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Annotation 
The master's thesis Design, assembly and automatic control of un-

manned aerial vehicle prototype is divided into eight sections. First, con-
struction of a mode aircraft is described. Second, the development of avi-
onics components of this aircraft is described. That is followed by elec-
tronic design of the flight computer itself. After that, attitude estimation 
system is developed using Extended Kalman Filter. Next, Telemetry and 
Control app and realistic HIL simulation environment is designed in 
Unity. Lastly, 3 linear uncertain model are identified using the simulation 
data and are then used to perform a robust performance analysis with 3 
PID controllers which are designed using MATLAB PID Tuner.  

 

KEYWORDS 
UAV, aircraft, control system design, controller, PID, model, linear 

model, control software, aerodynamics, system identification, robust con-
trol 

 

Anotace 
Magisterská práce na téma Návrh, realizace a automatické řízení pro-

totypu bezpilotního letounu je rozdělena do osmi sekcí. Nejprve je 
popsána konstrukce bezpilotního letounu. Za druhé je popsán vývoj avi-
oniky tohoto letounu. Následuje popis návrhu samotného palubního po-
čítače. Poté je popsán způsob odhadu polohy za použití rozšířeného Kal-
manova filtru. Dále je navrhnuta jak aplikace pro zobrazování telemetric-
kých dat a ovládání tak realistická HIL simulace v Unity. Nakonec jsou 
identifikovány 3 neurčitostní lineární modely za použití dat z HIL simu-
lace. Ty jsou poté použity k provedení analýzy robustní kvality řízení se 
třemi PID regulátory, které jsou navržené pomocí MATLAB PID Tuner.  

 

KLÍČOVÁ SLOVA 
UAV, letadlo, návrh řídicího systému, regulátor, PID, model, lineární 

model, řídicí software, aerodynamika, identifikace systému, robustní ří-
zení  
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2 Acronym list 

Acronym Definition 
A320 Airbus A320 
B737 Boeing 737 
BLDC Brushless Direct Current 
CA Cyanoacrylate 
CAD  Computer Aided Design 
CG Center of Gravity 
COM Communication  
EDF Electric Ducted Fan 
EKF Extended Kalman Filter 
ELEC Electrical  
F/CTL Flaps and Control Surface  
FC Flight Computer 
FM Flight Manager 
FSU Flight Stabilization Unit 
HIL Hardware In the Loop 
I2C Inter-Integrated Circuit 
IAS Indicated Airspeed 
IMU Inertial Measurement Unit 
LOC Location  
MCP Mode Control Panel  
MCS Master Caution System  
MISCCU Miscellaneous Control Unit 
PFD Primary Flight Display  
PLA Polylactic acid 
PWM Pulse-width modulation 
RBI Remote Button Indicators  
RMCU Retract Motors Control Unit 
RVF Remote Value Fields  
SPI Serial Peripheral Interface 
TAS True Airspeed 
TPU Thermoplastic polyurethane 
UAV Unmanned Aerial Vehicle 
UML Unified Modeling Language 
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3 Introduction 
 

The purpose of this thesis is to develop a control system for an aircraft, 
which is capable of autonomous flight with minimum interference of the 
operator. Multiple different sections describe this process: UAV assembly, 
avionics design, telemetry and control app development, HIL simulation 
development and lastly controller synthesis and analysis.  

 

 
Figure 1: UAV development diagram 

 
The motivation and goal behind this project and therefore this thesis 

is to develop a custom control system and evolve a deep and firsthand 
understanding of the technical and practical difficulties in order to earn 
as much experience in different (mainly but possibly not exclusive to) 
technical disciplines and areas. This is one of - but not the only - reason 
why I decided to develop a control system, essentially, from zero and was 
not inclined to using already developed flight controllers, either commer-
cial or more hobby-grade, such as Pixhawk, Betaflight or Ardupilot.  

The use for larger scale drones and UAVs is vast and ranges from ci-
vilian use, such as delivery of goods or terrain mapping, through use in 
emergency services, such as blood transport for patients in critical condi-
tion, surveillance or help in firefighting, to use in military applications, 
such as reconnaissance missions, remote target engagement, etc.   

Another reason for developing the whole system myself is to have full 
control over the functionality and features and not be dependent on 
sometimes limited or not fully documented option to make changes in 
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implementation or different levels of functionality of already developed 
flight controllers. This is more of a personal preference, and it is not an 
objective statement of which solution is better. 
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4 UAV assembly 

4.1 Introduction 
 

As already stated, the design of the UAV is a scaled model of L-39 
fighter aircraft. 3D files were acquired online and the loaded into a 3D 
slicing software which generated g-code files which were then loaded into 
a 3D printer. Some files had to be first slightly modified before the slicing 
process. This was done to ensure compatibility with other components 
that had to be ordered online (such as servomotors, shock absorbers, 
pushrods, etc.). As a modeling software for modifying and modeling new 
parts, Fusion 360 by Autodesk was used. For slicing, Ultimaker Cura was 
used. Material used is PLA for the most part. The exception are tires and 
some EDF components. Those are printed using TPU rubber material. 

The figure below shows the overall design of the aircraft: 
 

 
Figure 2: UAV overall design 
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4.2 Nose and avionics bay assembly 
 

The nose and the avionics bay consist of 6 individual segments. These 
are connected using carbon rod segments and glued together using CA 
glue. The front landing gear is stored inside of the second and third seg-
ment. A nose landing gear door is used as a cover when the landing gear 
is in transit from UPàDOWN or DOWNàUP position.  

Moving further, the avionics bay follows. It houses power source in a 
form of lithium-polymer batteries, flight computer which is described in 
higher detail in the avionics design chapter. The following figure shows 
computer visualization of the avionics bay fitted with the flight computer 
components: 

 

 
Figure 3: Avionics bay with FC components in Fusion 360 

 

The batteries are placed on the bottom of the avionics bay. Other elec-
tronic components are placed above that and screwed to a 3D printed 
plate which separates the PCBs from the batteries. 

 
  



 12 

4.3 Center fuselage section 
 

This section of the fuselage contains two air-intakes (one on each side) 
which are used to direct the air to the EDF. This section, as well as the 
rest of the sections of the fuselage and wings provide cavities for the 
cables to be led through. It consists of 3 individual segments. These are 
again connected using carbon rod segments and glued together using CA 
glue. There are two carbon tubes connecting main wings and providing 
enhanced structural stability. The most inner section of the main wing is 
permanently glued to the fuselage and the rest of the main wings is de-
tachable. This ensures that the UAV can operate on the landing gear 
even when the main wings is detached. The main landing gear is stored 
in a main landing gear bay which is placed inside the fuselage. Analogi-
cally to the nose landing gear, main landing gear doors are used as a cover 
when the landing gear is in transit from UPàDOWN or DOWNàUP 
position.  

The following figure shows the UAV without wings attached: 
 

 
Figure 4: UAV without wings attached 
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The landing gear is connected to the fuselage with electric retract sys-
tem. This enables the landing gear assembly to rotate 90 degrees so that 
it can be deployed and retracted when needed. The graphics below shows 
one retract for an illustration: 

 
Figure 5: Retract unit 

 

4.4 Rear fuselage section 
 

This section of the fuselage contains the EDF itself which functions as 
a propulsion unit for the whole aircraft. This section consists of 3 indi-
vidual segments. These are again connected using carbon rod segments 
and glued together using CA glue. On top there is an EDF hatch. This 
hatch is removable and is used to service the whole EDF assembly located 
in the center of the fuselage. The EDF itself is described in the following 
chapter in more detail. The rest of this fuselage section contains an air-
outtake through which the air is propelled by the EDF.  

The following figure shows the EDF assembly installed inside of the 
fuselage: 
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Figure 6: EDF assembly installed inside of the fuselage 

 
The three black cables at the top of the image supply 3-phase signal to 

a BLDC motor inside of the EDF. The rest of the cables are used to 
connect elevator and rudder servomotors and transfer information from a 
temperature sensor (Inside the EDF). 

 

4.5 EDF assembly 
 

The EDF assembly consists of BLDC motor, impeller, EDF housing, 
fan-intake, rails to which the housing is crewed and rubber spacers 
(printed from TPU) which are used to reduce vibrations from the EDF. 
The BLDC motor is equipped with a heatsink in order not to overheat. 
There is a temperature sensor mounted to the motor-heatsink assembly 
to ensure a safe operation. The EDF assembly also includes two seal tubes 
to increase the “air-tightness” and easy the installation of the assembly. 
The following figure illustrates how the EDF assembly is assembled:  
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Figure 7: EDF assembly 

 
The motor that powers the EDF is a 4.8kW BLDC motor. It runs at 

around 45-50V. Because of the high power, a proper cooling must be 
ensured. That is in a form of added heatsink and air flow cooling the 
motor to reasonable temperatures. For safety reasons, there is a temper-
ature sensor mounted right on the motor (inside a heatsink gab). The 
temperature information is monitored by the flight computer and a warn-
ing issued when the temperature is not in safe limits. The following figure 
shows the motor itself: 

 

 
Figure 8: Typhoon HET 800-73 Motor 

 
The following figure shows the motor with the heatsink installed: 
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Figure 9: BLDC motor with heatsink installed 

 

The following figure shows the EDF housing fitted with the motor and 
the impeller: 

 

 
Figure 10: EDF housing fitted with the motor and the impeller 

 
The EDF assembly is one of the most advanced parts of the aircraft. 

The impeller reaches very high RPM and therefore must be properly 
tested before increasing the power of the motor. It can be dangerous if 
tested or operated without necessary safety equipment and procedures.   

 

4.6 Main wing, vertical and horizontal stabilizer 
 

Main wings include ailerons in order to control the aircraft along the 
longitudinal axis (roll) and flaps to increase lift generated by the airfoil 
especially when flying at low speeds (landing, taking off). Both, ailerons 
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and flaps are manipulated by individual servomotor. All control surfaces 
of the aircraft are fitted with bearings to move with as low resistance as 
possible. Left and right main wing are detachable from the fuselage in 
order to transport aircraft easier and for possible maintenance needs. The 
left main wing is pictured in the figure below: 

 

 
Figure 11: Left main wing 

 
Servo 1 controls the aileron to which is coupled through a thin steel 

piano wire and secured with a custom 3D printed clevis. This form of 
physical connection is utilized for all control surfaces of the aircraft. Servo 
2 controls the flap. 

The vertical stabilizer contains the rudder control surface for control 
in the vertical axis (yaw). The horizontal stabilizer contains left and right 
elevators to control the aircraft in the lateral axis. Vertical and horizontal 
stabilizers including their control surfaces are assembled using the same 
technique as the main wing.  

4.7 Conclusion 
 

The weight of the assembled UAV with the electronics fitted in is ap-
proximately 8.6 kg. Which is still in the acceptable range. Based on the 
data provided by the model designer, the maximum take-off weight is 10 
kg.   
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5 Avionics design 

5.1 Introduction 
 

 In this chapter the goal is to use UML to describe an UAV autopilot 
system including the avionics. The avionics divided into multiple sections 
and each of them is also described in more detail. In order to model the 
hardware characteristics (from mechanical and electrical perspective), an 
UML structural diagram is used. The following figure illustrates the sys-
tem as a whole: 

 

 
Figure 12: Avionics general diagram 

 
As show in the figure above, the Aircraft Control System diagram con-

sists of multiple subsystems. The more complicated ones are more closely 
described below. Those include battery (2S and 12S), control surfaces, 
landing gear and the flight computer. 

 

5.2 Battery 
 

 This diagram describes both 2S1 and 12S2 battery. Those are assem-
bled by connecting 1-cell (for 2S) and 6-cell (for 12S) batteries in series. 

 
1 Referring to a 2-cell lithium polymer battery 
2 Referring to a 12-cell lithium polymer battery 
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Balance ports are wired individually so that both batteries can be charged 
using a dual charger in parallel. 2S battery outputs around 7.4V and is 
used to power the avionics and low-power actuators. 12S battery outputs 
around 45-50V and is used to power a propulsion unit which is made of 
an EDF3. The battery assembly is illustrated in the following diagram: 

 

 
Figure 13: Battery structural diagram 

 

5.3 Control surfaces 
 

 In order to achieve stable flight or change the attitude of the aircraft, 
control surfaces must be used. As described in the chapter “UAV assem-
bly” those include ailerons to control the roll angle, elevators to control 
the pitch angle and rudder to control the yaw or the aircraft. Flaps are 
used to increase the lift generated by the main wing without increasing 
the AoA4 so that stall does not occur even at lower speeds (for example 

 
3 Referring to an electric ducted fan which is located inside of the aircraft 
4 Referring to angle of attack - the angle between the chord line of an airfoil and the aircraft’s 

velocity vector 
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during take-off and landing). Each control surface is manipulated by a 
servo motor which is controlled using PWM signal as shown in the fol-
lowing figure: 

 

 
Figure 14: Control surfaces structural diagram 

 

5.4 Landing gear 
 

 In its retracted state (gear up), the landing gear is hidden inside a 
landing gear bay and covered by dedicated landing gear cover plates 
(landing gear bay door). Those and the landing gear retracts are both 
controlled by the retracts control unit. There is an option for adding left 
and right brakes which could be are used to bring the aircraft to stop 
after landing and during taxi more efficiently. Those would be part of the 
main landing gear assembly and controlled by individual servomotors. In 
order to steer the aircraft when on the ground, during taxi, the nose 
landing gear is equipped with a steering assembly which is controlled by 
another servomotor. All the functionality mentioned is summarized in the 
following figure: 
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Figure 15: Landing gear structural diagram 

 

The two main landing gear are assembled in a similar way.  The nose 
landing gear includes a steering assembly driven by a servomotor. The 
steering assembly uses a ball bearing to reduce friction when turning and 
is coupled with the servomotor through a thin steel piano wire. To reduce 
structural load when landing, landing gear is equipped with a shocked 
absorber which is filled with 10000 CST differential oil. As mentioned 
above, the tires are 3D printed with TPU filament. This makes sure the 
tires are slightly compressible and therefore also help with reducing the 
structural load. The following graphics illustrates the layout of the front 
landing gear:  

 

 
Figure 16: Landing gear assembly 
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5.5 Flight computer 
 

 The most important and complex part of the avionics is the flight 
computer itself. It mainly consists of flight manager, flight stabilization 
unit, Miscellaneous control unit. Flight stabilization unit (FSU) is de-
scribed in more detail, from the software perspective using a class diagram 
later in the work. Flight manager is used to communicate over network 
with the user as well as communicate over I2C with FSU and Miscella-
neous control unit. Miscellaneous control unit mainly controls the landing 
gear functionality and collects information from the temperature sensors. 
Inertial measurement unit, barometric sensor, self-diagnostics compo-
nents and human interface input/output components are also included as 
shown in the figure below: 

 

 
Figure 17: Flight computer structural diagram 
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5.6 FSU - software implementation 
 

 As stated above, the flight stabilization unit is part of the flight con-
troller. Its task is to control the control surfaces and the propulsion unit 
based on the commands received from the flight manager, calculate the 
aircraft’s attitude, gather the telemetry data, etc. In order to achieve this 
task, FSU is itself divided into in total 8 bigger classes. The programming 
language of the current implementation is C++, mainly because of its 
speed.  

Class QuatIMUHandler handles the communication with the IMU, cal-
ibration of the IMU, providing data to and gathering from the EKF. 
QuatKalman class contains the implementation itself. It is responsible for 
all the matrix calculations necessary. Classes ComHandler and 
CMDHandler, like the names suggest, handle the communication and 
command execution. MCPHandler is responsible for controlling the au-
tonomous aspects of the system - the PIDHandler containing the PID 
controller’s implementation, as well as enabling/disabling manual or au-
tomatic control completely. CtrlSurfAndThrottleHandler controls the 
control surfaces, flaps and throttle of the aircraft. The main class is the 
Flight_Stabilization_Unit class. It contains references to other classes 
and runs the main control loop and other critical loop using the RTOS 
implementation. 

The implementation can be described by the UML class diagram shown 
on the next page. This diagram was created during the development of 
the project, so the final implementation (names, etc.) may slightly vary.: 
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Figure 18: FSU class diagram 

  



 25 

5.7 Communication and command execution 
 

The FSU must be able to exchange information both ways with the 
flight manager. For example: desired attitude of the aircraft as a setpoint 
for the controller (flight manager à FSU), user set calibration setting for 
the control surfaces (flight manager à FSU) or calculated attitude of the 
aircraft for visualization, etc... (FSU à flight manager). This is done over 
I2C using the class called ComHandler. 

 Each data variable being provided to the Flight Manager (through the 
I2C, but no exclusive to) is described in the table below, which each 
respected source and description. 

 
Table 1: Communication variables 

IDX ABBRV DESC FSU MISCCU EXT 
0 DTIM datetime X     
1 PTCH pitch X     
2 ROLL roll X     
3 HDG heading X     
4 ATMP atm press X     
5 MSL mean sea level X     
6 PIIN pitch_input X     
7 ROIN roll_input X     
8 YWIN yaw_input X     
9 THIN throttle_input X     
10 LADF LA_def X     
11 RADF RA_def X     
12 LFDF LF_def X     
13 RFDF RF_def X     
14 LEDF LE_def X     
15 REDF RE_def X     
16 RDDF RD_def X     
17 EDFP edf_pow X     
18 GRUD gear_ud   X   
19 EDFT edf_temp   X   
20 RPIT rpi temp     X 
21 BMPT bmp temp X     
22 C1LTC client 1 ping latency     X 
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23 C2LTC client 2 ping latency     X 
24 FCPU1 FSU CPU 1 load X     
25 FCPU2 FSU CPU 2 load X     
26 MCPU1 MISCCU CPU 1 load   X   
27 MCPU2 MISCCU CPU 2 load   X   
28 CLTP control loop time period X     

29 KECV Kalman estimation covariance 
matrix trace X     

30 GLAT GPS latitude X     
31 GLNG GPS longitude X     
32 GSPD GPS speed X     
33 GPSP GPS data precision X     
34 LVBL Low voltage battery voltage   X   
35 HVBL High voltage battery voltage   X   
36 ESCT ESC temperature   X   

37 BTCT Battery compartment tempera-
ture   X   

38 MCPE MCP enable status 0/1 X     
39 MCPM MCP manual input X     
40 MCPS MCP setpoint input X     
41 FLTCY FSU I2C latency X     
42 MLTCY MISCCU I2C latency   X   
43 QBCLS Stream queue data backlash X X   

 
 
The following two tables show how data is packed and its correspond-

ing identifiers. If DTYPE is BYTE, it means that the data is scaled (using 
the min, max values) and pre-packed into an array of 4 bytes. This results 
in lower precision of this data but also in less data required to be trans-
ferred. For this reason, this is only applicable for variables that don’t 
need to hold high precession and are ranged, either inherently, or for this 
purpose.  

 
Table 2: FSU packs 

ID POS1 POS2 POS3 POS4 DTYPE MIN MAX 
1 PTCH - - - FLOAT - - 
2 ROLL - - - FLOAT - - 
3 HDG - - - FLOAT - - 
4 PIIN ROIN YWIN THIN BYTE -1 1 
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5 LADF RADF LFDF RFDF BYTE -1 1 
6 LEDF REDF RDDF EDFP BYTE -1 1 
7 ATMP - - - FLOAT - - 
8 MSL - - - FLOAT - - 
10 FCPU1 FCPU2 BMPT FLTCY BYTE 0 100 
12 CLTP QBCLS - - BYTE 0 100 
13 KECV GPSP - - BYTE 0 3 
14 GLAT - - - FLOAT - - 
15 GLNG - - - FLOAT - - 
16 GSPD - - - FLOAT - - 
17 MCPE MCPE - - BYTE 0 255 
18 MCPM MCPM MCPM MCPM BYTE -100 100 
19 MCPS MCPS MCPS MCPS BYTE -100 100 

 
Table 3: MISCCU packs 

ID POS1 POS2 POS3 POS4 DTYPE MIN MAX 
100 LVBL HVBL MLTCY - BYTE 0 100 
101 EDFT ESCT BTCT - BYTE -20 120 
102 MCPU1 MCPU2 QBCLS - BYTE 0 100 

 
To clarify, the ID column in the tables above does refer to the identifier 

of the pack but not identifier of the command. The identifier of the pack 
is used to determine which variable and in which format is being trans-
mitted and the command identifier is used to determine what type of 
command is being transmitted in general (To transmit data variables a 
specific constant command identifier is used - CMD_UP-
DATE_STATE_DATA) - more about that in the following paragraphs. 

 
In order to execute received commands, the class CMDHandler is used. 

It contains the pointers to the other classes so that it can directly call 
corresponding methods. Depending on the identifier of the command, 
(those are defined in a special header file) it executes the corresponding 
command.  

Commands are transmitted in packet. Each command can contain one 
or more data variable. It has a fixed size of 8 Bytes and composes of an 
identification identifier (1 Byte), parameters (3 Bytes) and data payload 
(4 Bytes). Data payload can be either one 32bit integer, array of 4 (either 
signed or unsigned) 8bit integers or one floating point value. 
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Figure 19: I2C package layout 

 

5.8 Attitude computation 
 

In order to calculate attitude of the aircraft, IMU9250 module is con-
nected and communication established over SPI. The class QuatIMU-
Handler is responsible for receiving data containing information about 
linear acceleration (accelerometer), angular velocity (gyroscopic sensor) 
and magnetic vector (magnetometer) from this module. This “raw” infor-
mation is then filtered using Kalman filter provided by QautKalman class. 
This class is responsible for running an implementation of extended Kal-
man filter. Quaternion arithmetic is used for all attitude calculations be-
cause it has many advantages over using Euler angles (avoiding gimbal 
lock, etc..) and that is the reason why classic Kalman filter algorithm 
cannot be used and extended Kalman filter must be used instead for at-
titude estimation.  

 

5.9 Actuator control 
 

Before the PWM signal is sent to the actuators, the appropriate ma-
nipulated variable must be computed. This is done using the 
MCPHandler class. This class oversees the individual controllers. Depend-
ing on the commands received, this class selects which controllers are used 
and what data is passed onto these controllers. In the current implemen-
tation, there are standard PID controllers (3 PID controllers for 3 process 
values: pitch, roll, speed) implemented inside the PIDHandler class. 

The data from the MCPHandler class is then sent over to the actuators 
using PWM signal by the CtrlSuftAndThrottleHandler class. This class 
can also be used perform calibration of the control surfaces, set limits for 
the control surfaces and to manually control the co control surfaces and 
the propulsion unit. 
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6 Flight computer PCB design 

6.1 Introduction 
 

 As described above, the FC (flight computer) consists of mainly 3 
components. Those are Raspberry Pi 4 acting as a master – flight man-
ager (FM) and two ESP32s acting as flight stabilization unit (FSU) and 
miscellaneous control unit (MISCCU). As described above FM communi-
cates with FSU and MISCCU over I2C. The main role of the FM is to 
communicate with the ground station and command the FSU and 
MISCCU so that the whole system works as required by the operator. 
The FM is connected to the internet over LTE so the theoretical range is 
unlimited (when mobile data coverage is ensured). FSU and MISCCU are 
placed inside a custom-made PCB. This PCB also houses other important 
modules and pins to interface with servomotors. 

 The graphics below shows the layout of the avionics with the main 
components placed on top of the separation plate. The Raspberry Pi 4 is 
enclosed inside of a 3D printed enclosure which is screwed to the plate. 
The graphics is rendered inside Fusion 360:  

 

 
Figure 20: Avionics layout 
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6.2 Custom PCB schematics 

6.2.1 Power supply and distribution 
 

 The power output from the 2S lithium-polymer battery is connected 
through a master switch to a step-down buck converter. Linear voltage 
regulator was initially indented to be used but because of its low efficiency 
(and therefore reaching high temperatures) and low voltage regulation 
quality, more expensive and higher quality buck converter is used instead. 
There are electrolytic capacitors used near the servo pins to help with the 
power stability.  

There is also power a LED added for indication and voltage divider to 
be able to measure a battery voltage in order to determine the percentage. 
It has an optional 100 nF ceramic capacitor for filtration. The following 
figure shows the schematic diagram of this section: 

 

 
Figure 21: Power supply and distribution 

 
 There is a second voltage divider whose purpose is to measure the 

voltage of the 12S battery. It also has an optional 100 nF ceramic capac-
itor for the purpose of filtration. Both voltage dividers are connected to 
an ADC enabled pin of the MISCCU. It is visible in the schematic dia-
gram below: 

 

 
Figure 22: HV voltage divider 
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6.3 ESP32s and Raspberry Pi 4 connection 
 

 As stated above, the FC contains two ESP32s (FSU and MISCCU) 
and one Raspberry Pi 4 (FM). FSU and MISCCU are connected to the 
FM over I2C. The following diagram shows how the FM 
(RPI_HEADER), FSU and MISCCU are connected: 

 

 
Figure 23: FM, FSU, MISCCU connection 

 
The FSU is connected to servomotors of left aileron (PWM_OUT1), 

right aileron (PWM_OUT2), left flap (PWM_OUT3), right flap 
(PWM_OUT4), left elevator (PWM_OUT5), right elevator 
(PWM_OUT6), rudder (PWM_OUT7). It is also connected to BLDC 
motor ESC5 (PWM_OUT13) which generates the correct 3-phase wave-
form for the motor. These pins are shown in the diagram below:  

 

 
Figure 24: FSU PWM ports 

 
5 ESC = electronic speed controller 
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Furthermore, the FSU is connected over SPI to a 9DOF IMU, baro-
metric pressure sensor and over UART to GPS module as shown in the 
diagram below: 

 

 
Figure 25: MPU, BMP, GPS connections 

 
The FSU is also connected to a FSRC radio receiver with which it 

communicates over proprietary communication protocol iBUS. This pro-
tocol is used by the most RC radio receivers. It is connected over 
UART2_RX to the FSU (FSRC_COM pin shown on the bottom of the 
diagram above).  The following transmitter is used for manual control of 
the aircraft. 

 
Figure 26: Fly Sky-16X 2.4 GHz transmitter 
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The transmitter above comes with this iBUS enabled RC receiver:  
 

 
Figure 27: FS RC receiver 

 
The MISCCU is connected to the landing gear retract motors control 

unit (RMCU) (over pin PWM_OUT12). These motors can rotate over a 
worm gear individual landing gear assembly so that the landing gear can 
move up and down.  The RMCU has capabilities to already control the 
landing gear bay door servo motors but with the specific type of servo-
motors used, it does not work reliably. For this reason, the RMCU only 
controls the retract motors and the bay door servo motors are controlled 
directly with the MISCCU (over pins PWM_OUT9, PWM_OUT10 and 
PWM_OUT11). Inside the nose landing gear assembly there is a steering 
servo motor (connected to MISCCU over PWM_OUT8), providing the 
steering capabilities of the nose landing gear. There are 3 extra auxiliary 
PWM enabled port available which could be used to connect additional 
servomotor or other actuators if needed. (Those are connected over pins 
PWM_OUT14, PWM_OUT15 and PWM_OUT16.) The following dia-
gram shows the MISCCU PWM ports: 
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Figure 28: MISCCU PWM ports 

 
The MISCCU is connected to both voltage divider to ensure power 

level measuring capabilities, it is also connected to temperature sensors 
(DS18B20) over 1-Wire protocol developed by Dallas Semiconductor 
Corp. Two extra auxiliary pins which can be used as input or output are 
added for futureproofing. Temperature sensor and extra pins are shown 
in the diagram below: 

 

 
Figure 29: DS18B20 sensors connected over 1-Wire and extra pins 
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6.4 PCB layout 
 

 PCB layout design is also done in Fusion 360. The power supply and 
distribution section is placed in the top-center.  The FSU (PRI-
MARY_ESP32) is located in the bottom left. Its PWM pins can be found 
to the left of the FSU and IMU, barometric sensor and FSRC receiver 
connection pins can be found to the right from the FSU in the bottom-
center of the PCB. The GPS UART connection pins are above the FSU. 
The MISCCU and its corresponding PWM, 1-Wire temperature sensor 
and other pins are located in the top-left of the PCB. Below that, in the 
bottom-left of the PCB there are pins for connecting the FM over I2C 
and power delivery to the FM. The design of the whole PCB is shown in 
the diagram below: 

 

 
Figure 30: PCB layout design 
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Fusion 360 allows users to preview the designed PCB in a 3D view: 
 

 
Figure 31: Fusion 360 generated 3D preview 

 
Gerber files which are then supplied to the PCB manufacturer can be 

generated directly inside Fusion 360. After the manufacturing process and 
component assembly the real PCB is mounted into the modeled and 3D 
printed platform:  

 

 
Figure 32: PCB mounted on a 3D printed platform 
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7 Attitude estimation using Extended Kalman Filter 

7.1 Introduction 
 

The purpose of this section is to develop a working implementation of 
an extended Kalman filter which uses quaternions for attitude estimation. 
Since this is a very complex problem with a possibility of other various 
improvements to be implemented (in order to suit a specific application), 
a more general solution will be discussed. This allows a broader applica-
bility into various other system. Because the general idea of the algorithm 
does not change. Another goal of this section is to use affordable hardware 
and to still be able to achieve useful final results in a form of estimated 
attitude.  

7.2 General structure 
 

As stated above, this section’s goal is both mathematical derivation 
and software implementation in a low-level programming language. The 
mathematical derivation is inspired by an online post [2]. This post was 
very helpful during the initial stages of the development. The mathemat-
ical derivation is discussed in more detail in upcoming sections. 

 
The final implementation of the extended Kalman filter (EKF) is writ-

ten in C++ and runs on ESP32 development kit. FreeRTOS implemen-
tation is used for better control over the structure and timing of the whole 
program. The algorithm run with a period of over 50 Hz when connected 
to a custom diagnostics tool (developed for the purpose of diagnostics and 
visualization in Unity 3D. This tool and its features are described in the 
chapters below.)  

 
The inertial measurement unit used for the purpose of this project is 

MPU9250. It is a low cost 9-DOF IMU. This means it includes an accel-
erometer, a gyroscope and a magnetometer. The combination of those 
three sensors allows for pitch, roll and heading estimation.  

 
Heading estimation is done (mainly - EKF combines all information) 

using the data from magnetometer. For the estimation to function 
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properly, the algorithm assumes that the acceleration vector and the vec-
tor of magnetic field points into two different directions (preferably 90 
degrees apart). Since this is the case only at the equator, this assumption 
can cause problems with increasing (absolute) value of latitude. It is com-
monly known, that heading estimation around north and south pole is 
technically problematic. 

 

7.3 Magnetometer calibration 
 
In order to ensure optimal results, the magnetometer data supplied to 

the filter algorithm must be calibrated first. This process can be subdi-
vided into two parts: hard iron and soft iron calibration. First, 2-dimen-
sional analogy is shown, then the problem is generalized into 3 dimensions. 

 

7.3.1 Hard-Iron error compensation 
 

Hard-Iron error is caused by permanent magnets or other objects that 
produce permanent magnetic field and are physically attached to the ref-
erence frame of the magnetic field sensor itself. Hard-Iron errors manifest 
in a form of an offset in the readings provided by the sensor. If sensor 
with no error gives readings illustrated in the figure below (Figure 33), 
then the sensor with only hard-iron error would output data illustrated 
in the Figure 34.    

 
Figure 33: Illustration of a sensor data with no error 
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Figure 34: Illustration of a sensor data with hard-iron error only 
 

7.3.2  Soft-Iron error compensation 
 

This error is frequently caused by “soft” magnetic metals. Those are 
for example nickel-iron or iron-silicon alloys. This error manifests as twist-
ing/stretching of the magnetic field vector. In two dimensions, it can be 
illustrated in Figure 35. 
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Figure 35: Illustration of a sensor data with a soft-iron error only 

  
In general case, both, hard-iron and soft-iron errors are present which 

causes the measurement data to be offset and stretched/twisted. This, in 
2 dimensions could be illustrated as follows: 

 
Figure 36: Illustration of a sensor data with hard-iron and soft-iron 

 
In the illustrations above, the measurement data was represented in 

two dimensions using ellipses/circles.  
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7.3.3  3D generalization 
In 3 dimensions this can be generalized using ellipsoids/spheres. The 

measured data makes up an ellipsoid which then needs to be transformed 
into a sphere.  

This can be modelled as a mathematical transformation as follows: 
 𝑚⃗⃗⃗⃗⃗⃗𝑚 = 𝐴𝑚⃗⃗⃗⃗⃗⃗𝑐 + 𝑏 (1) 

where 𝑚⃗⃗⃗⃗⃗⃗𝑚 is the measured magnetic field vector, 𝑚⃗⃗⃗⃗⃗⃗𝑐 is the correct (real) 
vector, pointing to the north (in ideal case, usually it points slightly to 
the ground, depending on where on Earth the observer is located).  𝐴 is 
a calibration matrix (defining the stretching/twisting) and 𝑏 is calibra-
tions vector (specifying the offset). These can be determined by using a 
python script (“magnetometer_calibration.py”). This script has been ob-
tained from the website mentioned in the introduction [2]. In short, the 
script gathers a specific amount of magnetometer measurements. Those 
measurements in a form of a point array form an ellipsoid: 

 

 
Figure 37: Measured magnetometer data before fitting 

  
During the measurement, the IMU was rotated around each of its axis 

to fill the surface of the ellipsoid as densely as possible. It is also good to 
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notice the blue dot around the center of the points. This, in reality, is a 
unit sphere (in 2D analogy circle).   

The python script attempts fitting this ellipsoid onto a sphere. This 
process outputs calibration parameters 𝐴−1 and 𝑏. Those can then be fi-
nally used to transform the measured data 𝑚⃗⃗⃗⃗⃗⃗𝑚 to the correct magnetom-
eter output data 𝑚⃗⃗⃗⃗⃗⃗𝑐 using the following formula: 

 𝑚⃗⃗⃗⃗⃗⃗𝑐 = 𝐴−1(𝑚⃗⃗⃗⃗⃗⃗𝑚 − 𝑏) (2) 
The transformed points can be viewed in the following graph (the small 

“dot” from the Figure 37 is displayed in an adequate size looks like a 
sphere, when different axis scale is taken into account): 

 

  
Figure 38: Transformed magnetometer data 

 
Data transformed in such a way can finally be used as an input to the 

EKF.  
 

7.4 Reference vectors acquisition 
 

In order for the Kalman filter algorithm to work properly, acceleration 
reference vector and magnetic field reference vector must be calculated. 
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This is simply done by measuring a set of data from accelerometer and 
magnetometer and averaging them.  

During this phase, the IMU must be stationary, heading to north, with 
0 degrees in both pitch and roll. Next, the averaged vectors are normal-
ized. This is automated in the Python script (named “sensor_stat_anal-
ysis.py”). 

Before running the script, it is advised to doublecheck the variables 
mag_Ainv, mag_b which are obtained during magnetometer calibration 
and variable DATA_COUNT, which specifies how big the data set is 
(value of 200 is sufficient).  

Magnetic field measurements are first calibrated using mag_Ainv, 
mag_b, before they are used for the statistical analysis. Apart from that, 
this script calculates the expected values and variances for each sensor. 
Also, this script outputs the average acceleration magnitude, which is 
then also used in the Kalman filter algorithm initialization.  

 

7.5 Extended Kalman filter algorithm 

7.5.1 Introduction 
 
Extended Kalman Filter (EKF) algorithm works in two distinctive 

steps. Those are prediction phase, also known as “Time update” and up-
date phase, also known as “Measurement update”. Those two steps are 
run in each time step. Before the algorithm can be first started initializa-
tion must be completed. In the following chapter, the EKF algorithm for 
quaternion attitude estimation is derived. 

 

7.5.2 EKF algorithm derivation 
 
Let’s first define the state vector. The state vector Equation (3) has 7 

elements. 4 of which are used to describe quaternion defining the orien-
tation and 3 elements are used for estimating drift of the gyroscope. The 
gyro drift is automatically adjusted by the EKF to provide the optimal 
estimation. The state vector has the following form:  

 𝑥 = [𝑞0 𝑞1 𝑞2 𝑞3 𝑔𝑏1 𝑔𝑏2 𝑔𝑏3] (3) 
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Next, the system dynamics equation is needed in order to calculate the 
prediction estimate from a previously estimated state vector. This is done 
using the following equation: 

 𝑞 ̇= 1
2 𝑆(𝜔)𝑞 = 1

2 𝑆(𝑞)𝜔 (4) 

Where 𝑆(𝑞) is the current estimated attitude in form of matrix: 

 𝑆(𝑞) =
⎣
⎢
⎡

−𝑞1 −𝑞2 −𝑞3
𝑞0 −𝑞3 𝑞2
𝑞3 𝑞0 −𝑞1

−𝑞2 𝑞1 𝑞0 ⎦
⎥
⎤ (5) 

and 𝜔 is the angular rate provided by the gyroscopic sensor. The math 
behind the Equation (4) is beyond the scope of this section but is very 
comprehensively explained in this post [3]. The only variable left to up-
date is the gyro drift. This is solved simply by using the previous value. 
In order to take the drift of the gyro into account, Equation (4) is ad-
justed as follows: 

 𝑞 ̇= 1
2 𝑆(𝜔 − 𝑔𝑏)𝑞 = 1

2 𝑆(𝑞)𝜔 − 1
2 𝑆(𝑞)𝑔𝑏 (6) 

 
The overall equation to calculate the predicted state vector is following: 

 𝑥𝑘+1́ = [ 𝐼4𝑥4 − 𝑇
2 𝑆(𝑞)

𝑂3𝑥3 𝐼3𝑥3

] 𝑥𝑘 + [
𝑇
2 𝑆(𝑞)
𝑂3𝑥3

] 𝜔𝑘 (7) 

 
This equation is used in the EKF algorithm during prediction phase to 

calculate the next predicted state vector from the previous one. It is in 
the form of: 

 𝑥𝑘 = 𝐴𝑘−1𝑥𝑘−1 + 𝐵𝑘−1𝜔  (8) 

Where 𝐴𝑘 = [ 𝐼4𝑥4 − 𝑇
2 𝑆(𝑞)

𝑂3𝑥3 𝐼3𝑥3
] and 𝐵𝑘 = [

𝑇
2 𝑆(𝑞)
𝑂3𝑥3

],  

𝑞 = [𝑥0 𝑥1 𝑥2 𝑥3]|𝑘 (latest estimated attitude is used to evaluate 
𝑆(𝑞).) To clarify, both are 𝐴𝑘 and 𝐵𝑘 are, of course, time variant. 𝐴𝑘 
and 𝐵𝑘  are also used when calculating predicted covariance matric. 
This can be done in a usual form: 
 𝑃𝑘́ = 𝐴𝑘−1𝑃𝑘−1𝐴𝑘−1

𝑇 + 𝑄  (9) 
Where Q is the process covariance matrix. Values for 𝑄, 𝑃0 and 𝑥0  

(initial) are discussed in the next chapter. 
Next, lets derive the equation used in the update phase. It is needed to 

find a connection between the measured data by accelerometer and 
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magnetometer and the state vector. This can be achieved using the fol-
lowing equation: 

 𝑑𝑚 = 𝑅(𝑞)𝑣𝑟𝑒𝑓
𝑠 + 𝐸 (10) 

where 𝑑𝑚 is the measured data given by the sensor and 
 

𝑅(𝑞) =  
⎣
⎢⎡

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 + 𝑞0𝑞3) 2(𝑞1𝑞3 − 𝑞0𝑞2)
2(𝑞1𝑞2 − 𝑞0𝑞3) 𝑞0

2 − 𝑞1
2 + 𝑞2

2 − 𝑞3
2 2(𝑞2𝑞3 + 𝑞0𝑞1)

2(𝑞1𝑞3 + 𝑞1𝑞3) 2(𝑞2𝑞3 − 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2⎦
⎥⎤  

 
is rotational matrix constructed using the estimated quaternion, 𝑣𝑟𝑒𝑓  is 
a reference vector for the corresponding sensor. Its acquisition process 
is closely described in Chapter 5, 𝐸 is the error of the sensor and the 
prediction composed of a bias (if sensor is uncalibrated) and a noise. 
𝑦𝑘

𝑠́ = 𝑅(𝑞)𝑣𝑟𝑒𝑓
𝑠  is the predicted sensor output. In ideal case this should 

correspond to the value given by the sensor. When the IMU is placed 
with attitude of 0 pitch, 0 roll and heading to north, the data outputted 
by the sensor must be essentially the same as the 𝑣𝑟𝑒𝑓 , which also ex-
plains the 𝑣𝑟𝑒𝑓  acquisition process and can be used during debugging. 
Equation (10) is in a form of: 𝑦 = 𝐶𝑠𝑥 + 𝐷, in order to apply Kalman 
filter algorithm, this equation must be linear. Given the nature of qua-
ternions, this equation is strongly non-linear. Taylor expansion is used 
to approximate this non-linear equation with a linear one, around the 
operational point, which in this case is the current attitude estimate 
(from the previous timestep). For the purpose of EKF algorithm, only 
𝐶𝑠 term is requiered, therefore 𝐷 does not need to be calculated. The 
matrix 𝐶𝑠 is time dependent and can be calculated as follows: 

 𝐶𝑘
𝑠 = 𝜕

𝜕𝑞 (𝑅(𝑞𝑘−1)𝑣𝑟𝑒𝑓) (11) 

After multiplication and finding the derivative (Jacobian), The matrix 
𝐶𝑠 can be expressed as6: 

 
 
 
 
 

 
6 𝑣𝑟𝑒𝑓

𝑖  signifies i-th element of the 𝑣𝑟𝑒𝑓 vector as opposed to 𝑣𝑟𝑒𝑓
𝑠  which signifies 

the whole reference vector of the sensor s. 
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𝐶𝑘
𝑠[0,0] = 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
1 − 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
2  

𝐶𝑘
𝑠[0,1] = 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
2  

𝐶𝑘
𝑠[0,2] = −𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
1 − 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
2  

𝐶𝑘
[𝑠0,3] = −𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
2  

𝐶𝑘
𝑠[1,0] = −𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
2  

𝐶𝑘
𝑠[1,1] = 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
0 − 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
2  

𝐶𝑘
𝑠[1,2] = 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
2  

𝐶𝑘
𝑠[1,3] = −𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
2  

𝐶𝑘
𝑠[2,0] = 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
0 − 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
2  

𝐶𝑘
𝑠[2,1] = 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
0 − 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
1 − 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
2  

𝐶𝑘
𝑠[2,2] = 𝑞𝑘−1

0 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
1 − 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
2  

𝐶𝑘
𝑠[2,3] = 𝑞𝑘−1

1 𝑣𝑟𝑒𝑓
0 + 𝑞𝑘−1

2 𝑣𝑟𝑒𝑓
1 + 𝑞𝑘−1

3 𝑣𝑟𝑒𝑓
2  

 

𝐶𝑘
𝑠 = 2

⎣
⎢⎢
⎡

𝐶𝑘
[0,0] 𝐶𝑘

[0,1] 𝐶𝑘
[0,2] 𝐶𝑘

[0,3]

𝐶𝑘
[1,0] 𝐶𝑘

[1,1] 𝐶𝑘
[1,2] 𝐶𝑘

[1,3]

𝐶𝑘
[2,0] 𝐶𝑘

[2,1] 𝐶𝑘
[2,2] 𝐶𝑘

[2,3]⎦
⎥⎥
⎤

 

(12) 

The final matrix 𝐶 for the Kalman filter can be constructed from pre-
viously calculates matrices 𝐶𝑠 as follows: 

 𝐶𝑘 = [
𝐶𝑘

𝑎𝑐𝑐 𝑂3𝑥3
𝐶𝑘

𝑚𝑎𝑔 𝑂3𝑥3
] (13) 

𝑂3𝑥3 matrices signify independency of the measured data on the bias 
of the gyro.  

7.5.3 Initialization 
 
During the initial phase algorithm variables are initialized so that EKF 

can then run. The initial values for variables used by EKF are in the 
following table: 

 
Table 4: EKF implementation variable names 

 

Variable name Initial value 
x_hat [1 0 0 0 0 0 0] 

accel_reference FROM PY 
mag_reference FROM PY 

gravity_constant FROM PY 
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accelerometer_prec_attenuation APRX 10, AS REQ 
P APRX 0.01, AS REQ7 
Q APRX 0.001, AS REQ1 

R APRX 1, AS REQ1 

mag_calib_A_inv FROM PY 
mag_calib_b FROM PY 

 
The initial value for the state vector is 𝑥𝑘=0 = [1 0 0 0 0 0] 

corresponding to no deviation in attitude and no gyro bias. Acceleration 
and magnetic field reference vectors and gravitational constant are calcu-
lated by the python script as described in Chapter 5. Accelerometer pre-
cision attenuation constant is used to artificially (and drastically) increase 
the measurement covariance matrix. This is done in order to account for 
acceleration caused by change in linear velocity (not gravitational force). 
Given the Equivalence principle, these two causes for perceived accelera-
tion (gravitation and change in linear velocity) are fundamentally indis-
tinguishable. It can be assumed, that if the magnitude of the acceleration 
vector differs to a higher degree from the acceleration vector, then change 
in velocity is present and is introducing error into the update phase by 
twisting the acceleration vector. This effect is negated by drastically in-
creasing the accelerometer covariance matrix and in such way letting the 
filter know not to momentarily trust the accelerometer measurement. 𝑃  
is the covariance matrix.  

Trace of this matrix can be used to determine the precision of the esti-
mate at a given time. The lower the initial value (values in this case refers 
to values of the diagonal elements, non-diagonal elements are set to 0) is, 
the longer it will take for the filter to start trusting the measurement 
resulting in higher initial delay before an accurate attitude estimate can 
be obtained. 𝑄 is the process noise matrix. This matrix specifies the un-
certainty caused during the prediction phase when using the dynamic 
model to calculate the prediction of the state vector estimate. Increasing 
the value of the diagonal elements of this matrix will result in a greater 
overall covariance and the algorithm giving higher importance to the 
measured data in the update phase (acceleration and magnetic field vec-
tor). On the other hand, decreasing values of the diagonal elements will 

 
7 For matrices, the actual value is the scalar value 𝑉  multiplied by 𝑒𝑦𝑒(𝑉 ) - the diagonal matrix 

with value 𝑉  at the main diagonal 
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result in EKF trusting the dynamic model in the prediction phase more 
as opposed to the measurements in the update phase. Matrix 𝑅 specifies 
the measurement noise and has essentially the opposite effect as matrix 
𝑄. Diagonal values of this matrix can be calculated using a python script, 
but that requires adequate values of the matrix 𝑅. Instead, it is recom-
mended to use the date from the table above as a base guess and then 
fine-tune the values for specific characteristics of the IMU module used. 
Values of calibration constants 𝐴𝑚𝑎𝑔_𝑐𝑎𝑙𝑖𝑏

−1  and 𝑏𝑚𝑎𝑔_𝑐𝑎𝑙𝑖𝑏 are calculated us-
ing a python script as described above in Chapter 4. 

 

7.5.4 Prediction phase 
 

During the prediction phase, EKF receives data from the gyroscope in 
a form of angular velocity in rads/sec and combining this data with the 
information about the system dynamics calculates prediction of the state 
vector for the following timestep. Prediction of the state vector and co-
variance matrix are obtained by utilizing the following equation: 

 𝑥𝑘+1́ = [ 𝐼4𝑥4 − 𝑇
2 𝑆(𝑞)

𝑂3𝑥3 𝐼3𝑥3

] 𝑥𝑘 + [
𝑇
2 𝑆(𝑞)
𝑂3𝑥3

] 𝜔𝑘 (14) 

and: 

 𝑃𝑘́ = [ 𝐼4𝑥4 − 𝑇
2

𝑆(𝑞)
𝑂3𝑥3 𝐼3𝑥3

] 𝑃𝑘−1 [ 𝐼4𝑥4 − 𝑇
2

𝑆(𝑞)
𝑂3𝑥3 𝐼3𝑥3

]
𝑘−1

𝑇

+ 𝑄 (15) 

As described above, 𝑞 is the currently most precise estimate of the at-
titude calculated during the previous update phase. During this phase, 
predicted sensor output and matrix 𝐶 is calculated as described in the 
previous section.  

 

7.5.5 Update phase 
 
During the update phase, measurement from accelerometer and mag-

netometer are normalized (and transformed using the calibration values), 
the magnitude of the acceleration vector is determined (to compensate 
for change in linear velocity) and lastly, the sensor data is used to update-
correct the prediction obtained in the prediction phase by weighting the 
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information provided by the prediction and the sensor measurement using 
Kalman gain 𝐾. This gain is calculated as follows:  

 𝐾𝑘 = 𝑃𝑘́𝐶𝑘
𝑇

𝐶𝑘𝑃𝑘́𝐶𝑘
𝑇 + 𝑟𝑚𝑢𝑙𝑡𝑅

 (16) 

where  𝑟𝑚𝑢𝑙𝑡 is accelerometer covariance multiplier accelerometer and 
is calculated using the following formula: 

 𝑟𝑚𝑢𝑙𝑡 = 10𝑎𝑏𝑠(𝑔𝑐𝑜𝑛𝑠𝑡−‖𝑎‖)𝑎𝑝𝑟𝑒𝑐_𝑎𝑡𝑡 (17) 
where 𝑎𝑝𝑟𝑒𝑐_𝑎𝑡𝑡 is precision attenuation constant and 𝑔𝑐𝑜𝑛𝑠𝑡 is gravity 

constant calculated by a python script. To ensure numerical stability, 
𝑟𝑚𝑢𝑙𝑡 is clamped between 1 and 1000. 

Kalman gain is then used to calculate the new estimate of the state 
vector and covariance matrix: 

 𝑥𝑘+1 = 𝑥𝑘+1́ + 𝐾𝑘(𝑚 − 𝑦𝑘́) (18) 
where 𝑚  is the concatenated measurement vector 𝑚 = [𝑚𝑎 𝑚𝑚]𝑇  

and 𝑦𝑘́ = [𝑦𝑘
𝑎́ 𝑦𝑘

𝑚́]. 𝑦𝑘
𝑎́ and 𝑦𝑘

𝑚́ are accelerometer and magnetometer out-
put predictions. 

Covariance matrix is calculated using following formula: 
 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃𝑘́ (19) 

At the end quaternion segment of the state vector is normalized. 
 

7.6 EKF testing data acquisition 
 

In order to debug and further experiment with different parameters and 
features, testing data acquisition application has been developed. It is 
meant as a developer and testing tool only, so it runs directly in the editor 
of Unity 3D engine (scene named “DataGenerator”). Scripts are written 
in C#. To properly use this tool, some prior experience with Unity 3D is 
required. 

 In order to generate testing data, two different options are available. 
First option (1) is to programmatically specify sequence of attitudes 
through which the application automatically switches and at the end of 
the sequence, the play mode is exited. In the file “ManualMover.cs” one 
can specify this sequence including timing. (Do-Tween plugin is used for 
implementation.) This script can also be used to specify a linear acceler-
ation for testing purposes. The second option (2) is to use Unity Editor 
to move the game-object manually using a mouse and Unity gizmos. 
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Virtual data synthesis is performed by the “Virtual 9DOFMPU.cs” script. 
For this component to function properly, its attributes must be setup 
correctly. The most important are reference vectors, gravity constant and 
sensor variances. It is crucial to consider different coordinate system 
which Unity uses. Specifying these attributes mistakenly due to human 
error when manually performing coordinate transform can be source of a 
possible errors and can be difficult to debug. For this reason, a simple 
tooltip has been added to be shown (when mouse is moved over the at-
tribute name.) 

Scripts named “TransformDataSaver.cs” and “SensorDataSaver.cs” are 
used to store the real transform and the emulated sensor values into a 
CSV file. This data can be then used for EKF test in python.  

 

7.7 EKF test with emulated data 
 

Testing data is acquired utilizing Unity tool described in the previous 
chapter. Testing data acquisition 2 is used resulting in less smooth and 
more natural movement. Simulated sensor data generated during pro-
grammatically specified movement can be viewed in the figure below: 
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Figure 39: Sensor data during programmatically specified movement 

 
 While generating this data, there were no explicit attempts to cause 

linear acceleration. This can be seen in the first subplot, where the accel-
eration (per axis) is barely reaches gravitational acceleration constant.  

In the following figure, the virtual IMU was moved very sporadically 
in a linear motion, causing a drastic linear acceleration: 

 

0 5 10 15 20 25 30
time [s]

-10

-5

0

5

10

15
ac

ce
le

ra
tio

n 
[m

s-
2]

Accelerometer output

X axis
Y axis
Z axis

0 5 10 15 20 25 30
time [s]

-10

-5

0

5

10

15

an
gu

la
r v

el
oc

ity
 [r

ad
s-

1]

Gyroscope output

X axis
Y axis
Z axis

0 5 10 15 20 25 30
time [s]

-1

-0.5

0

0.5

m
ag

ne
tic

 fi
el

d 
[u

T,
 c

al
ib

.]

Magnetometer output

X axis
Y axis
Z axis



 52 

 
Figure 40: Sensor data while IMU under drastic linear acceleration 

 
Since the virtual IMU was not experiencing any angular velocity, the 

data gathered from the gyroscope and the magnetometer is constant. The 
accelerometer data shows very high values of acceleration (and decelera-
tion) caused by the sporadic movement.  

Finally, it the EKF algorithm can be executed provided the generated 
data. The first figure shows EKF algorithm output during the first phase 
of the experiment (when IMU wasn’t experiencing any extreme accelera-
tion): 

 

26 28 30 32 34 36 38
time [s]

-200

-100

0

100

200
ac

ce
le

ra
tio

n 
[m

s-
2]

Accelerometer output

X axis
Y axis
Z axis

26 28 30 32 34 36 38
time [s]

-1

-0.5

0

0.5

1

an
gu

la
r v

el
oc

ity
 [r

ad
s-

1]

Gyroscope output

X axis
Y axis
Z axis

26 28 30 32 34 36 38
time [s]

-1

-0.8

-0.6

-0.4

-0.2

m
ag

ne
tic

 fi
el

d 
[u

T,
 c

al
ib

.]

Magnetometer output

X axis
Y axis
Z axis



 53 

 
Figure 41: EKF output with no drastic linear acceleration 

 
It is visible that both EKF variants (with and without accelerometer 

measurement covariance matrix adjustment) perform in a similar way. 
This only visible different is in the estimation covariance matrix trace 
plot. While the variant without precision attenuation follows the normal 
trend of the trace reaching a stable steady state value and (for the most 
part - caused by non-linearities) keeping it, the variant with the attenu-
ation adjustment is keeping the trace value slightly higher. While in this 
case it is mainly caused by numeric properties of the selected multiplier 
function, it still shows the “hesitance” of the algorithm to process and 
“trust” any acceleration value which could be slightly higher. But as 
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mentioned above, this effect is practically indistinguishable in the output 
data itself (pitch, roll, heading). 

Though, this does not apply when the IMU moves more sporadically.  
This is illustrated in the following figure:  

 

 
Figure 42: EKF output with drastic linear acceleration 

 
From this figure it is visible the difference between the two variants on 

the algorithm. The estimate provided by the variant without the attenu-
ation feature is significantly worse. The theoretical covariance trace is 
lower, this is caused by incorrect a priory expectation of the algorithm. 
If a real value of covariance trace were to be calculated, it would be higher.  

The covariance trace of the variant with attenuation significantly in-
creases, which results in the algorithm’s lower “belief” in the 
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accelerometer measurement and so this measurement is taken into con-
sideration significantly lower (by automatic adjustment of the Kalman 
gain). This behavior is very useful and even a necessity for application in 
UAVs where drastic acceleration and deceleration is a frequently present. 

 

7.8 EKF C++ real-time implementation 
 

The final implementation of the EKF algorithm is meant to run on 
ESP32 board together with the autonomous controller and other critical 
software components. It is important to ensure execution of the most 
critical tasks in time. For this reason, RTOS is utilized to optimally 
schedule tasks based on their priority, specifically a free-ware implemen-
tation FreeRTOS. This is one of the reasons why the programming lan-
guage of the final EKF implementation is C++.  

In order to perform matrix operations required for EKF algorithm, Lin-
ear Algebra library [4] is used. This library is fully compatible with ESP32 
MCU. For previous testing with python code, UART is used to send the 
data (gathered by the IMU over SPI). With the C++ implementation 
the data is processed directly on the MCU.        

 

7.9  EKF diagnostics tool 
 

In order to display the data computed by the C++ implementation of 
the EKF, a proper diagnostic tool is needed. This is implemented using 
the Unity 3D engine again but now Unity is used to visualize the data 
received by the ESP32 over the UART.  

Due to the dynamic nature of this test, few different scenarios were 
physically executed: Z-axis rotation on a stable turntable, sporadic move-
ment and linear acceleration followed by a deceleration while attempting 
to keep still in attitude.  

The following figure shows data from the first scenario:  
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Figure 43: First scenario data 

 
The first plot on the left shows the estimated attitude in degrees. As 

expected in this scenario, only heading is being changed from about 0 
degrees to +90 degrees then to -90 degrees and then back to 0 degrees. 
This corresponds with the physical movement the IMU experienced. The 
second plot on the left shows the 4 elements of the quaternion. Similar 
curve as shown in the plot above can also be observed here, although any 
more exact interpretation is complex due to the nature of quaternions. 
The third plot shows the acceleration measured by the IMU. In this sce-
nario this plot seemingly does not change, since the IMU is being rotated 
only around the axis which has practically the same direction as the grav-
itational acceleration. The fourth plot shows the angular velocity meas-
ured by the gyroscope. This value also changes as expected (mostly rota-
tion around Z-axis). The saturation is only visual in the plot. There is a 
y limit set up so that smaller values are also distinguishable. The fifth 
plot from the left shows the magnetometer data. Due to specific direction 
(NOT always 90 degrees perpendicular to gravitational acceleration) of 
magnetic reference vector this data has more complex behavior. 

The first plot on the right shows the trace of the covariance matrix. 
This value can indicate how the EKF is “secure” about its estimate. The 
second plot on the right shows the magnitude of the acceleration vector. 
This is used to account for linear acceleration. In this case there was no 
significant linear acceleration, therefore the magnitude is around 𝑔𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
The third plot on the right shows the current 𝑟𝑚𝑢𝑙𝑡 value. Since the ac-
celeration magnitude is around 𝑔𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, the 𝑟𝑚𝑢𝑙𝑡 is for the most part 
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close to 1. The last plot on the right shows the time period with which 
the algorithm runs. This does not exceed 0.02s. This equivalates to exe-
cution frequency of 50Hz or more. Which for the final application is suf-
ficient. It is also worth noting, that portion of this time is taken by the 
UART communication. The approximate estimate is around 30% but no 
testing has been performed regarding that.  

The following figure shows data from the first scenario:  
 

 
Figure 44: Second scenario data 

 
This scenario was executed more for illustrational purposes. It can be 

observed that the acceleration magnitude was significantly higher and 
more sporadic, which can anyways be said about of the data from this 
scenario. The data from the third scenario can be seen in the figure below: 

 

 
Figure 45: Third scenario data 
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In this scenario, the IMU was first accelerated and then decelerated 
with as low change in attitude as possible. This can be observed by change 
in acceleration alongside the Y-axis. Above all, the magnitude of the ac-
celeration vector dramatically rises. This causes the 𝑟𝑚𝑢𝑙𝑡 to dramatically 
rise as well. This results in the EKF algorithm essentially ignoring the 
corrupted accelerometer reading. Since the EKF is unable to use the ac-
celerometer reading, the covariance matrix trace automatically increases, 
signifying higher uncertainty in the estimated attitude. During the exper-
iment, the estimated attitude is practically unchanged, which corresponds 
with the actual physical movement. 

A YouTube video showing the behavior in more dynamic way can be 
accessed at: youtu.be/qy9yPrqckdY on my channel. It shows a practical 
demonstration of the EKF. In the demonstration, IMU is being moved by 
hand. First, simple movement is tested, followed by more sporadic and 
complex movement. Response to a linear acceleration and deceleration is 
successfully tested as well. 

 

7.10 Conclusion 
 

The purpose of this section was to implement and test the functionality 
and applicability (to UAV attitude estimation) of Extended Kalman filter 
algorithm. Algorithm was first tested with simulated data and then was 
implemented in C++ on ESP32 microcontroller unit. Based on the sim-
ulation and real-world results and availability and cost of the hardware 
used, the implementation appears to be practical for smaller, experi-
mental unmanned aerial vehicles. Possible issues could arise from high 
noise presence in the magnetometer readings. This could be amplified in 
case of high electrical currents flow near the IMU. This could be solved 
in the design phase of a UAV by physically distancing the high current 
components of the avionics as far from the IMU as possible or by adjust-
ing the EKF algorithm - modelling the electrical currents in order to for 
the EKF to be able to predict the change in magnetic field and account 
for it.   
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8 Aircraft control interface and telemetry visualiza-
tion 

8.1 Introduction 
 

The purpose of the application is to display flight telemetry data and 
control the aircraft. Communication with Flight Manager (RPi4) is es-
tablished via LTE. The user is allowed to control various flight parame-
ters (pitch, roll, speed, etc.) and read telemetry data in real time. The 
application is developed in the Unity3D Engine and the code is written 
in C#. It composes of different panels, each providing information about 
different systems of the aircraft. Every panel, if applicable, contains a 
status overview which provides an over information about the correspond-
ing system.  

The visual aspect of the user interface is inspired by flight displays 
implemented in Airbus aircrafts. Similar to real aircrafts this application 
features a Master Caution System (MCS) including audio-visual alarm. 

The figure below shows the graphical user interface which will be dis-
cussed in more detail in the following chapters: 

 

 

Figure 46: GUI overview  



 60 

8.2 Primary Flight Display (PFD) 
 

The PFD shows the basic flight data, such as speed (measured by the 
GPS sensor, data like TAS, IAS are not possible to obtain due to the 
absence of more accurate and industry specific components like pitot-
tubes, etc.). This panel composes of an artificial horizon (1), sped indica-
tor (in knots) (2), altitude indicator (in meters) (3), vertical speed indi-
cator (in feet-per-minute) (4) and heading indicator (5). This panel also 
includes numerical information about the EKF estimate accuracy (6) and 
speed converted to kilometers per hour (7). 

 

 
Figure 47: PFD overview 

 

8.3 Flaps and Control Surface (F/CTL) 
 

The F/CTL panel provides user the information about the status of 
the control surfaces and flaps (deflection in degrees). It also provides con-
trol of the landing gear.  

The following figure describes the individual elements of this panel: left 
aileron (1), left flap (2), right flap (3), right aileron (4), left elevator (5), 
right elevator (6), rudder (7) and gear control (8). 
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Figure 48: F/CTL overview 

 

8.4 Electrical (ELEC) 
 

The ELEC panel displays the most important information the electrical 
status of the aircraft. It also provides the user with temperature readouts 
in different critical areas of the aircraft. It is integrated with the MCS to 
alarm the operator in case of critical situation. 

The following figure describes the individual elements of this panel: LV 
and HV battery lever and voltage indicators (1), battery compartment, 
BMP sensor and Flight Manager (RPI4) temperature readings (2) and 
usages of FSU and MISCCU both cores (3). 

 

 
Figure 49: ELEC overview 
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8.5 Mode Control Panel (MCP) 
 

The MCP is used to control the modes of the aircraft, mainly the au-
topilot. It contains two different types of custom interactable elements: 
Remote Button Indicators (RBIs) and Remote Value Fields (RVFs). 
RBIs are used to enable or disable the radio/autopilot (1) and set differ-
ent mode of the autopilot (4) (by enabling/disabling corresponding con-
trollers). RVFs are used to set either specific input to corresponding con-
trol axis (2) (pitch, roll, etc.) or setpoint of a corresponding controller (3). 
In order to set a value to a RVF this value must be first specified using 
keypad and then can be set to a specific RFV by pressing it (RVF). 

The following figure displays the layout of the MCP: 
 

 
Figure 50: MCP overview 
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8.6 Electric Ducted Fan panel (EDF) 
 

The EDF panel displays vital information about the EDF assembly and 
the electronic speed controller. Both components are fairly complex and 
can overheat, therefore additional temperature information is useful es-
pecially in preventing critical failure of the aircraft. 

This panel displays battery compartment, electronic speed controller 
and EDF temperatures (2) and current EDF power setting (1) (in per-
cent): 

 

 
Figure 51: EDF panel overview 

 

8.7 Communication panel (COM) 
 

This panel displays a numerical information regarding the latencies be-
tween different components of the whole control system (LTCY) and it 
also contains information where there is a “backlash” in I2C communica-
tion between the ESP32s and the RPI4 (SQBH) 

 

 
Figure 52: COM panel overview 
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8.8 Location panel (LOC) 
 

This panel displays current GPS position of the aircraft on the map 
and also the raw LAT/LNG coordinates (1). It also provides information 
about the “age” of this positional data (2).  

 

 
Figure 53: LOC panel overview 

 

8.9 Master Caution System panel (MCS) 
 

This system handles caution/error message display. Individual ele-
ments of different other systems can trigger it and cause it to display a 
corresponding caution message consisting of the “parent” panel label and 
the specific cause of the caution. This panel contains main caution light 
(MCL) 8(1), button to test the MCS by “injecting” a testing caution mes-
sage (2), Clear First button (CLF)9 (3) and the panel to display the cau-
tion messages, if available (4). 

 

 
Figure 54: MCS panel overview  

 
8 This button completely extinguishes the caution light and removes all current caution messages 
9 This button removes only one (first available caution message, if it is the last one, it also extin-

guishes the MCL) 
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9 HIL simulation environment 

9.1 Introduction 
 

The idea behind this application is to simulate real-life-like flight dy-
namics in order to be able to perform system identification and then ver-
ity the functionality of the onboard controller. The simulation runs in 
real time and provides graphical output allowing the user to utilize it in 
functional and applicable way. Engine Unity3D is used, and the code is 
written in C#. The communication between the simulation and the FSU 
is established over UART. [4] 

 

9.2 IMU and GPS emulation 
 

The IMU is also emulated itself withing the simulation. This means 
that the simulation does not directly send information about the plane’s 
attitude and other information but instead it emulates the accelerometer, 
gyroscopic sensor and magnetometer, including each respective noise pa-
rameters other behavior. The following figure shows the configuration 
options for the virtual IMU sensor:  

 

 
Figure 55: Virtual IMU sensor 
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Another sensor that needs to be emulated is GPS. For the purposes of 
the system analysis and controller testing, only speed needs to be gath-
ered. This is done fairly simply by utilizing Unity’s Rigidbody compo-
nents and using measured refresh frequency (approximately 1.5 to 2 s). 

 

9.3 Flight model 
 

For the purpose of simulating aerodynamics effects on the aircraft, a 
premade Unity package “ [5]” is used. This toolkit allows user to set up, 
model and simulate any Fixed-wing aircraft. It essentially uses a finite 
element method to determine the correct force and angular momentum 
values for each section of aerodynamic surface.  

The following figure shows the actual simulated aircraft with its wings, 
vertical and horizontal stabilizer, and corresponding control surfaces set 
up. The blue sphere in the middle presents the CG10 location: 

 

 
Figure 56: Simulated aircraft with visualized control surfaces 

 
  

 
10 Center of Gravity 
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10 Model identification 

10.1 Identification experiment and fitting 
 
In order to identify the system model, identification experiment must 

be performed. Experiments for identification of behavior in pitch axis and 
for speed control are performed in a different way from experiments for 
identification of behavior in roll axis. That is because behavior in roll axis 
is inherently unstable. Pitch axis behavior and speed response are stable. 
For this reason, pitch axis and speed behavior experiments can be per-
formed using only open loop, only by changing the input.  

The following two figures show pitch and speed behavior identification 
experiments 

 

 
Figure 57: Pitch behavior identification experiment 
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Figure 58: Speed behavior identification experiment 

 
Identification of the roll behavior is slightly more complicated because, 

as mentioned above, it is unstable. In other words, if a constant input is 
applied, the output diverges. For this reason, this behavior must be tested 
in closed loop. A controller to be used for this purpose is a manually 
tuned PID. It does not provide closed loop behavior of a sufficient quality, 
but it can be used for the identification experiment, since it stabilizes the 
aircraft in roll axis.  

The following figure shows the closed loop behavior with a manually 
tuned PID controller: 
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Figure 59: Closed-loop roll behavior identification experiment 

 
Based on the pitch behavior identification experiment fitting using 

MATLAB ident toolbox is performed. First, experimental data at all its 
length is used to identify a nominal model (“pitch_model”) and then the 
experimental data is split into multiple partially overlapping sections and 
fitting is performed individually. This results in multiple additional mod-
els (“pitch_model{1-5}”). This is done because during the experiment 
the orientation of the aircraft may change, resulting in slightly different 
dynamics. Since fitting of (in this case specifically) model #3 has not 
been very successful, it is discarded.  

 

 
Figure 60: Pitch model fitting 

0 500 1000 1500 2000 2500
ts

-5

0

5

10

15

an
gl

e 
[D

EG
]

Roll

process
setpoint



 70 

The same process is performed with speed and closed loop roll data. 
The following figure shows the speed model fitting process. In this case, 
model number 4 and 5 are discarded: 

 

 
Figure 61: Speed model fitting 

 
The following figure shows the closed loop roll model fitting process. In 

this case, none of the model is discarded: 
 

 
Figure 62: Closed loop roll model fitting 

 
All fitted transfer function are second order and stable non-oscillating 

(poles are only real and negative). 
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10.2 Uncertain system model 
 
Utilizing MATLAB build-in function ucover [6], array of LTI responses 

is used to output an uncertain model in input multiplicative form as well 
as shaping filter 𝑊2: 

 
𝑃𝑢(𝑠) = 𝑃𝑛𝑜𝑚(𝑠)(𝐼 + 𝑊2(𝑠)Δ(𝑠)) 

 
where ‖Δ(𝑠)‖∞ ≤ 1. For each array of LTI responses (inc. nominal model) 
this method is used to obtain a corresponding uncertain system. Also, as 
a confirmation, bode diagrams of relative errors and shaping filter 𝑊2(𝑠) 
are displayed to ensure the relative errors are enveloped by the shaping 
filter.  
 The following figures show corresponding bode diagrams for confir-
mation: 
 

 
Figure 63: Pitch relative errors confirmation 
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Figure 64: Speed relative errors confirmation 

 

 
Figure 65: Roll relative errors confirmation, 1st order 
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From the last figure, it can be observed, that the first order shaping 
filter might be redundant and higher order filter might prove to be more 
adequate. As an example, the figure below shows the use of second order 
shaping filter: 

 

 
Figure 66: Roll relative errors confirmation, 2nd order 

 
In case of roll, it is necessary to calculate the process transfer function 

𝑃 (𝑠) from the uncertain closed loop system 𝐺(𝑠). Since we know the pa-
rameters of the controller 𝐶(𝑠), it can be done in a following way: 

 

 𝐺(𝑠) = 𝐶(𝑠)𝑃 (𝑠)
1 + 𝐶(𝑠)𝑃 (𝑠) (20) 

 

𝑃 (𝑠) = 𝐺(𝑠)
𝐶(𝑠)(1 − 𝐺(𝑠)) (21) 

 
After calculating the actual roll process model (open loop), it comes 

out as 6th order unstable and oscillating (1 pole positive, 4 negative and 
one located in zero, two imaginary). This is in correlation with real-life 
expectation, based on the aircraft geometry.  
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11 Controller design and verification  

11.1 MATLAB controller synthesis and step test  
 
All individual controllers are designed as PI/D controllers using the 

MATLAB build-in “PID Tuner” app by adjusting the Response Time 
and Transient Behavior sliders to get a desired behavior - ideally very 
little overshoot and fast reference tracking. Each controller is tested using 
its corresponding uncertain system and then also compared with the man-
ually tuned controller.  

The following figure shows the comparison of the pitch controllers. The 
test with the manually tuned controller has slightly noticeable overshoot 
and slightly higher settling time as opposed to when actually tuned PID 
controller is used:   

 

 
Figure 67: Pitch step response 
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and high settling time as opposed to when actually tuned PID controller 
is used. The improvement is more noticeable, in this case:   

 

 
Figure 68: Speed step response 

 
In case of roll controller, there is a visible significant improvement when 

compared to the manually tuned controller. Unlike the previous two con-
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Figure 69: Roll step response 

 
For clarity, parameters of all (manually and tuned using MATLAB 

PID Tuner) are shown in the table below: 
 

Table 5: PID controllers’ comparison 

 P term I term D term 
Pitch - manual 0.1 0.05 0 
Speed - manual 0.01 0.0025 0 
Roll - manual 0.0025 0.00125 0 

Pitch - MATLAB 0.145 0.145 0 
Speed - MATLAB 0.0281 0.00312 0 
Roll - MATLAB 0.0169 0.00561 0.000527 
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11.3 Robust performance analysis 
 

In this section, each model (pitch, roll and speed) is analyzed with its 
controller (respectively) in closed loop to verify whether conditions of 
nominal performance (NP), robust stability (RS) and at the end, robust 
performance (RP) are met for all of those controllers.  

For each model, weighting function 𝑊1 is chosen in order to verify NP 
condition in the form: ‖𝑊1𝑆‖∞ < 1.  

As stated in the book Feedback control theory by John Doyle [6]: “In 
several applications, for example aircraft flight-control design, designers 
have acquired through experience desired shapes for the Bode magni-
tude plot of S. In particular, suppose, that good performance is known 
to be achieved if the plot of |𝑆(𝑗𝜔)| lies under some curve.” 
Let 𝑊1

−1 be the curve the sensitive function 𝑆(𝑗𝑤) of the closed loop 
lies under. 

The following figures show the choice of 𝑊1, or rather its inverse for 
each model: 

 

 
Figure 70: 𝑊1 design for pitch model 
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Figure 71: 𝑊1 design for speed model 

 

 
Figure 72: 𝑊1 design for roll model 

 
This allows to perform the NP tests: 
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Figure 73: NP test 
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model. The condition ‖𝑊2𝑇 ‖∞ < 1 must be met for each model, where 𝑇  
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is the complementary sensitivity function. That will ensure that all the 
set of each uncertain model is stable: 

 

 
Figure 74: RS test 

 
Given those results, it is safe to conclude, that all 3 models pass the 

robust stability test. 
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Lastly, since all model pass both, NP and RS, robust performance test 
can be performed. For that, the condition ‖𝑊1𝑆 + 𝑊2𝑇 ‖∞ < 1 must be 
met for each model: 

 

 
Figure 75: RP test 
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It can be observed that all 3 systems are robust performant given the 
chosen weighting functions. 

 

11.4 Testing on the real-life Flight Computer 
 
This testing was performed using the developed avionics including the 

flight computer which stores data into an SQLite database. The following 
three figures show the comparison on the manually tuned PID controllers 
and designed using MATLAB:   

 

 
Figure 76: Pitch control implementation test 
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Figure 77: Speed control implementation test 

 
The “stair” like behavior in this figure is not caused by a different 

sampling period of the system, but it is caused by the behavior of the 
GPS module which provides the speed estimates. It provides these esti-
mates approximately every 1.5 - 2.0 seconds. Since the virtual sensor in 
the simulation tries to realistically emulate real-life behavior, this “stair-
like” pattern can be observed. 

 

 
Figure 78: Roll control implementation test  
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12 Maiden flight 
 

Due to the complexity and scale of this project and the limited time 
frame of the development, there has been only limited tests of the aircraft 
conducted. Those included mainly the landing gear testing and ground 
testing, near-take-off speed ground tests and some very short flight tests11.  

Like with real-to-scale aircrafts, each test brings information about how 
to adjust different procedures and processes. Those, include the behavior 
of the aircraft systems itself but also, very importantly safety procedures 
and preliminary flight checklists, as well as post-flight/post-test proce-
dures. Although, this may sound obvious, it is important to point that 
out specifically.  

The following few pictures illustrate the telemetry and control station 
as well as me performing preflight procedures: 

 

  
Figure 79: Preflight illustration 

 

 
11 With the last one resulting in a critical damage to the fuselage due to the loss of control caused 

by aerodynamical instability which is a result of material deformation due to high ambient heat of 
the storage location 
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Figure 80: To scale comparison. (For reference, my height is 1.89m) 
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13 Conclusion 

The purpose of this thesis was to develop a control system for an air-
craft, which is capable of autonomous flight with minimum interference 
of the operator. This was done in multiple phases, designing the avionics, 
including the flight computer and installing electronics components by 
hand, developing software in C++ and Python that runs on the flight 
computer and is responsible for control, data acquisition, internal com-
munication (among the flight computer components) and external (with 
the ground control app), building the actual aircraft model, developing a 
realistic HIL simulation including emulating behavior of different sensors 
in order for the simulation to be able to use to verify the behavior of the 
avionics in real-time. Lastly, the Telemetry and Control App was devel-
oped to ensure user friendly and most importantly reliable interaction of 
the operator with the aircraft flight computer.  

As illustrated in this thesis, all those phases went to plan and produced 
a reliable and robust control system. As mentioned above, due to the 
scale of this project and the limited time frame, actual test flights had to 
be very limited.  

This project also required the strong enhancement of my not only dif-
ferent technical disciplines (such as CAD design, electronics design, me-
chanical engineering, knowledge of systems in commercial aircrafts such 
as B737, A320), but also larger scale project management and planning 
as well as safety and precautionary measures.  
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