

University of West Bohemia in Pilsen

Faculty of applied sciences

Department of Cybernetics

MASTER'S THESIS

PILSEN, 2022 MILAN MALINA

 2

DECLARATION
I hereby submit for assessment and defense a master's thesis prepared at
the end of my studies at the Faculty of Applied Sciences of the University
of West Bohemia in Pilsen.

I declare that I have composed the master's thesis independently and ex-
clusively using the professional literature and sources, the complete list of
which is a part of it.

In Pilsen (date):

…………………..…………………..
signature

ACKNOWLEDGEMENT
I would like to thank my supervisor Ing. Martin Goubej, Ph.D. for his help
and recommendations during the running of this project. His input was
helpful. Furthermore, I would like to thank my parents Milan Malina,
Hana Malinová for their help with practical testing and financial support.
Lastly, I would also like to thank my girlfriend Milagros E. Chávez for her
motivation and support, especially when it was needed.

 3

Annotation
The master's thesis Design, assembly and automatic control of un-

manned aerial vehicle prototype is divided into eight sections. First, con-
struction of a mode aircraft is described. Second, the development of avi-
onics components of this aircraft is described. That is followed by elec-
tronic design of the flight computer itself. After that, attitude estimation
system is developed using Extended Kalman Filter. Next, Telemetry and
Control app and realistic HIL simulation environment is designed in
Unity. Lastly, 3 linear uncertain model are identified using the simulation
data and are then used to perform a robust performance analysis with 3
PID controllers which are designed using MATLAB PID Tuner.

KEYWORDS
UAV, aircraft, control system design, controller, PID, model, linear

model, control software, aerodynamics, system identification, robust con-
trol

Anotace
Magisterská práce na téma Návrh, realizace a automatické řízení pro-

totypu bezpilotního letounu je rozdělena do osmi sekcí. Nejprve je
popsána konstrukce bezpilotního letounu. Za druhé je popsán vývoj avi-
oniky tohoto letounu. Následuje popis návrhu samotného palubního po-
čítače. Poté je popsán způsob odhadu polohy za použití rozšířeného Kal-
manova filtru. Dále je navrhnuta jak aplikace pro zobrazování telemetric-
kých dat a ovládání tak realistická HIL simulace v Unity. Nakonec jsou
identifikovány 3 neurčitostní lineární modely za použití dat z HIL simu-
lace. Ty jsou poté použity k provedení analýzy robustní kvality řízení se
třemi PID regulátory, které jsou navržené pomocí MATLAB PID Tuner.

KLÍČOVÁ SLOVA
UAV, letadlo, návrh řídicího systému, regulátor, PID, model, lineární

model, řídicí software, aerodynamika, identifikace systému, robustní ří-
zení

 4

1 Table of contents

1 Table of contents .. 4

2 Acronym list ... 7

3 Introduction .. 8

4 UAV assembly .. 10

4.1 Introduction .. 10

4.2 Nose and avionics bay assembly .. 11

4.3 Center fuselage section .. 12

4.4 Rear fuselage section ... 13

4.5 EDF assembly ... 14

4.6 Main wing, vertical and horizontal stabilizer 16

4.7 Conclusion ... 17

5 Avionics design ... 18

5.1 Introduction .. 18

5.2 Battery .. 18

5.3 Control surfaces .. 19

5.4 Landing gear ... 20

5.5 Flight computer .. 22

5.6 FSU - software implementation .. 23

5.7 Communication and command execution 25

5.8 Attitude computation .. 28

5.9 Actuator control .. 28

6 Flight computer PCB design .. 29

6.1 Introduction .. 29

6.2 Custom PCB schematics ... 30

6.2.1 Power supply and distribution .. 30

6.3 ESP32s and Raspberry Pi 4 connection 31

6.4 PCB layout ... 35

 5

7 Attitude estimation using Extended Kalman Filter 37

7.1 Introduction .. 37

7.2 General structure .. 37

7.3 Magnetometer calibration ... 38

7.3.1 Hard-Iron error compensation ... 38

7.3.2 Soft-Iron error compensation ... 39

7.3.3 3D generalization ... 41

7.4 Reference vectors acquisition .. 42

7.5 Extended Kalman filter algorithm .. 43

7.5.1 Introduction ... 43

7.5.2 EKF algorithm derivation ... 43

7.5.3 Initialization .. 46

7.5.4 Prediction phase .. 48

7.5.5 Update phase ... 48

7.6 EKF testing data acquisition .. 49

7.7 EKF test with emulated data ... 50

7.8 EKF C++ real-time implementation 55

7.9 EKF diagnostics tool ... 55

7.10 Conclusion ... 58

8 Aircraft control interface and telemetry visualization 59

8.1 Introduction .. 59

8.2 Primary Flight Display (PFD) .. 60

8.3 Flaps and Control Surface (F/CTL) 60

8.4 Electrical (ELEC) ... 61

8.5 Mode Control Panel (MCP) .. 62

8.6 Electric Ducted Fan panel (EDF) ... 63

8.7 Communication panel (COM) ... 63

8.8 Location panel (LOC) ... 64

8.9 Master Caution System panel (MCS) 64

 6

9 HIL simulation environment ... 65

9.1 Introduction .. 65

9.2 IMU and GPS emulation .. 65

9.3 Flight model .. 66

10 Model identification .. 67

10.1 Identification experiment and fitting 67

10.2 Uncertain system model .. 71

11 Controller design and verification ... 74

11.1 MATLAB controller synthesis and step test 74

11.3 Robust performance analysis ... 77

11.4 Testing on the real-life Flight Computer 82

12 Maiden flight .. 84

13 Conclusion .. 86

14 Works Cited ... 87

15 List of figures .. 88

 7

2 Acronym list

Acronym Definition
A320 Airbus A320
B737 Boeing 737
BLDC Brushless Direct Current
CA Cyanoacrylate
CAD Computer Aided Design
CG Center of Gravity
COM Communication
EDF Electric Ducted Fan
EKF Extended Kalman Filter
ELEC Electrical
F/CTL Flaps and Control Surface
FC Flight Computer
FM Flight Manager
FSU Flight Stabilization Unit
HIL Hardware In the Loop
I2C Inter-Integrated Circuit
IAS Indicated Airspeed
IMU Inertial Measurement Unit
LOC Location
MCP Mode Control Panel
MCS Master Caution System
MISCCU Miscellaneous Control Unit
PFD Primary Flight Display
PLA Polylactic acid
PWM Pulse-width modulation
RBI Remote Button Indicators
RMCU Retract Motors Control Unit
RVF Remote Value Fields
SPI Serial Peripheral Interface
TAS True Airspeed
TPU Thermoplastic polyurethane
UAV Unmanned Aerial Vehicle
UML Unified Modeling Language

 8

3 Introduction

The purpose of this thesis is to develop a control system for an aircraft,
which is capable of autonomous flight with minimum interference of the
operator. Multiple different sections describe this process: UAV assembly,
avionics design, telemetry and control app development, HIL simulation
development and lastly controller synthesis and analysis.

Figure 1: UAV development diagram

The motivation and goal behind this project and therefore this thesis

is to develop a custom control system and evolve a deep and firsthand
understanding of the technical and practical difficulties in order to earn
as much experience in different (mainly but possibly not exclusive to)
technical disciplines and areas. This is one of - but not the only - reason
why I decided to develop a control system, essentially, from zero and was
not inclined to using already developed flight controllers, either commer-
cial or more hobby-grade, such as Pixhawk, Betaflight or Ardupilot.

The use for larger scale drones and UAVs is vast and ranges from ci-
vilian use, such as delivery of goods or terrain mapping, through use in
emergency services, such as blood transport for patients in critical condi-
tion, surveillance or help in firefighting, to use in military applications,
such as reconnaissance missions, remote target engagement, etc.

Another reason for developing the whole system myself is to have full
control over the functionality and features and not be dependent on
sometimes limited or not fully documented option to make changes in

 9

implementation or different levels of functionality of already developed
flight controllers. This is more of a personal preference, and it is not an
objective statement of which solution is better.

 10

4 UAV assembly

4.1 Introduction

As already stated, the design of the UAV is a scaled model of L-39
fighter aircraft. 3D files were acquired online and the loaded into a 3D
slicing software which generated g-code files which were then loaded into
a 3D printer. Some files had to be first slightly modified before the slicing
process. This was done to ensure compatibility with other components
that had to be ordered online (such as servomotors, shock absorbers,
pushrods, etc.). As a modeling software for modifying and modeling new
parts, Fusion 360 by Autodesk was used. For slicing, Ultimaker Cura was
used. Material used is PLA for the most part. The exception are tires and
some EDF components. Those are printed using TPU rubber material.

The figure below shows the overall design of the aircraft:

Figure 2: UAV overall design

 11

4.2 Nose and avionics bay assembly

The nose and the avionics bay consist of 6 individual segments. These
are connected using carbon rod segments and glued together using CA
glue. The front landing gear is stored inside of the second and third seg-
ment. A nose landing gear door is used as a cover when the landing gear
is in transit from UPàDOWN or DOWNàUP position.

Moving further, the avionics bay follows. It houses power source in a
form of lithium-polymer batteries, flight computer which is described in
higher detail in the avionics design chapter. The following figure shows
computer visualization of the avionics bay fitted with the flight computer
components:

Figure 3: Avionics bay with FC components in Fusion 360

The batteries are placed on the bottom of the avionics bay. Other elec-
tronic components are placed above that and screwed to a 3D printed
plate which separates the PCBs from the batteries.

 12

4.3 Center fuselage section

This section of the fuselage contains two air-intakes (one on each side)
which are used to direct the air to the EDF. This section, as well as the
rest of the sections of the fuselage and wings provide cavities for the
cables to be led through. It consists of 3 individual segments. These are
again connected using carbon rod segments and glued together using CA
glue. There are two carbon tubes connecting main wings and providing
enhanced structural stability. The most inner section of the main wing is
permanently glued to the fuselage and the rest of the main wings is de-
tachable. This ensures that the UAV can operate on the landing gear
even when the main wings is detached. The main landing gear is stored
in a main landing gear bay which is placed inside the fuselage. Analogi-
cally to the nose landing gear, main landing gear doors are used as a cover
when the landing gear is in transit from UPàDOWN or DOWNàUP
position.

The following figure shows the UAV without wings attached:

Figure 4: UAV without wings attached

 13

The landing gear is connected to the fuselage with electric retract sys-
tem. This enables the landing gear assembly to rotate 90 degrees so that
it can be deployed and retracted when needed. The graphics below shows
one retract for an illustration:

Figure 5: Retract unit

4.4 Rear fuselage section

This section of the fuselage contains the EDF itself which functions as
a propulsion unit for the whole aircraft. This section consists of 3 indi-
vidual segments. These are again connected using carbon rod segments
and glued together using CA glue. On top there is an EDF hatch. This
hatch is removable and is used to service the whole EDF assembly located
in the center of the fuselage. The EDF itself is described in the following
chapter in more detail. The rest of this fuselage section contains an air-
outtake through which the air is propelled by the EDF.

The following figure shows the EDF assembly installed inside of the
fuselage:

 14

Figure 6: EDF assembly installed inside of the fuselage

The three black cables at the top of the image supply 3-phase signal to

a BLDC motor inside of the EDF. The rest of the cables are used to
connect elevator and rudder servomotors and transfer information from a
temperature sensor (Inside the EDF).

4.5 EDF assembly

The EDF assembly consists of BLDC motor, impeller, EDF housing,
fan-intake, rails to which the housing is crewed and rubber spacers
(printed from TPU) which are used to reduce vibrations from the EDF.
The BLDC motor is equipped with a heatsink in order not to overheat.
There is a temperature sensor mounted to the motor-heatsink assembly
to ensure a safe operation. The EDF assembly also includes two seal tubes
to increase the “air-tightness” and easy the installation of the assembly.
The following figure illustrates how the EDF assembly is assembled:

 15

Figure 7: EDF assembly

The motor that powers the EDF is a 4.8kW BLDC motor. It runs at

around 45-50V. Because of the high power, a proper cooling must be
ensured. That is in a form of added heatsink and air flow cooling the
motor to reasonable temperatures. For safety reasons, there is a temper-
ature sensor mounted right on the motor (inside a heatsink gab). The
temperature information is monitored by the flight computer and a warn-
ing issued when the temperature is not in safe limits. The following figure
shows the motor itself:

Figure 8: Typhoon HET 800-73 Motor

The following figure shows the motor with the heatsink installed:

 16

Figure 9: BLDC motor with heatsink installed

The following figure shows the EDF housing fitted with the motor and
the impeller:

Figure 10: EDF housing fitted with the motor and the impeller

The EDF assembly is one of the most advanced parts of the aircraft.

The impeller reaches very high RPM and therefore must be properly
tested before increasing the power of the motor. It can be dangerous if
tested or operated without necessary safety equipment and procedures.

4.6 Main wing, vertical and horizontal stabilizer

Main wings include ailerons in order to control the aircraft along the
longitudinal axis (roll) and flaps to increase lift generated by the airfoil
especially when flying at low speeds (landing, taking off). Both, ailerons

 17

and flaps are manipulated by individual servomotor. All control surfaces
of the aircraft are fitted with bearings to move with as low resistance as
possible. Left and right main wing are detachable from the fuselage in
order to transport aircraft easier and for possible maintenance needs. The
left main wing is pictured in the figure below:

Figure 11: Left main wing

Servo 1 controls the aileron to which is coupled through a thin steel

piano wire and secured with a custom 3D printed clevis. This form of
physical connection is utilized for all control surfaces of the aircraft. Servo
2 controls the flap.

The vertical stabilizer contains the rudder control surface for control
in the vertical axis (yaw). The horizontal stabilizer contains left and right
elevators to control the aircraft in the lateral axis. Vertical and horizontal
stabilizers including their control surfaces are assembled using the same
technique as the main wing.

4.7 Conclusion

The weight of the assembled UAV with the electronics fitted in is ap-
proximately 8.6 kg. Which is still in the acceptable range. Based on the
data provided by the model designer, the maximum take-off weight is 10
kg.

 18

5 Avionics design

5.1 Introduction

 In this chapter the goal is to use UML to describe an UAV autopilot
system including the avionics. The avionics divided into multiple sections
and each of them is also described in more detail. In order to model the
hardware characteristics (from mechanical and electrical perspective), an
UML structural diagram is used. The following figure illustrates the sys-
tem as a whole:

Figure 12: Avionics general diagram

As show in the figure above, the Aircraft Control System diagram con-

sists of multiple subsystems. The more complicated ones are more closely
described below. Those include battery (2S and 12S), control surfaces,
landing gear and the flight computer.

5.2 Battery

 This diagram describes both 2S1 and 12S2 battery. Those are assem-
bled by connecting 1-cell (for 2S) and 6-cell (for 12S) batteries in series.

1 Referring to a 2-cell lithium polymer battery
2 Referring to a 12-cell lithium polymer battery

 19

Balance ports are wired individually so that both batteries can be charged
using a dual charger in parallel. 2S battery outputs around 7.4V and is
used to power the avionics and low-power actuators. 12S battery outputs
around 45-50V and is used to power a propulsion unit which is made of
an EDF3. The battery assembly is illustrated in the following diagram:

Figure 13: Battery structural diagram

5.3 Control surfaces

 In order to achieve stable flight or change the attitude of the aircraft,
control surfaces must be used. As described in the chapter “UAV assem-
bly” those include ailerons to control the roll angle, elevators to control
the pitch angle and rudder to control the yaw or the aircraft. Flaps are
used to increase the lift generated by the main wing without increasing
the AoA4 so that stall does not occur even at lower speeds (for example

3 Referring to an electric ducted fan which is located inside of the aircraft
4 Referring to angle of attack - the angle between the chord line of an airfoil and the aircraft’s

velocity vector

 20

during take-off and landing). Each control surface is manipulated by a
servo motor which is controlled using PWM signal as shown in the fol-
lowing figure:

Figure 14: Control surfaces structural diagram

5.4 Landing gear

 In its retracted state (gear up), the landing gear is hidden inside a
landing gear bay and covered by dedicated landing gear cover plates
(landing gear bay door). Those and the landing gear retracts are both
controlled by the retracts control unit. There is an option for adding left
and right brakes which could be are used to bring the aircraft to stop
after landing and during taxi more efficiently. Those would be part of the
main landing gear assembly and controlled by individual servomotors. In
order to steer the aircraft when on the ground, during taxi, the nose
landing gear is equipped with a steering assembly which is controlled by
another servomotor. All the functionality mentioned is summarized in the
following figure:

 21

Figure 15: Landing gear structural diagram

The two main landing gear are assembled in a similar way. The nose
landing gear includes a steering assembly driven by a servomotor. The
steering assembly uses a ball bearing to reduce friction when turning and
is coupled with the servomotor through a thin steel piano wire. To reduce
structural load when landing, landing gear is equipped with a shocked
absorber which is filled with 10000 CST differential oil. As mentioned
above, the tires are 3D printed with TPU filament. This makes sure the
tires are slightly compressible and therefore also help with reducing the
structural load. The following graphics illustrates the layout of the front
landing gear:

Figure 16: Landing gear assembly

 22

5.5 Flight computer

 The most important and complex part of the avionics is the flight
computer itself. It mainly consists of flight manager, flight stabilization
unit, Miscellaneous control unit. Flight stabilization unit (FSU) is de-
scribed in more detail, from the software perspective using a class diagram
later in the work. Flight manager is used to communicate over network
with the user as well as communicate over I2C with FSU and Miscella-
neous control unit. Miscellaneous control unit mainly controls the landing
gear functionality and collects information from the temperature sensors.
Inertial measurement unit, barometric sensor, self-diagnostics compo-
nents and human interface input/output components are also included as
shown in the figure below:

Figure 17: Flight computer structural diagram

 23

5.6 FSU - software implementation

 As stated above, the flight stabilization unit is part of the flight con-
troller. Its task is to control the control surfaces and the propulsion unit
based on the commands received from the flight manager, calculate the
aircraft’s attitude, gather the telemetry data, etc. In order to achieve this
task, FSU is itself divided into in total 8 bigger classes. The programming
language of the current implementation is C++, mainly because of its
speed.

Class QuatIMUHandler handles the communication with the IMU, cal-
ibration of the IMU, providing data to and gathering from the EKF.
QuatKalman class contains the implementation itself. It is responsible for
all the matrix calculations necessary. Classes ComHandler and
CMDHandler, like the names suggest, handle the communication and
command execution. MCPHandler is responsible for controlling the au-
tonomous aspects of the system - the PIDHandler containing the PID
controller’s implementation, as well as enabling/disabling manual or au-
tomatic control completely. CtrlSurfAndThrottleHandler controls the
control surfaces, flaps and throttle of the aircraft. The main class is the
Flight_Stabilization_Unit class. It contains references to other classes
and runs the main control loop and other critical loop using the RTOS
implementation.

The implementation can be described by the UML class diagram shown
on the next page. This diagram was created during the development of
the project, so the final implementation (names, etc.) may slightly vary.:

 24

Figure 18: FSU class diagram

 25

5.7 Communication and command execution

The FSU must be able to exchange information both ways with the
flight manager. For example: desired attitude of the aircraft as a setpoint
for the controller (flight manager à FSU), user set calibration setting for
the control surfaces (flight manager à FSU) or calculated attitude of the
aircraft for visualization, etc... (FSU à flight manager). This is done over
I2C using the class called ComHandler.

 Each data variable being provided to the Flight Manager (through the
I2C, but no exclusive to) is described in the table below, which each
respected source and description.

Table 1: Communication variables

IDX ABBRV DESC FSU MISCCU EXT
0 DTIM datetime X
1 PTCH pitch X
2 ROLL roll X
3 HDG heading X
4 ATMP atm press X
5 MSL mean sea level X
6 PIIN pitch_input X
7 ROIN roll_input X
8 YWIN yaw_input X
9 THIN throttle_input X
10 LADF LA_def X
11 RADF RA_def X
12 LFDF LF_def X
13 RFDF RF_def X
14 LEDF LE_def X
15 REDF RE_def X
16 RDDF RD_def X
17 EDFP edf_pow X
18 GRUD gear_ud X
19 EDFT edf_temp X
20 RPIT rpi temp X
21 BMPT bmp temp X
22 C1LTC client 1 ping latency X

 26

23 C2LTC client 2 ping latency X
24 FCPU1 FSU CPU 1 load X
25 FCPU2 FSU CPU 2 load X
26 MCPU1 MISCCU CPU 1 load X
27 MCPU2 MISCCU CPU 2 load X
28 CLTP control loop time period X

29 KECV Kalman estimation covariance
matrix trace X

30 GLAT GPS latitude X
31 GLNG GPS longitude X
32 GSPD GPS speed X
33 GPSP GPS data precision X
34 LVBL Low voltage battery voltage X
35 HVBL High voltage battery voltage X
36 ESCT ESC temperature X

37 BTCT Battery compartment tempera-
ture X

38 MCPE MCP enable status 0/1 X
39 MCPM MCP manual input X
40 MCPS MCP setpoint input X
41 FLTCY FSU I2C latency X
42 MLTCY MISCCU I2C latency X
43 QBCLS Stream queue data backlash X X

The following two tables show how data is packed and its correspond-

ing identifiers. If DTYPE is BYTE, it means that the data is scaled (using
the min, max values) and pre-packed into an array of 4 bytes. This results
in lower precision of this data but also in less data required to be trans-
ferred. For this reason, this is only applicable for variables that don’t
need to hold high precession and are ranged, either inherently, or for this
purpose.

Table 2: FSU packs

ID POS1 POS2 POS3 POS4 DTYPE MIN MAX
1 PTCH - - - FLOAT - -
2 ROLL - - - FLOAT - -
3 HDG - - - FLOAT - -
4 PIIN ROIN YWIN THIN BYTE -1 1

 27

5 LADF RADF LFDF RFDF BYTE -1 1
6 LEDF REDF RDDF EDFP BYTE -1 1
7 ATMP - - - FLOAT - -
8 MSL - - - FLOAT - -
10 FCPU1 FCPU2 BMPT FLTCY BYTE 0 100
12 CLTP QBCLS - - BYTE 0 100
13 KECV GPSP - - BYTE 0 3
14 GLAT - - - FLOAT - -
15 GLNG - - - FLOAT - -
16 GSPD - - - FLOAT - -
17 MCPE MCPE - - BYTE 0 255
18 MCPM MCPM MCPM MCPM BYTE -100 100
19 MCPS MCPS MCPS MCPS BYTE -100 100

Table 3: MISCCU packs

ID POS1 POS2 POS3 POS4 DTYPE MIN MAX
100 LVBL HVBL MLTCY - BYTE 0 100
101 EDFT ESCT BTCT - BYTE -20 120
102 MCPU1 MCPU2 QBCLS - BYTE 0 100

To clarify, the ID column in the tables above does refer to the identifier

of the pack but not identifier of the command. The identifier of the pack
is used to determine which variable and in which format is being trans-
mitted and the command identifier is used to determine what type of
command is being transmitted in general (To transmit data variables a
specific constant command identifier is used - CMD_UP-
DATE_STATE_DATA) - more about that in the following paragraphs.

In order to execute received commands, the class CMDHandler is used.

It contains the pointers to the other classes so that it can directly call
corresponding methods. Depending on the identifier of the command,
(those are defined in a special header file) it executes the corresponding
command.

Commands are transmitted in packet. Each command can contain one
or more data variable. It has a fixed size of 8 Bytes and composes of an
identification identifier (1 Byte), parameters (3 Bytes) and data payload
(4 Bytes). Data payload can be either one 32bit integer, array of 4 (either
signed or unsigned) 8bit integers or one floating point value.

 28

Figure 19: I2C package layout

5.8 Attitude computation

In order to calculate attitude of the aircraft, IMU9250 module is con-
nected and communication established over SPI. The class QuatIMU-
Handler is responsible for receiving data containing information about
linear acceleration (accelerometer), angular velocity (gyroscopic sensor)
and magnetic vector (magnetometer) from this module. This “raw” infor-
mation is then filtered using Kalman filter provided by QautKalman class.
This class is responsible for running an implementation of extended Kal-
man filter. Quaternion arithmetic is used for all attitude calculations be-
cause it has many advantages over using Euler angles (avoiding gimbal
lock, etc..) and that is the reason why classic Kalman filter algorithm
cannot be used and extended Kalman filter must be used instead for at-
titude estimation.

5.9 Actuator control

Before the PWM signal is sent to the actuators, the appropriate ma-
nipulated variable must be computed. This is done using the
MCPHandler class. This class oversees the individual controllers. Depend-
ing on the commands received, this class selects which controllers are used
and what data is passed onto these controllers. In the current implemen-
tation, there are standard PID controllers (3 PID controllers for 3 process
values: pitch, roll, speed) implemented inside the PIDHandler class.

The data from the MCPHandler class is then sent over to the actuators
using PWM signal by the CtrlSuftAndThrottleHandler class. This class
can also be used perform calibration of the control surfaces, set limits for
the control surfaces and to manually control the co control surfaces and
the propulsion unit.

 29

6 Flight computer PCB design

6.1 Introduction

 As described above, the FC (flight computer) consists of mainly 3
components. Those are Raspberry Pi 4 acting as a master – flight man-
ager (FM) and two ESP32s acting as flight stabilization unit (FSU) and
miscellaneous control unit (MISCCU). As described above FM communi-
cates with FSU and MISCCU over I2C. The main role of the FM is to
communicate with the ground station and command the FSU and
MISCCU so that the whole system works as required by the operator.
The FM is connected to the internet over LTE so the theoretical range is
unlimited (when mobile data coverage is ensured). FSU and MISCCU are
placed inside a custom-made PCB. This PCB also houses other important
modules and pins to interface with servomotors.

 The graphics below shows the layout of the avionics with the main
components placed on top of the separation plate. The Raspberry Pi 4 is
enclosed inside of a 3D printed enclosure which is screwed to the plate.
The graphics is rendered inside Fusion 360:

Figure 20: Avionics layout

 30

6.2 Custom PCB schematics

6.2.1 Power supply and distribution

 The power output from the 2S lithium-polymer battery is connected
through a master switch to a step-down buck converter. Linear voltage
regulator was initially indented to be used but because of its low efficiency
(and therefore reaching high temperatures) and low voltage regulation
quality, more expensive and higher quality buck converter is used instead.
There are electrolytic capacitors used near the servo pins to help with the
power stability.

There is also power a LED added for indication and voltage divider to
be able to measure a battery voltage in order to determine the percentage.
It has an optional 100 nF ceramic capacitor for filtration. The following
figure shows the schematic diagram of this section:

Figure 21: Power supply and distribution

 There is a second voltage divider whose purpose is to measure the

voltage of the 12S battery. It also has an optional 100 nF ceramic capac-
itor for the purpose of filtration. Both voltage dividers are connected to
an ADC enabled pin of the MISCCU. It is visible in the schematic dia-
gram below:

Figure 22: HV voltage divider

 31

6.3 ESP32s and Raspberry Pi 4 connection

 As stated above, the FC contains two ESP32s (FSU and MISCCU)
and one Raspberry Pi 4 (FM). FSU and MISCCU are connected to the
FM over I2C. The following diagram shows how the FM
(RPI_HEADER), FSU and MISCCU are connected:

Figure 23: FM, FSU, MISCCU connection

The FSU is connected to servomotors of left aileron (PWM_OUT1),

right aileron (PWM_OUT2), left flap (PWM_OUT3), right flap
(PWM_OUT4), left elevator (PWM_OUT5), right elevator
(PWM_OUT6), rudder (PWM_OUT7). It is also connected to BLDC
motor ESC5 (PWM_OUT13) which generates the correct 3-phase wave-
form for the motor. These pins are shown in the diagram below:

Figure 24: FSU PWM ports

5 ESC = electronic speed controller

 32

Furthermore, the FSU is connected over SPI to a 9DOF IMU, baro-
metric pressure sensor and over UART to GPS module as shown in the
diagram below:

Figure 25: MPU, BMP, GPS connections

The FSU is also connected to a FSRC radio receiver with which it

communicates over proprietary communication protocol iBUS. This pro-
tocol is used by the most RC radio receivers. It is connected over
UART2_RX to the FSU (FSRC_COM pin shown on the bottom of the
diagram above). The following transmitter is used for manual control of
the aircraft.

Figure 26: Fly Sky-16X 2.4 GHz transmitter

 33

The transmitter above comes with this iBUS enabled RC receiver:

Figure 27: FS RC receiver

The MISCCU is connected to the landing gear retract motors control

unit (RMCU) (over pin PWM_OUT12). These motors can rotate over a
worm gear individual landing gear assembly so that the landing gear can
move up and down. The RMCU has capabilities to already control the
landing gear bay door servo motors but with the specific type of servo-
motors used, it does not work reliably. For this reason, the RMCU only
controls the retract motors and the bay door servo motors are controlled
directly with the MISCCU (over pins PWM_OUT9, PWM_OUT10 and
PWM_OUT11). Inside the nose landing gear assembly there is a steering
servo motor (connected to MISCCU over PWM_OUT8), providing the
steering capabilities of the nose landing gear. There are 3 extra auxiliary
PWM enabled port available which could be used to connect additional
servomotor or other actuators if needed. (Those are connected over pins
PWM_OUT14, PWM_OUT15 and PWM_OUT16.) The following dia-
gram shows the MISCCU PWM ports:

 34

Figure 28: MISCCU PWM ports

The MISCCU is connected to both voltage divider to ensure power

level measuring capabilities, it is also connected to temperature sensors
(DS18B20) over 1-Wire protocol developed by Dallas Semiconductor
Corp. Two extra auxiliary pins which can be used as input or output are
added for futureproofing. Temperature sensor and extra pins are shown
in the diagram below:

Figure 29: DS18B20 sensors connected over 1-Wire and extra pins

 35

6.4 PCB layout

 PCB layout design is also done in Fusion 360. The power supply and
distribution section is placed in the top-center. The FSU (PRI-
MARY_ESP32) is located in the bottom left. Its PWM pins can be found
to the left of the FSU and IMU, barometric sensor and FSRC receiver
connection pins can be found to the right from the FSU in the bottom-
center of the PCB. The GPS UART connection pins are above the FSU.
The MISCCU and its corresponding PWM, 1-Wire temperature sensor
and other pins are located in the top-left of the PCB. Below that, in the
bottom-left of the PCB there are pins for connecting the FM over I2C
and power delivery to the FM. The design of the whole PCB is shown in
the diagram below:

Figure 30: PCB layout design

 36

Fusion 360 allows users to preview the designed PCB in a 3D view:

Figure 31: Fusion 360 generated 3D preview

Gerber files which are then supplied to the PCB manufacturer can be

generated directly inside Fusion 360. After the manufacturing process and
component assembly the real PCB is mounted into the modeled and 3D
printed platform:

Figure 32: PCB mounted on a 3D printed platform

 37

7 Attitude estimation using Extended Kalman Filter

7.1 Introduction

The purpose of this section is to develop a working implementation of
an extended Kalman filter which uses quaternions for attitude estimation.
Since this is a very complex problem with a possibility of other various
improvements to be implemented (in order to suit a specific application),
a more general solution will be discussed. This allows a broader applica-
bility into various other system. Because the general idea of the algorithm
does not change. Another goal of this section is to use affordable hardware
and to still be able to achieve useful final results in a form of estimated
attitude.

7.2 General structure

As stated above, this section’s goal is both mathematical derivation
and software implementation in a low-level programming language. The
mathematical derivation is inspired by an online post [2]. This post was
very helpful during the initial stages of the development. The mathemat-
ical derivation is discussed in more detail in upcoming sections.

The final implementation of the extended Kalman filter (EKF) is writ-

ten in C++ and runs on ESP32 development kit. FreeRTOS implemen-
tation is used for better control over the structure and timing of the whole
program. The algorithm run with a period of over 50 Hz when connected
to a custom diagnostics tool (developed for the purpose of diagnostics and
visualization in Unity 3D. This tool and its features are described in the
chapters below.)

The inertial measurement unit used for the purpose of this project is

MPU9250. It is a low cost 9-DOF IMU. This means it includes an accel-
erometer, a gyroscope and a magnetometer. The combination of those
three sensors allows for pitch, roll and heading estimation.

Heading estimation is done (mainly - EKF combines all information)

using the data from magnetometer. For the estimation to function

 38

properly, the algorithm assumes that the acceleration vector and the vec-
tor of magnetic field points into two different directions (preferably 90
degrees apart). Since this is the case only at the equator, this assumption
can cause problems with increasing (absolute) value of latitude. It is com-
monly known, that heading estimation around north and south pole is
technically problematic.

7.3 Magnetometer calibration

In order to ensure optimal results, the magnetometer data supplied to

the filter algorithm must be calibrated first. This process can be subdi-
vided into two parts: hard iron and soft iron calibration. First, 2-dimen-
sional analogy is shown, then the problem is generalized into 3 dimensions.

7.3.1 Hard-Iron error compensation

Hard-Iron error is caused by permanent magnets or other objects that
produce permanent magnetic field and are physically attached to the ref-
erence frame of the magnetic field sensor itself. Hard-Iron errors manifest
in a form of an offset in the readings provided by the sensor. If sensor
with no error gives readings illustrated in the figure below (Figure 33),
then the sensor with only hard-iron error would output data illustrated
in the Figure 34.

Figure 33: Illustration of a sensor data with no error

-1 -0.5 0 0.5 1
magX

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

m
ag
Y

No errors

 39

Figure 34: Illustration of a sensor data with hard-iron error only

7.3.2 Soft-Iron error compensation

This error is frequently caused by “soft” magnetic metals. Those are
for example nickel-iron or iron-silicon alloys. This error manifests as twist-
ing/stretching of the magnetic field vector. In two dimensions, it can be
illustrated in Figure 35.

-1 -0.5 0 0.5 1 1.5
magX

-0.5

0

0.5

1

m
ag

Y

Hard-Iron errors

Expected data
Meassured data

 40

Figure 35: Illustration of a sensor data with a soft-iron error only

In general case, both, hard-iron and soft-iron errors are present which

causes the measurement data to be offset and stretched/twisted. This, in
2 dimensions could be illustrated as follows:

Figure 36: Illustration of a sensor data with hard-iron and soft-iron

In the illustrations above, the measurement data was represented in

two dimensions using ellipses/circles.

-1 -0.5 0 0.5 1
magX

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

m
ag

Y

Soft-Iron errors

Expected data
Meassured data

-1 -0.5 0 0.5 1 1.5 2
magX

-0.5

0

0.5

1

1.5

m
ag

Y

Hard-Iron and Soft-Iron errors

Expected data
Meassured data

 41

7.3.3 3D generalization
In 3 dimensions this can be generalized using ellipsoids/spheres. The

measured data makes up an ellipsoid which then needs to be transformed
into a sphere.

This can be modelled as a mathematical transformation as follows:
 𝑚⃗⃗⃗⃗⃗⃗𝑚 = 𝐴𝑚⃗⃗⃗⃗⃗⃗𝑐 + 𝑏 (1)

where 𝑚⃗⃗⃗⃗⃗⃗𝑚 is the measured magnetic field vector, 𝑚⃗⃗⃗⃗⃗⃗𝑐 is the correct (real)
vector, pointing to the north (in ideal case, usually it points slightly to
the ground, depending on where on Earth the observer is located). 𝐴 is
a calibration matrix (defining the stretching/twisting) and 𝑏 is calibra-
tions vector (specifying the offset). These can be determined by using a
python script (“magnetometer_calibration.py”). This script has been ob-
tained from the website mentioned in the introduction [2]. In short, the
script gathers a specific amount of magnetometer measurements. Those
measurements in a form of a point array form an ellipsoid:

Figure 37: Measured magnetometer data before fitting

During the measurement, the IMU was rotated around each of its axis

to fill the surface of the ellipsoid as densely as possible. It is also good to

 42

notice the blue dot around the center of the points. This, in reality, is a
unit sphere (in 2D analogy circle).

The python script attempts fitting this ellipsoid onto a sphere. This
process outputs calibration parameters 𝐴−1 and 𝑏. Those can then be fi-
nally used to transform the measured data 𝑚⃗⃗⃗⃗⃗⃗𝑚 to the correct magnetom-
eter output data 𝑚⃗⃗⃗⃗⃗⃗𝑐 using the following formula:

 𝑚⃗⃗⃗⃗⃗⃗𝑐 = 𝐴−1(𝑚⃗⃗⃗⃗⃗⃗𝑚 − 𝑏) (2)
The transformed points can be viewed in the following graph (the small

“dot” from the Figure 37 is displayed in an adequate size looks like a
sphere, when different axis scale is taken into account):

Figure 38: Transformed magnetometer data

Data transformed in such a way can finally be used as an input to the

EKF.

7.4 Reference vectors acquisition

In order for the Kalman filter algorithm to work properly, acceleration
reference vector and magnetic field reference vector must be calculated.

 43

This is simply done by measuring a set of data from accelerometer and
magnetometer and averaging them.

During this phase, the IMU must be stationary, heading to north, with
0 degrees in both pitch and roll. Next, the averaged vectors are normal-
ized. This is automated in the Python script (named “sensor_stat_anal-
ysis.py”).

Before running the script, it is advised to doublecheck the variables
mag_Ainv, mag_b which are obtained during magnetometer calibration
and variable DATA_COUNT, which specifies how big the data set is
(value of 200 is sufficient).

Magnetic field measurements are first calibrated using mag_Ainv,
mag_b, before they are used for the statistical analysis. Apart from that,
this script calculates the expected values and variances for each sensor.
Also, this script outputs the average acceleration magnitude, which is
then also used in the Kalman filter algorithm initialization.

7.5 Extended Kalman filter algorithm

7.5.1 Introduction

Extended Kalman Filter (EKF) algorithm works in two distinctive

steps. Those are prediction phase, also known as “Time update” and up-
date phase, also known as “Measurement update”. Those two steps are
run in each time step. Before the algorithm can be first started initializa-
tion must be completed. In the following chapter, the EKF algorithm for
quaternion attitude estimation is derived.

7.5.2 EKF algorithm derivation

Let’s first define the state vector. The state vector Equation (3) has 7

elements. 4 of which are used to describe quaternion defining the orien-
tation and 3 elements are used for estimating drift of the gyroscope. The
gyro drift is automatically adjusted by the EKF to provide the optimal
estimation. The state vector has the following form:

 𝑥 = [𝑞0 𝑞1 𝑞2 𝑞3 𝑔𝑏1 𝑔𝑏2 𝑔𝑏3] (3)

 44

Next, the system dynamics equation is needed in order to calculate the
prediction estimate from a previously estimated state vector. This is done
using the following equation:

 𝑞 ̇= 1
2 𝑆(𝜔)𝑞 = 1

2 𝑆(𝑞)𝜔 (4)

Where 𝑆(𝑞) is the current estimated attitude in form of matrix:

 𝑆(𝑞) =
⎣
⎢
⎡

−𝑞1 −𝑞2 −𝑞3
𝑞0 −𝑞3 𝑞2
𝑞3 𝑞0 −𝑞1

−𝑞2 𝑞1 𝑞0 ⎦
⎥
⎤ (5)

and 𝜔 is the angular rate provided by the gyroscopic sensor. The math
behind the Equation (4) is beyond the scope of this section but is very
comprehensively explained in this post [3]. The only variable left to up-
date is the gyro drift. This is solved simply by using the previous value.
In order to take the drift of the gyro into account, Equation (4) is ad-
justed as follows:

 𝑞 ̇= 1
2 𝑆(𝜔 − 𝑔𝑏)𝑞 = 1

2 𝑆(𝑞)𝜔 − 1
2 𝑆(𝑞)𝑔𝑏 (6)

The overall equation to calculate the predicted state vector is following:

 𝑥𝑘+1́ = [𝐼4𝑥4 − 𝑇
2 𝑆(𝑞)

𝑂3𝑥3 𝐼3𝑥3

] 𝑥𝑘 + [
𝑇
2 𝑆(𝑞)
𝑂3𝑥3

] 𝜔𝑘 (7)

This equation is used in the EKF algorithm during prediction phase to

calculate the next predicted state vector from the previous one. It is in
the form of:

 𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘−1𝜔 (8)

Where 𝐴𝑘 = [𝐼4𝑥4 − 𝑇
2 𝑆(𝑞)

𝑂3𝑥3 𝐼3𝑥3
] and 𝐵𝑘 = [

𝑇
2 𝑆(𝑞)
𝑂3𝑥3

],

𝑞 = [𝑥0 𝑥1 𝑥2 𝑥3]|𝑘 (latest estimated attitude is used to evaluate
𝑆(𝑞).) To clarify, both are 𝐴𝑘 and 𝐵𝑘 are, of course, time variant. 𝐴𝑘
and 𝐵𝑘 are also used when calculating predicted covariance matric.
This can be done in a usual form:
 𝑃𝑘́ = 𝐴𝑘−1𝑃𝑘−1𝐴𝑘−1

𝑇 + 𝑄 (9)
Where Q is the process covariance matrix. Values for 𝑄, 𝑃0 and 𝑥0

(initial) are discussed in the next chapter.
Next, lets derive the equation used in the update phase. It is needed to

find a connection between the measured data by accelerometer and

 45

magnetometer and the state vector. This can be achieved using the fol-
lowing equation:

 𝑑𝑚 = 𝑅(𝑞)𝑣𝑟𝑒𝑓
𝑠 + 𝐸 (10)

where 𝑑𝑚 is the measured data given by the sensor and

𝑅(𝑞) =
⎣
⎢⎡

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 + 𝑞0𝑞3) 2(𝑞1𝑞3 − 𝑞0𝑞2)
2(𝑞1𝑞2 − 𝑞0𝑞3) 𝑞0

2 − 𝑞1
2 + 𝑞2

2 − 𝑞3
2 2(𝑞2𝑞3 + 𝑞0𝑞1)

2(𝑞1𝑞3 + 𝑞1𝑞3) 2(𝑞2𝑞3 − 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2⎦
⎥⎤

is rotational matrix constructed using the estimated quaternion, 𝑣𝑟𝑒𝑓 is
a reference vector for the corresponding sensor. Its acquisition process
is closely described in Chapter 5, 𝐸 is the error of the sensor and the
prediction composed of a bias (if sensor is uncalibrated) and a noise.
𝑦𝑘

𝑠́ = 𝑅(𝑞)𝑣𝑟𝑒𝑓
𝑠 is the predicted sensor output. In ideal case this should

correspond to the value given by the sensor. When the IMU is placed
with attitude of 0 pitch, 0 roll and heading to north, the data outputted
by the sensor must be essentially the same as the 𝑣𝑟𝑒𝑓 , which also ex-
plains the 𝑣𝑟𝑒𝑓 acquisition process and can be used during debugging.
Equation (10) is in a form of: 𝑦 = 𝐶𝑠𝑥 + 𝐷, in order to apply Kalman
filter algorithm, this equation must be linear. Given the nature of qua-
ternions, this equation is strongly non-linear. Taylor expansion is used
to approximate this non-linear equation with a linear one, around the
operational point, which in this case is the current attitude estimate
(from the previous timestep). For the purpose of EKF algorithm, only
𝐶𝑠 term is requiered, therefore 𝐷 does not need to be calculated. The
matrix 𝐶𝑠 is time dependent and can be calculated as follows:

 𝐶𝑘
𝑠 = 𝜕

𝜕𝑞 (𝑅(𝑞𝑘−1)𝑣𝑟𝑒𝑓) (11)

After multiplication and finding the derivative (Jacobian), The matrix
𝐶𝑠 can be expressed as6:

6 𝑣𝑟𝑒𝑓

𝑖 signifies i-th element of the 𝑣𝑟𝑒𝑓 vector as opposed to 𝑣𝑟𝑒𝑓
𝑠 which signifies

the whole reference vector of the sensor s.

 46

𝐶𝑘
𝑠[0,0] = 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
1 − 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
2

𝐶𝑘
𝑠[0,1] = 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
2

𝐶𝑘
𝑠[0,2] = −𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
1 − 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
2

𝐶𝑘
[𝑠0,3] = −𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
2

𝐶𝑘
𝑠[1,0] = −𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
2

𝐶𝑘
𝑠[1,1] = 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
0 − 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
2

𝐶𝑘
𝑠[1,2] = 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
2

𝐶𝑘
𝑠[1,3] = −𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
2

𝐶𝑘
𝑠[2,0] = 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
0 − 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
2

𝐶𝑘
𝑠[2,1] = 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
0 − 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
1 − 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
2

𝐶𝑘
𝑠[2,2] = 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
1 − 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
2

𝐶𝑘
𝑠[2,3] = 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
2

𝐶𝑘
𝑠 = 2

⎣
⎢⎢
⎡

𝐶𝑘
[0,0] 𝐶𝑘

[0,1] 𝐶𝑘
[0,2] 𝐶𝑘

[0,3]

𝐶𝑘
[1,0] 𝐶𝑘

[1,1] 𝐶𝑘
[1,2] 𝐶𝑘

[1,3]

𝐶𝑘
[2,0] 𝐶𝑘

[2,1] 𝐶𝑘
[2,2] 𝐶𝑘

[2,3]⎦
⎥⎥
⎤

(12)

The final matrix 𝐶 for the Kalman filter can be constructed from pre-
viously calculates matrices 𝐶𝑠 as follows:

 𝐶𝑘 = [
𝐶𝑘

𝑎𝑐𝑐 𝑂3𝑥3
𝐶𝑘

𝑚𝑎𝑔 𝑂3𝑥3
] (13)

𝑂3𝑥3 matrices signify independency of the measured data on the bias
of the gyro.

7.5.3 Initialization

During the initial phase algorithm variables are initialized so that EKF

can then run. The initial values for variables used by EKF are in the
following table:

Table 4: EKF implementation variable names

Variable name Initial value
x_hat [1 0 0 0 0 0 0]

accel_reference FROM PY
mag_reference FROM PY

gravity_constant FROM PY

 47

accelerometer_prec_attenuation APRX 10, AS REQ
P APRX 0.01, AS REQ7
Q APRX 0.001, AS REQ1

R APRX 1, AS REQ1

mag_calib_A_inv FROM PY
mag_calib_b FROM PY

The initial value for the state vector is 𝑥𝑘=0 = [1 0 0 0 0 0]

corresponding to no deviation in attitude and no gyro bias. Acceleration
and magnetic field reference vectors and gravitational constant are calcu-
lated by the python script as described in Chapter 5. Accelerometer pre-
cision attenuation constant is used to artificially (and drastically) increase
the measurement covariance matrix. This is done in order to account for
acceleration caused by change in linear velocity (not gravitational force).
Given the Equivalence principle, these two causes for perceived accelera-
tion (gravitation and change in linear velocity) are fundamentally indis-
tinguishable. It can be assumed, that if the magnitude of the acceleration
vector differs to a higher degree from the acceleration vector, then change
in velocity is present and is introducing error into the update phase by
twisting the acceleration vector. This effect is negated by drastically in-
creasing the accelerometer covariance matrix and in such way letting the
filter know not to momentarily trust the accelerometer measurement. 𝑃
is the covariance matrix.

Trace of this matrix can be used to determine the precision of the esti-
mate at a given time. The lower the initial value (values in this case refers
to values of the diagonal elements, non-diagonal elements are set to 0) is,
the longer it will take for the filter to start trusting the measurement
resulting in higher initial delay before an accurate attitude estimate can
be obtained. 𝑄 is the process noise matrix. This matrix specifies the un-
certainty caused during the prediction phase when using the dynamic
model to calculate the prediction of the state vector estimate. Increasing
the value of the diagonal elements of this matrix will result in a greater
overall covariance and the algorithm giving higher importance to the
measured data in the update phase (acceleration and magnetic field vec-
tor). On the other hand, decreasing values of the diagonal elements will

7 For matrices, the actual value is the scalar value 𝑉 multiplied by 𝑒𝑦𝑒(𝑉) - the diagonal matrix

with value 𝑉 at the main diagonal

 48

result in EKF trusting the dynamic model in the prediction phase more
as opposed to the measurements in the update phase. Matrix 𝑅 specifies
the measurement noise and has essentially the opposite effect as matrix
𝑄. Diagonal values of this matrix can be calculated using a python script,
but that requires adequate values of the matrix 𝑅. Instead, it is recom-
mended to use the date from the table above as a base guess and then
fine-tune the values for specific characteristics of the IMU module used.
Values of calibration constants 𝐴𝑚𝑎𝑔_𝑐𝑎𝑙𝑖𝑏

−1 and 𝑏𝑚𝑎𝑔_𝑐𝑎𝑙𝑖𝑏 are calculated us-
ing a python script as described above in Chapter 4.

7.5.4 Prediction phase

During the prediction phase, EKF receives data from the gyroscope in
a form of angular velocity in rads/sec and combining this data with the
information about the system dynamics calculates prediction of the state
vector for the following timestep. Prediction of the state vector and co-
variance matrix are obtained by utilizing the following equation:

 𝑥𝑘+1́ = [𝐼4𝑥4 − 𝑇
2 𝑆(𝑞)

𝑂3𝑥3 𝐼3𝑥3

] 𝑥𝑘 + [
𝑇
2 𝑆(𝑞)
𝑂3𝑥3

] 𝜔𝑘 (14)

and:

 𝑃𝑘́ = [𝐼4𝑥4 − 𝑇
2

𝑆(𝑞)
𝑂3𝑥3 𝐼3𝑥3

] 𝑃𝑘−1 [𝐼4𝑥4 − 𝑇
2

𝑆(𝑞)
𝑂3𝑥3 𝐼3𝑥3

]
𝑘−1

𝑇

+ 𝑄 (15)

As described above, 𝑞 is the currently most precise estimate of the at-
titude calculated during the previous update phase. During this phase,
predicted sensor output and matrix 𝐶 is calculated as described in the
previous section.

7.5.5 Update phase

During the update phase, measurement from accelerometer and mag-

netometer are normalized (and transformed using the calibration values),
the magnitude of the acceleration vector is determined (to compensate
for change in linear velocity) and lastly, the sensor data is used to update-
correct the prediction obtained in the prediction phase by weighting the

 49

information provided by the prediction and the sensor measurement using
Kalman gain 𝐾. This gain is calculated as follows:

 𝐾𝑘 = 𝑃𝑘́𝐶𝑘
𝑇

𝐶𝑘𝑃𝑘́𝐶𝑘
𝑇 + 𝑟𝑚𝑢𝑙𝑡𝑅

 (16)

where 𝑟𝑚𝑢𝑙𝑡 is accelerometer covariance multiplier accelerometer and
is calculated using the following formula:

 𝑟𝑚𝑢𝑙𝑡 = 10𝑎𝑏𝑠(𝑔𝑐𝑜𝑛𝑠𝑡−‖𝑎‖)𝑎𝑝𝑟𝑒𝑐_𝑎𝑡𝑡 (17)
where 𝑎𝑝𝑟𝑒𝑐_𝑎𝑡𝑡 is precision attenuation constant and 𝑔𝑐𝑜𝑛𝑠𝑡 is gravity

constant calculated by a python script. To ensure numerical stability,
𝑟𝑚𝑢𝑙𝑡 is clamped between 1 and 1000.

Kalman gain is then used to calculate the new estimate of the state
vector and covariance matrix:

 𝑥𝑘+1 = 𝑥𝑘+1́ + 𝐾𝑘(𝑚 − 𝑦𝑘́) (18)
where 𝑚 is the concatenated measurement vector 𝑚 = [𝑚𝑎 𝑚𝑚]𝑇

and 𝑦𝑘́ = [𝑦𝑘
𝑎́ 𝑦𝑘

𝑚́]. 𝑦𝑘
𝑎́ and 𝑦𝑘

𝑚́ are accelerometer and magnetometer out-
put predictions.

Covariance matrix is calculated using following formula:
 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃𝑘́ (19)

At the end quaternion segment of the state vector is normalized.

7.6 EKF testing data acquisition

In order to debug and further experiment with different parameters and
features, testing data acquisition application has been developed. It is
meant as a developer and testing tool only, so it runs directly in the editor
of Unity 3D engine (scene named “DataGenerator”). Scripts are written
in C#. To properly use this tool, some prior experience with Unity 3D is
required.

 In order to generate testing data, two different options are available.
First option (1) is to programmatically specify sequence of attitudes
through which the application automatically switches and at the end of
the sequence, the play mode is exited. In the file “ManualMover.cs” one
can specify this sequence including timing. (Do-Tween plugin is used for
implementation.) This script can also be used to specify a linear acceler-
ation for testing purposes. The second option (2) is to use Unity Editor
to move the game-object manually using a mouse and Unity gizmos.

 50

Virtual data synthesis is performed by the “Virtual 9DOFMPU.cs” script.
For this component to function properly, its attributes must be setup
correctly. The most important are reference vectors, gravity constant and
sensor variances. It is crucial to consider different coordinate system
which Unity uses. Specifying these attributes mistakenly due to human
error when manually performing coordinate transform can be source of a
possible errors and can be difficult to debug. For this reason, a simple
tooltip has been added to be shown (when mouse is moved over the at-
tribute name.)

Scripts named “TransformDataSaver.cs” and “SensorDataSaver.cs” are
used to store the real transform and the emulated sensor values into a
CSV file. This data can be then used for EKF test in python.

7.7 EKF test with emulated data

Testing data is acquired utilizing Unity tool described in the previous
chapter. Testing data acquisition 2 is used resulting in less smooth and
more natural movement. Simulated sensor data generated during pro-
grammatically specified movement can be viewed in the figure below:

 51

Figure 39: Sensor data during programmatically specified movement

 While generating this data, there were no explicit attempts to cause

linear acceleration. This can be seen in the first subplot, where the accel-
eration (per axis) is barely reaches gravitational acceleration constant.

In the following figure, the virtual IMU was moved very sporadically
in a linear motion, causing a drastic linear acceleration:

0 5 10 15 20 25 30
time [s]

-10

-5

0

5

10

15
ac

ce
le

ra
tio

n
[m

s-
2]

Accelerometer output

X axis
Y axis
Z axis

0 5 10 15 20 25 30
time [s]

-10

-5

0

5

10

15

an
gu

la
r v

el
oc

ity
 [r

ad
s-

1]

Gyroscope output

X axis
Y axis
Z axis

0 5 10 15 20 25 30
time [s]

-1

-0.5

0

0.5

m
ag

ne
tic

 fi
el

d
[u

T,
 c

al
ib

.]

Magnetometer output

X axis
Y axis
Z axis

 52

Figure 40: Sensor data while IMU under drastic linear acceleration

Since the virtual IMU was not experiencing any angular velocity, the

data gathered from the gyroscope and the magnetometer is constant. The
accelerometer data shows very high values of acceleration (and decelera-
tion) caused by the sporadic movement.

Finally, it the EKF algorithm can be executed provided the generated
data. The first figure shows EKF algorithm output during the first phase
of the experiment (when IMU wasn’t experiencing any extreme accelera-
tion):

26 28 30 32 34 36 38
time [s]

-200

-100

0

100

200
ac

ce
le

ra
tio

n
[m

s-
2]

Accelerometer output

X axis
Y axis
Z axis

26 28 30 32 34 36 38
time [s]

-1

-0.5

0

0.5

1

an
gu

la
r v

el
oc

ity
 [r

ad
s-

1]

Gyroscope output

X axis
Y axis
Z axis

26 28 30 32 34 36 38
time [s]

-1

-0.8

-0.6

-0.4

-0.2

m
ag

ne
tic

 fi
el

d
[u

T,
 c

al
ib

.]

Magnetometer output

X axis
Y axis
Z axis

 53

Figure 41: EKF output with no drastic linear acceleration

It is visible that both EKF variants (with and without accelerometer

measurement covariance matrix adjustment) perform in a similar way.
This only visible different is in the estimation covariance matrix trace
plot. While the variant without precision attenuation follows the normal
trend of the trace reaching a stable steady state value and (for the most
part - caused by non-linearities) keeping it, the variant with the attenu-
ation adjustment is keeping the trace value slightly higher. While in this
case it is mainly caused by numeric properties of the selected multiplier
function, it still shows the “hesitance” of the algorithm to process and
“trust” any acceleration value which could be slightly higher. But as

0 5 10 15 20 25 30
time [s]

-40

-20

0

20

40
ro

ta
tio

n
[D

EG
]

Pitch

EKF estimate
EKF w/o prec. atten.
True data

0 5 10 15 20 25 30
time [s]

-50

0

50

100

ro
ta

tio
n

[D
EG

]

Roll

EKF estimate
EKF w/o prec. atten.
True data

0 5 10 15 20 25 30
time [s]

-60

-40

-20

0

20

40

ro
ta

tio
n

[D
EG

]

Heading

EKF estimate
EKF w/o prec. atten.
True data

0 5 10 15 20 25 30
time [s]

0.5

1

1.5

2

co
va

ria
nc

e

Covariance matrix trace

EKF estimate
EKF w/o prec. atten.

 54

mentioned above, this effect is practically indistinguishable in the output
data itself (pitch, roll, heading).

Though, this does not apply when the IMU moves more sporadically.
This is illustrated in the following figure:

Figure 42: EKF output with drastic linear acceleration

From this figure it is visible the difference between the two variants on

the algorithm. The estimate provided by the variant without the attenu-
ation feature is significantly worse. The theoretical covariance trace is
lower, this is caused by incorrect a priory expectation of the algorithm.
If a real value of covariance trace were to be calculated, it would be higher.

The covariance trace of the variant with attenuation significantly in-
creases, which results in the algorithm’s lower “belief” in the

27 28 29 30 31 32 33 34 35 36 37
time [s]

-10

-5

0

5

10

15

20

ro
ta

tio
n

[D
EG

]

Pitch

EKF estimate
EKF w/o prec. atten.
True data

27 28 29 30 31 32 33 34 35 36 37
time [s]

-5

0

5

10

15

ro
ta

tio
n

[D
EG

]

Roll

EKF estimate
EKF w/o prec. atten.
True data

27 28 29 30 31 32 33 34 35 36 37
time [s]

-10

-5

0

5

10

ro
ta

tio
n

[D
EG

]

Heading

EKF estimate
EKF w/o prec. atten.
True data

27 28 29 30 31 32 33 34 35 36 37
time [s]

0.6

0.8

1

1.2

1.4

1.6

1.8

co
va

ria
nc

e

Covariance matrix trace

EKF estimate
EKF w/o prec. atten.

 55

accelerometer measurement and so this measurement is taken into con-
sideration significantly lower (by automatic adjustment of the Kalman
gain). This behavior is very useful and even a necessity for application in
UAVs where drastic acceleration and deceleration is a frequently present.

7.8 EKF C++ real-time implementation

The final implementation of the EKF algorithm is meant to run on
ESP32 board together with the autonomous controller and other critical
software components. It is important to ensure execution of the most
critical tasks in time. For this reason, RTOS is utilized to optimally
schedule tasks based on their priority, specifically a free-ware implemen-
tation FreeRTOS. This is one of the reasons why the programming lan-
guage of the final EKF implementation is C++.

In order to perform matrix operations required for EKF algorithm, Lin-
ear Algebra library [4] is used. This library is fully compatible with ESP32
MCU. For previous testing with python code, UART is used to send the
data (gathered by the IMU over SPI). With the C++ implementation
the data is processed directly on the MCU.

7.9 EKF diagnostics tool

In order to display the data computed by the C++ implementation of
the EKF, a proper diagnostic tool is needed. This is implemented using
the Unity 3D engine again but now Unity is used to visualize the data
received by the ESP32 over the UART.

Due to the dynamic nature of this test, few different scenarios were
physically executed: Z-axis rotation on a stable turntable, sporadic move-
ment and linear acceleration followed by a deceleration while attempting
to keep still in attitude.

The following figure shows data from the first scenario:

 56

Figure 43: First scenario data

The first plot on the left shows the estimated attitude in degrees. As

expected in this scenario, only heading is being changed from about 0
degrees to +90 degrees then to -90 degrees and then back to 0 degrees.
This corresponds with the physical movement the IMU experienced. The
second plot on the left shows the 4 elements of the quaternion. Similar
curve as shown in the plot above can also be observed here, although any
more exact interpretation is complex due to the nature of quaternions.
The third plot shows the acceleration measured by the IMU. In this sce-
nario this plot seemingly does not change, since the IMU is being rotated
only around the axis which has practically the same direction as the grav-
itational acceleration. The fourth plot shows the angular velocity meas-
ured by the gyroscope. This value also changes as expected (mostly rota-
tion around Z-axis). The saturation is only visual in the plot. There is a
y limit set up so that smaller values are also distinguishable. The fifth
plot from the left shows the magnetometer data. Due to specific direction
(NOT always 90 degrees perpendicular to gravitational acceleration) of
magnetic reference vector this data has more complex behavior.

The first plot on the right shows the trace of the covariance matrix.
This value can indicate how the EKF is “secure” about its estimate. The
second plot on the right shows the magnitude of the acceleration vector.
This is used to account for linear acceleration. In this case there was no
significant linear acceleration, therefore the magnitude is around 𝑔𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.
The third plot on the right shows the current 𝑟𝑚𝑢𝑙𝑡 value. Since the ac-
celeration magnitude is around 𝑔𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, the 𝑟𝑚𝑢𝑙𝑡 is for the most part

 57

close to 1. The last plot on the right shows the time period with which
the algorithm runs. This does not exceed 0.02s. This equivalates to exe-
cution frequency of 50Hz or more. Which for the final application is suf-
ficient. It is also worth noting, that portion of this time is taken by the
UART communication. The approximate estimate is around 30% but no
testing has been performed regarding that.

The following figure shows data from the first scenario:

Figure 44: Second scenario data

This scenario was executed more for illustrational purposes. It can be

observed that the acceleration magnitude was significantly higher and
more sporadic, which can anyways be said about of the data from this
scenario. The data from the third scenario can be seen in the figure below:

Figure 45: Third scenario data

 58

In this scenario, the IMU was first accelerated and then decelerated
with as low change in attitude as possible. This can be observed by change
in acceleration alongside the Y-axis. Above all, the magnitude of the ac-
celeration vector dramatically rises. This causes the 𝑟𝑚𝑢𝑙𝑡 to dramatically
rise as well. This results in the EKF algorithm essentially ignoring the
corrupted accelerometer reading. Since the EKF is unable to use the ac-
celerometer reading, the covariance matrix trace automatically increases,
signifying higher uncertainty in the estimated attitude. During the exper-
iment, the estimated attitude is practically unchanged, which corresponds
with the actual physical movement.

A YouTube video showing the behavior in more dynamic way can be
accessed at: youtu.be/qy9yPrqckdY on my channel. It shows a practical
demonstration of the EKF. In the demonstration, IMU is being moved by
hand. First, simple movement is tested, followed by more sporadic and
complex movement. Response to a linear acceleration and deceleration is
successfully tested as well.

7.10 Conclusion

The purpose of this section was to implement and test the functionality
and applicability (to UAV attitude estimation) of Extended Kalman filter
algorithm. Algorithm was first tested with simulated data and then was
implemented in C++ on ESP32 microcontroller unit. Based on the sim-
ulation and real-world results and availability and cost of the hardware
used, the implementation appears to be practical for smaller, experi-
mental unmanned aerial vehicles. Possible issues could arise from high
noise presence in the magnetometer readings. This could be amplified in
case of high electrical currents flow near the IMU. This could be solved
in the design phase of a UAV by physically distancing the high current
components of the avionics as far from the IMU as possible or by adjust-
ing the EKF algorithm - modelling the electrical currents in order to for
the EKF to be able to predict the change in magnetic field and account
for it.

 59

8 Aircraft control interface and telemetry visualiza-
tion

8.1 Introduction

The purpose of the application is to display flight telemetry data and
control the aircraft. Communication with Flight Manager (RPi4) is es-
tablished via LTE. The user is allowed to control various flight parame-
ters (pitch, roll, speed, etc.) and read telemetry data in real time. The
application is developed in the Unity3D Engine and the code is written
in C#. It composes of different panels, each providing information about
different systems of the aircraft. Every panel, if applicable, contains a
status overview which provides an over information about the correspond-
ing system.

The visual aspect of the user interface is inspired by flight displays
implemented in Airbus aircrafts. Similar to real aircrafts this application
features a Master Caution System (MCS) including audio-visual alarm.

The figure below shows the graphical user interface which will be dis-
cussed in more detail in the following chapters:

Figure 46: GUI overview

 60

8.2 Primary Flight Display (PFD)

The PFD shows the basic flight data, such as speed (measured by the
GPS sensor, data like TAS, IAS are not possible to obtain due to the
absence of more accurate and industry specific components like pitot-
tubes, etc.). This panel composes of an artificial horizon (1), sped indica-
tor (in knots) (2), altitude indicator (in meters) (3), vertical speed indi-
cator (in feet-per-minute) (4) and heading indicator (5). This panel also
includes numerical information about the EKF estimate accuracy (6) and
speed converted to kilometers per hour (7).

Figure 47: PFD overview

8.3 Flaps and Control Surface (F/CTL)

The F/CTL panel provides user the information about the status of
the control surfaces and flaps (deflection in degrees). It also provides con-
trol of the landing gear.

The following figure describes the individual elements of this panel: left
aileron (1), left flap (2), right flap (3), right aileron (4), left elevator (5),
right elevator (6), rudder (7) and gear control (8).

 61

Figure 48: F/CTL overview

8.4 Electrical (ELEC)

The ELEC panel displays the most important information the electrical
status of the aircraft. It also provides the user with temperature readouts
in different critical areas of the aircraft. It is integrated with the MCS to
alarm the operator in case of critical situation.

The following figure describes the individual elements of this panel: LV
and HV battery lever and voltage indicators (1), battery compartment,
BMP sensor and Flight Manager (RPI4) temperature readings (2) and
usages of FSU and MISCCU both cores (3).

Figure 49: ELEC overview

 62

8.5 Mode Control Panel (MCP)

The MCP is used to control the modes of the aircraft, mainly the au-
topilot. It contains two different types of custom interactable elements:
Remote Button Indicators (RBIs) and Remote Value Fields (RVFs).
RBIs are used to enable or disable the radio/autopilot (1) and set differ-
ent mode of the autopilot (4) (by enabling/disabling corresponding con-
trollers). RVFs are used to set either specific input to corresponding con-
trol axis (2) (pitch, roll, etc.) or setpoint of a corresponding controller (3).
In order to set a value to a RVF this value must be first specified using
keypad and then can be set to a specific RFV by pressing it (RVF).

The following figure displays the layout of the MCP:

Figure 50: MCP overview

 63

8.6 Electric Ducted Fan panel (EDF)

The EDF panel displays vital information about the EDF assembly and
the electronic speed controller. Both components are fairly complex and
can overheat, therefore additional temperature information is useful es-
pecially in preventing critical failure of the aircraft.

This panel displays battery compartment, electronic speed controller
and EDF temperatures (2) and current EDF power setting (1) (in per-
cent):

Figure 51: EDF panel overview

8.7 Communication panel (COM)

This panel displays a numerical information regarding the latencies be-
tween different components of the whole control system (LTCY) and it
also contains information where there is a “backlash” in I2C communica-
tion between the ESP32s and the RPI4 (SQBH)

Figure 52: COM panel overview

 64

8.8 Location panel (LOC)

This panel displays current GPS position of the aircraft on the map
and also the raw LAT/LNG coordinates (1). It also provides information
about the “age” of this positional data (2).

Figure 53: LOC panel overview

8.9 Master Caution System panel (MCS)

This system handles caution/error message display. Individual ele-
ments of different other systems can trigger it and cause it to display a
corresponding caution message consisting of the “parent” panel label and
the specific cause of the caution. This panel contains main caution light
(MCL) 8(1), button to test the MCS by “injecting” a testing caution mes-
sage (2), Clear First button (CLF)9 (3) and the panel to display the cau-
tion messages, if available (4).

Figure 54: MCS panel overview

8 This button completely extinguishes the caution light and removes all current caution messages
9 This button removes only one (first available caution message, if it is the last one, it also extin-

guishes the MCL)

 65

9 HIL simulation environment

9.1 Introduction

The idea behind this application is to simulate real-life-like flight dy-
namics in order to be able to perform system identification and then ver-
ity the functionality of the onboard controller. The simulation runs in
real time and provides graphical output allowing the user to utilize it in
functional and applicable way. Engine Unity3D is used, and the code is
written in C#. The communication between the simulation and the FSU
is established over UART. [4]

9.2 IMU and GPS emulation

The IMU is also emulated itself withing the simulation. This means
that the simulation does not directly send information about the plane’s
attitude and other information but instead it emulates the accelerometer,
gyroscopic sensor and magnetometer, including each respective noise pa-
rameters other behavior. The following figure shows the configuration
options for the virtual IMU sensor:

Figure 55: Virtual IMU sensor

 66

Another sensor that needs to be emulated is GPS. For the purposes of
the system analysis and controller testing, only speed needs to be gath-
ered. This is done fairly simply by utilizing Unity’s Rigidbody compo-
nents and using measured refresh frequency (approximately 1.5 to 2 s).

9.3 Flight model

For the purpose of simulating aerodynamics effects on the aircraft, a
premade Unity package “ [5]” is used. This toolkit allows user to set up,
model and simulate any Fixed-wing aircraft. It essentially uses a finite
element method to determine the correct force and angular momentum
values for each section of aerodynamic surface.

The following figure shows the actual simulated aircraft with its wings,
vertical and horizontal stabilizer, and corresponding control surfaces set
up. The blue sphere in the middle presents the CG10 location:

Figure 56: Simulated aircraft with visualized control surfaces

10 Center of Gravity

 67

10 Model identification

10.1 Identification experiment and fitting

In order to identify the system model, identification experiment must

be performed. Experiments for identification of behavior in pitch axis and
for speed control are performed in a different way from experiments for
identification of behavior in roll axis. That is because behavior in roll axis
is inherently unstable. Pitch axis behavior and speed response are stable.
For this reason, pitch axis and speed behavior experiments can be per-
formed using only open loop, only by changing the input.

The following two figures show pitch and speed behavior identification
experiments

Figure 57: Pitch behavior identification experiment

0 500 1000 1500 2000 2500
ts

-10

-8

-6

-4

-2

0

2

4

6

8

10

an
gl

e
[D

EG
]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

in
pu

t

Pitch

process
input

 68

Figure 58: Speed behavior identification experiment

Identification of the roll behavior is slightly more complicated because,

as mentioned above, it is unstable. In other words, if a constant input is
applied, the output diverges. For this reason, this behavior must be tested
in closed loop. A controller to be used for this purpose is a manually
tuned PID. It does not provide closed loop behavior of a sufficient quality,
but it can be used for the identification experiment, since it stabilizes the
aircraft in roll axis.

The following figure shows the closed loop behavior with a manually
tuned PID controller:

0 1000 2000 3000 4000 5000 6000 7000
ts

-10

0

10

20

30

40

50

60

70

80

an
gl

e
[D

EG
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

se
tp

oi
nt

Speed

process
input

 69

Figure 59: Closed-loop roll behavior identification experiment

Based on the pitch behavior identification experiment fitting using

MATLAB ident toolbox is performed. First, experimental data at all its
length is used to identify a nominal model (“pitch_model”) and then the
experimental data is split into multiple partially overlapping sections and
fitting is performed individually. This results in multiple additional mod-
els (“pitch_model{1-5}”). This is done because during the experiment
the orientation of the aircraft may change, resulting in slightly different
dynamics. Since fitting of (in this case specifically) model #3 has not
been very successful, it is discarded.

Figure 60: Pitch model fitting

0 500 1000 1500 2000 2500
ts

-5

0

5

10

15

an
gl

e
[D

EG
]

Roll

process
setpoint

 70

The same process is performed with speed and closed loop roll data.
The following figure shows the speed model fitting process. In this case,
model number 4 and 5 are discarded:

Figure 61: Speed model fitting

The following figure shows the closed loop roll model fitting process. In

this case, none of the model is discarded:

Figure 62: Closed loop roll model fitting

All fitted transfer function are second order and stable non-oscillating

(poles are only real and negative).

 71

10.2 Uncertain system model

Utilizing MATLAB build-in function ucover [6], array of LTI responses

is used to output an uncertain model in input multiplicative form as well
as shaping filter 𝑊2:

𝑃𝑢(𝑠) = 𝑃𝑛𝑜𝑚(𝑠)(𝐼 + 𝑊2(𝑠)Δ(𝑠))

where ‖Δ(𝑠)‖∞ ≤ 1. For each array of LTI responses (inc. nominal model)
this method is used to obtain a corresponding uncertain system. Also, as
a confirmation, bode diagrams of relative errors and shaping filter 𝑊2(𝑠)
are displayed to ensure the relative errors are enveloped by the shaping
filter.
 The following figures show corresponding bode diagrams for confir-
mation:

Figure 63: Pitch relative errors confirmation

10-6 10-4 10-2 100 102
-70

-60

-50

-40

-30

-20

-10

0

M
ag

ni
tu

de
 (d

B)

From: y1 To: y1
Bode Diagram

Frequency (rad/s)

 72

Figure 64: Speed relative errors confirmation

Figure 65: Roll relative errors confirmation, 1st order

10-3 10-2 10-1 100 101 102 103
-20

-15

-10

-5

0

5

10

15

20

25

30

M
ag

ni
tu

de
 (d

B)

From: y1 To: y1
Bode Diagram

Frequency (rad/s)

10-3 10-2 10-1 100 101 102 103
-50

-45

-40

-35

-30

-25

-20

-15

M
ag

ni
tu

de
 (d

B)

From: y1 To: y1
Bode Diagram

Frequency (rad/s)

 73

From the last figure, it can be observed, that the first order shaping
filter might be redundant and higher order filter might prove to be more
adequate. As an example, the figure below shows the use of second order
shaping filter:

Figure 66: Roll relative errors confirmation, 2nd order

In case of roll, it is necessary to calculate the process transfer function

𝑃 (𝑠) from the uncertain closed loop system 𝐺(𝑠). Since we know the pa-
rameters of the controller 𝐶(𝑠), it can be done in a following way:

 𝐺(𝑠) = 𝐶(𝑠)𝑃 (𝑠)
1 + 𝐶(𝑠)𝑃 (𝑠) (20)

𝑃 (𝑠) = 𝐺(𝑠)
𝐶(𝑠)(1 − 𝐺(𝑠)) (21)

After calculating the actual roll process model (open loop), it comes

out as 6th order unstable and oscillating (1 pole positive, 4 negative and
one located in zero, two imaginary). This is in correlation with real-life
expectation, based on the aircraft geometry.

10-3 10-2 10-1 100 101 102 103
-50

-45

-40

-35

-30

-25

-20

-15

M
ag

ni
tu

de
 (d

B)

From: y1 To: y1
Bode Diagram

Frequency (rad/s)

 74

11 Controller design and verification

11.1 MATLAB controller synthesis and step test

All individual controllers are designed as PI/D controllers using the

MATLAB build-in “PID Tuner” app by adjusting the Response Time
and Transient Behavior sliders to get a desired behavior - ideally very
little overshoot and fast reference tracking. Each controller is tested using
its corresponding uncertain system and then also compared with the man-
ually tuned controller.

The following figure shows the comparison of the pitch controllers. The
test with the manually tuned controller has slightly noticeable overshoot
and slightly higher settling time as opposed to when actually tuned PID
controller is used:

Figure 67: Pitch step response

The following figure shows the comparison of the pitch controllers. The

test with the manually tuned controller has a fairly noticeable overshoot

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2
manually tuned
using PID Tuner

Step Response

Time (seconds)

Am
pl

itu
de

 75

and high settling time as opposed to when actually tuned PID controller
is used. The improvement is more noticeable, in this case:

Figure 68: Speed step response

In case of roll controller, there is a visible significant improvement when

compared to the manually tuned controller. Unlike the previous two con-
trollers being practically only PI controllers, due to dynamics of the roll
behavior (unstable) this controller is an actual PID.

0 20 40 60 80 100 120
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
From: u1 To: Out(1)

manually tuned
using PID Tuner

Step Response

Time (seconds)

Am
pl

itu
de

 76

Figure 69: Roll step response

For clarity, parameters of all (manually and tuned using MATLAB

PID Tuner) are shown in the table below:

Table 5: PID controllers’ comparison

 P term I term D term
Pitch - manual 0.1 0.05 0
Speed - manual 0.01 0.0025 0
Roll - manual 0.0025 0.00125 0

Pitch - MATLAB 0.145 0.145 0
Speed - MATLAB 0.0281 0.00312 0
Roll - MATLAB 0.0169 0.00561 0.000527

0 5 10 15 20 25 30 35
0

0.5

1

1.5
From: y1 To: Out(1)

manually tuned
using PID Tuner

Step Response

Time (seconds)

Am
pl

itu
de

 77

11.3 Robust performance analysis

In this section, each model (pitch, roll and speed) is analyzed with its
controller (respectively) in closed loop to verify whether conditions of
nominal performance (NP), robust stability (RS) and at the end, robust
performance (RP) are met for all of those controllers.

For each model, weighting function 𝑊1 is chosen in order to verify NP
condition in the form: ‖𝑊1𝑆‖∞ < 1.

As stated in the book Feedback control theory by John Doyle [6]: “In
several applications, for example aircraft flight-control design, designers
have acquired through experience desired shapes for the Bode magni-
tude plot of S. In particular, suppose, that good performance is known
to be achieved if the plot of |𝑆(𝑗𝜔)| lies under some curve.”
Let 𝑊1

−1 be the curve the sensitive function 𝑆(𝑗𝑤) of the closed loop
lies under.

The following figures show the choice of 𝑊1, or rather its inverse for
each model:

Figure 70: 𝑊1 design for pitch model

10-6 10-4 10-2 100 102
-120

-100

-80

-60

-40

-20

0

20

M
ag

ni
tu

de
 (d

B)

From: y1 To: Out(1)

S(jw)
W_1-1

Bode Diagram

Frequency (rad/s)

 78

Figure 71: 𝑊1 design for speed model

Figure 72: 𝑊1 design for roll model

This allows to perform the NP tests:

10-6 10-5 10-4 10-3 10-2 10-1 100 101
-140

-120

-100

-80

-60

-40

-20

0

20

M
ag

ni
tu

de
 (d

B)

From: y1 To: Out(1)

S(jw)
W_1-1

Bode Diagram

Frequency (rad/s)

10-4 10-3 10-2 10-1 100 101 102
-60

-50

-40

-30

-20

-10

0

10

M
ag

ni
tu

de
 (d

B)

From: y1 To: Out(1)

S(jw)
W_1-1

Bode Diagram

Frequency (rad/s)

 79

Figure 73: NP test

Given those results, it is safe to conclude, that all 3 models pass the

nominal performance test. This ensures stability radius of 0.75 in pitch
control, radius of 0.6 in speed control and radius of 0.75 in roll control.
Next, RS test is performed using the respected 𝑊2 functions for each

model. The condition ‖𝑊2𝑇 ‖∞ < 1 must be met for each model, where 𝑇

10-6 10-4 10-2 100 102
-60

-50

-40

-30

-20

-10

0

M
ag

ni
tu

de
 (d

B)

From: y1 To: Out(1)

Pitch Bode Diagram, max magnitude: 0.75

Frequency (rad/s)

10-6 10-5 10-4 10-3 10-2 10-1 100 101

-50

-40

-30

-20

-10

0

M
ag

ni
tu

de
 (d

B)

From: y1 To: Out(1)
Speed Bode Diagram, max magnitude: 0.6

Frequency (rad/s)

10-4 10-3 10-2 10-1 100 101 102

-20

-15

-10

-5

0

M
ag

ni
tu

de
 (d

B)

From: y1 To: Out(1)
Roll Bode Diagram, max magnitude: 0.68065

Frequency (rad/s)

 80

is the complementary sensitivity function. That will ensure that all the
set of each uncertain model is stable:

Figure 74: RS test

Given those results, it is safe to conclude, that all 3 models pass the

robust stability test.

10-4 10-3 10-2 10-1 100 101 102
-60

-50

-40

-30

-20

-10

0

M
ag

ni
tu

de
 (d

B)

From: y1 To: Out(1)
Pitch Bode Diagram, max magnitude: 0.42314

Frequency (rad/s)

10-3 10-2 10-1 100 101 102 103

-40

-35

-30

-25

-20

-15

-10

M
ag

ni
tu

de
 (d

B)

From: y1 To: Out(1)
Speed Bode Diagram, max magnitude: 0.3169

Frequency (rad/s)

10-3 10-2 10-1 100 101 102 103
-40

-35

-30

-25

-20

M
ag

ni
tu

de
 (d

B)

From: y1 To: Out(1)
Roll Bode Diagram, max magnitude: 0.16629

Frequency (rad/s)

 81

Lastly, since all model pass both, NP and RS, robust performance test
can be performed. For that, the condition ‖𝑊1𝑆 + 𝑊2𝑇 ‖∞ < 1 must be
met for each model:

Figure 75: RP test

10-2 10-1 100 101 102 103

Frequency [rad/s]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ag

ni
tu

de

Pitch Bode Diagram, max magnitude: 0.76058

10-2 10-1 100 101 102 103

Frequency [rad/s]

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

M
ag

ni
tu

de

Speed Bode Diagram, max magnitude: 0.91442

10-2 10-1 100 101 102 103

Frequency [rad/s]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ag

ni
tu

de

Roll Bode Diagram, max magnitude: 0.7118

 82

It can be observed that all 3 systems are robust performant given the
chosen weighting functions.

11.4 Testing on the real-life Flight Computer

This testing was performed using the developed avionics including the

flight computer which stores data into an SQLite database. The following
three figures show the comparison on the manually tuned PID controllers
and designed using MATLAB:

Figure 76: Pitch control implementation test

0 1 2 3 4 5 6 7 8 9 10
time [s]

-2

0

2

4

6

8

10

12

an
gl

e
[D

EG
]

Pitch control implementation test

target value
using PID Tuner
manually tuned

 83

Figure 77: Speed control implementation test

The “stair” like behavior in this figure is not caused by a different

sampling period of the system, but it is caused by the behavior of the
GPS module which provides the speed estimates. It provides these esti-
mates approximately every 1.5 - 2.0 seconds. Since the virtual sensor in
the simulation tries to realistically emulate real-life behavior, this “stair-
like” pattern can be observed.

Figure 78: Roll control implementation test

0 5 10 15 20 25 30
time [s]

60

61

62

63

64

65

66

67

68

69

70

an
gl

e
[D

EG
]

Speed control implementation test

target value
using PID Tuner
manually tuned

0 1 2 3 4 5
time [s]

-2

0

2

4

6

8

10

12

14

an
gl

e
[D

EG
]

Roll control implementation test

target value
using PID Tuner
manually tuned

 84

12 Maiden flight

Due to the complexity and scale of this project and the limited time
frame of the development, there has been only limited tests of the aircraft
conducted. Those included mainly the landing gear testing and ground
testing, near-take-off speed ground tests and some very short flight tests11.

Like with real-to-scale aircrafts, each test brings information about how
to adjust different procedures and processes. Those, include the behavior
of the aircraft systems itself but also, very importantly safety procedures
and preliminary flight checklists, as well as post-flight/post-test proce-
dures. Although, this may sound obvious, it is important to point that
out specifically.

The following few pictures illustrate the telemetry and control station
as well as me performing preflight procedures:

Figure 79: Preflight illustration

11 With the last one resulting in a critical damage to the fuselage due to the loss of control caused

by aerodynamical instability which is a result of material deformation due to high ambient heat of
the storage location

 85

Figure 80: To scale comparison. (For reference, my height is 1.89m)

 86

13 Conclusion

The purpose of this thesis was to develop a control system for an air-
craft, which is capable of autonomous flight with minimum interference
of the operator. This was done in multiple phases, designing the avionics,
including the flight computer and installing electronics components by
hand, developing software in C++ and Python that runs on the flight
computer and is responsible for control, data acquisition, internal com-
munication (among the flight computer components) and external (with
the ground control app), building the actual aircraft model, developing a
realistic HIL simulation including emulating behavior of different sensors
in order for the simulation to be able to use to verify the behavior of the
avionics in real-time. Lastly, the Telemetry and Control App was devel-
oped to ensure user friendly and most importantly reliable interaction of
the operator with the aircraft flight computer.

As illustrated in this thesis, all those phases went to plan and produced
a reliable and robust control system. As mentioned above, due to the
scale of this project and the limited time frame, actual test flights had to
be very limited.

This project also required the strong enhancement of my not only dif-
ferent technical disciplines (such as CAD design, electronics design, me-
chanical engineering, knowledge of systems in commercial aircrafts such
as B737, A320), but also larger scale project management and planning
as well as safety and precautionary measures.

 87

14 Works Cited

[1] Riki, "ThePoorEngineer," [Online]. Available: thepoorengineer.com.
[2] A. Narayan, "ashwinnarayan.com," [Online]. Available:

https://www.ashwinnarayan.com/post/how-to-integrate-quaternions/.
[3] "Linear Algebra," [Online]. Available: https://tttapa.github.io/Linear-

Algebra/arduino/Doxygen/index.html.
[4] Oyedoyin, "Unity Asset Store," [Online]. Available:

https://assetstore.unity.com/packages/tools/physics/silantro-flight-simulator-
toolkit-128025.

[5] I. The MathWorks, "MathWorks Help," [Online]. Available:
https://www.mathworks.com/help/robust/ref/lti.ucover.html#mw_61bb8a18-
7c60-42b6-9997-2d1fda3296f6.

[6] B. F. A. T. John Doyle, Feedback Control Theory, Macmillan Publishing
Co., 1990.

[7] Tahustvedt. [Online]. Available: https://cults3d.com/en/3d-
model/various/el-39-semi-scale-rc-jet-for-120-mm-edf.

 88

15 List of figures

Figure 1: UAV development diagram .. 8
Figure 2: UAV overall design ... 10
Figure 3: Avionics bay with FC components in Fusion 360 11
Figure 4: UAV without wings attached ... 12
Figure 5: Retract unit .. 13
Figure 6: EDF assembly installed inside of the fuselage 14
Figure 7: EDF assembly ... 15
Figure 8: Typhoon HET 800-73 Motor .. 15
Figure 9: BLDC motor with heatsink installed 16
Figure 10: EDF housing fitted with the motor and the impeller 16
Figure 11: Left main wing .. 17
Figure 12: Avionics general diagram .. 18
Figure 13: Battery structural diagram ... 19
Figure 14: Control surfaces structural diagram 20
Figure 15: Landing gear structural diagram .. 21
Figure 16: Landing gear assembly .. 21
Figure 17: Flight computer structural diagram 22
Figure 18: FSU class diagram .. 24
Figure 19: I2C package layout ... 28
Figure 20: Avionics layout ... 29
Figure 21: Power supply and distribution .. 30
Figure 22: HV voltage divider .. 30
Figure 23: FM, FSU, MISCCU connection .. 31
Figure 24: FSU PWM ports ... 31
Figure 25: MPU, BMP, GPS connections .. 32
Figure 26: Fly Sky-16X 2.4 GHz transmitter ... 32
Figure 27: FS RC receiver .. 33
Figure 28: MISCCU PWM ports ... 34
Figure 29: DS18B20 sensors connected over 1-Wire and extra pins 34
Figure 30: PCB layout design .. 35
Figure 31: Fusion 360 generated 3D preview ... 36
Figure 32: PCB mounted on a 3D printed platform 36
Figure 33: Illustration of a sensor data with no error 38
Figure 34: Illustration of a sensor data with hard-iron error only 39
Figure 35: Illustration of a sensor data with a soft-iron error only 40

 89

Figure 36: Illustration of a sensor data with hard-iron and soft-iron 40
Figure 37: Measured magnetometer data before fitting 41
Figure 38: Transformed magnetometer data .. 42
Figure 39: Sensor data during programmatically specified movement ... 51
Figure 40: Sensor data while IMU under drastic linear acceleration 52
Figure 41: EKF output with no drastic linear acceleration 53
Figure 42: EKF output with drastic linear acceleration 54
Figure 43: First scenario data .. 56
Figure 44: Second scenario data ... 57
Figure 45: Third scenario data ... 57
Figure 46: GUI overview .. 59
Figure 47: PFD overview ... 60
Figure 48: F/CTL overview ... 61
Figure 49: ELEC overview ... 61
Figure 50: MCP overview .. 62
Figure 51: EDF panel overview .. 63
Figure 52: COM panel overview .. 63
Figure 53: LOC panel overview .. 64
Figure 54: MCS panel overview ... 64
Figure 55: Virtual IMU sensor ... 65
Figure 56: Simulated aircraft with visualized control surfaces 66
Figure 57: Pitch behavior identification experiment 67
Figure 58: Speed behavior identification experiment 68
Figure 59: Closed-loop roll behavior identification experiment 69
Figure 60: Pitch model fitting .. 69
Figure 61: Speed model fitting ... 70
Figure 62: Closed loop roll model fitting .. 70
Figure 63: Pitch relative errors confirmation ... 71
Figure 64: Speed relative errors confirmation .. 72
Figure 65: Roll relative errors confirmation, 1st order 72
Figure 66: Roll relative errors confirmation, 2nd order 73
Figure 67: Pitch step response ... 74
Figure 68: Speed step response ... 75
Figure 69: Roll step response ... 76
Figure 70: 𝑊1 design for pitch model .. 77
Figure 71: 𝑊1 design for speed model .. 78
Figure 72: 𝑊1 design for roll model ... 78

 90

Figure 73: NP test .. 79
Figure 74: RS test .. 80
Figure 75: RP test .. 81
Figure 76: Pitch control implementation test .. 82
Figure 77: Speed control implementation test .. 83
Figure 78: Roll control implementation test .. 83
Figure 79: Preflight illustration .. 84
Figure 80: To scale comparison. (For reference, my height is 1.89m) 85

