function g′′1 has a zero point s2 := arccos
(

4
π2

)
, s2 ∈ (0, π) and g′′1 is negative on (0, s2) and

positive on (s2, π). Thus g′1 is strictly decreasing on (0, s2) and strictly increasing on (s2, π). At
the same time, g′1(0) = 0 and g′1(π) = 4π > 0, therefore there is exactly one point s1 ∈ (0, π) such
that g′1(s1) = 0.

Finally, g1 is strictly decreasing on (0, s1), strictly increasing on (s1, π) and also g1(0) = g1(π) =
0. Therefore g1(s) < 0 for s ∈ (0, π).

Lemma 4.8. The function D1,2 = D1,2(γ, s) has no stationary point in the open rectangle
(
− 1

2 ,
2
π2

)
×

(2π, 3π) .

Proof. We are going to investigate the partial derivative of the function D1,2 in the form of

g2(s) :=
∂D1,2(γ, s)

∂γ
= −2π(3π + 4s) + 2(s+ π)2 + 2π2 cos(s).

Using Lemma 4.2, it is straightforward to show that

g2(s) < −2π(3π + 4s) + 2(s+ π2) + 2π2

(
1− 2

π2
(s− 3π + π)

)
= −2(s− 3π)2 < 0

and thus the function D1,2 does not have a stationary point in the open rectangle
(
− 1

2 ,
2
π2

)
×

(2π, 3π) .

We have described the behaviour of the function D = D(γ, s) in the interior of rectangles(
− 1

2 ,
2
π2

)
× (2nπ − 2π, 2nπ − π) and

(
− 1

2 ,
2
π2

)
× (2nπ − π, 2nπ) , now we are going to shift our

attention to the border.

Lemma 4.9. On the closed rectangle
[
− 1

2 ,
2
π2

]
× [2nπ − π, 2nπ] , n ∈ N, the function D2,n =

D2,n(γ, s) is non-negative and attains its minimum 0 only at the corner point (γ, s) = ( 2
π2 , 2nπ).

Proof. Let us define the rectangle Rn, on which we are going to investigate properties of the function
D2,n as Rn :=

[
− 1

2 ,
2
π2

]
× [2nπ − π, 2nπ] . According to Lemma 4.5, D2,n has no stationary point

inside the rectangle Rn, therefore D2,n restricted to Rn attains its extremes on the boundary ∂Rn.
On the border of this rectangle, it holds

D2,n(γ, 2nπ − π) = 4n > 0,

D2,n(γ, 2nπ) = 2(n+ 1)(2− γπ2) ≥ 0,

D2,n

(
−1

2
, s

)
= 2 + (s+ π)2 + 4n− nπ

2
(5π + 4s) +

(
2− nπ2

2

)
cos(s) > 0,

D2,n

(
2

π2
, s

)
= 2− 4

π2
(s+ π)2 + 4n+

2n

π
(5π + 4s) + (2 + 2n) cos(s) ≥ 0.

It remains to justify last two inequalities.

1. Using Lemma 4.2, we get

D2,n

(
−1

2
, s

)
= 2 + (s+ π)2 + 4n− nπ

2
(5π + 4s) +

(
2− nπ2

2

)
cos(s)

≥ 2 + (s+ π)2 + 4n− nπ

2
(5π + 4s) +

(
2− nπ2

2

)(
1− 2

π2
(s− 2nπ)

2

)
=: gn(s).
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Moreover, gn is a quadratic polynomial

gn(s) =

(
1 + n− 4

π2

)
s2 + 2

(
π − nπ − 2n2π +

8n

π

)
s+ π2

(
4n3 − 3n+ 1

)
+ 4 + 4n− 16n2

and its stationary point is

sn = 2nπ − π − 4π

(n+ 1)π2 − 4
< 2nπ − π.

This means that gn is strictly increasing on [2nπ − π, 2nπ] and thus

D2,n

(
−1

2
, s

)
≥ gn(s) ≥ gn(2nπ − π) = 4n > 0.

2. Using Lemma 4.2, we get

D2,n

(
2

π2
, s

)
= 2− 4

π2
(s+ π)2 + 4n+

2n

π
(5π + 4s) + (2 + 2n) cos(s)

≥ 2− 4

π2
(s+ π)2 + 4n+

2n

π
(5π + 4s) + (2 + 2n)

(
2

π2
(s− 2nπ + π)

2 − 1

)
=: gn(s).

Moreover, we have

gn(s) =
4n

π2
(s− 2nπ)2

and thus gn is strictly decreasing on [2nπ − π, 2nπ] . Finally, we obtain

D2,n

(
2

π2
, s

)
≥ gn(s) ≥ gn(2nπ) = 0.

Lemma 4.10. On the closed rectangle
[
− 1

2 ,
2
π2

]
× [2nπ − 2π, 2nπ − π] , n ∈ N, n ≥ 2, the function

D1,n = D1,n(γ, s) is non-negative and attains minimum 0 only at the corner point (γ, s) =
( 2
π2 , 2nπ − 2π).

Proof. Using Lemmas 4.6 and 4.8, we obtain that D1,n restricted to the closed rectangle Rn :=[
− 1

2 ,
2
π2

]
× [2nπ − 2π, 2nπ − π] attains its extremes on the boundary ∂Rn. We have

D1,n(γ, 2nπ − π) = 4n > 0,

D1,n(γ, 2nπ − 2π) = 2(n− 1)(2− γπ2) ≥ 0,

D1,n

(
−1

2
, s

)
= −2− (s+ π)2 + 4n+

nπ

2
(3π + 4s)−

(
2 +

nπ2

2

)
cos(s) > 0,

D1,n

(
2
π2 , s

)
= −2 +

4

π2
(s+ π)2 + 4n− 2n

π
(3π + 4s) + (−2 + 2n) cos(s) ≥ 0.

It remains to justify last two inequalities.

1. Using Lemma 4.2, we get

D1,n

(
−1

2
, s

)
= −2− (s+ π)2 + 4n+

nπ

2
(3π + 4s)−

(
2 +

nπ2

2

)
cos(s)

≥ −2− (s+ π)2 + 4n+
nπ

2
(3π + 4s)−

(
2 +

nπ2

2

)(
1− 2

π2
(s− 2nπ + 2π)

2

)
=: gn(s).
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Now, gn is a quadratic polynomial

gn(s) =

(
n− 1 +

4

π2

)
s2 − 2

(
π − 3nπ + 2n2π +

8(n− 1)

π

)
s+ π2(4n3 − 8n2 + 5n− 1)

+ 12− 28n+ 16n2

and has a stationary point

sn = 2πn− π − 4π

(n− 1)π2 + 4
.

Let us note that sn ∈ [2nπ − 2π, 2nπ − π) . Finally, we get

D1,n

(
−1

2
, s

)
≥ gn(s) ≥ gn(sn) =

(4nπ2 + 16)(n− 1)

(n− 1)π2 + 4
> 0.

2. Using Lemma 4.2, we get

D1,n

(
2
π2 , s

)
= −2 +

4

π2
(s+ π)2 + 4n− 2n

π
(3π + 4s) + (−2 + 2n) cos(s)

≥ −2 +
4

π2
(s+ π)2 + 4n− 2n

π
(3π + 4s) + (−2 + 2n)

(
2

π2
(s− 2nπ + π)

2 − 1

)
=: gn(s).

Moreover, we have that

gn(s) =
4n

π2
(s− (2nπ − 2π))2

and thus gn is strictly increasing on [2nπ − 2π, 2nπ − π] . Finally, we obtain

D1,n

(
2
π2 , s

)
≥ gn(s) ≥ gn(2nπ − 2π) = 0.

Lemma 4.11. On the closed rectangle
[
− 1

2 ,
2
π2

]
× [0, π] , the function D1,1 = D1,1(γ, s) is non-

negative and attains its minimum only on the boundary line segment s = 0 and γ ∈
[
− 1

2 ,
2
π2

]
.

Proof. Using Lemma 4.7, we obtain that D1,1 restricted to the closed rectangle R1 :=
[
− 1

2 ,
2
π2

]
×

[0, π] attains its extremes on the boundary ∂R1. We have

D1,1(γ, π) = 4 > 0,

D1,1(γ, 0) = 0,

D1,1

(
−1

2
, s

)
= 2− (s+ π)2 +

π

2
(3π + 4s)−

(
2 +

π2

2

)
cos(s) ≥ 0, (4.21)

D1,1

(
2

π2
, s

)
= 2 +

4

π2
(s+ π)2 − 2

π
(3π + 4s) =

4

π2
s2 ≥ 0. (4.22)

It remains to justify the inequality in (4.21). Using Lemma 4.2, we get

D1,1

(
−1

2
, s

)
= 2− (s+ π)2 +

π

2
(3π + 4s)−

(
2 +

π2

2

)
cos(s)

≥ 2− (s+ π)2 +
π

2
(3π + 4s)−

(
2 +

π2

2

)(
1− 2

π2
s2
)

=: gn(s).

We have

gn(s) =
4

π2
s2

amd thus, we get

D1,1

(
−1

2
, s

)
≥ gn(s) ≥ 0.
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−2 · 1− 12π2γ

−2 · 2− 22π2γ

−2 · 3− 32π2γ

−2 · 4− 42π2γ

Fig. 4.6: Graph of the function c0,γ for γ = 0.03.

We have all necessary lemmas to justify the final theorem of this section.

Theorem 4.12. The discriminant D(γ, s) of the guadratic polynomial in (4.18) is positive for
s > 0 and − 1

2 < γ < 2
π2 .

Proof. The statement is a direct consequence of Lemmas 4.9, 4.10 and 4.11.

4.2 Solvability of the quadratic equation (4.18)

Due to Theorem 4.12, we know that roots of the quadratic polynomial in (4.18) are real. Now we
can take a look on their other properties by investigating functions c0,γ , c1,γ and c2,γ . First of all,
we are going to assume only γ > 0. The case of γ ≤ 0 will be discussed at the end of this section.

Lemma 4.13. For 0 < γ < 2
π2 , the function c0,γ is continuous, decreasing and its range is (−∞, 0).

The function c0,γ is illustrated in Figure 4.6.

Proof. Firstly, let us prove the continuity of the function c0,γ . It is easy to verify, that both parts
of the function c0,γ are continuous with respect to s, therefore only the continuity in the points of
connection remains to be examined1. For given n ∈ N, we obtain

lim
s→2nπ−

c0,γ(s) = c0,γ(2nπ) = −2n− n2π2γ,

lim
s→2nπ+

c0,γ(s) = 1 + cos(2nπ)− 2(n+ 1)− (2nπ − (n+ 1)π + π)
2
γ = −2n− n2π2γ,

and also

lim
s→(2nπ−π)−

c0,γ(s) = c0,γ(2nπ−π) = 1 + cos(2nπ−π)−2n− (2nπ−π−nπ+π)2γ = −2n−n2π2γ,

lim
s→(2nπ−π)+

c0,γ(s) = lim
s→(2nπ−π)+

−2n− n2π2γ = −2n− n2π2γ.

1The function f is said to be continuous at the point x0, if there exist f(x0), lim
x→x0+

f(x), lim
x→x0−

f(x) and at the

same time f(x0) = lim
x→x0+

f(x) = lim
x→x0−

f(x).
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Fig. 4.7: Graph of the function c1,γ for γ = 0.03.

The function c0,γ is therefore continuous for s ∈ (0,+∞).
The function c0,γ is also decreasing. Since the function is given piecewise and it is constant

for s ∈ (2nπ − π, 2nπ] , we are going to only examine c0,γ for s ∈ (2nπ − 2π, 2nπ − π] . We have
c′0,γ(s) = − sin(s) − 2γ (s− nπ + π) . Since − sin(s) ≤ 0, −2γ < 0 and s − nπ + π > 0 for s ∈
(2nπ − 2π, 2nπ − π] , we obtain c′0,γ(s) ≤ 0, and c0,γ is indeed decreasing.

And finally, to determine the range of the function c0,γ , we calculate

lim
s→0+

c0,γ(s) = lim
s→0+

(
1 + cos s− 2− s2γ

)
= 0

and we also claim, that
lim

s→+∞
c0,γ(s) = −∞.2

Let us set arbitrary K < 0. Then let n1 ∈ N, such that c0,γ(2n1π) = −2n1 − n21π2γ < K. We
can set s0 = 2n1π and since the function c0,γ is decreasing, then ∀s > s0 : c2,γ(s) ≤ c2,γ(s0) < K,
which finishes the proof.

The function c1,γ (see Figure 4.7) has similar properties as the function c0,γ .

Lemma 4.14. For 0 < γ < 2
π2 , the function c1,γ is continuous, decreasing and its range is (−∞, 0).

Proof. First, let us examine the continuity of the function c1,γ . The continuity on the interval
(2nπ − 2π, 2nπ] is clear, points of connection remain to be examined. Indeed, we have

lim
s→2nπ−

c1,γ(s) = c1,γ(2nπ) = −2nπ (nπ + π) γ = −2n2π2γ − 2nπ2γ,

lim
s→2nπ+

c1,γ(s) = −2(n+ 1)π (2nπ − (n+ 1)π + π) γ = −2n2π2γ − 2nπ2γ,

and the function c1,γ is therefore continuous for s > 0.
The function c1,γ is also decreasing, since

c′1,γ(s) = −2nπγ < 0 for 2nπ − 2π < s < 2nπ.

2The function f diverges to −∞ for s→ +∞ by definition if ∀K < 0 ∃s0 ∈ R+ ∀s > s0 : f(s) < K.
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And finally, let us examine the range of the function c1,γ . We have

lim
s→0+

c1,γ(s) = lim
s→0+

−2πγs = 0

and
lim

n→+∞
c1,γ(2nπ) = lim

n→+∞
−2nπ(n+ 1)πγ = −∞.

Therefore lim
s→+∞

c1,γ(s) = −∞ due to the monotony of the function c1,γ and thus the range of c1,γ

is (−∞, 0).

The investigation of properties of the function c2,γ is going to be more challenging than for c0,γ
and c1,γ and will be therefore split into several lemmas, however, this knowledge is critial as shown
in the following lemma.

Lemma 4.15. For 0 < γ < 2
π2 and s > 0, the quadratic equation (4.18) is solvable for k > 0 if

and only if c2,γ(s) > 0. Moreover, if c2,γ(s) > 0 then the positive solution k of (4.18) is unique.

Proof. For c2,γ(s) = 0, the quadratic equation (4.18) simplifies to the linear one and we have

k = −c0,γ(s)

c1,γ(s)
,

since c1,γ(s) 6= 0 due to Lemma 4.14. The solution k is therefore negative, since c0,γ(s) < 0 and
c1,γ(s) < 0 according to Lemmas 4.13 and 4.14.

Now for c2,γ(s) 6= 0 , let the quadratic equation (4.18) have solutions k1 and k2. We have
according to Vieta’s formulas in [3], that

k1 · k2 =
c0,γ(s)

c2,γ(s)
, k1 + k2 = −c1,γ(s)

c2,γ(s)
. (4.23)

The rest of the proof is going to be split according to the sign of c2,γ(s).

1. Let c2,γ(s) < 0. Then, since c0,γ(s) is negative for s > 0 due to Lemma 4.13, we have k1, k2 < 0
or k1, k2 > 0 from the first equation in (4.23). At the same time, using the second equation
in (4.23) and Lemma 4.14, we obtain that k1 + k2 < 0. Therefore k1 < 0 and k2 < 0 and the
equation (4.18) does not have a positive solution k.

2. Let c2,γ(s) > 0. Then, using Lemma 4.13 and the first equation in (4.23), we get k1 < 0, k2 > 0
or k1 > 0, k2 < 0. Therefore there is exactly one positive solution k of the equation (4.18).

Lemma 4.16. For 0 < γ < 2
π2 , the function c2,γ is continuous.

Proof. The continuity of the function c2,γ is easy to verify, since

lim
s→(2nπ−π)−

c2,γ(s) = c2,γ(2nπ − π) = 2n− n2π2γ,

which is the same value as

lim
s→(2nπ−π)+

c2,γ(s) = 1− 1 + 2n− (2nπ − π − nπ + π)
2
γ

= 2n− (nπ)
2
γ.

In the second point of connection, we have

lim
s→2nπ−

c2,γ(s) = c2,γ(2nπ)

= 1 + 1 + 2n− (2nπ − nπ + π)
2
γ

= 2 + 2n− (nπ + π)
2
γ,
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Fig. 4.8: Graph of the function n0(γ), introduced in Definition 4.17.

and

lim
s→2nπ+

c2,γ(s) = 2(n+ 1)− (n+ 1)2π2γ

= 2 + 2n− (nπ + π)
2
γ.

In the following definition, we introduce the important natural number n0, that depends on
γ. We will show later, that this value n0 determines the interval for s, on which the function c2,γ
changes sign.

Definition 4.17. For 0 < γ < 2
π2 , let us define the value

n0 :=

⌊
2

π2γ

⌋
.

The relation between the value of γ and n0 is illustrated on Figure 4.8. By a simple manipulation
of the definition of n0, we obtain

n0 ≤
2

π2γ
< n0 + 1,

2

(n0 + 1)π2
< γ ≤ 2

n0π2
. (4.24)

In the following four lemmas, we are going to investigate the sign and the monotony of the
function c2,γ .

Lemma 4.18. For 0 < γ ≤ 2
2π2 we have

c2,γ(s) > 0 for s ∈ (0, 2(n0 − 1)π) .
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c2,γ

c̃2,γ

Fig. 4.9: Detail of the graph of functions c2,γ (gray curve) and its lower estimate c̃2,γ (black curve).

Proof. For 0 < γ ≤ 2
2π2 , we have n0 ≥ 2 according to Definition 4.17. Since the function c2,γ is

given piecewice, we are going to split the proof into two sections.
At first, let s ∈ (2nπ − 2π, 2nπ − π] and n ∈ {1, 2, . . . , n0 − 1}. Then we have

c2,γ(s) = 2n− n2π2γ > 0,

2

nπ2
> γ.

The last inequality is true due to (4.24) and n ≤ n0 − 1.
In the second part, let us assume s ∈ (2nπ − π, 2nπ) and n ∈ {1, 2, . . . , n0 − 1}. Then, using

the Lemma 4.2, we obtain a lower estimate of c2,γ(s) in the following way

c2,γ(s) = 1 + cos(s)− 2n− (s− nπ + π)
2
γ >

2

π2
(s+ π)2 − 2n− (s− nπ + π)

2
γ =: c̃2,γ(s).

See Figure 4.9 for a comparison between functions c2,γ and c̃2,γ . It holds, that c̃′2,γ(s) = 4
π2 (s +

π)− 2γ(s− nπ + π) and the stationary point s0 of the function c̃2,γ can be determined as

c̃′2,γ(s0) = 0,
4
π2 (s0 + π)− 2γ(s0 − nπ + π) = 0,

s0

(
4

π2
− 2γ

)
= − 4

π
− 2γnπ + 2γπ,

s0 =
π
(
2− π2γ + nπ2γ

)
−2 + π2γ

.

For the minimum of the function c̃2,γ , we have

min
s∈R

c̃2,γ(s) = c̃2,γ(s0) = 2n

(
1 + n+

2n

π2γ − 2

)
> 0 for γ 6= 2

n0π2
or n < n0 − 1. (4.25)
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It remains to justify, that min
s∈R

c̃2,γ(s) is positive. Let us manipulate

1 + n+
2n

π2γ − 2
> 0,

2n < (−1− n)(π2γ − 2),

π2γ <
2n

−n− 1
+
−2n− 2

−n− 1
,

γ <
2

(n+ 1)π2
.

The last inequality holds due to (4.24).
And finally, for the case not covered by the (4.25), i.e. for n = n0 − 1 and γ = 2

n0π2 , we can
proceed in the similar manner as in the previous case and we get the stationary point s0 of the
function c̃2,γ as

c̃′2,γ(s0) = 0,

4

π2
(s0 + π)− 4

n0π2
(s0 − (n0 − 1)π + π) = 0,

s0 = −2π.

min
s∈R

c̃2,γ(s) = c̃2,γ(s0) = 2(n0 − 1)

(
1 + (n0 − 1) +

2(n0 − 1)

π2 2
n0π2 − 2

)

)
= 2(n0 − 1)(n0 − n0) = 0

Since c̃2,γ is the quadratic function with the minimum 0 in −2π, the value c̃2,γ(s) is positive for
every point s 6= −2π.

Lemma 4.19. For 0 < γ < 2
π2 , we have

c2,γ(s) < 0 for s > 2n0π.

Proof. Firstly, in the case of s ∈ (2nπ − 2π, 2nπ − π] , n ∈ N, n > n0, the function c2,γ is constant
and we have

c2,γ(s) = 2n− n2π2γ.

For this value to be negative, we require that

2n− n2π2γ < 0,

2

nπ2
< γ.

This is true according to (4.24). This specificaly means, that on the first interval for s > 2n0π, i.e.
on the interval 2n0π < s ≤ 2n0π + π, the function c2,γ is already negative.

In the case of s ∈ (2nπ − π, 2nπ) , n ∈ N, n > n0, we obtain

c′2,γ(s) = − sin(s)− 2γ (s− nπ + π) .

Since 0 < − sin(s) < 1 and our intent is to show that the function c2,γ is strictly decreasing, we
require 2γ (s− nπ + π) > 1 or after a short manipulation s − nπ + π > 1

2γ in order to c′2,γ to be

negative. Based on the inequality (4.24) and the relation n > n0 we have

1

2nπ
≤ 1

2(n0 + 1)π
<

1

2(n0 + 1)π
· 4

π
< γ
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and using the interval of s, we also have nπ < s− nπ + π. Let us summarize

1

2γ
< nπ < s− nπ + π,

and thus c′2,γ(s) < 0 for s ∈ (2nπ − π, 2nπ) , n ∈ N, n > n0.
To sum up, the function c2,γ has negative values for 2n0π < s ≤ 2n0π + π and is always

decreasing for s > 2n0π. The assertion of this lemma is therefore justified.

Lemma 4.20. For 0 < γ ≤ 2
2π2 , the function c2,γ is strictly decreasing on (2n0π − π, 2n0π).

Proof. First of all, let us recall that n0 is given in Definition 4.17 and that for 0 < γ ≤ 2
2π2 , we

have that n0 ≥ 2. Now, for s ∈ (2n0π − π, 2n0π), we have that

c2,γ(s) = 1 + 2n0 − (s− n0π + π)2γ + cos(s),

c′2,γ(s) = −2(s− n0π + π)γ − sin(s),

c′′2,γ(s) = −2γ − cos(s).

Let us denote s0 := 2n0π − arccos(−2γ). Then c′′2,γ(s0) = 0 and moreover, we have that

max
s∈(2n0π−π,2n0π)

c′2,γ(s) = c′2,γ(s0)

= −2(n0π − arccos(−2γ) + π) · γ − sin (− arccos(−2γ))

=
√

1− 4γ2 − 2(n0 + 1)πγ + 2γ arccos(−2γ). (4.26)

Let us note that s0 is the strict maximum point of c′2,γ on the interval (2n0π − π, 2n0π). Now, let

us consider the function γ 7→ c′2,γ(s0), γ ∈
(

2
(n0+1)π2 ,

2
n0π2

)
, where n0 ≥ 2 is fixed. We claim that

the function γ 7→ c′2,γ(s0) is strictly decreasing. Indeed, using (4.26), we have that

d

dγ
c′2,γ(s0) = −2(s0 − n0π + π)

= 2(arccos(−2γ)− (n0 + 1)π) < 0.

Thus, the supremum of c′2,γ(s0) over all γ ∈
(

2
(n0+1)π2 ,

2
n0π2

)
is reached at the left endpoint

γL := 2
(n0+1)π2

sup
γ
c′2,γ(s0) = lim

γ→γL+
c′2,γ(s0) =

√
1− 4γ2L − 2(n0 + 1)πγL + 2γL arccos(−2γL).

Finally, we show that this supremum is negative√
1− 4γ2L − 2(n0 + 1)πγL + 2γL arccos(−2γL) < 0. (4.27)

Indeed, taking into account that the first term
√

1− 4γ2L in (4.27) is strictly less than 1, it is enough
to justify the following inequality

−2(n0 + 1)πγL + 2γL arccos(−2γL) < −1,

− 4

π
+

4

(n0 + 1)π2
arccos

(
− 4

(n0 + 1)π2

)
< −1,

arccos

(
− 4

(n0 + 1)π2

)
<

(
−1 +

4

π

)
(n0 + 1)π2

4
,

arccos

(
− 4

(n0 + 1)π2

)
<
(

1− π

4

)
(n0 + 1)π. (4.28)

We have that
(
1− π

4

) .
= 0.215 and thus, (4.28) holds for n0 ≥ 4. For n0 = 2 and n0 = 3, we can

verify the inequality (4.28) numerically.
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0 1π 2π 3π 4π 5π 6π 7π 8π 9π
s

2 · 1− 12π2γ

2 · 2− 22π2γ

c2,γ(s)

c̃2,γ(s)

Fig. 4.10: Graph of the function c2,γ for s > 0 (gray curve) and graph of its lower estimate c̃2,γ for
s ∈ (2nπ − π, 2nπ) , n ∈ N (black curves) for γ = 2

5π2 .

Lemma 4.21. For γ = 2
n0π2 , n0 ≥ 2, we have that

c2,γ(s) = 0 for s ∈ [2n0π − 2π, 2n0π − π] ,

c2,γ(s) < 0 for s ∈ (2n0π − π, 2n0π) .

Proof. We are going to prove first, that c2,γ(s) = 0 for s ∈ [2n0π − 2π, 2n0π − π] . At the point
2n0π − 2π, we have

c2,γ(2n0π − 2π) = 1 + cos(2n0π − 2π) + 2(n0 − 1)− (2n0π − 2π − (n0 − 1)π + π)2
2

n0π2
= 0.

For s ∈ (2n0π − 2π, 2n0π − π] , the value of c2,γ(s) is

c2,γ(s) = 2n0 − n20π2 · 2

n0π2
= 0.

To prove the negativity of the function c2,γ on the interval (2n0π − π, 2n0π) , let us recall, that

c2,γ(2n0π − π) = 0

and the function c2,γ is strictly decreasing on (2n0π − π, 2n0π) according to the Lemma 4.20.

See Figure 4.10 for the case of γ = 2
n0π2 , where the function c2,γ has the value zero on the entire

interval [2n0π − 2π, 2n0π − π] .
A slight complication will appear for γ > 2

2π2 close to the value of 2
2π2 , since in that case, the

function c2,γ is generaly not monotone on (2n0π − 2π, 2n0π) . More careful investigation is therefore
needed in order to show the uniqueness of the zero point of the function c2,γ . Let us denote

γ1 := −cos(s1)

2
,
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where s1 is the unique solution of the equation tan(s) = s on the interval (π, 2π). Let us note that
s1=̇4.4934 and γ1=̇0.1086.

For s ∈ (π, 2π), we have that

c2,γ(s) = 3− s2γ + cos s,

c′2,γ(s) = −2sγ − sin s,

c′′2,γ(s) = −2γ − cos s.

Let us denote s0 := 2π − arccos (−2γ) . Then c′′2,γ(s0) = 0 and moreover, we have that

max
s∈(π,2π)

c′2,γ(s) = c′2,γ(s0)

= −2γ(2π − arccos (−2γ))− sin(2π − arccos (−2γ))

=
√

1− 4γ2 − 4πγ + 2γ arccos(−2γ).

Let us note that s0 is the strict maximum point of c′2,γ on the interval (π, 2π). Now, we have that
the function γ 7→ c′2,γ(s0) is strictly decreasing, since

d
dγ c
′
2,γ(s0) = −2s0 = −4π + arccos(−2γ) < 0.

We also have that

c′2,γ1(s0) = 4π
cos(s1)

2
− cos(s1) · s1 + sin(s1) = 0,

which is justified, since we have

4π
cos(s1)

2
− cos(s1) · s1 + sin(s1) = 0

2π +
sin(s1)

cos(s1)
= s1

and the last equation holds true due to the definition of the value s1. Thus, for 2
2π2 < γ < γ1, we

have c′2,γ(s0) > 0. Moreover, for γ1 < γ < 2
π2 , we have

c′2,γ(s0) < 0. (4.29)

In the following lemma, we are going to introduce an estimate from below of the function cos,
which is similar to the estimate in Lemma 4.2 and will become useful later.

Lemma 4.22. For s ∈
(
π, 7π

4

)
, we have that

8(2+
√
2)

9π2 (s− π)2 < 1 + cos s.

Proof. Let us define f(s) :=
8(2+

√
2)

9π2 (s− π)2 − 1− cos s for s ∈
(
π, 7π

4

)
. Our goal is to show that

f is negative on
(
π, 7π

4

)
.

We have

f ′(s) =
16(2 +

√
2)

9π2
(s− π) + sin s,

f ′′(s) =
16(2 +

√
2)

9π2
+ cos s.

The function f ′′ has one zero point s0 = 2π − arccos
(
− 16(2+

√
2)

9π2

)
on
(
π, 7π

4

)
, is negative on

(π, s0) and positive on
(
s0,

7π
4

)
. Therefore the function f ′ is strictly decreasing on (π, s0) and

strictly increasing on
(
s0,

7π
4

)
.
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Since we have lim
s→π+

f ′(s) = 0 and lim
s→ 7π

4 −
f ′(s) = 16(2+

√
2)

9π2
3π
4 −

1√
2

= 16+8
√
2−3π

√
2

6π > 0, there

is exactly one zero point s1 ∈
(
π, 7π

4

)
of the function f ′ and the function f ′ is negative on (π, s1)

and positive on
(
s1,

7π
4

)
.

Lastly, the function f has limits lim
s→π+

f(s) = 0− 1 + 1 = 0, lim
s→ 7π

4 −
f(s) = 1 +

√
2
2 − 1− 1√

2
= 0

and is strictly decreasing on (π, s1) and strictly increasing on
(
s1,

7π
4

)
. Therefore f(s) < 0 for

s ∈
(
π, 7π

4

)
.

Now we can proceed with the investigation in the case of 2
2π2 < γ ≤ γ1, where the function c2,γ

is not generaly monotone on the interval (0, 2π] , more detailed aproach is therefore needed.

Lemma 4.23. For 2
2π2 < γ ≤ γ1, there exists exactly one s∗ ∈ (0, 2π] such that c2,γ(s∗) = 0.

Moreover, the function c2,γ is positive on (0, s∗) and negative on (s∗, 2π] .

Proof. For s ∈ (0, π] , we have that c2,γ(s) = 2 − π2γ > 0. For s ∈ (π, 2π] , we have c2,γ(s) =
3 − s2γ + cos(s), which is not generally monotone. However, we will show that c2,γ(s) > 0 for
s ∈

(
π, 7π

4

]
and that c2,γ is strictly decreasing on

(
7π
4 , 2π

)
and c2,γ(2π) < 0, therefore there is

exactly one zero point s∗ ∈ (0, 2π] of c2,γ .

1. For π < s < 7π
4 , we have using Lemma 4.22 that

c2,γ(s) = 1 + cos(s) + 2− s2γ >
8
(
2 +
√

2
)

9π2
(s− π)2 + 2− s2γ =: gγ(s).

To show that the function c2,γ is positive, we investigate the minimum of the function gγ .

The function gγ is quadratic and g′γ(s) = 16(2+
√
2)

9π2 (s − π) − 2sγ, therefore the minimum is

reached at s = 8(2+
√
2)π

16+8
√
2−9π2γ

and we have

min
s∈R

gγ(s) =
16(2 +

√
2)− 2(17 + 4

√
2)π2γ

8(2 +
√

2)− 9π2γ
.

The minimum min
s∈R

gγ(s) is positive, since both numerator and denominator are positive. At

the right end point of the interval (π, 7π
4 ) we also have

c2,γ

(
7π

4

)
= 2 +

2 +
√

2

2
− 49π2γ

16
> 0.

2. Now, let us verify that c2,γ is strictly decreasing on ( 7π
4 , 2π). We have

7π

4
>

3π

2
> s0 = 2π − arccos(−2γ),

where s0 is the zero point of the function c′′2,γ and also the strict maximum point of c′2,γ on
(π, 2π). Moreover the function c′2,γ is decreasing on (s0, 2π). Since

c′2,γ

(
7π

4

)
=

√
2

2
− 7πγ

2
< 0,

we have for s ∈ ( 7π
4 , 2π) that c′2,γ(s) < 0 and c2,γ is strictly decreasing.

3. Finally, we have c2,γ(2π) = 3− 4π2γ + cos(2π) = 4(1− π2γ) < 0.

Now we can formulate the final lemma about the sign and zero point of the function c2,γ . See
Figure 4.11 for an example of such function c2,γ .
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0 1π 2π 3π 4π 5π 6π 7π 8π
s

c2,γ(s)

c̃2,γ

2 · 1− 12π2γ

2 · 2− 22π2γ

2 · 3− 32π2γ

2 · 4− 42π2γ

2 · 5− 52π2γ

Fig. 4.11: Graph of the function c2,γ for s > 0 (gray curve) and graph of its lower estimate c̃2,γ for
s ∈ (2nπ − π, 2nπ) , n ∈ N (black curves) for γ = 0.045.

Lemma 4.24. For 0 < γ < 2
π2 such that γ 6= 2

n0π2 , we have that

c2,γ(s) > 0 for s ∈ [2n0π − 2π, 2n0π − π]

and c2,γ changes sign on (2n0π − π, 2n0π] . Moreover, there exists exactly one

s∗ ∈ (2n0π − π, 2n0π] : c2,γ(s∗) = 0.

Proof. We are going to split the proof into four sections, in the first part we are going to prove,
that c2,γ(s) > 0 for s ∈ [2n0π − 2π, 2n0π − π], then we prove that the function c2,γ changes sign
on (2n0π − π, 2n0π] for γ ∈

(
0, 2

2π2

]
, in the third part we prove that the function c2,γ changes

sign on (2n0π − π, 2n0π] for γ ∈
(

2
2π2 , γ1

]
and in the last part, we show that c2,γ changes sign on

(2n0π − π, 2n0π] for γ ∈
(
γ1,

2
π2

)
as well.

1. Firstly, to prove that c2,γ(s) > 0 for s ∈ [2n0π − 2π, 2n0π − π] , let us recall that the function
c2,γ is constant on [2n0π − 2π, 2n0π − π] and

c2,γ(s) = 2n0 − n20π2γ = n0
(
2− n0π2γ

)
,

where 2− n0π2γ > 0, since it means γ < 2
n0π2 , which is true according to (4.24).

2. Let γ ∈
(
0, 2

2π2

]
. Then we have c2,γ(2n0π− π) > 0, due to the previous part 1. We also have

that
c2,γ(2n0π) = 2(n0 + 1)− (n0 + 1)2π2γ < 0.

The last inequality holds true, since it can be written as

γ >
2

(n0 + 1)π2
,

which is true due to (4.24). Since the function c2,γ is strictly decreasing on (2n0π − π, 2n0π)
due to Lemma 4.20, we have that c2,γ changes sign and has exactly one zero point s∗ on
(2n0π − π, 2n0π).
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3. Let γ ∈
(

2
2π2 , γ1

]
. Then n0 = 1 according to Definition 4.17 and the existence and unique-

ness of the zero point s∗ of the function c2,γ on the interval (2n0π − π, 2n0π] = (π, 2π] is
guaranteed by Lemma 4.23.

4. Let γ ∈
(
γ1,

2
π2

)
. In this case, the function c2,γ is strictly decreasing on (π, 2π) due to (4.29).

Now, as in the previous part 2, it is possible to justify that there is exactly one zero point
s∗ ∈ (π, 2π) of the function c2,γ .

Remark 4.25. Using Lemmas 4.16, 4.18, 4.19, 4.21, 4.23 and 4.24, let us sum up known properties
of the function c2,γ :

1. c2,γ is continuous for γ ∈
(
0, 2

π2

)
,

2. c2,γ(s) > 0 for s ∈ (0, 2(n0 − 1)π) and γ ∈
(
0, 2

2π2

)
,

3. c2,γ(s) < 0 for s > 2n0π and for γ ∈
(
0, 2

π2

)
,

4. c2,γ(s) = 0 for s ∈ [2n0π − 2π, 2n0π − π] and γ = 2
n0π2 ,

5. c2,γ(s) < 0 for s ∈ (2n0π − π, 2n0π) and γ = 2
n0π2 ,

6. c2,γ(s) > 0 for s ∈ [2n0π − 2π, 2n0π − π] and γ ∈
(
0, 2

π2

)
\
⋃

n0∈N
{ 2
n0π2 },

7. For γ ∈
(
0, 2

π2

)
, the function c2,γ has exactly one zero point s∗ ∈ (2n0π − π, 2n0π] .

Theorem 4.26. For 0 < γ < 2
π2 and s > 0, the quadratic equation (4.18) is solvable for k > 0

if and only if s ∈ (0, s∗), where s∗ = 2n0π − 2π for γ = 2
n0π2 and for γ < 2

n0π2 , s∗ is the unique
solution of the equation

1 + cos(s) + 2n0 = γ(s− n0π + π)2, 2n0π − 2π < s < 2n0π. (4.30)

Moreover, for s ∈ (0, s∗), the positive solution k of (4.18) is unique.

Proof. Let us split the proof according to the value of γ.

1. At first, let us assume that γ = 2
n0π2 . In this case, using Lemmas 4.18, 4.19 and 4.21, we have

that

c2,γ(s) > 0 for s ∈ (0, 2n0π − 2π),

c2,γ(s) = 0 for s ∈ [2n0π − 2π, 2n0π − π],

c2,γ(s) < 0 for s ∈ (2n0π − π, 2n0π),

c2,γ(s) < 0 for s ≥ 2n0π.

Now, due to Lemma 4.15, we obtain that the quadratic equation (4.18) is solvable for k > 0
if and only if s ∈ (0, s∗), where s∗ = 2n0π − 2π.

2. At second, let us assume that γ < 2
n0π2 . Using Lemma 4.24, we obtain exactly one s∗ ∈

(2n0π − π, 2n0π) such that

c2,γ(s)

 > 0 for s ∈ [2n0π − 2π, s∗),
= 0 for s = s∗,
< 0 for s ∈ (s∗, 2n0π].

Using Lemma 4.19, we get that c2,γ(s) < 0 for s > 2n0π. Moreover, in the case of n0 ≥ 2 (i.e.
γ < 2

2π2 ), we obtain using Lemma 4.18 that c2,γ(s) > 0 for s ∈ (0, 2n0π− 2π). Thus, we have
exactly one s∗ > 0 such that

c2,γ(s∗) = 0,

1 + cos(s∗) + 2n0 = γ(s∗ − n0π + π)2, (4.31)



CHAPTER 4. SOLVABILITY OF THE PROBLEM WITH THE DIRICHLET CONDITION 46

and that c2,γ(s) > 0 for s ∈ (0, s∗) and c2,γ(s) < 0 for s > s∗. Finally, using Lemma 4.15, we
get that the quadratic equation (4.18) is solvable for k > 0 if and only if s ∈ (0, s∗).

For the zero point s∗ of c2,γ given in Theorem 4.26, we can write

Γ(s∗) = γ,

where the function Γ with the range
(
0, 2

π2

)
is defined as (n ∈ N)

Γ(s) :=
1 + cos(s) + 2n

(s− nπ + π)2
for s ∈ (2nπ − π, 2nπ]. (4.32)

Indeed, for γ < 2
n0π2 , we have s∗ ∈ (2n0π−π, 2n0π) and thus, we obtain Γ(s∗) = 1+cos(s∗)+2n0

(s∗−n0π+π)2
= γ

due to (4.31). Moreover, for γ = 2
n0π2 , we have s∗ = 2n0π − 2π and

Γ(s∗) =
1 + cos(2n0π − 2π) + 2(n0 − 1)

(2n0π − 2π − (n0 − 1)π + π)2
=

2 + 2n0 − 2

(2n0π − π − n0π + π)2
=

2n0
n20π

2
=

2

n0π2
= γ.

Let us note that the function Γ is invertible and thus, we can formulate the following theorem based
on Theorem 4.26.

Theorem 4.27. For 0 < γ < 2
π2 and s > 0, the quadratic equation (4.18) is solvable for k > 0 if

and only if s ∈ (0, s∗), where s∗ = Γ−1(γ) and Γ is defined in (4.32). Moreover, for s ∈ (0, s∗), the
positive solution k of (4.18) is unique.

Graph of the function Γ−1 is illustrated in Figure 4.12. The solvability of the quadratic equation
(4.18) in Theorem 4.27 can be further generalized also for γ ≤ 0. Without any justification, let us
only reveal the extended version of the definition of Γ.

Definition 4.28. Let us define the function Γ : (0,+∞]→
(
− 1

2 ,
2
π2

)
as (n ∈ N)

Γ(s) :=



1 + cos(s)− 2n

(s− nπ + π)2
for s ∈ (2nπ − 2π, 2nπ − π],

1 + cos(s) + 2n

(s− nπ + π)2
for s ∈ (2nπ − π, 2nπ],

0 for s = +∞.

(4.33)

Finally, the solvability result in Theorem 4.27 can be extended in the following way.

Theorem 4.29. For − 1
2 < γ < 2

π2 and s > 0, the quadratic equation (4.18) is solvable for k > 0
if and only if s ∈ (0, s∗), where s∗ = Γ−1(γ) and Γ is defined in (4.33). Moreover, for s ∈ (0, s∗),
the positive solution k of (4.18) is unique.
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Fig. 4.12: Graph of the function s∗ = Γ−1(γ).



Chapter 5

Parametrization of the Fuč́ık
curves

In this chapter, our goal is to find a parametrization of the set Σ̂γπ
2

in the first quadrant of the

αβ-plane, defined by the solution of the problem (1.1) for c = π
2 , i.e. the problem{

u′′ (x) + αu+ (x)− βu− (x) = 0, x ∈ (0, 1)

u(0) = 0,
∫ 1

0
u (x) dx = γ · u′ (0) ,

(5.1)

where α, β > 0 and γ ∈ R.
According to the Lemma 3.1, it is sufficient to find the parametrization of the setMγ

π
2

given in

(3.14).

5.1 Parametrization of the set Mγ
c for c = π

2

Theorem 5.1. For γ ∈
(
− 1

2 ,
2
π2

)
, the setMγ

π
2

is a curve µ : (0, s∗)→ R2 with the parametrization

µ (s) := (µ1 (s) , µ2 (s)), where s∗ = Γ(γ), Γ is given in (4.32) and functions µ1, µ2 : (0, s∗) → R
are defined as

µ1(s) =


s− nπ + π + nπ · 2 · c2,γ(s)

−c1,γ(s) +
√
D(γ, s)

for 2nπ − 2π < s ≤ 2nπ − π,

s+ π + 2nπ · 2 · c2,γ(s)

−c1,γ(s) +
√
D(γ, s)

for 2nπ − π < s ≤ 2nπ,

µ2(s) =


s− nπ + π + nπ ·

−c1,γ(s) +
√
D(γ, s)

2 · c2,γ(s)
for 2nπ − 2π < s ≤ 2nπ − π,

nπ + (s− nπ + π) ·
−c1,γ(s) +

√
D(γ, s)

2 · c2,γ(s)
for 2nπ − π < s ≤ 2nπ,

where n ∈ N and functions c2,γ , c1,γ , c0,γ are defined in (4.10), (4.11), (4.12) and D(γ, s) is defined
in (4.19).

Proof. Let us note, that we prove the statement only for 0 < γ < 2
π2 . Based on the Theorem 4.4,

a pair (a, b) belongs to the set Mγ
π
2

if and only if

c2,γ(s) · k2 + c1,γ(s) · k + c0,γ(s) = 0, (5.2)

where s > 0 is given by (4.8) and

k = b
a and t = 2ab

a+b . (5.3)
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Let us recall, that functions c2,γ , c1,γ and c0,γ are defined in (4.10), (4.11) and (4.12) for n ∈ N as

c2,γ(s) =

{
2n− n2π2γ for 2nπ − 2π < s ≤ 2nπ − π,
1 + cos s+ 2n− (s− nπ + π)2γ for 2nπ − π < s ≤ 2nπ,

c1,γ(s) = −2nπ(s− nπ + π)γ for 2nπ − 2π < s ≤ 2nπ,

c0,γ(s) =

{
1 + cos s− 2n− (s− nπ + π)2γ for 2nπ − 2π < s ≤ 2nπ − π,
−2n− n2π2γ for 2nπ − π < s ≤ 2nπ.

Due to Theorem 4.29, we have that the quadratic equation (5.2) for k > 0 is solvable if and only if
s ∈ (0, s∗). Additionaly, we can use (5.3) to find out the parameters a, b by using

a =
(k + 1)t

2k
and b =

(k + 1)t

2
. (5.4)

To find the parametrization of the set Mγ
π
2

, we are going to solve the quadratic equation (5.2)

for k > 0. Due to Lemma 4.15, we have for the quadratic polynomial in (5.2) that one root k1 is
positive and one root k2 is negative. Thus we obtain

k1 =
−c1,γ(s) +

√
D(γ, s)

2 · c2,γ(s)
, (5.5)

where D = D(γ, s) is defined in (4.19). Now, let us split the proof according to the value of
t > 2π − 2π

1+k in the same way as the proof of Lemma 4.1.

1. Let t ∈
(

2nπ − 2π
1+k , 2nπ

]
, n ∈ N. Then we have from (4.8) variable s, given by

s =
1 + k

2
(t− 2nπ) + 2nπ − π.

By a simple manipulation, we achieve

t =
2

1 + k
(s− 2nπ + π) + 2nπ. (5.6)

By combining (5.5) and (5.6) with (5.4), we get

a =
(k1 + 1)t

2k1

=
2k1(s− 2nπ + π) + (k1 + 1) · 2nπ

2k1

= (s− 2nπ + π) + nπ +
nπ

k1

= s− nπ + π + nπ · 2 · c2,γ(s)

−c1,γ(s) +
√
D(γ, s)

=: µ1(s)

and

b =
(k1 + 1)t

2
= s− 2nπ + π + nπ(k1 + 1)

= s− nπ + π + nπ ·
−c1,γ(s) +

√
D(γ, s)

2 · c2,γ(s)
=: µ2(s).
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2. Let t ∈
(

2nπ, 2(n+ 1)π − 2π
1+k

]
, n ∈ N. Then we have from (4.8) variable s, given by

s =
1 + k

2k
(t− 2nπ) + 2nπ − π.

By a simple manipulation, we achieve

t =
2k

1 + k
(s− 2nπ + π) + 2nπ. (5.7)

By combining (5.5) and (5.7) with (5.4), we get

a =
(k1 + 1)t

2k1

= (s− 2nπ + π) +
k1 + 1

k1
· 2nπ

= s+ π + 2nπ · 2 · c2,γ(s)

−c1,γ(s) +
√
D(γ, s)

=: µ1(s)

and

b =
(k1 + 1)t

2
= k1 · (s− 2nπ + π) + nπ · (k1 + 1)

= k1 · (s− nπ + π) + nπ

= nπ + (s− nπ + π) ·
−c1,γ(s) +

√
D(γ, s)

2 · c2,γ(s)
=: µ2(s).

Example of the set Mγ
π
2

obtained using the parametrization µ is on Figure 5.1.

Remark 5.2. Based on the Theorem 5.1 and Lemma 3.1, we have a curve ν(s) = (ν1(s), ν2(s)) s ∈
(0, s∗), which belongs to the set Σ̂γπ

2
, where

ν1(s) := µ2
1(s),

ν2(s) := µ2
2(s).
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a

b

a = b

Mγ
c

√
λ1

√
λ2

√
λ3

0

√
λ1

√
λ2

√
λ3

µ(π)
µ(2π)

µ(3π)

µ(4π)

µ(5π)

Fig. 5.1: The set Mγ
π
2

for γ = 0.01.



Chapter 6

Conclusion

We have obtained the following main results:

1. We have described eigenvalues of the boundary value problem (2.2) (Theorem 2.4).

2. We have found the implicit description of the Fuč́ık spectrum for the boundary value problem
(3.12) (Theorem 3.9).

3. We have shown, that the problem of finding the Fuč́ık spectrum of the problem (4.1) can be
equivalently described as the problem of finding solutions of the quadratic equation (4.18)
(Theorem 4.4).

4. We have found conditions under which the quadratic equation (4.18) has real solutions (The-
orem 4.12) and under which has a positive solution k > 0 (Theorem 4.26).

5. We have found the parametrization of the Fuč́ık spectrum of the boundary value problem
(5.1) (Theorem 5.1).
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[7] Sergejeva, N.: The Fuč́ık spectrum for nonlocal BVP with Sturm–Liouville boundary condition.
Nonlinear Anal. Model. Control 19, no. 3, 503–516 (2014).

[8] Sergejeva, N.: On the Fuč́ık type problem with integral nonlocal boundary conditions. Electronic
Journal of Qualitative Theory of Differential Equations, no. 21, 1-11 (2016)
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Appendix A

Example of Mathematica code

The Theorem 3.9 provides us with a way of numerically generating pairs (a, b) which belong to
the set Mγ

c . Here we want to provide an example of a code using this method in the software
Mathematica.

c = Pi/4;

gamma = 0.2;

size = 50;

precision = 50;

p[a , c ] := (-1/a) ArcCot[(1/a) Tan[c]] /; -Pi/2 < c < Pi/2;

p[a , c ] := 0 /; c == Pi/2;

P[a , b , t ] := (b/a - a/b)*(t/Pi) + 1;

Gc[a , b , t , c ] := (b/a)*Cos [((a + b)*t)/(2*b) - a*p[a, c]] -(b/a)*Cos[a*p[a, c]]

+ P[a, b, t] /; 0 < t <= (2*b*(Pi + a*p[a, c]))/(a + b);

Gc[a , b , t , c ] := (a/b)*Cos[((a + b)*(t - 2*Pi))/(2*a) - b*p[a, c]] - (b/a)*Cos[a*p[a,

c]] + P[a, b, t - Pi] /; (2*b*(Pi + a*p[a, c]))/(a + b) < t <= 2*Pi + (2*a*b*p[a, c])/(a

+ b);

Gc[a , b , t , c ] := (b/a)*Cos[(a + b) (t - 2 Pi)/(2 b) - a*p[a, c]] - (b/a)*Cos[a*p[a,

c]] + P[a, b, t - 2 Pi] /; 2*Pi + (2*a*b*p[a, c])/(a + b) <= t <= 2 Pi;

G[a , b , t , c ] := Gc[a, b, Mod[t, 2*Pi], c];

ContourPlot[G[a, b, (2*a*b)/(a + b),c] == P[a, b, (2*a*b)/(a + b)] - gamma*a*b*Cos[a*p[a,

c]], {a, 0, size }, {b, 0, size }, PlotPoints -> precision]

Using the code above results in the Figure A.1.
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Fig. A.1: Figure of pairs (a, b) belonging to the set Mγ
c generated using the code from Appendix

A in the software Mathematica.
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