
University of West Bohemia

Faculty of Applied Sciences

Doctoral Dissertation

2021 Michael HEIGL, M.Sc.

University of West Bohemia
Faculty of Applied Sciences

ENHANCING COMPUTER
NETWORK SECURITY THROUGH

IMPROVED OUTLIER
DETECTION FOR DATA

STREAMS

Michael HEIGL, M.Sc.

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in “Computer Science and Engineering”

Supervisor: doc. Ing. Dalibor Fiala, Ph.D.

Department: Department of Computer Science and Engineering

Pilsen 2021

Západočeská univerzita v Plzni
Fakulta aplikovaných věd

ZVYŠOVÁNÍ BEZPEČNOSTI
POČÍTAČOVÝCH SÍTÍ ZESÍLENOU
DETEKCÍ ODLEHLÝCH HODNOT

V DATOVÝCH TOCÍCH

Michael HEIGL, M.Sc.

disertační práce
k získání akademického titulu doktor

v oboru „Informatika a výpočetní technika“

Školitel: doc. Ing. Dalibor Fiala, Ph.D.

Katedra: Katedra informatiky a výpočetní techniky

Plzeň 2021

Declaration

I hereby submit for evaluation and defense, following the dissertation prepared at the end
of the doctoral study program at the University of West Bohemia in Pilsen. I declare
that I have written the present thesis independently, without assistance from external
parties and without use of other resources than those indicated. The ideas taken directly
or indirectly from external sources (including electronic sources) are duly acknowledged
in the text. The material, either in full or in part, has not been previously submitted for
grading at this or any other academic institution.

Aiterhofen, Germany, September 2021 Michael Heigl

i

Abstract

The omnipresent internetworking of embedded devices in all areas of life is driven by
various trends such as the Internet of Things or Autonomous Vehicles and the emergence
of disruptive technologies such as Artificial Intelligence or Quantum Computing. However,
adversaries also benefit from these developments. Not only the way to fast progression
of the rapidly advancing and pervading technologies is leading to a broad spectrum of
security problems but also the increasing capabilities for adversaries in terms of tools,
methods and technologies, which place great demands on innovative security solutions.
The identification of network-based attacks or unknown behavior through an Intrusion
Detection System (IDS) has established itself as a conducive and mandatory mechanism
apart from the protection by cryptographic schemes in a holistic security eco-system.
Nevertheless, these systems show various limitations when it comes to reliably identifying
and reacting to cyber attacks. Over the past couple of years, machine learning methods -
especially the Outlier Detection (OD) ones - have become anchored to the cyber security
field to detect network-based anomalies rooted in novel attack patterns. Due to the steady
increase of high-volume, high-speed and high-dimensional Streaming Data (SD), for which
ground truth information is not available, detecting anomalies in real-world computer
networks has become a more and more challenging task. Efficient detection schemes
applied to networked, embedded devices need to be fast and memory-constrained, and
must be capable of dealing with concept drifts when they occur.

The aim of this thesis is to enhance computer network security through improved OD
for data streams, in particular SD, to achieve cyber resilience, which ranges from the
detection, over the analysis of security-relevant incidents, e.g., novel malicious activity,
to the reaction on them. Therefore, four major contributions are proposed, each divided
into sub-novelties.

First, Feature Selection (FS) plays an important role when it comes to improved OD in
terms of identifying noisy data that contains irrelevant or redundant features. State-of-
the-art work either focuses on unsupervised FS for SD or (offline) OD. Requirements to
combine both fields are derived and compared with existing approaches. The comprehen-
sive review reveals a research gap in unsupervised FS for the improvement of off-the-shell
OD methods in data streams. This gap is filled by proposing Unsupervised Feature
Selection for Streaming Outlier Detection, denoted as UFSSOD. A generic concept is
retrieved that shows two application scenarios of UFSSOD in conjunction with online OD
algorithms. Extensive experiments have shown that a promising FS mechanism for SD
is not applicable in the field of OD. Moreover, UFSSOD, as an online-capable algorithm,
yields comparable results with a state-of-the-art offline method trimmed for OD.

Second, a novel unsupervised online OD framework called Performance Counter-Based
iForest (PCB-iForest) is being introduced, which generalized, is able to incorporate any
ensemble-based online OD method to function on SD. Carefully engineered requirements
are compared to the most popular state-of-the-art online methods with an in-depth focus
on variants based on the widely accepted Isolation Forest (iForest) algorithm, thereby
highlighting the lack of a flexible and efficient solution which is satisfied by PCB-iForest.
Therefore, two variants are integrated into PCB-iForest - an iForest improvement called
Extended Isolation Forest and a classic iForest variant equipped with the functionality to
score features according to their contributions to a sample’s anomalousness. Extensive
experiments were performed on 23 different multi-disciplinary and security-related real-
world data sets in order to comprehensively evaluate the performance of our implementa-

ii

tion compared with off-the-shelf methods. The discussion of results, including 𝐴𝑈𝐶, 𝐹1
score and averaged execution time metric, shows that PCB-iForest clearly outperformed
the state-of-the-art competitors in 61% of cases and even achieved more promising results
in terms of the tradeoff between classification and computational costs.

Third, consecutively applied Alert Correlation (AC) methods can aid in mining attack
patterns based on the alerts generated by IDS. However, most of the existing meth-
ods lack the functionality to deal with SD and are mainly designed to operate on the
output from misuse-based IDS. Although unsupervised OD methods have the ability to
detect yet unknown attacks, most of the AC algorithms cannot handle the outcome of
such anomaly-based IDS. Thus, a novel framework called Streaming Outlier Analysis and
Attack Pattern Recognition, denoted as SOAAPR is being introduced. SOAAPR is able
to process the output of various online unsupervised OD methods in a streaming fashion
to extract information about novel attack patterns. Three different privacy-preserving,
fingerprint-like signatures are computed from the clustered set of correlated alerts by
SOAAPR, which characterize and represent the potential attack scenarios with respect to
their communication relations, their manifestation in the data’s features and their tem-
poral behavior. Beyond the recognition of known attacks, comparing derived signatures,
can be leveraged to find similarities between yet unknown and novel attack patterns. The
evaluation - split into two parts - takes advantage of attack scenarios from the widely-used
and popular CICIDS2017 and CSE-CIC-IDS2018 data sets. Firstly, the streaming AC ca-
pability is evaluated on CICIDS2017 and compared to a state-of-the-art offline algorithm,
called Graph-based Alert Correlation (GAC), that has the potential to deal with the out-
come of anomaly-based IDS. Secondly, the three types of signatures are computed from
attack scenarios in the data sets and compared to each other. The discussion of results
shows that SOAAPR can compete with GAC in terms of AC capability and outperforms
it significantly in terms of processing time. Moreover, in most cases all three types of
signatures seem to reliably characterize attack scenarios to the effect that similar ones are
grouped together.

Fourth, until now, network security through cryptographic protection and intrusion
detection has been regarded as separate disciplines. Thus, an Uncoupled Message
Authentication Code algorithm - Uncoupled MAC - is presented which builds a bridge
between the two disciplines. It secures network communication (authenticity and in-
tegrity) through a cryptographic scheme with layer-2 support via uncoupled message au-
thentication codes but, as a side effect, also provides IDS-functionality producing alarms
based on the violation of Uncoupled MAC values. Through a novel self-regulation exten-
sion, the algorithm adapts its sampling parameters based on the detection of malicious
actions. Sampling has become useful detecting malicious activity in a manageable amount
of SD, especially in systems where resources are valuable goods and stand in contrast to
the ever increasing amount of network traffic. The evaluation in a virtualized environment
clearly shows that the detection rate increases over runtime for different attack scenarios.
Those even cover scenarios in which intelligent attackers try to exploit the downsides of
sampling.

Keywords: network security, machine learning, intrusion detection, outlier detection,
streaming data, online learning, unsupervised learning, feature selection, alert analysis,
alert correlation, attack scenario, message authentication, self-regulation

iii

Abstrakt

Všudypřítomné propojení vestavěných zařízení ve všech sférách života je doprovázeno
trendy typu internet věcí nebo autonomní vozidla a nástupem disruptivních technologií
jako jsou umělá inteligence nebo kvantové počítače. Avšak z tohoto vývoje profitují i po-
tenciální útočníci. Nejen že překotný vývoj těchto rychle postupujících a vše pronikajících
technologií vede k širokému spektru bezpečnostních problémů, ale také ke zvyšování schop-
nosti útočníků užívat nástroje, metody a technologie, jež kladou velké nároky na inovativní
řešení v oblasti bezpečnosti. Identifikace útoků nebo podezřelého chování v počítačových
sítích systémem pro detekci vniknutí (IDS) se vedle ochrany kryptografickými prostředky
etablovala jako napomáhající a povinný mechanismus holistických bezpečnostních ekosys-
témů. Nicméně, pokud jde o spolehlivou detekci a reakci na kyberútoky, tyto systémy
narážejí na nejrůznější omezení. V několika posledních letech se metody strojového učení
(zvláště ty zabývající se detekcí odlehlých hodnot - OD) v oblasti kyberbezpečnosti opíraly
o zjišťování anomálií síťového provozu spočívajících v nových schématech útoků. Detekce
anomálií v počítačových sítích reálného světa se ale stala stále obtížnější kvůli trvalému
nárůstu vysoce objemných, rychlých a dimenzionálních průběžně přicházejících dat (SD),
pro která nejsou k dispozici obecně uznané a pravdivé informace o anomalitě. Účinná
detekční schémata pro vestavěná síťová zařízení musejí být rychlá a paměťově nenáročná
a musejí být schopna se potýkat se změnami konceptu, když se vyskytnou.

Cílem této disertace je zlepšit bezpečnost počítačových sítí zesílenou detekcí odlehlých
hodnot v datových proudech, obzvláště SD, a dosáhnout kyberodolnosti, která zahrnuje
jak detekci a analýzu, tak reakci na bezpečnostní incidenty jako jsou např. nové zlovolné
aktivity. Za tímto účelem jsou v práci navrženy čtyři hlavní příspěvky, z nichž každý
obsahuje několik inovativních řešení.

Zaprvé, volba vlastností (FS) hraje důležitou roli při zlepšování OD identifikací za-
šuměných dat, která obsahují nerelevantní nebo nadbytečné vlastnosti. Současný výzkum
se zaměřuje buď na FS pro SD bez učitele, nebo na (offline) OD. V této práci jsou zfor-
mulovány požadavky na kombinaci obou přístupů a dále jsou porovnány s existujícími
řešeními. Obsáhlá rešerše odhalila mezeru v FS bez učitele pro zlepšování již hotových
metod OD v datových tocích, která byla zaplněna navržením volby vlastností bez učitele
pro detekci odlehlých průběžně přicházejících dat označované jako UFSSOD. Následně
odvozujeme generický koncept, který ukazuje dva aplikační scénáře UFSSOD ve spojení
s online algoritmy OD. Rozsáhlé experimenty ukázaly, že slibný mechanismus FS pro SD
není v oblasti OD k dispozici. Navíc UFSSOD coby algoritmus schopný online zpracování
vykazuje srovnatelné výsledky jako současná nejlepší offline metoda upravená pro OD.

Zadruhé představujeme nový aplikační rámec nazvaný izolovaný les založený na počítání
výkonu (PCB-iForest), jenž je obecně schopen využít jakoukoliv online OD metodu za-
loženou na množinách dat tak, aby fungovala na SD. Pečlivě zformulované požadavky
srovnáváme s nejpopulárnějšími stávajícími uznávanými online metodami se zvláštním
zřetelem na varianty široce přijímaného algoritmu izolovaného lesa (iForest) a ukazujeme
při tom, že dosud neexistovalo flexibilní a výkonné řešení, které přináší až algoritmus
PCB-iForest. Proto do tohoto algoritmu integrujeme dvě varianty – zlepšení izolovaného
lesa, jež se nazývá rozšířený izolovaný les, a klasickou variantu izolovaného lesa vybavenou
funkcionalitou k ohodnocení vlastností podle jejich přispění k anomalitě datového vzorku.
Provádíme rozsáhlé experimenty na 23 multidisciplinárních datových sadách týkajících
se bezpečnostní problematiky reálného světa za účelem podrobného srovnání naší imple-
mentace s již existujícími metodami. Diskuse našich výsledků zahrnující indikátory 𝐴𝑈𝐶,

iv

𝐹1 a průměrnou dobu zpracování ukazuje, že PCB-iForest jasně překonává už zavedené
konkurenční metody v 61% případů a dokonce dosahuje ještě slibnějších výsledků co do
vyváženosti mezi výpočetními náklady na klasifikaci a její úspěšností.

Zatřetí, postupně aplikované metody korelace poplachů (AC) mohou pomoci při dolování
ze schémat útoku na základě poplachů generovaných IDS. Nicméně většina existujících
metod postrádá funkcionalitu pro práci s SD a je převážně navržena pro zpracování výs-
tupu z IDS založených na zneužití sítě. Ačkoliv OD metody bez učitele mají schop-
nost rozpoznat dosud neznámé útoky, většina algoritmů AC neumí zacházet s výsledky
z takových IDS založených na detekci anomálií. Právě proto představujeme nový pra-
covní rámec nazvaný detekce odlehlých hodnot a rozpoznávání schémat útoku proudovým
způsobem (SOAAPR), jenž je schopen zpracovat výstup z různých online OD metod bez
učitele proudovým způsobem, aby získal informace o nových schématech útoku. Ze se-
shlukované množiny korelovaných poplachů jsou metodou SOAAPR vypočítány tři různé
soukromí zachovávající podpisy podobné otiskům prstů, které charakterizují a reprezentují
potenciální scénáře útoku s ohledem na jejich komunikační vztahy, projevy ve vlastnostech
dat a chování v čase. Mimo rozpoznávání známých útoků může být porovnání odvozených
podpisů využito k nalezení podobností mezi dosud neznámými a novými schématy útoku.
Evaluace, jež je rozdělena do dvou částí, se opírá o schémata útoku ze dvou široce použí-
vaných a oblíbených datových sad CICIDS2017 a CSE-CIC-IDS2018. Nejprve se schop-
nost AC na průběžně přicházejících datech vyhodnocuje na CICIDS2017 a srovnává se
stávajícím nejlepším offline algoritmem nazývaným korelace poplachů založená na grafech
(GAC), který má potenciál zpracovávat výstupy z IDS založených na detekci anomálií.
Potom se ze scénářů útoku v datových sadách vypočítají tři typy podpisů a porovnají
navzájem. Diskuse výsledků ukazuje na jedné straně, že SOAAPR může soupeřit s GAC
ve schopnosti AC a významně jej překonává z hlediska výpočetního času. Na druhé straně
se všechny tři typy podpisů ve většině případů zdají spolehlivě charakterizovat scénáře
útoků tím, že podobné seskupují k sobě.

Začtvrté, až do dnešní doby se zabezpečení počítačových sítí kryptografickými mecha-
nismy a detekce vniknutí považovaly za oddělené disciplíny. Proto představujeme algorit-
mus nepárového kódu autentizace zpráv (Uncoupled MAC), který obě oblasti propo-
juje. Zabezpečuje síťovou komunikaci (autenticitu a integritu) kryptografickým sché-
matem s podporou druhé vrstvy kódy autentizace zpráv, ale také jako vedlejší efekt posky-
tuje funkcionalitu IDS tak, že vyvolává poplach na základě porušení hodnot nepárového
MACu. Díky novému samoregulačnímu rozšíření algoritmus adaptuje svoje vzorkovací
parametry na základě zjištění škodlivých aktivit. Vzorkování se stalo užitečným nástro-
jem k detekci škodlivých aktivit ve zpracovatelném množství SD, zvláště v systémech, kde
jsou zdroje ceněným zbožím a jsou v příkrém rozporu se stále vzrůstajícím množstvím
síťového provozu. Evaluace ve virtuálním prostředí jasně ukazuje, že schopnost detekce
se za běhu zvyšuje pro různé scénáře útoku. Ty zahrnují dokonce i situace, kdy se in-
teligentní útočníci snaží využít slabá místa vzorkování.

Klíčová slova: síťová bezpečnost, strojové učení, detekce vniknutí, detekce odlehlých
hodnot, průběžně přicházející data, online učení, učení bez učitele, volba vlastností,
analýza poplachů, korelace poplachů, scénář útoku, autentizace zpráv, samoregulace

v

Zusammenfassung
Die allgegenwärtige Vernetzung von eingebetteten Geräten in allen Lebensbereichen wird durch
verschiedene Trends, wie das Internet der Dinge oder autonome Fahrzeuge, und das Aufkommen
bahnbrechender Technologien, wie künstliche Intelligenz oder Quantencomputer, vorangetrieben.
Doch auch die Gegner profitieren von diesen Entwicklungen. Nicht nur der rasante Fortschritt
der sich stetig entwickelnden und alles durchdringenden Technologien führt zu einem breiten
Spektrum an Sicherheitsproblemen, sondern auch die Fähigkeiten der Angreifer in Bezug auf
Werkzeuge, Methoden und Technologien, die große Anforderungen an innovative Sicherheitslö-
sungen stellen, nehmen zu. Die Identifizierung von Netzwerk-basierten Angriffen oder unbekan-
ntem Verhalten durch Angriffserkennungssysteme (IDS) hat sich neben dem Schutz durch kryp-
tografische Verfahren in einem ganzheitlichen Sicherheits-Ökosystem als förderlicher und obliga-
torischer Mechanismus etabliert. Dennoch weisen diese Systeme verschiedene Einschränkungen
auf, wenn es darum geht, Cyberangriffe zuverlässig zu erkennen und darauf zu reagieren. In den
letzten Jahren haben sich Methoden des maschinellen Lernens, insbesondere Methoden der Aus-
reißererkennung (OD), im Bereich der Cybersicherheit etabliert, um netzwerkbasierte Anomalien
zu erkennen, die auf neuartigen Angriffsmustern beruhen. Aufgrund der stetigen Zunahme von
hochvolumigen, schnellen und hochdimensionalen Streaming-Daten (SD), für die keine Lerndaten
verfügbar sind, ist die Erkennung von Anomalien in realen Computernetzwerken zu einer immer
größeren Herausforderung geworden. Effiziente Erkennungsverfahren für vernetzte eingebettete
Geräte müssen schnell und speicherbegrenzt sein und mit Drifts in Daten umgehen können, sofern
diese auftreten.

Ziel dieser Arbeit ist es, die Sicherheit von Computernetzwerken durch verbesserte OD für
Datenströme, insbesondere SD, zu erhöhen, um Cyber-Resilienz zu erreichen, die von der Erken-
nung, über die Analyse sicherheitsrelevanter Vorfälle, z.B. neuartiger bösartiger Aktivitäten, bis
hin zur Reaktion darauf reicht. Daher werden vier Hauptbeiträge aufgeführt, die jeweils in
Unterbeiträge unterteilt sind.

Die Merkmalsauswahl (FS) spielt eine wichtige Rolle bei der Verbesserung von OD, wenn
es darum geht, fehlerhafte Daten zu identifizieren, die irrelevante oder redundante Merkmale
(Features) enthalten. Der Stand der Technik konzentriert sich entweder auf unüberwachte Ver-
fahren von FS für SD oder für den Fall von (offline) OD. Es werden Anforderungen an die
Kombination beider Bereiche abgeleitet und mit bestehenden Ansätzen verglichen. Im um-
fassenden Überblick zeichnet sich eine Forschungslücke im Bereich der unüberwachten FS zur
Verbesserung von Standardmethoden für OD in Streaming-Daten ab. Diese Lücke wird durch
den Vorschlag der Unüberwachte Merkmalsauswahl für streamingverarbeitende Ausreißererken-
nung, auch als UFSSOD bezeichnet, geschlossen. Es wird ein generisches Konzept vorgestellt,
das zwei Anwendungsszenarien von UFSSOD in Verbindung mit online-fähigen OD-Algorithmen
zeigt. Ausführliche Experimente haben erwiesen, dass ein vielversprechender FS-Mechanismus
für SD im Bereich von OD nicht anwendbar ist. Darüber hinaus liefert UFSSOD als online-fähiger
Algorithmus vergleichbare Ergebnisse wie ein modernes, auf OD getrimmtes Offline-Verfahren.

Als weiterer Hauptbeitrag wird ein neuartiges unüberwachtes online OD-Framework namens
Leistungszähler-basierender Isolation Forest (PCB-iForest) eingeführt, das, verallgemeinert, in
der Lage ist, jedes Ensemble-basierte online OD-Verfahren zu integrieren, um auf SD zu funk-
tionieren. Sorgfältig ausgearbeitete Anforderungen werden mit den gängigsten Online-Methoden
verglichen, wobei der Schwerpunkt auf Varianten liegt, die auf dem weithin akzeptierten iFor-
est-Algorithmus basieren. Daher werden zwei Varianten in PCB-iForest integriert - eine iFor-
est-Verbesserung namens Extended Isolation Forest und eine klassische iForest-Variante, die mit
der Funktion ausgestattet ist, Merkmale entsprechend ihrem Beitrag zur Anomalität einer Probe
zu bewerten. Umfangreiche Experimente wurden mit 23 verschiedenen, multidisziplinären und
sicherheitsrelevanten realen Datensätzen durchgeführt, um die Leistung unserer Implementierung
im Vergleich zu Standardmethoden umfassend zu bewerten. Die Diskussion der Ergebnisse, ein-

vi

schließlich 𝐴𝑈𝐶, 𝐹1-Score und gemittelter Ausführungszeitmetrik, zeigt, dass PCB-iForest in
61% der Fälle Konkurrenten des aktuellen Forschungsstands deutlich übertraf und sogar vielver-
sprechendere Ergebnisse in Bezug auf den Kompromiss zwischen Genauigkeit und Ressourcenbe-
darf erzielte.

Konsekutiv angewandte Methoden der Alarmanalyse bzw. -korrelation (AC) können beim
Mining von Angriffsmustern auf der Grundlage der von IDS generierten Alarme helfen. Den
meisten der vorhandenen Methoden fehlt jedoch die Funktionalität, um mit SD umzugehen,
und sie sind hauptsächlich auf die Ausgabe von Signatur-basierten IDS ausgelegt. Obwohl
unüberwachte OD-Methoden in der Lage sind noch unbekannte Angriffe zu erkennen, können
die meisten AC-Algorithmen nicht mit den Ergebnissen solcher, auf Anomalien basierenden IDS,
umgehen. Daher wird ein neuartiges Framework namens Streamingfähige Ausreißeranalyse und
Angriffsmustererkennung eingeführt, welches als SOAAPR bezeichnet wird. SOAAPR ist in
der Lage, die Ausgabe verschiedener online unüberwachter OD-Methoden in einem Streaming-
Verfahren zu verarbeiten, um Informationen über neuartige Angriffsmuster zu extrahieren. Aus
der geclusterten Menge korrelierter Alarme werden von SOAAPR drei verschiedene datenschutz-
konforme, fingerabdruckähnliche Signaturen berechnet, die die potenziellen Angriffsszenarien in
Bezug auf ihre Kommunikationsbeziehungen, ihre Manifestation in den Datenmerkmalen und ihr
zeitliches Verhalten charakterisieren und darstellen. Über die Erkennung bekannter Angriffe hin-
aus kann der Vergleich abgeleiteter Signaturen genutzt werden, um Ähnlichkeiten zwischen noch
unbekannten und neuen Angriffsmustern zu finden. Die in zwei Teile gegliederte Evaluierung
nutzt Angriffsszenarien aus den weit verbreiteten und beliebten CICIDS2017- und CSE-CIC-
IDS2018-Datensätzen. Zunächst wird die Streaming-Fähigkeit von AC anhand von CICIDS2017
evaluiert und mit einem neuartigen graph-basierten Offline-Alarmkorrelationsalgorithmus na-
mens GAC verglichen, der das Potenzial hat, mit den Ergebnissen von anomaliebasierten IDS
umzugehen. Zweitens werden die drei Typen von Signaturen anhand von Angriffsszenarien in
den Datensätzen berechnet und miteinander verglichen. Die Diskussion der Ergebnisse zeigt,
dass SOAAPR mit GAC in Bezug auf die AC-Fähigkeit konkurrieren kann und diese bezüglich
der Verarbeitungszeit deutlich übertrifft. Darüber hinaus scheinen in den meisten Fällen alle
drei Arten von Signaturen Angriffsszenarien so zuverlässig zu charakterisieren, dass ähnliche
Szenarien in Gruppen zusammengefasst werden.

Bislang wurden der kryptografische Schutz und die Angriffserkennung für Netzwerksicher-
heit als getrennte Disziplinen betrachtet. Daher wird als letzter Hauptbeitrag ein Algorithmus
für Entkoppelte Nachrichtenauthentifizierungscodes - Uncoupled MAC - vorgestellt, der eine
Brücke zwischen diesen beiden Disziplinen schlägt. Er sichert die Netzwerkkommunikation (Au-
thentizität und Integrität) durch ein kryptographisches Verfahren mit Layer-2-Unterstützung
über entkoppelte Nachrichtenauthentifizierungscodes, bietet aber als Nebeneffekt auch eine IDS-
Funktionalität, die Alarme aufgrund der Verletzung von Uncoupled MAC-Werten erzeugt. Durch
eine neuartige Erweiterung der Selbstregulierung passt der Algorithmus seine Sampling-Parameter
auf der Grundlage der Erkennung bösartiger Aktionen an. Das Sampling hat sich als nützlich
erwiesen, um bösartige Aktivitäten in einer überschaubaren Menge von SD zu erkennen, ins-
besondere in Systemen, in denen Ressourcen wertvolle Güter sind und im Gegensatz zu der
ständig wachsenden Menge an Netzwerkverkehr stehen. Die Auswertung in einer virtualisierten
Umgebung zeigt deutlich, dass die Erkennungsrate über die Laufzeit für verschiedene Angriff-
sszenarien ansteigt. Diese decken sogar Szenarien ab, in denen intelligente Angreifer versuchen,
die Nachteile des Sampling auszunutzen.

Schlüsselwörter: Netzwerksicherheit, Maschinelles Lernen, Angriffserkennung, Ausreißererken-
nung, Streaming-Daten, Online Lernen, Unüberwachtes Lernen, Featureauswahl, Alarmanalyse,
Alarmkorrelation, Angriffsszenario, Nachrichtenauthentifizierung, Selbstregulierung

vii

Credits

Parts of this dissertation have previously appeared or are still under consideration in the
following scientific publications. In all of those articles I am the first author, conceived
the original idea as well as their conceptualization and contributed most of the work,
including the writing of the manuscript. Subjective writing is used throughout this thesis
(we-perspective) to reflect me and my co-authors.

Other parts have previously been published in a report capturing the state of the art &
concepts of the doctoral thesis as part of my state doctoral examination. During the years
of this study program, I also contributed to other related areas in the cyber security field
and published papers written jointly with several collaborators as listed in Appendix A.

• Michael Heigl, Network Communication Protection Based on Anomaly Detection’s
Incident Handling - State of the Art & Concepts of Doctoral Thesis, Technical Re-
port No. DCSE/TR-2019-031, University of West Bohemia, July 2019 - Chapter 1
and Chapter 2

• Michael Heigl, Laurin Doerr, Nicolas Tiefnig, Dalibor Fiala, Martin Schramm,
A Resource-Preserving Self-Regulating Uncoupled MAC Algorithm to be Applied
in Incident Detection, Computers & Security, vol. 85, pp. 270-287, May 2019,
doi:10.1016/j.cose.2019.05.010 - IF: 3.579 - Chapter 6

• Michael Heigl, Kumar Anand, Andreas Urmann, Dalibor Fiala, Martin Schramm,
Robert Hable, On the Improvement of the Isolation Forest Algorithm for Outlier
Detection with Streaming Data, Electronics (Basel), 10(13), 1534, June 2021,
doi:10.3390/electronics10131534 - IF: 2.397 - Chapter 4

• Michael Heigl, Enrico Weigelt, Andreas Urmann, Dalibor Fiala, Martin Schramm,
Exploiting the Outcome of Outlier Detection for Novel Attack Pattern Recognition
on Streaming Data, Electronics (Basel), 10(17), 2160, September 2021,
doi:10.3390/electronics10172160 - IF: 2.397 - Chapter 5

• Michael Heigl, Enrico Weigelt, Dalibor Fiala, Martin Schramm, Unsupervised Fea-
ture Selection for Outlier Detection on Streaming Data to Enhance Network Security,
Computers & Security, revised version submitted 02 September 2021 - IF: 4.438 -
Chapter 3

Most parts of this report were elaborated in the context of the research projects Decen-
tralized Anomaly Detection (DecADe) and New Multi-Layer Platforms for Security and
Safety-Relevant Automated Driving Functions (MLPaSSAD). Both projects have been
supported by the German Federal Ministry of Education and Research (BMBF) under
grant code 16KIS0539 (DecADe) and 13FH645IB6 (MLPaSSAD). This research work was
also partially supported by the Ministry of Education, Youth and Sports of the Czech
Republic under grant No. LO1506.

1http://www.kiv.zcu.cz/en/research/publications/technical-reports/
(accessed on 04 September 2021)

viii

http://www.kiv.zcu.cz/en/research/publications/technical-reports/

Acknowledgements

Helen Keller’s quote - Alone we can do so little; together we can do so much. - hits the
nail on the head. Over the last couple of years, many people in my life have supported
me whether from an intellectual, financial or personal standpoint. This support was
invaluable on my journey achieving the Ph.D. degree. I faced a lot of challenges, both
in work and life, but supportive individuals gave me the confidence to overcome these
hurdles. Hence, this is an attempt at acknowledging their remarkable help and guidance.
Without them, getting to this final stage would have been much more difficult.

My deepest appreciation goes to my supervisor doc. Ing. Dalibor Fiala, Ph.D. at the
University of West Bohemia for his great guidance, his valuable feedback at all times, his
expertise in the field of data mining and machine learning and his help in overcoming
administrative obstacles especially with the Czech higher education bureaucracy. He suc-
cessfully guided me through the study program to accomplish my research goals. Thank
you also for constantly reviewing and validating my results.

A special and heartfelt thank you goes to all of my (former) colleagues of the ProtectIT
institute at the Deggendorf Institute of Technology. In particular, those that supported
me over all these years, contributed to my research work, both by realizing my conceptions
and being co-authors of scientific publications. Thank you very much for all the scientific
and technical discussions we had, for assisting me with all the implementation work and
for the fun “team building” time. I also want to show gratitude to the wife of a highly
respected colleague, a native English speaker, for all the laborious proofreading.

I am deeply grateful to Prof. Dr. Martin Schramm for enabling me to pursue a Ph.D.
degree in cooperation with the University of West Bohemia. His comments, suggestions
and reviews were always of inestimable value and made an enormous contribution to my
work in the field of cyber security. His expertise in the field of embedded cryptography
were particularly beneficial. I also want to express my gratitude to the Vice President
of Applied Research and Technology Transfer, Prof. Dr.-Ing. Andreas Grzemba, of the
Deggendorf Institute of Technology for granting me one of the coveted doctoral researcher
positions and successfully guided me through my bachelor’s and master’s degrees. I was
fortunate to have him as a mentor since he also gave me an insight into what it is like to
work in the cyber security industry by letting me work as a freelancer in his spin-off.

I owe a very important debt to my parents, my sister and my grandparents for giving
me a loving and safe childhood, for their moral support, for their warm encouragement
throughout my life and their pride in my achievements. My education and academic
career was always made a priority in all phases of life, including ups and downs. For this
and so much more, I would like to express my deepest gratitude!

After becoming a husband and father, my young family became my constant drive and
source of tireless motivation to achieve a long desired dream of mine - the doctoral degree.
The birth of my son made me realize that the important things in life are not triumph and
money but health and love which is aptly worded in the quote - The most precious jewels,
you’ll ever have around your neck, are the arms of your children. Finally, I would like
to thank my wife that you decided to share your heart with me as well as your constant
support and sacrifice during the tremendously time-consuming Ph.D. process. Thank you
so much for your continuous, unconditional and unparalleled love as well as being such a
wonderful mother. I love you both with all my heart!

Vergelt’s Gott!

ix

Contents

List of Acronyms xv

List of Figures xviii

List of Tables xix

List of Algorithms xx

List of Equations xx

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2

1.2.1 Non-Applicability of Artificial Neural Networks 2
1.2.2 Limitations of Intrusion Detection Systems 3
1.2.3 Limitations of Alert Correlation . 5
1.2.4 Challenges of Streaming Data . 6

1.3 Research Objectives . 7
1.4 Thesis Statement and Contributions . 9
1.5 Organization of the Thesis . 14

2 Background 15
2.1 Incident Detection . 15

2.1.1 Taxonomy of IDSs . 15
2.1.2 Aspects of Machine Learning . 21
2.1.3 Outlier Detection . 27
2.1.4 IDS Evaluation Metrics . 34

2.2 Incident Analysis . 37
2.2.1 Pre-Processing . 38
2.2.2 Processing . 41
2.2.3 Post-Processing . 48

2.3 Incident Response . 60
2.3.1 Taxonomy of Intrusion Response Systems 60
2.3.2 Intrusion Response Representation 66
2.3.3 Possible Response Measures . 68

3 Unsupervised Feature Selection for Outlier Detection on Streaming Data
to Enhance Network Security 72
3.1 Requirements Engineering and Comparison with Related Work 72

x

3.1.1 Requirements with Respect to Feature Selection for Outlier Detec-
tion on Streaming Data . 72

3.1.2 Feature Selection for Streaming Data 74
3.1.3 Feature Selection for Outlier Detection 76

3.2 Unsupervised Feature Selection for Streaming Outlier Detection 79
3.2.1 Operation Principle . 79
3.2.2 Operation Modes . 80
3.2.3 Model for Scoring and Clustering Features 82

3.3 Evaluation . 85
3.3.1 Test Environment . 85
3.3.2 Data Source . 87
3.3.3 Evaluation Methodology . 88

3.4 Discussion of Results . 89
3.4.1 Comparison of FSDS, IBFS and UFSSOD with the Best 25% Features 89
3.4.2 Comparison of IBFS and UFSSOD with Different Feature Sets . . . 93
3.4.3 Application of UFSSOD, xStream and Loda Two Hist. in a Stream-

ing Setting . 95

4 On the Improvement of the Isolation Forest Algorithm for Outlier Detec-
tion with Streaming Data 99
4.1 Related Work in Online Outlier Detection 99
4.2 Requirement Specification & Validation . 102
4.3 Generic PCB-iForest Framework . 104

4.3.1 Drift Detection Method . 105
4.3.2 Performance Counter-Based Scoring 106
4.3.3 Base Learner . 108

4.4 Experimental Evaluation . 109
4.4.1 Methodology & Settings . 110
4.4.2 Data Sources . 111
4.4.3 Evaluation Criteria . 113

4.5 Discussion of Results . 113
4.5.1 NDKSWIN Drift Detection . 114
4.5.2 Competitors-Based HSFS . 115
4.5.3 Multi-Disciplinary ODDS . 116
4.5.4 Security-Related UNSW-NB15 . 121

5 Exploiting the Outcome of Outlier Detection for Novel Attack Pattern
Recognition on Streaming Data 123
5.1 Related Work for Streaming Alert Correlation and Outlier Detection . . . 123

5.1.1 Alert Correlation for Outlier Detection 123
5.1.2 Streaming Alert Correlation . 125
5.1.3 Delimitation from SOAAPR . 126

5.2 Streaming Outlier Analysis and Attack Pattern Recognition 130
5.2.1 Operation Principle . 130
5.2.2 Alert Generation & Preparation . 131
5.2.3 Streaming Alert Correlation & Clustering 133
5.2.4 Signature Generation & Sharing . 140

5.3 Experimental Evaluation . 145
5.3.1 Methodology & Settings . 145

xi

5.3.2 Data Source . 146
5.3.3 Evaluation Criteria . 147

5.4 Discussion of Results . 148
5.4.1 SOAAPR Clustering . 148
5.4.2 SOAAPR Signaturing . 151

6 A Resource-Preserving Self-Regulating Uncoupled MAC Algorithm to be
Applied in Incident Detection 162
6.1 Incident Detection Mechanisms . 162

6.1.1 Adaptive Intrusion Detection Systems 162
6.1.2 Cryptographic Mechanisms for Incident Detection 164

6.2 Uncoupled MAC Algorithm Improvements 168
6.2.1 Master/Slave Negotiation . 168
6.2.2 Integration in Networked Devices 169
6.2.3 Synchronization of MAC Phase Start 169
6.2.4 Static Communication Mode . 170
6.2.5 IDMEF Extension . 170

6.3 Self-Regulation Algorithm . 171
6.3.1 Number of Packets 𝑛 per MAC Phase 171
6.3.2 Waiting Duration 𝛼 in the Idle Phase 172
6.3.3 Formula Verification . 173
6.3.4 Algorithm Notation . 173

6.4 Evaluation . 174
6.4.1 Virtualized Environment . 175
6.4.2 Attack Scenarios . 176
6.4.3 Attacker Implementation . 177
6.4.4 Evaluation Metrics . 178

6.5 Measurement Results . 179
6.5.1 Continuous Injection . 179
6.5.2 Stochastic Injection . 180
6.5.3 Bandwidth Low Injection . 180
6.5.4 Weak Spot Injection . 182
6.5.5 Uncoupled MAC Overhead . 183

7 Conclusion 186
7.1 Summary of the Work . 186
7.2 Revising the Research Questions . 187
7.3 Future Work & Research Perspectives . 190

Bibliography 194

Appendices I

Appendix A Author’s Publications II

Appendix B Contents of the Enclosed SD-Card V

xii

List of Acronyms

AC Alert Correlation iii, v, vii, 6–8, 12, 15, 38, 41–43, 45–48, 51, 56, 65, 123–125, 128–130,
137, 146, 147, 150, 187, 188

ACG Alert Correlation Graph 46

AI Artificial Intelligence 1, 3, 49, 186

ANDERS Anomaly-based Incident Detection and Response System xvi, 7–9, 186, 193

ANN Artificial Neural Networks 3, 19, 20, 25, 32, 34, 45, 46, 57, 108

APT Advanced Persistent Threat 4, 49

AUC Area Under the ROC Curve 34, 35, 188

AutoML Automated ML 23

CAN Controller Area Network 33, 34, 52, 59

CASH Combined Algorithm Selection and Hyperparameter 23

CVE Common Vulnerabilities and Exposures 51, 56, 68

DAG Directed Acyclic Graph 23, 45, 46

ECU Electronic Control Units 56, 59, 60

EIF Extended Isolation Forest 104, 108, 110

FN False Negative 5, 35, 37, 48, 126, 129, 131–133, 140, 141, 144, 150, 151, 189, 192

FP False Positive 5, 35, 37, 38, 41, 44, 48, 57, 65, 126, 128–130, 132, 133, 140, 141, 144,
150, 151, 189, 192

FPR False Positive Rate 35, 36, 113

FS Feature Selection ii, iv, vi, xvi–xviii, 8, 10, 11, 14, 24–26, 72–82, 86, 88, 89, 92, 186,
187, 191

GAC Graph-based Alert Correlation iii, v, vii, xvii, xix, 12, 123, 124, 127, 139, 145–152,
189, 192

HIDS Host-based IDS 16, 60

HMAC Keyed-Hash Message Authentication Code 164, 165, 171, 174, 176, 184, 185, 193

xiii

IBFS Isolation-Based Feature Selection xvii–xx, 11, 72, 78, 82, 85, 88–95, 109, 110, 187

IDEA Intrusion Detection Extensible Alert 12, 40, 171, 192

IDIP Intruder Detection and Isolation Protocol 39, 64, 67

IDMEF Intrusion Detection Message Exchange Format 20, 34, 38–40, 51, 65–67, 170,
171, 174, 192

IDS Intrusion Detection System ii–vii, 2–8, 12, 13, 15–20, 24, 25, 30, 32–39, 41, 42, 46–48,
51, 52, 55–60, 63–66, 69, 71, 72, 76, 87, 103, 111, 123–130, 142, 144–146, 162–164,
167, 168, 170, 171, 174, 178, 179, 186–190, 192, 193

IDXP Intrusion Detection eXchange Protocol 39, 40

iForest Isolation Forest ii, iv, vi, xviii–xx, 11, 12, 15, 28–32, 77, 78, 80–82, 85, 86, 98–101,
104–106, 108–111, 115, 116

IoT Internet of Things 1, 4, 5, 9, 15, 124, 186, 193

IPS Intrusion Prevention System 50, 51, 60, 61

IRMEF Intrusion Response Message Exchange Format 67

IRS Intrusion Response System 60–62, 66, 67

IT Information Technology 1, 5, 7, 34, 39, 52, 186

Loda Lightweight on-line detector of anomalies xvii–xx, 15, 28–32, 34, 80–83, 86, 88, 89,
95–100, 104, 106, 108, 109, 116–119, 121, 122, 131, 132, 187, 188, 191–193

MAC Message Authentication Code xviii, xx, 13, 165–174, 176–183, 185, 190, 193

ML Machine Learning 3–5, 9, 15, 19, 21–28, 32–35, 41, 42, 46, 124, 144, 147, 186, 193

NETCONF Network Configuration Protocol 67

NFV Network Function Virtualization 71

NIDS Network-based IDS 16, 17, 19–21, 28, 36, 58, 60, 69

OCSVM One-Class SVM 34

OD Outlier Detection ii–vii, xvi, xvii, xix, 3, 6–12, 14, 15, 19, 22, 27–30, 72–83, 86–90,
92, 93, 99–104, 108–113, 116–121, 123, 126–131, 133, 134, 137, 140–143, 145–147,
153, 186–189, 191–193

ODDS Outlier Detection DataSets xviii, xix, 87, 111, 115, 119, 188

ODE Ordinary Differential Equation 53, 54

PCA Principal Component Analysis 24, 25, 101, 105, 108

PCB-iForest Performance Counter-Based iForest ii–vii, xvii, xix, xx, 11, 12, 14, 31, 99,
101, 104–111, 113–122, 186, 188, 190–193

xiv

RC Research Contribution 10–15, 187, 188, 190

RF Random Forests 31, 124, 145, 153, 192

ROC Receiver Operating Characteristic 34–36

RP Random Projection 24, 25, 31, 88, 100, 105, 110

RQ Research Question 8, 10, 14, 187, 188, 190

SD Streaming Data ii–vii, xvi, xvii, xix, 6, 7, 10–12, 14, 27, 28, 31, 72–79, 81, 82, 86, 88,
89, 99–106, 108, 109, 112, 116, 123, 186, 187, 191

SDE Stochastic Differential Equation 53–55

SDN Software-Defined Networking 2, 8, 9, 15, 69–71, 163, 168, 193

SEIR Susceptible-Exposed-Infectious-Recovered 53, 54

SHAP SHapley Additive exPlanations 31, 145, 192

SI Susceptible-Infected 53, 58

SIEM Security Information and Event Management 38, 48, 49, 51, 170

SIR Susceptible-Infected-Recovered 53, 58

SNMP Simple Network Management Protocol 39, 67

SOAAPR Streaming Outlier Analysis and Attack Pattern Recognition iii, v, vii, xvii,
xix, 12, 14, 123, 126–131, 133–135, 137, 140, 141, 145–151, 187, 189, 190, 192

SOC Security Operations Center 38, 48

STIX Structured Threat Information eXpression 12, 13, 130, 144

SVM Support Vector Machine 26, 33, 46, 51, 123, 124

TN True Negative 35, 133, 134, 150

TP True Positive 35, 37, 56, 128, 130, 133, 135, 150

TPR True Positive Rate 35, 36, 113

UFSSOD Unsupervised Feature Selection for Streaming Outlier Detection ii, iv, vi, xvi–
xx, 10, 11, 14, 72, 79–85, 87–98, 186, 187, 190–192

Uncoupled MAC Uncoupled Message Authentication Code iii, v, vii, xviii, xx, 13, 14,
69, 162, 166–185, 187, 190, 192, 193

XML eXtensilble Markup Language 20, 40, 67, 170

xv

List of Figures

1.1 Cyber defense life cycle . 1
1.2 Incident handling process . 2
1.3 Architecture of a generic ANDERS component including the four research

questions of this thesis . 8
1.4 Possible ANDERS application use case of malicious activity propagation

in an SDN-based vehicular ad-hoc network 9
1.5 High level overview of improved outlier detection within the thesis leading

to four major research contributions . 10

2.1 Taxonomy/classification of IDSs . 16
2.2 Taxonomy of detection approaches for IDSs 18
2.3 A typical Machine Learning Pipeline/Workflow 21
2.4 (a) Isolating an outlier, (b) Representation of a tree model 29
2.5 Taxonomy of evaluation measures . 35
2.6 Example of an ROC-curve . 36
2.7 Taxonomy of alert analysis fields . 38
2.8 Application domains of exchange formats 39
2.9 Evaluation summary of exchange formats 40
2.10 Evaluation summary of exchange protocols 40
2.11 Different alert correlation architectures . 43
2.12 Taxonomy of alert correlation techniques 44
2.13 Framework of real-time network attack intention recognition 50
2.14 Operation of a generic early warning system 51
2.15 Different types of behavior in compartmental models 53
2.16 Simulation of an SDE for malware propagation 55
2.17 Illustration of three categories of observation in networks 58
2.18 Taxonomy of source identification methods 58
2.19 Root cause identification framework . 59
2.20 Taxonomy of intrusion response systems 62
2.21 Challenges for IRSs . 63
2.22 Response selection process of REASSESS 66
2.23 Intrusion response message format - IRMEF 68
2.24 Intrusion response message format - IR-Message 69
2.25 Different intrusion response levels . 70
2.26 List of common response measures . 71

3.1 Block diagram and operation principle of UFSSOD 80
3.2 Conceptualization of module interaction for unsupervised FS for OD on SD

(sequential approach) . 81

xvi

3.3 Conceptualization of module interaction for unsupervised FS for OD on SD
(parallel approach) . 82

3.4 Visualization aid of ufssod_clustering with four exemplary clusters and
semicircles around the cluster centroids . 84

3.5 Flowchart of the evaluation measurements 88
3.6 Exemplary 𝐹1 plots for badly-performing IBFS and UFSSOD using top

25% feature subsets . 91
3.7 Exemplary 𝐹1 plots for well-performing IBFS and UFSSOD using top 25%

feature subsets . 91
3.8 Exemplary plots for feature scores 𝑠𝑓𝑖(𝑡) of IBFS (a,c) and UFSSOD (b,d)

applied on musk (a,b) and satellite (c,d) 92
3.9 Exemplary plots for feature scores 𝑠𝑓𝑖(𝑡) of IBFS (a) and UFSSOD (b)

applied on optdigits . 94
3.10 𝐹1/𝑎𝑣𝑔_𝑡 and 𝑎𝑣𝑔_𝑡 results for optdigits 94
3.11 𝐹1/𝑎𝑣𝑔_𝑡 results for well-performing data sets mnist and wbc 95
3.12 𝐹1/𝑎𝑣𝑔_𝑡 results for badly-performing data sets cardio and optdigits . . . 96
3.13 𝐹1/𝑎𝑣𝑔_𝑡 results for well-performing data sets mnist and satellite 97

4.1 The workflow of the PCB-iForest incremental learning framework 105
4.2 Exemplary visualization of NDKSWIN gradual and abrupt drift detection

with two different hyperparameter settings 115
4.3 𝐹1/𝑎𝑣𝑔_𝑡 results for well-performing PCB-iForestIBFS on data sets mnist

(a) and optdigits (b) . 117
4.4 𝑎𝑣𝑔_𝑡 results for the data sets ionosphere (a) and wbc (b) 118
4.5 Exemplary plots for feature scores 𝑠𝑓 on high-dimensional arrhythmia (a)

and musk (b) including 25%, 50% and 75% subsets 119
4.6 𝐹1 results for the high-dimensional data sets arrhythmia (a) and musk (b)

utilizing different feature sets . 120

5.1 Flowchart and Operation Principle of Streaming Outlier Analysis for At-
tack Pattern Recognition . 131

5.2 Exemplary Loda outlier score values including the mean and median 132
5.3 Exemplary scenario of evolving alert clusters for two different observation

times (a) and (b) . 138
5.4 Generation and comparison process of the signature 𝑠𝑖𝑔𝑐𝑜𝑚 141
5.5 Generation and comparison process of the signature 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 143
5.6 Generation and comparison process of the signature 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 143
5.7 Sunburst diagrams for the clustering performance of (a) GAC on FTP and

SSH Brute Force, (b) SOAAPR on the web attacks, (c) GAC and (d)
SOAAPR on the DoS-attacks . 150

5.8 Hierarchical clustering of similarities between CICIDS2017 attack scenarios
based on 𝑠𝑖𝑔𝑐𝑜𝑚 . 152

5.9 Two exemplary 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 using the same set of 78 features for the attack sce-
narios (a) Infiltration of CICIDS2017 and (b) Brute-Force-Web-0 in CSE-
CIC-IDS2018 . 154

5.10 Dependency of 𝛾 on the Bhattacharyya distance (similarity) of two highly
similar (a) and dissimilar (b) attack scenarios 155

5.11 Hierarchical clustering of similarities between a selection of CICIDS2017
and CSE-CIC-IDS2018 attack scenarios based on 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 for 𝛾 = 30 155

xvii

5.12 Comparison of 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 for (a) SQL-Injection-0 of CSE-CIC-IDS2018 with
Web Attack - Sql Injection of CICIDS2017 and (b) Brute-Force-Web-1 of
CSE-CIC-IDS2018 with Web Attack - Brute Force of CICIDS2017 for 𝛾 = 30156

5.13 Smoothed 𝛾-dependency-curves using Gaussian Filtering for a selection of
similar and dissimilar attack scenarios . 157

5.14 Hierarchical clustering of similarities between CICIDS2017 and CSE-CIC-
IDS2018 attack scenarios based on 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 159

5.15 Comparison of 𝛥𝑡 histograms of four distinct Infiltration attack scenarios
(a)-(f) present in CSE-CIC-IDS2018 . 160

5.16 Comparison of 𝛥𝑡 histograms of four distinct web attack scenarios - XSS
(a)-(b) and Brute Force (c)-(d) - present in CICIDS2017 and CSE-CIC-
IDS2018 . 160

6.1 Network scenario of the proposed concept 166
6.2 Combination of methods . 168
6.3 Integration of Uncoupled MAC operation in networked devices 169
6.4 Timing diagram for a synchronized start of a MAC Phase 170
6.5 Self-regulating sampling approach for Uncoupled MAC 172
6.6 Verification of the self-regulation formulas 173
6.7 Structure of the virtual evaluation environment 175
6.8 Attacker bandwidth measurement and injected packets in detected band-

width lows . 178
6.9 Confusion Matrix parameters for some Uncoupled MAC phase 𝑘 178
6.10 Detection rate - continuous packet injection 179
6.11 Detection rate - stochastic attack mode . 180
6.12 Packet detection per phase - single attack mode 181
6.13 Packet detection per phase - burst attack mode 182
6.14 Detection rate - weak spot injection . 183
6.15 Bandwidth overhead in presence of an attacker 184
6.16 CPU (left) and memory (right) utilization of the Uncoupled MAC process . 184

List of Tables

2.1 Time/space complexity of iForest and Loda 31
2.2 Confusion matrix for IDS evaluation . 35
2.3 Response and recovery action classification 68

3.1 Comparison of existing FS work for SD . 76
3.2 Comparison of existing FS work for OD . 78
3.3 Characteristics of the utilized and partially adapted data sets from ODDS 87
3.4 𝐹1/𝑎𝑣𝑔_𝑡 results for FSDS (different 𝑘), IBFS and UFSSOD 90
3.5 𝐹1 results for IBFS and UFSSOD for different 𝛾 (feature subsets) 93

xviii

3.6 Individual classifier performance in terms of the percentage increase/decrease
of 𝑎𝑣𝑔_𝑡 and 𝐹1 applying ckeans_ufssod on IBFS and UFSSOD compared
to full dimension on wbc data set . 95

3.7 𝐹1 results for UFSSOD using different 𝛾 (feature subsets) for data sets
with ID 𝑖 in streaming setting with xStream and LodaTwo Hist. 96

3.8 Performance of xStream and LodaTwo Hist. in terms of the percentage in-
crease/decrease of 𝑎𝑣𝑔_𝑡 and 𝐹1 applying UFSSOD in a streaming setting
compared to full dimension . 98

4.1 Comparison of existing OD work for SD with the requirements specified . . 104
4.2 Characteristics of the partially truncated data sets from ODDS 111
4.3 Characteristics of the four preprocessed CSV files from the UNSW-NB15

data set . 113
4.4 Classification performance of different iForest-based competitors aggre-

gated from their respective original work with PCB-iForestEIF and PCB-
iForestIBFS . 116

4.5 𝐹1 results for different online OD algorithms on data sets with ID 𝑖 117
4.6 𝐹1/𝑎𝑣𝑔_𝑡 results for different online OD algorithms on data sets with ID 𝑖 118
4.7 𝐹1/𝑎𝑣𝑔_𝑡 results averaged for each online OD using different feature sets

for data sets with ID 𝑖 . 120
4.8 Individual classifier performance in terms of the percentage increase/decrease

of 𝑎𝑣𝑔_𝑡 and 𝐹1 when applying a feature subset compared to full dimension
on the arrhythmia and musk data set . 121

4.9 𝐹1 and 𝑎𝑣𝑔_𝑡 results for different online OD algorithms on the four pre-
processed CSV files from the UNSW-NB15 data set 121

5.1 Exemplary meta-alert generation based on five online OD algorithms clas-
sifying five data instances (3x normal, 2x abnormal) 134

5.2 The 14 different attacks with respective characteristics of the CICIDS2017
data sets . 135

5.3 Proposed comparison functions 𝑓𝑘 to compute the similarity between alert
𝑎𝑡 and 𝑎𝑗 utilizing the alert attributes {𝑖𝑝𝑠𝑟𝑐, 𝑖𝑝𝑑𝑠𝑡, 𝑝𝑜𝑟𝑡𝑠𝑟𝑐, 𝑝𝑜𝑟𝑡𝑑𝑠𝑡} 139

5.4 Clustering performance results of SOAAPR and GAC on 11 attack scenar-
ios of the CICIDS2017 data sets . 148

5.5 Upper triangular matrix of 𝑠𝑖𝑔𝑐𝑜𝑚 similarities between CICIDS2017 attack
scenarios . 151

5.6 A selection of attack scenarios with respective characteristics of the CSE-
CIC-IDS2018 data set . 153

5.7 Average processing time to generate 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 for a selection of attack scenarios
of CICIDS2017 and CSE-CIC-IDS2018 . 158

5.8 Average processing time to generate 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 for a selection of attack sce-
narios of CICIDS2017 . 161

5.9 Average processing time to generate 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 for a selection of attack sce-
narios of CSE-CIC-IDS2018 . 161

xix

List of Algorithms

1 High-level operation principle of UFSSOD 80
2 Scoring functionality of UFSSOD - ufssod_scoring() 83
3 Feature clustering of UFSSOD - ufssod_clustering() 85

4 Operation Principle of PCB-iForest . 107
5 Feature Scoring in PCB-iForest utilizing IBFS 110

6 Operation Principle of Streaming Alert Correlation / Clustering 136
7 Monitoring of Trigger Signature Generation and Discard Alerts & Clusters . 138

8 Calculation of 𝑛 for the next phase 𝑘 + 1 . 174
9 Calculation of 𝛼 for the next phase 𝑘 + 1 174

List of Equations

2.1 Machine Learning Pipeline - Performance 23
2.2 Machine Learning Pipeline - Loss Minimization 23
2.3 iForest - 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝜓) . 30
2.4 iForest - 𝑐(𝜓) . 30
2.5 iForest - 𝐻(𝑛) . 30
2.6 Loda - 𝑓(𝑥) . 30
2.7 Loda - 𝑝(𝑥) . 30
2.8 Similarity function - 𝑆𝑖𝑚(𝑋 𝑖, 𝑌) . 44
2.9 Infection function - 𝑑𝐼(𝑡) . 54
5.1 Outlier score normalization formula . 132
5.2 Similarity function between an alert 𝑎𝑡 and a cluster 𝐶𝑖 139
5.3 Alert similarity between two alerts 𝑎𝑡 and 𝑎𝑗 139
5.4 Similarity between two network motifs. 142
5.5 Similarity between two signatures 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 using the Bhattacharyya distance

measure . 142
5.6 Completeness evaluation metric for alert correlation 147
5.7 Soundness evaluation metric for alert correlation 148
5.8 Jaccard evaluation metric for alert correlation 148
6.1 Number of packets to be examined in the next MAC Phase 172
6.2 Percentage of packets to check in the next MAC Phase 172
6.3 Duration of the next Idle Phase . 172
6.4 True Positive Rate for efficiency of Uncoupled MAC’s detection performance179

xx

1 Introduction

This chapter provides a short introduction to this thesis by firstly explaining its motiva-
tion. Further, the problem statement is provided and research questions are formulated.
Finally, the chapter gives an outline of this research with four major contributions and a
brief organization of the thesis.

1.1 Motivation

The constantly growing number of computer components, the spatial extent of networks,
their interaction with their environment (e.g., automotive: “Always and Everywhere On”)
boosted by trends such as Internet of Things (IoT), Connected Cars, Smart Cities, Indus-
try 4.0, 5G or Software-Defined Everything and the use of new technologies, e.g., Artificial
Intelligence (AI), not only lead to the improvement of processes or customer comfort, but
also increase system complexity and create new hazard potentials and risks with regard to
the information and operational security of these systems. This also offers adversaries a
broad spectrum of attack vectors and capabilities such as the usage of cloud or distributed
computing, quantum computation for breaking contemporary public-key cryptography [1]
or smart AI-powered malware that enables highly sophisticated and stealth attacks. The
rise of next generation threats demands “adopting new methods of automated prevention
methods” stated by John Samuel, senior vice president and global chief information of-
ficer at CGS1 [2]. Constant monitoring of components, early detection and handling of
attacks, and comprehensive continuous assessments of the security level of the overall sys-
tem are therefore unavoidable for securing future-oriented IT-systems. The cyber defense
life cycle [3, 4, 5, 6] shown in Figure 1.1 helps to reduce and better manage cyber risks.

Figure 1.1: Cyber defense life cycle [7].

The cyber defense life cycle specifies the phases of a continuous incident handling pro-
cess, mainly covering incident detection, incident analysis and incident response, in which
malicious behavior, for instance in networks, can be detected, analyzed and appropriate
reaction mechanisms can be planned and executed. Figure 1.2 shows the process with

1https://www.cgsinc.com/en (accessed on 05 September 2021)

1

https://www.cgsinc.com/en

the involved components. After detecting anomalous or intrusive behavior through the
Incident Detection module, the resulting alarms will be logged or visualized within the
Incident Post-Processing module and analyzed for a later reaction by the Incident Re-
sponse module in the Incident Analysis/Control module. Incident analysis techniques, for
instance, could comprise performing correlations or similarity functions on raised alerts.
Based on the intelligence of this module, a proper reaction to the detected intrusion or
anomaly can be planned and executed. Such a reaction could include reconfiguring the
network through Software-Defined Networking (SDN) techniques, generating new config-
urations for firewalls, creating new misuse-based Intrusion Detection System (IDS) rules
or adapting the parameters for other incident detection mechanisms. Apart from the
aforementioned functions of the Incident Post-Processing module, it can further be used
for monitoring other incident handling components.

Incident Detection Incident Response

Incident Analysis /
Control

Incident Post-Processing

Figure 1.2: Incident handling process.

To defend against various types of cyber attacks, there are two main streams of security
solutions for which a number of techniques have been designed [8]: cryptographic schemes
and intrusion detection. The former ensures secure communication (confidentiality, in-
tegrity, availability, authenticity and non-repudiation of data) in the presence of malicious
third-parties, known as adversaries. The latter is an efficient possibility to detect mali-
cious behavior even when cryptography is broken [9]. Nevertheless, for a comprehensive
security solution a defense-in-depth concept must include cryptographic procedures as well
as IDS components [1]. In particular, security mechanisms are needed that can dynami-
cally as well as flexibly detect and respond to network attacks in an automated manner.
Methods, for instance, that use already known attack patterns to merely detect incidents
are no longer sufficient in securing network infrastructures.

1.2 Problem Statement

1.2.1 Non-Applicability of Artificial Neural Networks

According to Michael Roytman, chief data scientist at Kenna Security, “automation is the
name of the game in security” and “machine learning will help filter out the noise” [2].
Automation not only benefits the detection and analysis of incidents but can also select
and execute appropriate responses without human intervention.

Over the past years, the main attention in research focused on the application of
network-based IDSs, due to the advent of anomaly-based ones, which gained a huge

2

momentum for their capability of meeting the challenges of the rapid advancements in
the field of AI by industry. Many solutions focusing on the incident handling process have
adopted Artificial Neural Networks (ANN) including deep learning approaches which are
also a branch of AI. A thorough overview of recent literature regarding ANN-usage in
the IDS area can be found in [10, 11]. However, ANNs are, according to the authors,
usually treated only as a small part of available solutions compared to Machine Learning
(ML), a core branch of AI. Although deep learning, often classified as a branch of ML [12],
incorporates neural networks within its architecture and both disciplines are deeply in-
tertwined, there are slight differences between them. For instance, the backpropagation
algorithm used to train an ANN cannot be used to train deep networks [12]. However,
both terms are used interchangeably throughout this thesis since they are not the main
focus of this research. Rather, we focus on traditional machine learning models, so-called
shallow methods.

There are various reasons why ANN-based approaches, including deep learning, are not
addressed in this work. They mostly operate in a supervised fashion, especially in the
context of detecting malicious activity, e.g. [13, 14]. Other promising approaches utilize
ANNs to automatically learn features in an unsupervised way such that no feature engi-
neering is necessary at all [15, 16]. Anyhow, this approach reinforces the intransparency,
which is often criticized with AI, in such a way that it is no longer possible to perform
root cause analysis. Deep learning models are especially seen as black boxes [17, 18],
as their results are almost uninterpretable, while traditional shallow ML-algorithms have
strong interpretability [12]. This is because features that contributed the most to causing
the anomaly cannot be identified with ANNs. Moreover, the training process for ANN
is considerably more time-consuming compared to ML and is more resource-intensive in
terms of computational power and storage capacity. Deep models, in particular, have a
higher runtime regarding both training and testing due to their high complexity [12]. This
often demands for high-performance systems utilizing parallel computing or GPUs, espe-
cially when using deep learning approaches [13, 14, 19, 20, 21]. Although [22] proposed
an ANN-based intrusion detection model, which can reduce the computational resources
in the training phase and is suitable for real-time deployment, it needs a feature selection
and daunting parameter tuning to achieve better performance [23].

With the advent of ML, the detection of novel network-based attacks has been revolu-
tionized. Unsupervised Outlier Detection (OD) algorithms, especially, can help to identify
indicators of sophisticated attacks, that are capable of changing their behavior dynami-
cally and autonomously to avoid detection, or they can help to uncover policy violations
or noisy instances in data without a priori knowledge. As part of anomaly-based IDS
methods, they detect abnormal behavior by monitoring significant deviations from what
has previously been seen under the viewpoint that outliers, indicators rooted from at-
tacks, are statistically different from normal data with a significantly smaller ratio and do
not happen frequently. According to [24], the most dangerous attacks occur only rarely
such that OD will seemingly play a crucial role in future network security. In contrast to
ANNs, OD methods are (still) more efficient in terms of time and space complexity and
allow feature interpretability as well as model transparency.

1.2.2 Limitations of Intrusion Detection Systems

IDSs have crystallized as an essential core component in a holistic security solution by
identifying malicious activity in the case of compromising. It monitors the events oc-

3

curring in a computer system or network in order to analyze them for indications of
malicious activity that aims at compromising the common goals of information security.
Apart from the distinction of the architecture for IDS, Host-based IDS or Network-based
IDS, in general, two types of detection methods exist. Besides Anomaly-based systems,
Misuse-based ones, also denoted as signature- or knowledge-based, detect attacks based
on already known patterns (signatures). Being quite fast and reliable in terms of detecting
known attacks, they are not designed to uncover new ones whose signatures are not avail-
able, thus misuse-based detection is no longer enough [25]. The anomaly-based detection
method creates a model of trusted activity from collected data samples and then compares
new behavior with that model. Although it allows for the detection of novel, unknown at-
tacks, it could lead to false negative and false positive alarms, in which malicious/trusted
but previously unknown activities could be classified as trusted/malicious.

The ever-increasing and more advanced attack capabilities and strategies pose an enor-
mous challenge to classical network security measures such as IDSs and demand for more
sophisticated and comprehensive solutions in the near future. According to a recent study,
current IDS research only covers approximately 33% of the threat taxonomy presented
in [26]. The actual percentage might even be lower considering the multitude of degrees
of freedom for IDSs while encountering real-world threats regarding, e.g., architecture,
detection type, operation mode or their scope of functionality. A selection of major chal-
lenges and open issues in the field of network communication protection, in particular the
detection, analysis and response to cyber attacks (using among others anomaly-based ML
algorithms) is listed in the following (cf. [7, 27, 28, 29, 30]):

• insufficient performance of applied detection systems, especially with regard to
anomaly-based IDSs, by

– missing ability in handling a massive amount of throughput, e.g., due to high
computational complexity

– lack of internetworking in a decentralized/distributed fashion; limited scalabil-
ity, interoperability

– producing poor predictive values with respect to the binary classification (e.g.,
too many false positives and false negatives which waste the time of network
administrators)

– no dynamic and adaptive learning working on minimum knowledge for novel
attack classification in real-time

– inefficient pre-processing and poor feature selection
– limited protection against attacks, e.g., IoT-based Distributed Denial-of-Service;

• novel (zero-day exploits) and highly sophisticated (distributed, stealth, more tar-
geted, long-term, multi-step) attacks, e.g., Advanced Persistent Threats (APTs)
cannot reliably be detected;

• increasing amount of alerts (alert flooding) produced by various detection meth-
ods with multiple formats cannot reliably be analyzed or today’s applied analysis
methods are very limited to, e.g., simple correlation methods;

• safe (with respect to functional safety) implementation of static and dynamic re-
sponse measures whereby a defined and secure system state always remains in order
to avoid hazards to life and limb (e.g., attack when driving a vehicle) or high financial
losses (industrial plant is paralyzed) even when using cyber defence mechanisms;

4

• lack of incorporation of anomaly-based IDS outputs into new attack identification,
classical systems assume nearly 100% confidence in alerts to map an attack;

• proactive (predictive) and immediate (real-time) response to cyber attacks instead
of reactive and “a posteriori” response necessary as skilled IT security staff should
exist to monitor IDS operations and respond as needed;

• lack of automation since a high degree of human interaction is often necessary, e.g.,
system administrators analyze (i.e. verify, correlate) alerts, update signatures, etc.;

• contextual information often not taken into account, e.g., type of systems, applica-
tions, users, networks, etc.;

• inadequacy in finding the actual root cause of the incident;
• inherent resource limitations (in terms of memory size, processing speed, energy con-

sumption in the embedded domain) restrict the usage of complex machine learning
based methods.

The application of various protocols and devices with different resource requirements
(bandwidth, computation), often accompanied in deterministic timing environments by
increasing traffic amounts, makes a holistic security solution difficult, especially when out-
dated legacy components are still active in the network. What is more, the preservation of
computing resources, e.g., for IoT-enabled devices, stands in conflict with the resource re-
quirements of detection mechanisms when applied in high-volume networks. To cope with
the increasing amount of traffic within networks while reducing large memory and CPU
processing requirements, sampling turned out to be a promising scalable data aggrega-
tion technology for IDSs since the processing capacity of such systems are typically much
smaller than the amount of data to be inspected. The advent of pervasive computing will
not only increase the amount of data in cloud systems but also in embedded environments
such as for smart sensors in automobiles struggling with increasing data traffic. Adapting
detection methods as part of a response measure could be an efficient countermeasure
for devices having only limited processing capabilities. The term adaptive in the context
of this work describes techniques of sampling and self-regulation, which means that the
detection method is adjusted in runtime based on the detection’s output.

Nowadays, cryptographic schemes are broadly applied to secure, for instance, the au-
thentication and integrity of communication flows between communicating network par-
ties. These could be used as a potential source for detecting security-related incidents
since alerts might be raised if characteristics of the mechanisms fail (e.g., drifting sequence
counters, incorrect decryption of messages or mismatching hash digests). However, not
enough attention is paid to their interoperation with intrusion detection mechanisms.

1.2.3 Limitations of Alert Correlation

The growth of ML has led to a boost in anomaly-based detection methods that create
a model of trusted activity from a set of collected data samples and identify malicious
activity by analyzing behavior deviations. Although this type of method is predestined to
detect novel, yet unknown, attack patterns without requiring a priori knowledge, they are
accompanied by a high ratio of FP and FN detections. This limits their utilization in real-
world scenarios due to their producing an unmanageable amount of alarms, overwhelming
for human experts, especially when they are erroneously classified as attacks.

Coping with the increasing data volume challenge and enhancing the detection capabil-
ity from a more global perspective, the concept of collaboration for IDS emerged, which

5

deploys a multitude of collaboratively communicating IDS with a central Alert Correla-
tion (AC) unit or with each other. AC is a common practice with aims such as false
alert reduction, attack pattern identification, root cause detection of attacks or prediction
of future attack steps by processing alerts from the heterogeneously applied IDS. Fur-
thermore, they aid to reduce the sheer unmanageable number of events generated (alarm
flooding), particularly considering the continuously growing amount of high-dimensional
data which can no longer be handled by human analysts.

Yet, limited work exists for AC that is able to efficiently process alerts in a streaming
fashion. In addition, most of the existing solutions assume a nearly 100% confidence
in alerts mapping an attack, which mainly applies for misuse-based IDS. This means,
that generated alerts based on a signature-match contain very precise information with
high confidence about the attack or single attack step (of a multi-stage attack) due to
the incorporation of existing knowledge. The reason for this is that alerts are typically
composed of intrinsic attributes such as timestamp, source and destination IP or port
information and an alert type field, often referred to as attack class or intrusion type, which
specifies or encodes the attack. In this thesis, we denote an attack scenario as a single-
stage attack, while attack campaigns are multi-stage attacks. Similar attack scenarios
are called an attack category. Attacks detected by misuse-based IDSs are denoted as
intrusion type or class. However, by only detecting such outliers as deviations from
data attributes, e.g., a newly occurring IP-address in a computer network, the attack
recognition ability is significantly limited since processed data, in the worst case, is only
assigned a simple label of normal or abnormal. Since alerts consist of various attributes,
further information must be gained from OD methods to be applied in AC. Nevertheless,
due to the missing knowledge of known attacks, the alert type information cannot be
provided by OD methods.

1.2.4 Challenges of Streaming Data

The ubiquity of massive continuously generated data streams across multiple domains
in different applications poses an enormous challenge to state-of-the-art offline OD algo-
rithms that process data as a batch. Data streams in real-world applications are encoun-
tering an evolving nature of data of a huge size, potentially infinite, that is continuously
streaming in a record-by-record manner in almost real-time. Therefore, efficient and
optimized schemes, in terms of processing time and memory usage, in intelligently de-
signed systems, are required. These should be able to process the time-varying and rapid
data streams one-pass at a time, while only a limited number of data records can be
accessed. Furthermore, legitimate changes in data can occur over time, called concept
drift, which require updates to the model in order to counteract less accurate predictions
as time passes. Recently, many OD solutions have been developed that are able to com-
pute anomaly scores while dealing with data streams. Data streams can be subdivided
into Streaming Data (SD) and Streaming Features. In this work, we do not focus on
the latter case in which the amount of features changes over time. Moreover, we do not
focus on SD in the context of time-series data as it is the object of many other research
works, such as [31, 32]. With the ubiquity of SD, however, some online unsupervised
OD algorithms have been developed in recent years. These are able to efficiently process
the time-varying data streams one-pass at a time while dealing with phenomena such as
concept drifts, which require timely model updates to counteract accuracy loss if data
changes as time passes. With online OD algorithms, alerts can be generated in a stream-

6

ing manner and lead to a dynamic, huge, infinite and fast changing alert stream for which
conventional offline AC methods are not designed [33]. Thus, apart from the above men-
tioned challenges with regard to online OD solutions on SD, limited work exists for AC
that is able to efficiently process alerts in a streaming fashion. What is more, to the best
of our knowledge, no work so far exists that process alerts in an online manner gener-
ated from OD mechanisms. Similarly to the statement in [34], when it comes to some
critical streaming applications, whereby a fast but less accurate OD model is preferred,
we strongly support the claim by [33] that it is more significant to detect an on-going
attack in a timely manner than to analyze it afterwards in an offline fashion. Detecting
attacks at an early stage significantly reduces damage since, even when applying advanced
detection systems, sophisticated attackers can nest undetected for up to 100 days [35].

1.3 Research Objectives

The novel principle of “cyber resilience” goes far beyond pure cyber security and takes a
comprehensive approach to protecting IT-infrastructures from cyber attacks by securing
and restarting operations after attacks have occurred. IDSs are no longer sufficient in
fulfilling the needs as well as the challenges stated above and demand for a more holistic
solution. The measures and concepts of cyber security, computer forensics, information
security, disaster recovery and business continuity management are components of this
approach. Cyber resilience bridges the gap between a desired (semi-)automated incident
handling and the topics surrounding detection, prevention, prediction and response apart
from the protection via cryptography. The term incident, hereinafter, includes intrusions
or failures and is an event that negatively affects the protection goals of a system. An
event is an observed or detected change to the normal behavior of a system which typically
leads to the generation of an alert. An alert notifies about a particular event or a series
of events sent to responsible parties. For a detailed definition of an information security
event and an information security incident refer to ISO/IEC 27000 [36]. A further goal
is the reaction to incidents based on available knowledge within networks and related
incidents (expert knowledge, risk analysis, etc.). This also comprises the output of incident
detection systems based on a common format. Especially with regard to anomaly-based
detection methods, the output of such algorithms do not provide much context for single
anomalies, which makes the identification of attacks difficult. Information from multiple
detection mechanisms in conjunction with historical data and expert knowledge creates
a detection framework, to prediction appropriate proactive/reactive reactions. In the
context of anomaly-based detection mechanisms such reactions could include the proper
adjustment of features or parameters in order to reduce false positives or to even prevent
highly sophisticated multi-staged attacks.

Most of the state-of-the-art research targets the office IT or cloud environment which
has a large amount of resources available. To the best of the authors’ knowledge, no sys-
tem with the focus of this work is aimed to, e.g., automotive environments which poses
special requirements, such as resource-saving or SD. Novel attack detection based on the
output of anomaly-based detection methods is still an unsatisfactorily solved problem and
will be tackled in the thesis. Thus, a generic framework, called Anomaly-based Incident
Detection and Response System (ANDERS), is proposed, that consists of components
that leverage different capabilities in terms of incident detection, analysis and response.
An exemplary architecture of an ANDERS component is shown in Figure 1.3.

7

Capability Stage: Detection

 Attack Pattern
 Generator

Attack Pattern
Database

Monitored Network Communication

Pre-Processing Engine

Sampling Feature Extraction

Misuse Detection
IDS 1

IDS 2

IDS n

...

Anomaly Detection
IDS 1

IDS 2

IDS n

...

Capability Stage: Response

Prevention
(Pro-active Response)

R1 R2 Rn...

"|0da?b5XX|"

Infrastructure

Alert Fusion &
Reduction

Alert Generation

Alert

Fe
a

tu
re

 E
xt

ra
ct

io
n

 New Attack Strategy
 Identification

Capability Stage: Analysis

Root Cause
Identification

Alert Correlation
Similarity-based

Sequential-based

Statistical-based

Knowledge-based

Communication & Interface Module

 ANDERS

 ANDERS

 ANDERS

COM (H) COM (I) COM (A) COM ...

COM (H)

COM (H)

COM HUMAN (H)

COM Infrastructure (I)

COM ANDERS (A)

Re-active Response
Selection & Execution

Activation Deactivation

R1 R2 Rn...

Response Cost Computation

QoSTARA/HARAAttack (Propagation) Prediction

Small-Scale Large-Scale

Network Topology

COM (H,I)

Incident Notifier
COM (H)

ANDERS

Response Database
...

R11 R12 R1n...

Rn1 Rn2 Rnn...

R21 R22 R2n...

COM (H)

RQ 1

RQ 3

RQ 2

RQ 4

Figure 1.3: Architecture of a generic ANDERS component including the four research
questions (RQ 1 - RQ 4) of this thesis.

Some of the components’ functionality is already considered state-of-the-art and de-
scribed in detail in Chapter 2. Among others, this includes the application of misuse-based
IDS, or AC, as well as the prediction of the propagation of malicious activity in order
to select a suitable response based on these IDS types. Applying methods for root cause
identification and response cost, e.g., risk assessment, helps to select appropriate coun-
termeasures. Since ANDERS might have different capability stages, the communication
with, e.g., human experts (security administrators), the infrastructure or other ANDERS
components is a core feature. However, the main focus with respect to this thesis lies
in enhancing computer network security through improved OD for data streams. This
includes several disciplines such as Feature Selection (FS) or AC that have not yet been
tailored for unsupervised online OD mechanisms. Thus, this thesis aims to answer the
following research questions (RQ), also presented in Figure 1.3.

RQ 1: How can unsupervised feature selection be applied on streaming data for the purpose
of outlier detection?
RQ 2: How can a flexible framework for unsupervised online outlier detection be designed
to provide an online scoring functionality for feature importance?
RQ 3: How can the output of online outlier detection mechanisms be exploited to char-
acterize and compare novel attack patterns?
RQ 4: How can a cryptographic scheme be leveraged to function as a detection mechanism
and have its feedback be incorporated in improving performance over runtime as part of
response functionality?

A resulting prototype system might be embedded in an SDN-infrastructure, similar
to [37]. It allows an immediate and scalable implementation of the next generation incident
handling framework in the network infrastructure by integrating an ANDERS component

8

directly in the network forwarding elements as a kind of software function for detection,
analysis and response. SDN is a key future technology. Not only can it be used for future
in-vehicle network communication, e.g., [38, 39, 40], or for vehicular ad-hoc networks [41,
42, 43, 44, 45, 46], but it can also be used in combination with other trends or benefiting
from them such as for IoT, 5G, or Industry 4.0 [47, 48, 49]. A possible use case for
the application of ANDERS components in a hierarchical SDN-based vehicular ad-hoc
network communication is shown in Figure 1.4 (cf. mist-fog-cloud hierarchy [47, 50]).
Here, a novel malicious activity propagating over various network hops is detected by a
low-level ANDERS component, utilizing anomaly-based methods, which provides alert
information to the next ANDERS components in the hierarchical topology. These then
perform attack strategy identification, predicting the propagation and identifying the root
cause in order for, at the latest, an ANDERS component close to the victim to be able
to respond to the attack. It is desired that the ANDERS framework mitigates malicious
activity as close as possible to the root cause.

generic ANDERS Component

Capability

Malicious Activity
Mitigation

Propagation
Prediction

Anomaly
Detection

(New) Attack
Strategy

Identification

Root Cause
Identification

Figure 1.4: Possible ANDERS use case of malicious activity propagation in an SDN-based
vehicular ad-hoc network (cf. [46]).

1.4 Thesis Statement and Contributions

The permeating application of ML has favored the detection of novel sophisticated network-
based attacks changing their behavior dynamically and autonomously. In particular,
unsupervised OD algorithms can help uncover policy violations or noisy instances as indi-
cators of attacks by observing deviations in high-dimensional and high-volume streaming

9

data without requiring a priori knowledge. These network infrastructures demand an in-
creasing need for streaming analytics in a record-by-record manner, processing in (near)
real-time in a resource-preserving fashion (time, memory) and whereby improvements be
leveraged at different levels. Thus, the main goal of this thesis is as follows:

Research Goal: Improve Outlier Detection for Data Streams to Enhance Computer Net-
work Security.

In order to achieve the research goal and with respect to answering the four research
questions RQ 1 - RQ 4 of Section 1.2, four perfectly matching improvements for OD
can be identified, which are depicted in a high level perspective in Figure 1.5. Hence,
improvements can take place to either enhance input quality by FS, to design an intelligent
online OD algorithm, to exploit the OD’s output in order to mine for novel attack pattern
or to incorporate feedback for enhancing detection capability.

Input Output

Feedback

Online Detection
Algorithm

Uncoupled MAC – Chapter 6

RC x 2

RC x 4

UFSSOD – Chapter 3

PCB-iForest – Chapter 4

SOAAPR – Chapter 5

RC x 1 RC x 3

Figure 1.5: High level overview of improved OD within the thesis leading to four major
research contributions (Research Contribution) (RC 1 - RC 4).

In turn, these improvements lead to the following four major Research Contribution
(RC), RC 1 - RC 4, also shown in Figure 1.5, which are discussed in detail in Chapters 3,
4, 5 and 6. Likewise, these can be divided into sub-contributions as listed after each con-
tribution. All four research contributions have been published or are submitted journal
articles as mentioned in the credits section of this thesis.

RC 1: Unsupervised Feature Selection for Outlier Detection on Streaming Data to En-
hance Network Security.

FS can be used to remove noisy, redundant or irrelevant features leading to better
prediction values as well as a reduction in computational costs. Thus, the aim, with
respect to improving online OD, is to identify unsupervised FS algorithms targeting the
application in FS and the task of OD. To the best of the authors’ knowledge no work so
far has aimed to bring both sides together, therefore a conceptualization, along with a
novel approach, called UFSSOD (Unsupervised Feature Selection for Streaming Outlier
Detection), is proposed to achieve unsupervised FS for OD on SD (RC 1). It is discussed
in Chapter 3 and offers the following sub-contributions:

10

• Substantial requirements for FS in the field of (i) SD and (ii) OD which are compared
with a comprehensive review of the state-of-the-art pointing out the lack of any
unsupervised FS method for (i) on (ii).

• Novel conceptualization of unsupervised FS for OD on SD including the discussion
of two operation modes and introducing UFSSOD, the first (to the best of our
knowledge) unsupervised FS algorithm for OD on SD that is also able to determine
the amount of top-performing features by clustering their score values.

• Extensive evaluation of three FS methods on 15 data sets and 6 off-the-shelf online
OD algorithms and the first application of an FS algorithm (UFSSOD) in line with
two online OD classifiers operating in two settings in a truly online fashion while
achieving better results than their bare versions using all features.

RC 2: On the Improvement of the Isolation Forest Algorithm for Outlier Detection with
Streaming Data.

As for RC 2, we propose the so-called Performance Counter-Based iForest, denoted
as PCB-iForest, a generic and flexible framework that is able to incorporate basically
any ensemble based OD algorithm. We first highlight the most popular OD solutions for
SD with an in-depth view of promising online variants of one of the most widely accepted
(offline) OD algorithms, called Isolation Forest (iForest) [51]. Moreover, substantial re-
quirements are derived to compare the existing state-of-the-art solutions. However, in
this thesis, we focus on two iForest-based variants: an improvement/extension of classical
iForest applied to a streaming setting and classical iForest being able to score features
according to their contribution to a data record’s anomalousness in a completely unsu-
pervised way. PCB-iForest is able to deal with concept drifts by being equipped with a
dedicated drift detection method. Moreover, we here take advantage of the recently pro-
posed NDKSWIN algorithm [52]. Our solution is hyperparameter-sparse, meaning that
one does not have to deal with complex hyperparameter settings which often demands
a priori knowledge. In extensive experiments involving various multi-disciplinary but
also security-related data sets with different characteristics, we show that the proposed
PCB-iForest variants outperform off-the-shelf state-of-the-art competitors in the major-
ity of cases. PCB-iForest is explained in detail in Chapter 4 and offers the following
sub-contributions and it mainly differs from others because, to the best of our knowledge:

• Carefully engineered and specified requirements for an agile, future-oriented online
OD algorithm design are derived, which are compared with state-of-the-art solutions
pointing out the need for a more flexible solution which, is presented in this work.

• Contrary to other adaptions of iForest for SD, a flexible framework called PCB-
iForest is proposed that “wraps around” any iForest-based learner (and might even
be generalized to other ensemble-based approaches) and regularly updates the model
in the case of concept drifts by only discarding outdated ensemble components.

• Two iForest-centric based learners are integrated into PCB-iForest providing (i) the
first application of the improved iForest solution - Extended Isolation Forest - on SD
denoted as PCB-iForestEIF and (ii) online feature importance scoring by utilizing
a recent iForest-based feature selection method for static data - Isolation-Based
Feature Selection (IBFS) - into our online proposal denoted as PCB-iForestIBFS.

11

• Extensive evaluation conducted on PCB-iForest and off-the-shelf online OD algo-
rithms on numerous, multi-disciplinary data sets with diversity in the number of
dimensions and instances which no other iForest-based competitor for SD has yet
performed.

RC 3: Exploiting the Outcome of Outlier Detection for Novel Attack Pattern Recognition
on Streaming Data.

The so-called Streaming Outlier Analysis and Attack Pattern Recognition framework,
denoted as SOAAPR, is proposed as RC 3. It is able to process the output of locally and
autonomously or distributively operating online OD methods by equipping them with an
alert generation functionality using the Intrusion Detection Extensible Alert (IDEA) [53]2
representation enriched with information that aid AC. Aggregated alerts (of the same
outlier event) are fused into meta-alerts, for the sake of alert reduction, which are subse-
quently correlated and clustered in a streaming fashion. Clusters that are considered com-
plete are immediately forwarded to ensure a very low response time for security analysts.
A recent and innovative approach [54] is incorporated that, when triggered, transforms
the reduced alert clusters, potentially representing an attack scenario, into a graph rep-
resentation to derive motif signatures that capture the attack’s communication relation,
denoted as 𝑠𝑖𝑔𝑐𝑜𝑚 in this work. Two more signatures proposed by us, 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝,
capture an attack’s expression in the data’s features and the time sequence pattern of
the attack-related alerts. Those fingerprint-like characteristics allow a privacy-preserving
sharing of novel attack patterns, e.g., utilizing the Structured Threat Information eXpres-
sion (STIX)3, similar to shared signatures of misuse-based systems. A common problem
with this type of IDS is that if similar attacks slightly change, the knowledge base may
not be able to detect it anymore [55]. However, the benefit of our signatures is that
they represent the attack behavior instead of specific intrusion types / classes and can
thus be used to identify completely novel attacks with similar behavior from the same
attack category. Our experiments with the popular, security-related CICIDS2017 and
CSE-CIC-IDS2018 data sets indicate that SOAAPR is able to reliably correlate the alerts
of a variety of attack scenarios and, in contrast to the offline competitor Graph-based
Alert Correlation (GAC) that is also able to deal with the outcome of OD algorithms,
while taking notably less processing time. Furthermore, we compare the three signatures
𝑠𝑖𝑔𝑐𝑜𝑚, 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 in terms of their computational requirements and capability to
characterize attack scenarios. Details of SOAAPR can be found in Chapter 5. It offers
the following sub-contributions and mainly differs from others because, to the best of our
knowledge:

• SOAAPR is the first framework that exploits the output of online OD algorithms
to mine attack pattern information in a streaming fashion.

• Online OD algorithms are equipped with alert generation functionality that can be
used for alert processing including timestamp, feature scoring causing the outlierness
(root cause) and equally normalized outlier score results utilizing a common format
- IDEA.

2https://idea.cesnet.cz (accessed on 05 September 2021)
3https://oasis-open.github.io/cti-documentation (accessed on 05 September 2021)

12

https://idea.cesnet.cz
https://oasis-open.github.io/cti-documentation

• Two more novel types of fingerprint-like signatures, apart from 𝑠𝑖𝑔𝑐𝑜𝑚, are intro-
duced, 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝, which can be used to characterize and compare attack
patterns.

• Attack scenario information in the form of a signature-tuple can be shared in a
privacy-preserved way generated from a novel attack pattern utilizing the STIX
language.

RC 4: A Resource-Preserving Self-Regulating Uncoupled MAC Algorithm to be Applied
in Incident Detection.

RC 4 introduces an Uncoupled Message Authentication Code algorithm called Un-
coupled MAC that is extended to work as an IDS, generating alarms if the authenticity
and integrity of network communication get violated. This especially benefits resource-
constrained environments where protection goals must be guaranteed and cryptographic
schemes are necessary. With respect to the lightweight and resource-aware security con-
cept of [56], Uncoupled MAC even provides simple IDS capability to a resource-aware
cryptographic layer. No additional complex IDS, providing, e.g., behavioral-based detec-
tion by machine learning algorithms, must be applied if they are not feasible due to energy
limitations and static communication [57]. However, Uncoupled MAC is not a replace-
ment for a sophisticated and powerful IDS solution. While only monitoring a predefined
ratio of sampled packets, a decent overhead on computational resources as well as network
traffic can be preserved. By introducing a self-regulating extension, the Uncoupled MAC
parameters defining its sampling mechanism can be automatically adjusted in a dynamic
manner according to the detection of Uncoupled MAC violations. Uncoupled MAC is
discussed in Chapter 6 and offers the following sub-contributions:

• Uncoupled MAC unites protection and detection mechanisms by equipping a cryp-
tographic scheme with IDS-functionality and mitigating the lack of data integrity
and data origin authenticity as with an IDS alone.

• Message Authentication Codes (MACs) are decapsulated from the original messages
such that Uncoupled MAC is a retrofitted cryptographic protection for protocols
without a priori security mechanisms and thus can be applied to legacy components.

• The decapsulation ensures that the underlying communication is not negatively
influenced meaning that, e.g., real-time and safety aspects will be preserved.

• Uncoupled MAC can be applied to event- and time-triggered communication by the
combination of a packet and time-driven mechanism.

• The self-regulation and sampling functionality allows for application in communi-
cation intense systems (e.g., in switches or cloud platforms) through an adjustable
security level as well as overhead by dynamically adapting Uncoupled MAC param-
eters (e.g., in bandwidth-critical systems).

13

1.5 Organization of the Thesis

This dissertation contains seven chapters. In Chapter 1, the introduction, we have pre-
sented the motivation for this dissertation and the conceptual background of the research
context, followed by the statement of the main research goal and resulting RQs. Finally,
the main RCs of this thesis have been addressed and the remaining structure as a whole
is presented.

Chapter 2 is an attempt at capturing the state-of-the-art in the domain of network
communication protection by leveraging techniques involved in the incident handling pro-
cess. Split into three sections, it provides an overview and general background on incident
detection, incident analysis and incident response. Readers that are familiar with these
topics can skip the chapter and proceed to the four independent main parts focusing on
the contributions of our research.

Each RQ is answered by an explicit RC, which in turn, is dedicated to a separate chap-
ter. Thus, Chapter 3 (RQ 1 - RC 1) provides details on the Unsupervised Feature Selection
for Streaming Outlier Detection (UFSSOD) algorithm, an FS algorithm on SD for the
purpose of OD. Chapter 4 (RQ 2 - RC 2) discusses Performance Counter-Based iForest
(PCB-iForest), which is a generic and flexible framework that is able to incorporate
basically any ensemble-based OD algorithm. Chapter 5 (RQ 3 - RC 3) provides details on
the Streaming Outlier Analysis and Attack Pattern Recognition (SOAAPR) framework
that exploits the output of online OD algorithms to mine attack pattern information in a
streaming fashion in order to characterize and compare them using fingerprint-like signa-
tures. Chapter 6 (RQ 4 - RC 4) discusses the Uncoupled Message Authentication Code
(Uncoupled MAC) algorithm, a cryptographic scheme that is equipped with an incident
detection functionality and incorporates the detections’ feedback in order to improve its
performance.

The four core chapters (Chapter 3-6) are presented in a standalone and self-explanatory
manner. Therefore, the relevant contexts including related work, the description of the
solution, experimental results and discussion of results are presented in each of these
chapters separately. Finally, Chapter 7, the conclusion, summarizes the work, revises the
research questions and provides some perspectives for future work.

14

2 Background

This chapter provides relevant background information for the reader with regard to the
incident handling process, covering incident detection, incident analysis and incident re-
sponse. Thus, the chapter starts by providing information about incident detection mech-
anisms in Section 2.1 including classical IDSs with their various characteristics, methods
and specificities in order to detect security-relevant incidents. A focus in this section lies
on anomaly-based ML methods which are mandatory in order to detect novel malicious
behavior. Two examples for network-based OD methods, iForest and Lightweight on-line
detector of anomalies (Loda), are presented which satisfy the requirements stated. Fur-
thermore, the combination of learning methods is discussed which also intersects with the
proceeding Section 2.2, which mainly deals with the analysis of detected incidents. Apart
from a taxonomy of alert analysis fields, the section deals with alert pre-processing includ-
ing the discussion of appropriate alert exchange formats, processing by, e.g., presenting
AC techniques and post-processing covering among others the prediction of malicious
activity. Section 2.3 discusses incident response systems including their taxonomy, appro-
priate exchange formats and possible response measures. For those, an example for the
reconfiguration of the network infrastructure applying SDN is given. Readers, familiar
with certain topics, may skip some sections and proceed with the main part, the first
major RC, beginning as of Chapter 3.

2.1 Incident Detection

Cryptographic mechanisms alone cannot provide a holistic security solution for network
communication protection in the future. For instance, if an adversary compromises a
sensor node, it is easy to inject malicious data. A possibility to detect attacks is to
apply an IDS which is a component that monitors the events occurring in a computer
system and/or network such that malicious actions attempting to compromise security
primitives can be detected. At the beginning of the 1990s, Todd Herlein was invited to an
IEEE conference in Oakland where he first introduced an IDS that was based on network
traffic [58]. Since then, some progress has been made with regard to IDSs. Especially in
the embedded sector, there has been an enormous increase in research activities in recent
years. This is due to (1) the increasing networking of systems, (2) the development of
more powerful and complex embedded systems and (3) an increasing demand due to an
almost uncountable number of new and high sophisticated attacks. The permeation of
connecting everything in various fields, inspired by the so-called “IoT-ification”, cannot
only be seen in the industrial automation and avionics sectors but also in the automotive
domain which are common application fields for embedded IDSs.

2.1.1 Taxonomy of IDSs

There is plenty of literature available providing an overview and a taxonomy of IDSs such
as [12, 59, 60, 61, 62]. An exemplary taxonomy is depicted in Figure 2.1. In the following

15

subsections, a selection of details on the taxonomy is provided including architectures,
detection methods and other typical characteristics for IDSs.

Intrusion
Detection System

Detection Method
A

n
o

m
a

ly
-B

a
se

d

Si
g

n
a

tu
re

-B
a

se
d

Modes & Placement

St
a

n
d

a
lo

n
e

D
is

tr
ib

u
te

d
 &

C

o
o

p
er

a
ti

ve

C
en

tr
a

liz
ed

H
ie

ra
rc

h
ic

a
l

Sp
ec

if
ic

a
ti

o
n

-
B

a
se

d

H
yb

ri
d

-B
a

se
d

Architecture

H
o

st
-B

a
se

d

H
yb

ri
d

N
et

w
o

rk
-B

a
se

d

Usage
Frequency

C
o

n
ti

n
u

o
u

s

P
er

io
d

ic
a

l

Role
Logging

Alert Triggering

Mitigation / Prevention Active

Passive

Data Source

Log Data

Network Traffic

Application

Packet-Based

Host

Flow-Based

Session-Based

Output Information

A
d

ve
rs

a
ry

Id

en
ti

fi
ca

ti
o

n

In
tr

u
si

o
n

 T
im

e

A
d

ve
rs

a
ry

Lo

ca
ti

o
n

In
tr

u
si

o
n

 T
yp

e

Figure 2.1: Taxonomy/classification of IDSs (cf. [12, 63]).

Architectures
The research and solutions for attack detection mechanisms are wide-ranging and man-
ifold. However, from a higher perspective there are two main architectures of IDSs:
Host-based IDS (HIDS) and Network-based IDS (NIDS). HIDSs are applied on a single
host to monitor all events for malicious actions, for instance, event logs, system logs, file
access, running processes. In [64] an example of a distributed denial-of-service attack
detection in cloud computing utilizing a HIDS is being presented. To detect network-
based attacks in a network consisting of multiple computers, a HIDS must be installed
on each of them. If a computer has been compromised or disabled by an attacker, the
attack detection system is no longer trustworthy. Monitoring mainly takes place via four
types of parameters. Those are the file system, the log files, the operating system kernel
and the network connections. For systems that monitor changes to the file system, an
attempt is made to detect when an attacker wants to gain control over the file system.
For this purpose, changes to file sizes or file permissions are checked and evaluated cycli-
cally. This method becomes problematic if the file system often undergoes changes, for
example through the installation of software. Another possibility is to monitor log files
of installed programs. If these reports contain information about possible attacks, the
responsible administrators or users of the affected device can be warned. In addition,
attacks can be detected directly at the operating system kernel level. The kernel has the
ability to monitor all activities of a computer, so it can draw conclusions about malicious
activities based on system calls and their parameters. As a countermeasure, the operating
system can terminate the affected processes and thus render them harmless. In contrast
to a NIDS, the content of network packets is not taken into account by HIDSs. Instead,
connections to unauthorized ports are monitored and reported. In addition, port scans
and an excessive number of connection attempts can be detected.

NIDSs, in contrast, reside on the network level to monitor and analyze the network
traffic or application protocol activity. Those can either be deployed as dedicated sen-
sors/agents either leveraged as specialized hardware or applied as software on a networking
element. They record network packets and evaluate them according to, e.g., previously

16

described rules or patterns. The former is called Blacklisting. Here, rules are defined
that describe the properties of network traffic during an attack. In contrast, the other
approach, Whitelisting, defines a set of rules containing information about the usual net-
work traffic. If a rule applies, the network traffic in question is not evaluated as an attack.
In contrast to host-based attack detection systems, attacks can still be detected if several
computers in a network have failed or have been taken over. Since today’s networks are
built with switches that send incoming network packets only to dedicated ports, the sen-
sors of a NIDS must be connected to the mirroring port. In addition to connecting the
target device, all network packets are sent to this port. Another difficulty is the maxi-
mum bandwidth of the sensor. The data throughput of modern networks can exceed the
processing capability of a sensor and it must discard network packets. This means that
a complete monitoring of the network traffic is no longer possible. If these two disadvan-
tages do not occur, an entire computer network can be monitored with a single sensor.
The main attention over the past years focused on the application of NIDSs, due to the
advent of anomaly-based NIDSs [65] which can be placed either centralized, decentralized
or distributed within networks on either network switching entities (router, gateway, etc.)
or dedicated hosts.

Detection Methods
Detection methods for IDSs can be categorized into anomaly-, signature-, hybrid-, and
specification-based approaches [66, 67, 68] as shown in Figure 2.2. However, one may
distinguish between two major ones: misuse-based and anomaly-based.

The misuse-based method, also called signature- or knowledge-based, refers to the detec-
tion of attacks whose patterns are already known, such as byte sequences in network traf-
fic. Thus, it is founded on a set of rules or patterns describing network attacks which are
either pre-configured by the system or manually by an administrator. Although signature-
based IDSs easily detect known attacks, it is impossible to detect unknown attacks whose
patterns are not available. Therefore, a main drawback is the lack of signatures that
describe all possible variations and non-intrusive activities in network environments [69].
The anomaly-based detection method creates a model of trusted activity from collected
data samples and then compares new behavior with that model. Although it allows to
detect novel, unknown attacks, it could lead to false negative and false positive alarms,
in which trusted but previously unknown activities could be classified as malicious.

Both approaches have their merits and demerits. For instance anomaly-based IDSs
have a great potential in detecting novel attacks but they tend to be computationally
intensive and are prone to false alarm generation. In contrast, misuse-based IDSs are fast
in detecting known attacks with a very high accuracy and low false alarm rate but are
limited in detecting new attacks. Thus, in recent years, hybrid approaches, e.g., in [70],
have crystallized as the trend towards sophisticated IDS solutions. Hybrid IDSs usually
combine the properties of anomaly- and misuse-based IDSs. Thus the advantages of both
systems can be used by combining the methods sequentially or in parallel. Another pos-
sibility is to combine several anomaly-based methods in order to achieve better detection
rates and reduce the number of false alarms. Various techniques have been proposed for
detecting incidents based on misuse- and anomaly-based methods, e.g., discussed in [71].
A comprehensive overview of anomaly-based techniques with a focus on statistics-based,
classification-based, clustering and outlier-based techniques and systems, soft computing-
based and knowledge-based techniques and systems as well as techniques and systems
based on combination learners can be found in [29].

17

Figure 2.2: Taxonomy of detection approaches for IDSs [66].

Misuse-based Techniques
Techniques for misuse-based IDSs can, according to [72], be based on

• signatures (monitored events are matched against a database of known attack sig-
natures),

• rules (set of “if-then” implication rules to characterize attacks),
• transitions (IDS is composed of a finite state machine where state transitions are

used to monitor the system behavior) or
• data mining methods (learning algorithm is trained over a set of labelled “normal”

or “intrusive” data).

Anomaly-based Techniques
Techniques for anomaly-based IDSs can, according to [29, 72], be based on

• statistical methods (measure certain system variables over time and derive statistical
values, e.g., average or standard deviation),

• rules (normal behavior is summarized by a set of rules and anomalous behavior as
a deviation from them),

18

• knowledge-based approaches (rule and expert systems, ontology and logic based),
• soft computing (e.g., genetic algorithms, fuzzy sets),
• distance-based approaches (attempt to overcome limitations of statistical OD ap-

proaches in higher dimensional spaces where it becomes increasingly difficult and
inaccurate to estimate the multidimensional distributions of the data points and
detecting outliers by computing distances among points),

• model/classification-based approaches (anomalies are detected as deviations from a
model that represents the normal behavior by using data mining / ML techniques
or ANNs), or

• profiling methods (profiles of normal behavior are built for different types of network
traffic, users, programs, etc., and deviations from them are considered as intrusions
utilizing data mining techniques or heuristic-based approaches).

Modes and Placement
Operating modes of IDSs can either be online (system learns and/or detects anomalies
online [close] to real-time) or offline (system learns and/or detects anomalies offline) by
working passively (system is configured to only monitor and analyze network traffic and
alert an operator to vulnerabilities and attacks) or reactively (system works as in the pas-
sive mode and additionally takes pre-defined proactive actions to respond to the threat).
If an IDS is operated in online mode, it can detect anomalies during operation and can
be partially updated at runtime to create new models. This is a mandatory require-
ment for systems that are used in real scenarios. In some areas, even real-time recording
of incidents is desirable. Systems that work offline are usually applied to existing data
sets. By evaluating an IDS solution using existing data sets, one has better comparability
with other (competing) ones. This is particularly popular for scientific work. According
to [26, 73, 68], IDSs can be categorized as follows. This especially applies to NIDSs placed
in network environments.

• Centralized: The centralized computation location works on data collected from
the whole network. In the centralized IDS placement, the IDS is placed in a cen-
tralized component, for example, in the border router or a dedicated host. A dis-
advantage of this architecture is that it is difficult (especially with larger networks)
to collect all important data at a central instance. This makes a systemic approach
almost impossible to implement.

• Distributed: Unlike the centralized, the stand-alone computation location works
on local data, disregarding decisions from other nodes. In this placement strategy,
IDSs are placed in every physical object of the network.

• Decentralized: Similar to distributed but the placement follows a certain strategy,
e.g., the network topology/hierarchy. An advantage here is that all important data
can be captured. Disadvantage can be that not all participants in the network have
enough resources available in order to have a complete distributed approach of the
methods and to leave certain parts out of the overall system.

• Hybrid: Hybrid IDS placement combines concepts of centralized and distributed
or decentralized placement to take advantage of their strong points and avoid their
drawbacks. A combination of both, centralized and stand-alone, can be achieved
through cooperative computation, such that each node can detect an intrusion on its
own but also contributes to the overall decision. Here, more powerful components

19

are used at central locations, e.g., to create models, which usually requires more
resources. The generated models are then distributed in the network to perform
detection. These tests can also be performed by weaker systems, as they require far
fewer resources.

Approaches which analyze the data traffic of an entire network with a central compo-
nent are not target-oriented, since the amount of data to be considered requires a high
computing power and thus binds resources. In addition, it is necessary to forward the
data to be analyzed to the analysis component, which leads to an additional network
load. Furthermore, networks are divided into subnets and an analysis of this kind ini-
tially provides little information about the network area in which an anomaly occurs. An
alternative, novel concept is the decentralized use of anomaly detection systems. Here
network sensors are used which are placed in the subnets of a network. Instead of analyz-
ing the entire network traffic, the data traffic within each subnet is considered separately
and only the anomalous alarms are passed on to a central component that correlates
them. In addition, having more and more distributively connected devices, collaborative
IDSs therefore promise to even detect highly advanced distributed attacks. Especially
decentralized NIDSs are popular and a selection of research work dedicated to them is
presented in the following. Already in 2001, an architecture is proposed in [74] that col-
lects decentralized network traffic and sends it to a central server which classifies it. The
drawback of this approach is the increased network overhead. Statistical methods are first
applied to the monitored data sets in order to classify the outputs with an ANN.

Jahnke [75] has defined requirements for a decentralized attack detection architecture.
These include the ability to work continuously without human interaction, to detect at-
tacks on the IDS itself, or to adapt the IDS to the system or network behavior over time.
Jahnke is also proposing the use of the Intrusion Detection Message Exchange Format
(IDMEF) [76], a data format based on the eXtensilble Markup Language (XML), as a
structure for communication between the components of his architecture. Six components
are proposed: The sensor is defined as a process that collects or generates measurement
data. For each sensor, an adapter is required that monitors the work of the sensor and
processes the aggregated data and transforms it into the required form of the IDS. The
message distributor is required to receive or send command messages. This is done via
the communication channels, of which there are basically two: on the one hand the al-
ready addressed command messages, on the other hand one for special events, such as
a detected attack. Event processing evaluates the events and determines the behavior
of the last component, the reaction unit. However, there is no separation of command
and event messages. Even a proposed response measure is not part of this work. A re-
sponse action requires knowledge of the underlying network and the available response
units. Lupu et al. [77] have developed a decentralized architecture for attack detection
and implemented a communication framework based on IDMEF. The existing libraries
for IDMEF, libprelude-dev and libidmef, have been discussed but an improved software
library adapted to the decentralized architecture has been developed. In order to define
the reaction to received alarms, an own syntax is used which is based on the developed
functions. A programmer is offered the possibility to register his own callbacks which are
called at every event, i.e. an incoming message. Therefore, a programmer can influence
the role of a client himself. The use of IDMEF as an alarm format is suggested because of
the suitable structure and the meaningful definition of fields. The presented architecture,
however, mostly refers to the evaluation of these alarms and less defines the structure of
the sensors. Nevertheless, it represents a suitable basis for the evaluation of generated

20

alarms in a decentralized structure. Hu et al. has presented a method in [78] for detecting
anomalies in network traffic. They are specifically designed to address the problem of the
frequently changing structures of today’s computer networks. In addition to the investi-
gation of several different algorithms for the detection of anomalies, a new architecture
of NIDSs is presented. The data of each packet passes through several stages of anomaly
detection. First, a local model is used that is only locally present in the respective node.
Then further global models, which are present in all nodes of the network, are applied.
The approach demands many computing resources. However, those are divided between
sensors and a server.

2.1.2 Aspects of Machine Learning

ML, a relative to computational statistics, data mining and data science disciplines, has
an upscaling trend in the field of cyber security [79]. It has the ability to find similari-
ties within a large amount of data such that intrusions creating distinguishable patterns
within the network traffic that can be detected efficiently [30]. A major benefit is that
ML can be used to identify anomalies in the data without prior knowledge even within
high-dimensionality and massive amount of data which humans would never be able to
recognize. Although often classified under a branch of ML, deep learning approaches are
due to the reasons mentioned in Section 1.2.1 not considered in the following. There-
fore, we mainly focus on so-called shallow models, traditional ML methods, that contain
none or only one “layer” [12]. However, a taxonomy of common ML algorithms with the
classification into shallow and deep learning models can be found in [12].

Machine Learning Pipeline

Data Preparation

Dataset/
-source

Formatting, Cleaning, Sampling, Transforming, ...

(Pre-)Processing
& Wrangling

Retrieval /
Ingestion /
Collection

Feature Extraction
& Engineering

Feature Scaling &
Selection

Regression, Clustering, Model Building & Training - Modeling

Hyperparameter
Setting & Tuning

Model Selection
& Validation

Model Testing &
Validation

Result

Model Deployment,
Prediction & Monitoring

predicted class or cluster label,
outlier score, numeric regression value,

probability for category, ...

Classification (balanced & imbalanced
data e.g. Anomaly Detection)

Figure 2.3: A typical Machine Learning Pipeline/Workflow.

Figure 2.3 shows a ML pipeline, often also referred to as ML workflow, which is a sequen-
tial combination of different mechanisms transforming data instances (data points) from a
set of 𝑛 objects 𝑋 = {𝑥1,𝑥2, ...,𝑥𝑛} where each instance consists of a 𝑑-dimensional real-
valued vector 𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑑} with 𝑥 ∈ R𝑑 into a target value 𝑦, e.g., a class label.
Each dimension is also called a feature. For network-based features, one may distinguish
basic features (derived from packet headers [meta data] without inspecting the payload,

21

e.g., ports, Media-Access-Control or IP addresses), content-based features (derived from
payload assessment having domain knowledge, e.g., protocol specification), time-based
features (temporal features obtained from, e.g., message transmission frequency, sliding
window approaches) and connection-based features (obtained from a historical window
incorporating the last 𝑛 packets) [29, 80].

Learning Phases and Approaches
Many algorithms used in ML work in two (or three) phases: the training phase, (the
verification phase) and the evaluation phase. In the training phase, a state or model is
build by the selected algorithm. This model is then used by the algorithm in the evaluation
phase to obtain the result. An additional verification phase might help to verify and
optimize a built model before the actual operating (evaluation) phase. However, there are
also algorithms that work in one step. In most cases, this involves obtaining information
from the existing training data set (data mining). Basically, ML-based algorithms can be
classified into three learning methods. The biggest difference can be seen in the already
known basis of information. The learning method can already provide information about
which problem the algorithm can solve, e.g., labels for the classification problem. In
supervised learning (1), e.g. [81], the labels for the training data set are required. These
are included in the models during the training phase. This means that the algorithm
adapts the values of the model to the known labels. The goal is to approximate an
unknown function 𝑓(𝑥) with the resulting value 𝑌 . Here 𝑥 represents the data points
and 𝑌 the known labels. If the function 𝑓(𝑥) is approximated, the resulting value can
be calculated for each additional data point. The unsupervised learning (2), e.g. [82], is
classified by algorithms that do not require labels in the training phase. Mostly, these
algorithms are used to analyze the data set more precisely and to model it. Clustering,
i.e. the division of similar data points into groups, is a well-known representative of this
learning method. Semi-supervised learning (3), e.g. [83], is a trade-off between supervised
learning and unsupervised learning. Here a label is only available for a subset of the
data points. This procedure is used if there are many data points and a label cannot
be assigned to them completely manually. Hybrid approaches, e.g. [84], try to exploit
the benefits of the aforementioned. For instance the better detection rate when having
labelled training data and mitigate their demerits, e.g., having a false alarm rate when
assuming that normal data points are far more frequent than anomalies.

Problem Types
The selection of the appropriate model within the Model Building & Training stage mainly
depends on the ML problem type. Different types of problems, that should be solved
with methods of ML or data mining, are distinguished. In classification, data should be
divided into already known classes or groups. The regression problem is very similar to the
classification problem, but the result is not a class but a numerical value. With clustering,
a set of data points shall be divided into classes. Each class should only contain points
that are similar. Here it can be further differentiated whether the number of contained
classes is already known before or an unknown number of classes are contained in the data
set. The task OD belongs to the class of algorithms which can detect anomalies with the
properties that these are only a few compared to the normal data and differ substantially
from it. Such algorithms detect outliers during the evaluation phase without previously
known information about the data, e.g., clusters.

22

Machine Learning Pipeline
For security analysts it is often difficult to properly set up a ML pipeline due to the mul-
titude of possibilities to choose from at each pipeline stage. Domain experts are expected
to have a very high level of multidisciplinary expertise from data science. This ranges
from a meaningful data (pre-)processing, building of a domain-driven feature engineering
and selection of the best-performing features with respect to the Data Preparation stage
of Figure 2.3 in order to enable an efficient data analysis and to improve the performance
of the actual ML task [85, 86]. This process is necessary since normally a data set contains
raw data, which must be translated into an understandable format and optimized for a
downstream applied algorithm.

Furthermore, the security analyst is required to select the best algorithm associated
with its corresponding optimal hyperparameters with respect to the Modeling stage of
Figure 2.3. Recent developments in the field of Automated ML (AutoML) aims to support
those domain experts to properly set up a ML pipeline without extensive knowledge
of statistics and ML. The authors of [87], for instance, have provided a mathematical
formulation covering the ML pipeline construction modeled as a Directed Acyclic Graph
(DAG) and benchmark existing frameworks including algorithms towards the Combined
Algorithm Selection and Hyperparameter (CASH) optimization problem. Therefore, for
an optimal selection of an algorithm and its corresponding hyperparameters, the authors
formulated a ML pipeline denoted as 𝑃𝑔,𝐴⃗,𝜆⃗ as the triplet 𝑔, 𝐴⃗, 𝜆⃗ with 𝑔 ∈ 𝐺 as a valid
pipeline shape and |𝑔| the length of a pipeline referring to a DAG in which the node
represents a basic algorithm and the edges the flow of an input data set through different
algorithms. The vector 𝐴⃗ ∈ 𝒜|𝑔| consists of the selected algorithm for each node of the
algorithm set 𝒜 and 𝜆⃗ a vector comprising the hyperparameters of all selected algorithms
from the domain 𝛬(·). A pipeline trained on a data set 𝐷 = (𝑥⃗1, 𝑦1), ..., (𝑥⃗𝑛, 𝑦𝑛) is given
by 𝑃𝑔,𝐴⃗,𝜆⃗,𝐷. The pipeline performance 𝜋 is given a data set 𝐷′ of size 𝑚 and a loss metric
ℒ(·, ·) is calculated as shown in Equation 2.1. The pipeline creation problem can then be
formulated of finding a structure together with an algorithm and hyperparameter selection
that minimizes the loss (Equation 2.2). The popular CASH optimization problem referring
to [88] can be derived setting |𝑔| = 1.

𝜋(𝑃𝑔,𝐴⃗,𝜆⃗,𝐷, 𝐷
′) =

1

𝑚

𝑚∑︁
𝑖=1

ℒ(𝑃𝑔,𝐴⃗,𝜆⃗(𝑥⃗𝑖), 𝑦𝑖) (2.1)

𝑔*, 𝐴⃗*, 𝜆⃗* ∈ arg min
𝑔∈𝐺,𝐴⃗∈𝒜|𝑔|,𝜆⃗∈𝛬

𝜋(𝑃𝑔,𝐴⃗,𝜆⃗,𝐷, 𝐷) (2.2)

However, the application of AutoML is an offline supervised learning setting. To solve
the pipeline problem, multiple iterations are necessary while incorporating the feedback
from a benchmark data set, e.g., KDD’99 [89] or NSL-KDD1, which is quite resource
consuming in terms of time and computation. The focus lies in solving the CASH op-
timization problem but transparency of ML is important such that automatic selection
and adjustment of algorithms might lead to a misunderstanding by the user and the se-
lected algorithm with its hyperparameters might perform insufficiently with other data
sources or in real-world applications. Although there are existing methods that are able
to optimize hyperparameters even for anomaly detection in the unsupervised case, e.g., by

1https://www.unb.ca/cic/datasets/nsl.html (accessed on 05 September 2021)

23

https://www.unb.ca/cic/datasets/nsl.html

exploiting a concept called Mass Volume Curves [90]. Nevertheless, they require training
and testing for each hyperparameter value, thus they do not operate in the online case.

Data Preparation
Data Preparation is a significant part of ML and essential in order to enable an efficient
data analysis and to improve the performance of the algorithm [85, 86]. Data must
first be collected and cleaned as well as corresponding information must be extracted
from the raw data (feature extraction). Furthermore, a selection of the relevant data
for the analysis must be carried out. This is followed by the actual pre-processing of
the data. Possible goals of the data pre-processing are, for example, to convert the
data into an optimal form for the analysis in order to increase the performance of the
anomaly detection or to reduce the amount of data to be analyzed and thus to preserve
resources. Data pre-processing and analysis must take place during the operation of the
underlying network with the intention of detecting anomalies promptly. In general data
pre-processing describes the necessary steps before an analysis of data can occur. Data
pre-processing methods (with their respective functions) can be divided into the categories
data cleaning (handling of anomalous, missing, erroneous and inconsistent data), data
integration (merging of multiple data sources and handling of redundant data), data
transformation (scaling, normalization and categorization of data) and data reduction
(dimensionality and quantity reduction, discretization and compression of data) [91, 92].
Methods for data scaling or normalization are among others [93] the min-max or unit
scaling (L1- or L2-norm). Two popular methods exist for dimensionality reduction [94]:
Principal Component Analysis (PCA) and Random Projection (RP). PCA originates from
statistics and is used to locate patterns in high-dimensional data. After such a pattern has
been found in a set of data, its dimension can be reduced (compression). Decisive is, that
with the reduction, the information represented by the data is largely preserved. Due to
the Johnson-Lindenstrauss lemma described in [95] several possibilities were developed to
map higher order matrices into lower dimensions. This lemma states that at data points
in a high dimension only a small distortion occurs by mapping into a lower dimension with
a certain probability. Random projection is taking advantage of this lemma. Clustering
is another method of pre-processing data. Here, data is assigned to clusters according
to its nature, such that the data is categorized. This classification can be used as a pre-
processing measure to implement various measures: (1) The categorization of data may
assist the analytic process in the classification of data. (2) The type of further processing
can be selected on the basis of the cluster membership of data. (3) Depending on the
cluster, data sampling is possible. (4) Each cluster can be further processed by a separate
algorithm which allows a detailed analysis of the data. Sampling in statistics refers to the
selection of a subset of instances from within a statistical population in order to estimate
characteristics of the whole population. In pre-processing, sampling selects a subset, a
representative, of a set to allow an analysis of only the subset while loosing as little
information as possible. By this measure, the amount of data for analysis is reduced, and
therefore fewer resources are required. For a discussion on various sampling methods refer
to Chapter 6.

The disciplines “Feature Engineering” [96] and “Feature Learning” [97] play an important
role in building ML-based IDSs since the chosen feature set (the collection of selected
features - FS) highly affects the performance of the IDS. For instance, Wang et al. propose
an automated feature learning approach in [15]. They abstract network traffic such that
for spatial features traffic is transformed into “traffic images” to exploit the advantages

24

of image processing, e.g., image classification based on geometric features to classify the
traffic images, which also indirectly achieves the goal of identifying malicious traffic. For
temporal features, the time series analysis method is applied to detect malicious behavior
on extracted temporal features. The so-called Hierarchical Spatial-Temporal Features-
based IDS is divided into two major steps: first the low-level spatial features of network
traffic are learned using deep convolutional ANNs and then high-level temporal features
are learned using long term short memory networks. For dimensionality reduction instead
of the well-known PCA, the t-SNE algorithm is used. Different feature representations
can be used to address different fields of anomaly detection. Some of them are considered
naïve when they contain basic information about the software or network (e.g., IP source
and destination address of a data packet), while others are considered rich when they
represent deeper details (e.g., temporal relations of payload content) [96]. According
to [26], features can be obtained by the following processes: feature construction creates
new features by mining existing ones by finding missing relations within features. While
extraction works on raw data and/or features and apply mapping functions to extract
new ones. Selection works on getting a significant subset of features. This helps reduce
the feature space and reduce the computational power [26].

Feature Selection
Especially when applying ML algorithms on high-dimensional data sets, one has to deal
with the curse of dimensionality referring to the phenomenon that data becomes sparser
in high-dimensional space. This adversely affects the storage requirements and compu-
tational cost of the algorithms. The process of choosing a subset of significant features
ℱ𝑆 ⊂ ℱ from a data set 𝑋 with the descriptive features ℱ = {𝑓1, 𝑓2, ..., 𝑓𝑑} is called
FS or attribute selection. The subset divides the data set 𝑋 into 𝑋* = 𝑋 ∩ ℱ𝑆, thus
reducing the data set’s dimension and volume of information processed by the consecutive
ML algorithm. Generally, it formulates a criterion to evaluate a set of features in order
to identify redundant or irrelevant (non-informative) features for the ML task that needs
to be removed which are deteriorating the performance of the ML algorithm. The output
of FS is either a ranked list of the features or a subset of them. Therefore, in the case of
classification, on one hand a more precise classification result can be achieved while on the
other hand the computational effort can be limited by minimizing the cardinality of the
selected feature set. This results in a faster, more cost-effective and improved prediction
performance. In practice, FS still mostly depends on expert knowledge. However, with
high-dimensional and high-volume data sets and its complex interwovenness this is no
longer a humanly manageable task. As discussed, dimensionality reduction could also be
achieved by methods such as PCA and RPs, where higher order matrices are mapped
into ones with lower dimension since, at data points, in a high dimension only a small
distortion occurs by mapping into a lower dimension with a certain probability. How-
ever, a major disadvantage of this process is that after classification a root cause analysis,
e.g., which features contributed the most for the classification result, is not possible any
more. This is because of the creation of new synthetic features from a linear or nonlinear
combination of the original ones and then discarding the less important. As the physical
meaning of the features are no longer retained by this projection, further analysis is im-
peded. FS, in contrast, is simply selecting and excluding given features without changing
them such that for a root cause analysis one can still refer to expert domain knowledge
by maintaining their physical meaning (feature interpretability).

25

Methods for FS can generally be categorized into wrapper, embedded or filter methods.
Wrapper approaches are seeking for their subset by “wrapping around” FS over a ML
algorithm following the iterative procedure that an original set repeatedly is divided into
a subset which then gets evaluated by calling the subsequent classifier. Depending on
the goodness of the subset either a new one needs to be generated or the result yields
the best feature subset (stopping criteria). Since the wrapper approach includes a specific
induction algorithm to optimize FS, it often provides a better classification accuracy result
than the other methods. However, this method is time-consuming considering the search
space for 𝑑 features of 2𝑑 while 𝑑 is typically very large and strongly coupled with the
classifier which makes it impractical to be applied to large data sets containing numerous
features and in online settings. Embedded approaches include FS in the training process
of the ML algorithm. Thus, operational costs are being reduced due to the classification
process needed for each subset [98]. The filter approach does not require knowledge of
the subsequent ML algorithm and measures the intrinsic statistical properties of the data
set. It can be grouped into feature ranking methods assigning weights to features based
on their relevancy and feature-subset-evaluating methods that also involve relationships
between features finding redundancy [99]. However, statistical measures must be carefully
chosen based on the type of input variable and the model outputs. From an online
application perspective, filter approaches seem to be the most promising candidates, since
they do neither demand offline training nor rely on multiple iterations. Similar to labeling
in ML, FS can be broadly classified from a supervision perspective into supervised and
unsupervised methods with respect to use or ignore the target variables. Over recent years,
unsupervised approaches have gained attention since acquiring labeled data is particularly
expensive in both time and effort. Furthermore, sufficient label information is usually not
available in real-world applications. With respect to the data perspective, FS can be
classified according to [100] into static and streaming data.

Unsupervised FS tries to find a relevant subset of features that preserves the inherent
structure as much as possible [101]. This means that it tries to reduce the number of
features without complicating the detection of anomalies. Since FS is a non-deterministic
polynomial acceptable problem [102], there are many approximation solution methods.
Luo et al. [103] are following a way to select features based on “Adaptive Reconstruction
Graphs”. This led to the realization that omitting features can improve the result. If some
features can be ignored, the calculation time is also reduced. Wieland et al. [102] have
presented an approach based on a Support Vector Machine (SVM). This is used to model
the relationship between the distribution of a particularly invasive mosquito species. The
work was able to identify new features that improve the underlying detector. However,
the method used is extremely computationally demanding and therefore not suitable for
the usage on low-powered devices. Aljawarneh et al. [104] have developed a hybrid model
using the following classifiers: J48, Meta Pagging, RandomTree, REPTree, AdaBoostM1,
DecisionStump and NaïveBayes. An information gain detector based on mutual informa-
tion was used to assign an information score to all possible features. The hybrid model
was then applied to the best eight features. The calculation of the information gain de-
tector is unfortunately dependent on information that is not always available when using
unsupervised learning.

26

2.1.3 Outlier Detection

OD, also referred to as anomaly, deviation or novelty detection as well as exception min-
ing, is an important issue for many real-world application domains, especially detecting
indicators of malicious activity in computer networks. Manifold definitions in the litera-
ture exist for OD. In the following, three exemplary definitions are given, regarded general
enough to cope with various types of data and methods [105].

• Hawkins (1980): “An outlier is an observation which deviates so much from the
other observations as to arouse suspicions that it was generated by a different mech-
anism.” [106]

• Johnson (1992): “An outlier is an observation in a data set which appears to be
inconsistent with the remainder of that set of data.” [107]

• Barnett and Lewis (1994): “An outlying observation, or outlier, is one that
appears to deviate markedly from other members of the sample in which it oc-
curs.” [108]

In general it can be described as an atypical pattern or observation that significantly
deviates from the norm based on some measure and thus attracts suspicion. Outliers are
mainly characterized by three assumptions: (i) the majority of data is normally having
only a small portion of outliers (imbalance) which (ii) are statistically different from the
normal data (distinction) and (iii) do not happen frequently (rarity). Outliers are often
classified into three categories referred to as Type I-III outliers: point outliers, contextual
outliers and collective outliers. Point outliers show exceptional behavior compared to all
other values in the data, whereas contextual outliers depend on the context, meaning,
their abnormality depends on other contextual attributes even if the value itself seems
normal. Collective outliers depend on the consecutive series of values whereby a single
value might be normal but their consecutive set shows exceptional behavior. Referring
to typical ML tasks, outliers are often seen as noise and are removed during the data
preparation stage. However, for some applications, especially for detecting completely
novel malicious activity in network security, the data points containing outliers carry
the significant information. In terms of classification, OD constitutes a special form of
imbalanced data where the outlier class show the properties (i)-(iii) stated compared to the
normal data class. The output can either be a binary class label 𝑦 ∈ {𝑛𝑜𝑟𝑚𝑎𝑙, 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙}
or a score value 𝑦 ∈ R that describes the strengths of anomalousness. The score itself
can be used to derive a class label by utilizing a threshold value. In a later root cause
analysis, outlier score values carry more information than a simple binary value.

Thus, in this thesis, we focus on OD algorithms in which 𝑂𝐷(·) : 𝑥𝑖 → R assigns
an outlier score for each data object in 𝑋. This divides 𝑋 into a set of outliers 𝑋+

and inliers 𝑋− (𝑋 = 𝑋+
⋃︀

𝑋−). Numerous methods have been introduced for OD.
The most common ones are statistics-, distance-, clustering-, or density-based techniques.
Other methods, including their properties, are discussed in [109, 110].

As already pointed out, in particular, the missing ground truth values in evolving (the-
oretically infinite) data that demands real or almost near real-time processing, taking
the evolution and speed of data into account, requires unsupervised OD methods capable
of dealing with SD. In the streaming setting, {𝑋𝑡 ∈ R𝑛𝑡×𝑑, 𝑡 = 1, 2, ...} is a continuous
transmission of data records which arrive sequentially at each time step 𝑡. The count of

27

features is denoted as 𝑑 (dimension) and 𝑥𝑡 the 𝑛𝑡-th 𝑑-dimensional most recent incom-
ing data instance at time 𝑡. Widely accepted and popular solutions, such as Hoeffding
Trees [111] or Online Random Forests [112], achieve good accuracy and robustness in data
streams [113] but are not designed to operate on unlabeled data. Over the past couple
of years, methods have been proposed that satisfy the unsupervised and online require-
ment, such as [114, 115, 116], but just a few, iForest [51], HS-Trees [117], RS-Hash [118]
and Loda [119], have been shown to outperform numerous competitors and are there-
fore regarded as the state-of-the-art [120, 121]. Even if iForest was originally intended
as an offline algorithm, a handful of variants, such as [122, 52, 123, 124, 113], have been
proposed that are adapting it or are taking advantage of its concept to operate on SD.

Example of Two Outlier Detection Algorithms
In the following two representative exemplary algorithms for anomaly detection using ML,
iForest [51] and Loda [119], based on unsupervised OD, are presented. Those have mainly
been chosen according to the following criteria for the application as an anomaly-based
NIDS. Furthermore, the sections discussing iForest and Loda serve the understanding of
solutions presented in Chapter 3 and 4. More detailed requirements with regard to online
unsupervised OD can be found in Chapter 4. The criteria are:

• operation without knowledge of data labels,
• possibility of online (real-time) detection of outliers,
• detection of previously unknown and advanced attacks,
• modeling and operation in environments which might contain anomalous data,
• applicability on lightweight devices with little available resources,
• coping with high dimensional data sets,
• providing outlier score values instead of simple binary values, and
• allowing feature interpretability, meaning the identification which feature contributed

most to cause the outlierness.

The iForest algorithm is predestined for anomaly detection because it does not use
distance or density methods which makes it much less computational intensive compared
to methods such as 𝑘-Nearest-Neighbor [122] and also because it is well suited for real-
time usage unlike most other algorithms [119]. In addition, it belongs to unsupervised
learning and does not require a labelled training data set, such as Hoeffding Trees [125], as
it recognizes patterns and does not sort out packets based on their label. Furthermore, it
is independent of the scaling of the data set dimensions since its threshold for determining
anomalies is based on the tree depth [126]. This algorithm attempts to separate outliers
from other data points by isolating them by taking advantage of the fact that data points,
that differ from other data points, require fewer steps to be isolated from them as shown
in Figure 2.4 (a). In addition, the algorithm uses the observation that when a data set is
represented in a binary search tree, anomalies are inserted in a tree at a shallower depth
than normal values as depicted in Figure 2.4 (b).

The iForest algorithm forms several Isolation Trees in the training phase. These Iso-
lation Trees are then the model for classification in the evaluation phase. Each tree is
a real binary tree, which nodes are provided with different information. In the training
phase, the training data set 𝑋 is available with 𝑛 data points. The training data set is
divided into 𝑡 subsets 𝑋 ′ and 𝑋. It applies 𝑋 ′ ⊂ 𝑋. Each subset 𝑋 ′ contains 𝜓 data
points. An Isolation Tree is formed from each 𝑋 ′. This is done by recursively dividing

28

Figure 2.4: (a) Isolating an outlier, (b) Representation of a tree model [126].

𝑋 ′ by randomly choosing a feature 𝑞 and a value 𝑝. 𝑝 is a random value between the
minimum and the maximum of the feature 𝑞 of all data points at a node of the tree. New
child nodes are formed by processing all data points for which 𝑝𝑞 < 𝑝 applies, where 𝑝𝑞 is
the value of the feature 𝑞 of a data point, in the left child node. All data points to which
𝑝𝑞 ≥ 𝑝 applies are processed further in the right child node. The recursion ends when
fewer than two data points have arrived in a node or all data points are equal. The values
𝑞 and 𝑝 become attributes of the current node. Each node of a tree has either no child
nodes or two. This is repeated for each 𝑋 ′. After the training phase, 𝑡 Isolation Trees
exist.

To classify a data point 𝑥, all Isolation Trees are traversed from the data point during
the evaluation phase. The data point travels through the nodes to the previously trained
values for 𝑞 and 𝑝. If the data point 𝑝𝑞 < 𝑝 applies, if 𝑝𝑞 is the value of the feature 𝑞
of the data point, the data point moves to the left child node. If 𝑝𝑞 ≥ 𝑝 applies, the
data point moves to the right child node. This happens until an end node is reached.
The result of this migration is the tree depth. From all reached depths ℎ(𝑥) the average
𝐸(ℎ(𝑥)) is computed. The calculation of the resulting 𝑠𝑐𝑜𝑟𝑒 is shown in Equation 2.3.
First, 𝑐(𝜓) must be calculated. This equation is borrowed from the number of unsuccessful
searches in a binary search tree. It represents the average depth reached by a binary tree
when it contains 𝜓 data points. 𝑛 is the number of data points used to build a model
(Equation 2.4). 𝐻 represents the “𝜓−1”-th subsequent element of the harmonic sequence.
This can be calculated approximately by Equation 2.5. The variable 𝛾 represents the
Euler-Mascheroni constant (≈ 0, 57721). The main advantage of the iForest algorithm is
its low time complexity. This is 𝑂(𝑡𝜓2) in the training phase and 𝑂(𝑛𝑡𝜓) in the evaluation
phase. It should be noted in particular that 𝜓 can and should be kept small to avoid the
effect of swamping.

Loda [119] has been presented as another algorithm besides iForest with similar prop-
erties. It belongs to the OD algorithms with unsupervised learning as well and consists of

29

𝑠𝑐𝑜𝑟𝑒(𝑥, 𝜓) = 2−𝐸(ℎ(𝑥)))
𝑐(𝜓) (2.3)

𝑐(𝜓) =

⎧⎪⎨⎪⎩
2𝐻(𝜓 − 1)− 2(𝜓−1)

𝑛
for 𝜓 > 2,

1 for 𝜓 = 2,

0 for 𝜓 < 2

(2.4)

𝐻(𝑛) ≈ 𝑙𝑛(𝑛)− 𝛾 (2.5)

a collection of 𝑘 one-dimensional histograms, each histogram approximates the probabil-
ity density of the input data projected onto a single projection vector. Projection vectors
diversify individual histograms which is a necessary condition to improve the performance
of individual classifiers. To train the algorithm, projection vectors 𝑤𝑖 are first generated
and histograms initialized. Each projection vector is generated during the initialization
of the associated histogram by first randomly selecting 𝑑−

1
2 , different from zero, features

and then randomly generating non-zero values according to 𝒩 (0, 1). The histograms of
each projection vector are updated with 𝑧𝑖 = 𝑥𝑇𝑗 𝑤𝑖, where 𝑥𝑇 is the transposed sample
vector. The features used must be of approximately the same order of magnitude. Loda’s
output 𝑓(𝑥) on a sample 𝑥 is the average of the logarithm of probabilities estimated on a
single projection vector (Equation 2.6).

𝑓(𝑥) = −1

𝑘

𝑘∑︁
𝑖=1

log 𝑝𝑖(𝑥
𝑇𝑤𝑖) (2.6)

Loda is especially useful in domains where a large amount of samples have to be pro-
cessed because its design achieves a very good weighting between accuracy and complexity.
The algorithm exists in different variants for batch and online learning. With the batch
variant, data instances are collected and collectively used in the training routine. In this
routine the projection vectors and the histograms are generated. In the online version, a
histogram is continuously updated which makes it possible to use it even on devices with
very low resources and thus eliminates the splitting of the modeling and evaluation phase
(as necessary with iForest). However, in the early running time of the online variant, the
algorithm will probably produce more false positives than the batch version, since the
histograms need a certain amount of time to be fully updated. Loda can handle missing
variables and can sort features according to their contribution to the anomaly score. Also
the anomaly detection does not fail completely if single sensors are missing. In its original
form, the algorithm returns a score value. The larger the value, the more likely it is an
indication of an anomaly. However, this score value can be reduced to a probability by
Equation 2.7). Here 𝑓(𝑥) is the score value of Loda from Equation 2.6.

𝑝(𝑥) = 1− 𝑒−𝑓(𝑥) (2.7)

With respect to Chapter 5, we are mainly interested in two functionalities of online
OD algorithms. Firstly, for instance, to be able to deal with false positives, OD should
provide outlier score values instead of simple binary values. Secondly, finding the actual
root cause of incidents is still an open challenge for IDS. The importance of the features
of the input data can play a major role when it comes to analyzing detected outliers.
Thus, OD algorithms are required that are able to score or rank features according to
their contribution to a data instance’s anomalousness. The former criterion is fulfilled by
all of the aforementioned algorithms although their scoring range differs. For instance,

30

while iForest’s scoring takes values from [0, 1], Loda yields values from [0,∞). Referring
to the second criterion, to the best of our knowledge, only Loda and the adaption of
iForest for SD, PCB-iForestIBFS (refer to Chapter 4) provides by design the functionality
to measure the statistic significance of each feature to its contribution of a data instance’s
scoring result in an unsupervised manner. From a supervised perspective, the Random
Forests (RF) [127] algorithm, for which an online variant also exists [112], can provide
feature importance scoring functionality using the SHapley Additive exPlanations (SHAP)
method [17]. This method is founded on the so-called Shapley values which provide an
explanation of a prediction by computing the contribution of each feature to the prediction
- a method from coalitional game theory.

The complexity theory provides a measure for the representation of the differences
between iForest and Loda. Table 2.1 shows the effort of resources (time and memory
complexity) for the execution of both anomaly detection algorithms according to [119].
In the table, 𝑛 denotes the number of samples for the training phase, 𝑑 the number of fea-
tures (dimensions), 𝑘 the number of trees (iForest) or the number of histograms (Loda),
𝑙 the number of samples for the construction of a single tree (iForest) or the length of an
observation window for the continuous histograms (Loda) and 𝑏 the number of histogram
classes (Histogram bins) for Loda. In Table 2.1 a distinction is made between Loda with
two alternating histograms (1) and the implementation with a continuously updated his-
togram (2). The construct of a binary tree contained in the iForest can be created in two
ways. If all elements for the creation are not known in advance, then each element of
the 𝑙 elements must be added one after another. In the worst case, the complexity of the
insertion is 𝒪(𝑙) and so 𝒪(𝑙2) results. In the more likely case (also called average case), all
𝑙 elements are known in advance and could be sorted by 𝒪(𝑙 log 𝑙) and inserted afterwards.
For this, one takes the middle element, insert it as root node and proceed recursively for
the remaining elements. At the end one gets a so-called “balanced” tree, where 𝑙 elements
were inserted with log 𝑙. Thus, a time complexity of 𝒪(𝑙 log 𝑙) can also be achieved for
the creation. The memory complexity when learning the model is 𝒪(𝑛), where 𝑛 is the
number of elements in the data set to be learned. Once the model has been trained, the
memory complexity is reduced to the number of memory complexities per binary tree
𝒪(𝑘 log 𝑙) and is significantly less than 𝒪(𝑛). In contrast to the learning phase, the time
complexity of the classification is reduced by the number of subsamples 𝑙 and results for a
binary tree in 𝒪(𝑙) in the worst case and 𝒪(log 𝑙) in the average case. Thus, the number
of 𝑘 trees for the time complexity is 𝒪(𝑘𝑙) in the worst case and 𝒪(𝑘 log 𝑙) in the average
case. For the Loda variant (2), the time complexity for the training phase is 𝒪(𝑛𝑘𝑑−1/2).
The complexity results mainly from the nested loops with the limits 𝑛 and 𝑘. The use of
“Very Sparse RP” [128] yields a speedup of

√
𝑑 from which the factor 𝑑−1/2 results.

Time complexity Space complexity
Training Classification

iForest 𝒪(𝑘𝑙 log 𝑙) 𝒪(𝑘 log 𝑙) 𝒪(𝑘𝑙)
Loda (1) 𝒪(𝑛𝑘𝑑−1/2) 𝒪(𝑘(𝑑−1/2 + 𝑏)) 𝒪(𝑘(𝑑−1/2 + 𝑏))
Loda (2) 𝒪(𝑛𝑘𝑑−1/2) 𝒪(𝑘𝑑−1/2) 𝒪(𝑘(𝑑−1/2 + 𝑏+ 𝑙))

Table 2.1: Time/space complexity of iForest and Loda (cf. [119]).

31

Combining Classifiers
Apart from an incident analysis (refer to Section 2.2 - aggregation, alert fusion), which
combines the alarms of different detection measures (algorithm external combination),
there are also mechanisms that can be used for consensus finding within an ML algorithm
(algorithm internal combination). The combination of learners has been categorized by
Bhuyan in [29] to ensemble-based techniques (algorithm internal) utilizing bagging, boost-
ing and stacking [129] and fusion-based techniques (algorithm external) combining several
disparate data sources at the data level, feature level or decision level. Sadighian in [27]
is categorizing fusion approaches into “Winner-take-all” and “Weight-based” ones. With
the former, the final decision over the outputs from various IDSs is made based on the
decision of the IDS that has the highest measurement value, e.g., majority vote, weighted
majority vote, behavior knowledge space, naive-Bayes combination, and Dempster-Shafer
combination. The latter assign weights to each IDS as its importance indicator on the
final decision which is then made based on the weighted sum of the measurement values
of all the IDSs, e.g., using ANNs or weighted average.

The concept of ensemble-based approaches combining several “weak” classifiers in or-
der to gain a “strong” one, for instance in terms of a higher predictive performance, is
becoming more and more popular. With respect to network-based attacks, attack char-
acteristics significantly differ from each other. Thus, it is a common practice to have
different sets of features as well as ML algorithms to detect different types of attacks [30],
since single IDSs cannot cover all types alone [130]. These methods weigh the individ-
ual outputs and combine them (ensemble) to obtain a better result. Loda, as well as
iForest, is based on the principle of producing a strong classifier by combining multiple
weak ones (trees/histograms). However, there exists further work exploiting this concept.
Amudha et al. [131] are investigating bagging and boosting as two possible methods for
ensemble learning methods. Bagging performs random sampling, whereas boosting per-
forms sampling based on a continuously updated distribution. Hu et al. have introduced
the AdaBoost algorithm in [132], which like Loda, generates a strong classifier from weak
classifiers (decision stumps). Kitsune, as proposed in [115], uses an ensemble of simple
ANNs (in particular Autoencoders) to distinguish between anomalies and normal behav-
ior. The research of Mirsky et al. [115] is showing that Kitsune works comparably to
offline anomaly detectors and uses few resources. All this research work shows that an
ensemble of weak classifiers provides better results than individual classifiers and works
at the same level as strong classifiers, while even preserving resources.

Kittler et al. [133] are presenting many basic considerations for the combination of clas-
sifiers. These include many rules, such as the product, sum, minimum, maximum and
median rules, as well as majority voting. A surprising finding is that the comparatively
restrictive sum rule even produced better results than other rules. Voting in general is
used to generate a collective decision. The four main components of a voting algorithm
are input data, output data, input votes and output votes. Exact and inexact in this
context indicates whether input objects are regarded as inflexible values or flexible neigh-
borhoods, i.e. whether discrete or non-discrete values exist. There are different types
of voting algorithms, e.g., consensus and compromise voting. Compromises are mainly
voting variants based on the median or mean. Presets and adaptives indicate whether
weightings are set or can change over runtime. Other variants are called threshold and
plurality. Threshold voting means that the output weight exceeds a value, where plurality
identifies an output that has maximum support from the inputs. [134]

32

With consensus voting, an anomaly is only recognized if all classifiers recognize it. In
majority voting, an anomaly is detected when the majority detects an anomaly. Consen-
sus voting prefers false negatives compared to false positives [135]. Gao et al. [136] are
describing the use of consensus voting for multiple atomic detectors to improve detection
rates. Lin et al. [137] are describing a creditability-based weighted voting system that
assesses the creditability of each anomaly detection algorithm. This is done by comparing
the results of the algorithms with known results of the network trace, in particular the
information of the confusion matrix parameters. Unfortunately this is not compatible
with unsupervised learning. Thus, a way must be found to obtain information whether
an anomaly has been correctly detected or not. This is difficult to be achieved with un-
supervised learning as there is no such information available. Based on this comparison,
the weightings of the individual algorithms are then determined. Giacinto et al. [138]
were investigating different approaches of disparate classification to obtain a single result.
They are judging the “Dynamic Classifier Selection” algorithm as the best one. It selects
for each pattern the classifier that finds the correct classification, if such a classifier exists.
Aburomman et al. [139] have been introducing several ways to combine different classifiers
and are stating that voting-based systems are the common method. Errors introduced by
one classifier can be corrected by another if all classifiers have a similar performance. If
the reliability of each classifier can be estimated in advance, it is possible to increase the
accuracy by weighted voting. Weighted voting can be used more generally than simple
majority voting and is therefore useful in a broader context. If all weightings are set to
1, simple unweighted voting results. It is important to note that the classifiers must be
sufficiently different, otherwise there will be no significant improvements.

Many recent publications are dealing with the use of ML algorithms for anomaly de-
tection. In [140, 141, 142] different algorithms and methods are tested. In some cases,
multi-stage methods are being presented. Several algorithms are concatenated to achieve
better results. A disadvantage is that the computational complexity of this method is
higher by the application of several algorithms than with single-staged ones. Therefore,
this approach is less suitable in environments characterized by less available resources
without any modification or combination with other methods like sampling. The doctoral
thesis of Taylor [70] presents a hybrid automotive anomaly-based IDS with a two-staged
detector. Special attention is paid to frequency and sequence-based detection, which are
specified for their application in order to identify Controller Area Network (CAN) frames
which deviate from their normal transmission frequency or from their order in transmission
(sequence). A so called anomaly score is calculated for consensus finding of the different
systems and as a decisive feature for alarm generation. The authors of [143, 144] proposed
a lightweight IDS for wireless sensor networks based on the combination of the anomaly-
and misuse-based technique to offer a high detection rate. The approach is integrated in
a cluster-based topology, to reduce communication costs, which leads to improving the
lifetime of the network. The incoming data is first provided to the faster signature-based
component and, if indicated abnormal, provided to the anomaly-based SVM. A decision
making model combines then the outputs of both techniques, determines whether an in-
trusion occurred and classifies the type of the attack. The incident is then reported to
an administrator for supervision. Guo et al. are presenting a two-staged hybrid approach
in [145] that deploys an anomaly detection component in the first stage and its output
in a second stage either forwarded to a second anomaly detection component (in the ab-
normal case of stage 1) or forwarded to a misuse detection component (in the normal
case of stage 1). The misuse-based component is able to classify between an attack or

33

not and the anomaly-based component between normal and abnormal connections. Since
misuse-based techniques are typically less complex than anomaly-based ones a better ap-
proach would be to apply the misuse-based component in stage 1 similarly to the work
in [146]. Thus, static checks are used which correspond to misuse-based (specification-
based) detection by applying simple rules based on known communication matrices used
in the automotive sector (CAN message catalogue). Those filter out inappropriate com-
munication, e.g., exceeding payload values in a first place before features are extracted
for a common basis to apply anomaly-based ML algorithms. A simple anomaly analyzer
evaluates the outputs of, e.g., recurrent ANNs, One-Class SVM (OCSVM) and Loda in
order to filter out false positives before logging detected anomalies.

Maglaras et al. are proposing IT-OCSVM in [147], a distributed intrusion detection
system in a Supervisory Control and Data Acquisition network characterized by a three
layer hierarchical abstraction into field, operation network and IT-network. It is using a
central OCSVM and a cluster of automatically produced ones, one for each source that
induces significant traffic in the system, an embedded ensemble mechanism, an aggrega-
tion method and a 𝑘-means clustering procedure that categorizes aggregated alerts using
IDMEF messages. The detection functionality of the IT-OCSVM is composed of pre-
processing (feature extraction from raw data containing all forms: continuous, discrete
and symbolic mapping to numeric-values), the selection of the most appropriate features
(divided into content and time-based features), the creation of cluster of OCSVM models
(trained on discrete sources), testing of the traffic data set (containing malicious attacks),
the ensemble of classifiers (combining the output of the different OCSVM modules using
mean majority voting), social analysis (technique using Spearman rank correlation coeffi-
cient to add weight to alerts produced from different sources, e.g., the difference between
mainly used protocols during the normal and abnormal operation of a node), the fusion
of information/alarms (multiple anomaly outcomes are gathered and classified in terms
of importance by 𝑘-mean clustering; groups alerts per source node and gives final scores
to aggregated alerts based on the initial values and the number of similar initial alerts)
and communication of the mechanism (IDMEF file exchange for alerts in terms of, e.g.,
importance, position, time). The ensemble based mechanism for the outcome of the cen-
tral and the split OCSVMs is computed with 𝑞𝑒(𝑖, 𝑗) =

∑︀𝑁
𝑛=1𝑤𝑖𝑑𝑡(𝑖, 𝑗) where 𝑑𝑡(𝑖, 𝑗) is

the outcome of each classifier 𝑛 for the sample data 𝑖 originating from node 𝑗 with the
assigned weight 𝑤𝑖.

2.1.4 IDS Evaluation Metrics

According to [29], metrics for IDS evaluation can be divided into data quality (quality,
reliability, validity, completeness of, e.g., data source, selection of samples, sample size,
time of data), correctness and efficiency as shown in the taxonomy of Figure 2.5.

Evaluation metrics to compare performance (efficiency) and effectiveness (correctness)
can be generally classified into cost-based metrics, information-theoretical metrics [148],
binary classification and resulting from binary classification, Receiver Operating Char-
acteristic (ROC) [27, 149]. Efficiency deals with the resources needed by the system
executing the IDS including, e.g., CPU cycles or memory demands. Further the timeli-
ness is a metric that defines how quickly a response is performed after an incident has
been detected. Correctness represents the ability of the system to distinguish between
malicious and non-malicious behavior (classification performance) by measures such as
ROC-curve, Area Under the ROC Curve (AUC), precision, recall, F-measure, confusion

34

Figure 2.5: Taxonomy of evaluation measures [29].

matrix, misclassification rate, sensitivity, and specificity. Cost-based metrics assign a cost
measure to weight false positive and false negative rate to consider a trade-off between
the cost of a damage by a successful attack and the costs for impacts of false alarms.
Especially for ML-based IDSs, a high detection rate is essential. However, when measur-
ing the accuracy of IDSs, particularly for the problem of statistical classification, different
characteristic values are used. A so-called confusion matrix is utilized to compare the per-
formance of such algorithms. The focus of the performance lies on the predictive power of
a model and not on the speed the model performs classifications into normal or abnormal
classes (binary classification). The confusion matrix is represented by Table 2.2, in which
each row represents the instances of a predicted class, while each column represents an
actual class.

Actual Non-Anomaly Actual Anomaly

Predicted Non-Anomaly True Negative (TN) False Negative (FN)
Predicted Anomaly False Positive (FP) True Positive (TP)

Table 2.2: Confusion matrix for IDS evaluation.

Where:
TN: normal event/behavior classified as a normal event/behavior
FN: intrusion/anomaly classified as a normal event/behavior
FP: normal event/behavior classified as an intrusion/anomaly
TP: intrusion/anomaly classified as an intrusion/anomaly

Many other characteristic values (sensitivity, specificity, positive/negative predictive
value, 𝐹 -Score, Matthews correlation coefficient, etc. [27, 29, 150]) can be derived from
the parameters of Table 2.2. Two examples, the False Positive Rate (FPR) and the True
Positive Rate (TPR) computed by 𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁
and 𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁
are used to derive

the ROC metric. The ROC-curve is a visual representation of the diagnostic ability of a
binary classifier. An example of a ROC-curve is shown in Figure 2.6 in which the blue
curve represents a random classifier whose output is completely random. The curve of a
well-performing IDS is above the blue curve. This means that the top left corner of the
plot is the “ideal” point with a FPR of zero, and a TPR of one. This is not very realistic
but it does mean that a larger AUC is usually better. The “steepness” of ROC-curves is

35

also important, since it is ideal to maximize the TPR while minimizing the FPR. With
the help of such metrics results of different anomaly detection algorithms can be reliably
compared or the anomaly detection algorithm under test can be optimized.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

ROC curve (AUC = 0.79)

Figure 2.6: Example of an ROC-curve.

Further performance metrics and capabilities that typically characterize IDSs are listed
in the following. However, there is plenty more available in the literature [26].

• Resource requirements (efficiency): Resources needed to be allocated by the
system including memory usage, CPU load/cycles and disk space.

• Overhead: Computation and communication overhead - especially considering col-
laborative IDSs, a reasonable overhead of communication effort and computation
must be achieved.

• Throughput: This metric defines the level of traffic up to which the IDS performs
without dropping any data instance, e.g., a packet.

• Timeliness: Average/maximal time between an intrusion’s occurrence and its re-
porting.

• Resilience: States how resistant an IDS is to an attacker’s attempt to disrupt the
correct operation of the IDS or malfunctions of the component.

• Ability to correlate event: States how well an IDS correlates attack events from,
e.g., routers, firewalls, or application logs. This already refers to incident analysis
functionality.

• Detection of “zero-day” intrusions
• Capacity verification for NIDSs: Ability of inspection into deeper levels of, e.g.,

network packets.
• Stress Handling: The point of breakdown is defined as the level of network or

host traffic that results in a shutdown or malfunction of IDSs.

36

• Depth/Coverage of detection capability: It is defined as the number of attack
signature patterns and/or behavior models known to it. (What attacks can be
detected?)

• Reliability of attack detection: It is defined as the ratio of FPs to total alarms
raised - accuracy.

• Error reporting and recovery: The ability of an IDS to correctly report errors
and recover from them.

• Self-configuration: Ability to automatically adjust itself without manual inter-
vention.

• Interaction capability with other systems: The ability of an IDS to interact
with other systems such as firewalls or anti-virus systems.

• Attack analysis/identification: It is the ability to report the extent of damage
and compromise due to intrusions and to identify an attack based on common names
or exploits (assumes 100% confidence).

2.2 Incident Analysis

Many works, e.g. [151], make the assumption for response planning that each raised alarm
(output of an IDS) is treated as one attack (100% confidence of the alerts). However, this
might be true when applying misuse-based IDSs which commonly have a high TP and
low FN rate. In order to detect new attacks with high accuracy, the input of various
detection mechanisms (including anomaly-based ones) might be important but operat-
ing for instance in safety-critical environments, cross-evaluation or plausibility checks of
various inputs is essential before performing a reaction in order to reduce FPs to a min-
imum. A comparison of supervised, semi-supervised and unsupervised learning methods
for anomaly-based IDSs has been examined in [152], each having its particular strengths
but their detection capability differ significantly. Not only this circumstance but also (1)
the handling of a massive amount of alerts from various applied detection sources is a
requirement towards incident analysis and (2) the safe selection and execution of a follow-
ing incident response measure. Hence, according to [153], IDSs are not enough to detect
complex attacks over a network. Even they are able to detect some basic attacks, e.g.,
fabrication and suspension attacks, they fail to detect more sophisticated ones such as the
masquerade attack [154]. An intelligent incident (alert) analysis is therefore necessary in
order to

• gain knowledge of multiple detection sources by using a unified format,
• identify the root cause of an incident,
• recognize pattern between the alerts and historic events,
• reduce the number of alerts, cluster and correlate them in order to prepare the

essential information for an administrator, and
• predict the propagation of malicious action (in this context referred to malware and

cyber attacks).

Alert analysis techniques and methods help to manage and diagnose, e.g., to deal with
(a huge amount of) alerts gathered from (various) incident detection components by fil-
tering out alerts, grouping and correlating them or prioritize important ones. Alerts
typically incorporate information (alert feature) regarding the creation/detection time of

37

an attack or suspicious event, its description and severity etc., which is defined by the
alert format used. According to [29], alert management contains three major components:
alert correlation (AC), alert merging (aggregation) and alert clustering. For the sake of
generalization, alert analysis can be broken down into three main fields [28] as shown in
Figure 2.7: pre-processing (e.g., alert normalization, redundancy elimination, FP reduc-
tion), processing (e.g., AC techniques, new attack scenario detection) and post-processing
(e.g., alert prioritization metrics and intention recognition, prediction). For further lit-
erature to each component in Figure 2.7 refer to [28]. It is noted that the boundaries
of the categorization into pre-processing, processing and post-processing might become
blurred since for instance a system incorporating AC might feature prediction capability
as a processing and only visualization as post-processing functionality.

Alert Analysis

Prediction

Prioritization

Impact Analysis

Visualization

Post-ProcessingPre-Processing

Verification

Syntax Semantic

Normalization

Heterogenous

Processing

Aggregation
New Attack

Scenario Detection
Correlation

Missed Attack
Hypothesizing

Homogeneous

Sequential-
based Methods

Similarity-
based Methods

Case-
based Methods

Statistical-
based Methods Root Cause Finding

Figure 2.7: Taxonomy of alert analysis fields (cf. [28]).

2.2.1 Pre-Processing

Pre-processing is the process performed before an attack scenario construction. It is
composed of normalization and verification which are fundamental steps before, e.g., a
correlation can be accomplished.

Normalization
Security Information and Event Management (SIEM) systems are designed to help net-
work administrators, typically working in a Security Operations Center (SOC), to manage
security tools, e.g., IDSs operating in the network infrastructure. Typically, the work of
SIEM systems is to aggregate, standardize and correlate alarms. Today, SIEM systems
mainly use internal proprietary formats to describe alerts. Most of those are inspired of
log management tools such as Splunk2 and based on syslog with a simple but limited
key-value paradigm. However, the heterogeneity and diversity of existing security tools
pose a significant challenge to SIEM and SOC due to the multitude and diversity of alert
sources demanding the need for a common format. Normalization is used for the trans-
lation of a raw alert into a standardized alert format, e.g., IDMEF as proposed in [29].
With the growth of semantic technology and the inability of, e.g., IDMEF only present-
ing a syntax for formatting, new studies try to introduce new data models for handling

2https://www.splunk.com (accessed on 05 September 2021)

38

https://www.splunk.com

alerts semantically in order to provide a robust solution [28]. A structured overview of
various existing exchange formats (“describes a structure for the processing, storage, or
display of data” [155]) and protocols (“a set of rules defining how to interconnect network
devices and establish a channel to transmit network datagrams, representing exchange
formats, across a computer network” [156, 157]) targeted to the IDS domain is provided
in [155, 158]. Application domains of other exchange formats in IT security is depicted
in Figure 2.8. For a comprehensive overview of standardization attempts for security
automation refer to [7].

Figure 2.8: Application domains of exchange formats [155].

Koch et al. are stating in [158] several technical requirements for data formats and
exchange procedures for sharing information of interest to IDSs, response systems and to
management systems including vendor independence, near real-time capability and scal-
ability, e.g., for decentralized approaches. Message exchange protocols discussed are (1)
proprietary protocols, (2) Simple Network Management Protocol (SNMP), (3) Common
Intrusion Detection Framework (CIDF), (4) Intrusion Detection Message Exchange For-
mat (IDMEF) including IDMEF Communication Protocol (IDP) and the newer and rec-
ommended Intrusion Detection eXchange Protocol (IDXP), (5) Incident Object Descrip-
tion and Exchange Format (IODEF), (6) Format for Incident Report Exchange (FINE)
and (7) Intruder Detection and Isolation Protocol (IDIP). However, the authors of [155]
are stating that Koch et al. do not differentiate between a high-level description of func-
tional requirements, an exchange format or an exchange protocol. Thus, Steinberger et al.
in [155] have reviewed 10 exchange formats and 7 exchange protocols that can be used
to share security event related information in context of intrusion detection and incident
handling with respect to their use-case scenario. They further provided inter alia an as-
sessment of the exchange formats for the interoperability and a qualitative evaluation and
comparison of the formats and protocols in context of high-speed networks. Apart from
the aforementioned formats and protocols, the authors introduce further formats (8) Com-
mon Announcement Interchange Format (CAIF), (9) Common Event Expression (CEE),
(10) Messaging Abuse Reporting Format (ARF), (11) x-arf, (12) Syslog Message Format
- IETF RFC 3164 and further protocols (13) Real-time Inter-network Defense (RID), (14)
Extensible Messaging and Presence Protocol (XMPP), (15) CEE Log Transport Protocol
(CLT), (16) Simple Mail Transfer Protocol (SMTP) and (17) Syslog protocol. The results
of the evaluation carried out by the authors regarding the discussed exchange formats and
exchange protocols are depicted in Figures 2.9 and 2.10.

Even if Steinberger et al. have provided a comprehensive survey, they did not men-
tion IDIP which seems a promising candidate for automated incident response execution
and a few other recent formats, e.g., the JavaScript Object Notation (JSON) serialized

39

Figure 2.9: Evaluation summary of exchange formats [155].

Figure 2.10: Evaluation summary of exchange protocols [155].

IDEA. According to [158], IDMEF and IDXP can have a likewise effect on research and
deployment of intrusion detection technology what HTML and HTTP did for the Inter-
net growth. However, Steinberger et al. concluded that it is still a challenge to find a
standardized exchange format and protocol that is thoroughly validated and tested in full
scale of industry trials [155].

A significant drawback of IDMEF is the usage of XML which makes it easier to develop
and deploy, but it comes with a performance cost. Due to the structure of XML, the data
encoded is typically very large (for instance in comparison to JSON), mainly because
of XML’s closing tags. Therefore parsing XML messages is still a relatively slow task
today [158]. The Warden [159] and MISP [160] projects also bring further interesting
approaches. Warden uses a client-server architecture and offers two different types of
clients: the receiving-client and the sending-client. With the sending-client events can be
sent to the Warden server, with the receiving-client events received at the Warden server
are also sent to the client side. The Warden team designed the IDEA format for the
transmission of events. It is based on already existing data formats for the transmission
of security relevant information (mainly IDMEF) and aims to eliminate weaknesses that
these data formats bring to their system. For example, messages in the AbuseHelper
format consist of any number of keys and associated values which makes this format easily
extensible but can lead to inconsistencies in automated message processing. The IDEA
format should lie between the complexity and depth of IDMEF and the loose structure
of the AbuseHelper format [53].

40

Verification
Verification or alert validation is necessary since many problems can occur, such as mis-
configuration, low accuracy of applied detection methods, and lack of attention to con-
textual information during the alerts analysis [161]. Verification tries to recognize if any
changes have taken place in the system monitored. If any new device has been installed
in the system, it may produce irrelevant alerts. Thus, verification helps to filter out
alerts with low-interest, irrelevant alerts or some known FPs. Validation can also refer to
post-processing. In [162] an approach is presented that defines three major dimensions to
recognize attacks and identify the target by the validation of AC systems: prioritization
(assigning weight to each alert based on the probability that it may indicate an attack
and dispensation of the target), multi-step correlation (alert correlator can reconstruct a
multi-step attack scenario by correlating different individual attack steps which is impor-
tant to infer attack intention and their effective response) and multi-sensor correlation
(combines multiple alerts received from different sensors to create an overall picture of
the system) [29].

2.2.2 Processing

Processing mainly copes with the attack scenario construction and contains aggregation,
correlation, new attack scenario detection and missed attack hypothesizing. The outcome
of processing serves as a basis, for instance, to recognize the intention of an adversary
which is performed in post-processing.

Aggregation
Aggregation, or alert merging, respectively alert fusion, refers to the reduction of alerts by
combining multiple (and possibly heterogeneous sources) of them to yield a more precise
and descriptive result of IDSs. Alert fusion is a special case (sometimes a sub-process)
of AC that collects and analyzes alerts independently generated from the same poten-
tially malicious event by different IDSs, in order to make an appropriate final decision
about the event [163]. The main idea behind aggregation is to provide clustering and
grouping similar alerts based on their features in order to eradicate duplicates having the
same root cause. Especially by the application of distributed or decentralized IDSs, the
exploitation of alert fusion enhances the overall detection efficiency, improves detection
accuracy, fault-tolerance, stability and reliability of IDSs and helps to make appropri-
ate decisions [27]. The process is closely related to Subsection 2.1.3 (algorithm external
combination). Finally, with the aggregation of duplicate and redundant alerts, the unin-
teresting ones are eliminated and a big view of the security situation is provided by fusing
the same events [28]. Weng et al. for instance are proposing in [164] an alarm reduction
for distributed IDSs using edge computing, exploiting the strengths of cloud computation
while offloading only a limited amount of information by processing data at the edge for
shorter response time and energy saving. Their proposed framework consists of three
layers which are structured hierarchically from the infrastructure to the cloud side: IDS
layer (performs traffic inspection and false alarm reduction by exploiting the strengths of
distributed IDSs), edge layer (aggregate data from IDS layer and select most appropri-
ate ML algorithm from a predefined pool), cloud layer (providing sufficient computation
resources for deploying intelligent alarm filters).

41

Correlation
The homogeneous AC refers to a case that each of the monitoring devices like IDSs exam-
ine the same type of data, whereas in the other one, various deployed sensors examine dif-
ferent types of events and raw data sources [27]. Salah et al. [165] and Hubballi et al. [166]
are providing a comprehensive overview in the field of AC which is defined as a measure
of the relation between multiple alarms such that new meanings can be assigned to them.
Thus, not only the verification of the alerts’ validity can be verified but also complex at-
tack scenarios can be identified. The AC process comprises different approaches available
in the literature [166, 167, 168, 169, 170, 171] and has been classified in [29, 172, 173].
However, it must be noted that due to different types of attacks with different sophisti-
cation levels, there might be limitations in the handling of the multitude of alerts with
equal importance. Hence, it might not be sufficient to rely on a single component but
rather on different ones to concentrate on various aspects of the general correlation prob-
lem. Several factors that can be used to assess correlation algorithms are stated in [173]
composed of algorithm capability (e.g., alert verification, attack sequence detection), al-
gorithm accuracy, algorithm computation power, required knowledge base and algorithm
extendibility and flexibility.

AC techniques try to reconstruct the attack scenarios from alerts which may exhibit
an attack that involves multiple stages in compromising a network [29]. A taxonomy
of AC techniques is provided by [165] (Figure 2.12) including types of applications and
architectures for the correlation process. In [165, 174] AC architectures are categorized
into centralized (data collection performed locally and reported as alerts to a central server
executing correlation analysis), distributed (alerts or high-level meta-alerts are exchanged,
aggregated, and correlated in a completely cooperative and distributed fashion between
equally weighted agents; communication is performed using a peer-to-peer protocol) and
hierarchical (referred to as decentralized by the author of this work; separated correlation
into hierarchical layers of local analysis, regional analysis and global analysis) as shown
in Figure 2.11.

The number of data sources - single or multiple - with respect to Figure 2.12 state that
the AC method is sourced either by a single data source, e.g., a database or a single security
measure, or by a collaborative set which allows a more precise and coherent view about the
observed system. The authors further subdivide the correlation methods into similarity,
sequence and case-based methods, whereas the authors of [29, 173] are introducing - apart
from similarity-based and case-based (referred to as knowledge-based) - statistics-based
methods and hybrid approaches (both not shown in Figure 2.12). However, it must be
noted that the categorization is not completely precise and methods from each class may
show similar behavior or rely on comparable mechanisms.

Similarity-based methods correlate alerts based on similarities of selected features
such as the source/destination IP address, time or protocol information and are de-
signed to reduce the total number of alarms through aggregation or clustering [165].
Therefore, they can be further subdivided into attribute-based (similarities between at-
tributes/features) and temporal-based (temporal time relations) techniques. Mirhei-
dari et al. categorize similarity-based algorithms into ones that are based on simple rules,
hierarchical rules or ML [173]. Usually, similarity functions are defined for the individual
alarm attributes and applied to two alarms. Together with appropriate attribute weight-
ings, a similarity value is determined that reflects how well two alarms match. These
values are useful because it can be assumed that alarms with high similarity can be part
of the same attack or suspicious event. The resulting similarity between two alerts can

42

Figure 2.11: Different alert correlation architectures - centralized (left), distributed (right)
and hierarchical (bottom) [174].

be calculated according to Equation 2.8 in which 𝑋 𝑖 is the candidate meta alert 𝑖 for
matching; 𝑌 is the new alert; 𝑗 is the index over the alert features; 𝐸𝑗 is the expectation
of similarity for feature 𝑗; and 𝑋𝑗 as well as 𝑌𝑗 are the values for feature 𝑗 in alerts 𝑋
and 𝑌 [29]. Further, attribute-based similarity measures can be computed using metrics
such as Euclidean, Mahalanobis, Minkowski and/or Manhatten distance functions [165].
Temporal-based methods, in order to find temporal relationships between alerts, typically
rely on time-windows such that only alerts observed in a short time are to be correlated.
A benefit is to reduce the number of alerts generated by the same event in a certain period
of time [165].

Valdes and Skinner presented a probabilistic approach in [175] that falls into the area of
similarity-based methods which extends the idea of multi-sensor data fusion for AC. This
method shall find its use in the handling of alarms generated by heterogeneous sensors.
The correlation algorithm expects features from reported alarms in a self-defined alert
template. For comparable features, suitable similarity functions are defined, whereby the
features of incoming alarms will be compared with a list of already existing meta-alerts
and result in values between 0 (mismatch) and 1 (exact match). The similarity value is
composed of a weighted average of the features, but if one does not exceed the minimum
similarity threshold, the complete alarm is not considered similar. The alarm is correlated
with the most similar meta-alert, otherwise the alarm forms a new meta-alert thread. The
alert fusion considers feature overlap (new and existing alerts may share some common
features), feature similarity (value of similarity scores of same type of feature), minimum
similarity and the expectation of similarity. Since sensors can classify attacks differently,

43

Figure 2.12: Taxonomy of alert correlation techniques [165].

𝑆𝑖𝑚(𝑋 𝑖, 𝑌) =

∑︀
𝑗 𝐸𝑗𝑆𝑖𝑚(𝑋 𝑖

𝑗, 𝑌𝑗)∑︀
𝑗 𝐸𝑗

(2.8)

a matrix of similarities between attack classes is used to compare them. The correlator
checks whether the sensor identification and the incident class match exactly. Then it
checks if all overlapping features at least match the minimal similarity and calculates the
similarity values. If this is the case, the overall similarity is calculated.

Zhuang et al. [176] rely on the work of [175] and are extending it with a rule-based
knowledge base. A correlation system architecture consisting of alert collection, alert
verification, data fusion and correlation is proposed and explained. The correlation process
takes the features IP addresses, port numbers and time stamps into account. Alarms
from different sources are collected by the alert collection module and the features are
passed on to the alert verification. In, order to support heterogeneous sensors, different
plugins are used which process the respective alarms, e.g., Snort3 alarm → Snort plugin.
The alarm information is additionally appended with information about the plugin that
processed it. The transmitted alarms are checked for FPs by the alert verification based
on information regarding the network topology as well as the hosts and a confidence value
is determined. Legitimate alarms are then grouped by the data fusion component using
similarity functions. Using the knowledge base, the last step in the correlation process
is to classify the alarms into an attack scenario, which is also referred to as a schema.
A schema consists of a number of rules which use the information from the previous
steps such as the confidence value to describe the state of the monitored system. The
description of a schema by the rules resembles a tree structure and attacks are detected

3https://www.snort.org/ (accessed on 05 September 2021)

44

https://www.snort.org/

if the rules of a schema are met from root to leaf. Similarity-based methods prove to
be suitable for alert clustering and reducing the number of alarms as well as discovering
simple attacks with a small number of features. In addition, they are easy to implement
and work well for a known set of alerts with a known feature set, but find their weakness
in recognizing causal and other statistical relationships between alarms, limited to known
alerts only and incapable of identifying complicated attacks [29, 165, 174].

Statistics-based methods, according to [27, 29, 173], rely on statistical causality anal-
ysis to correlate alerts that are related to some specific attacks in order to reconstruct
attack scenarios. Similar attacks have similar statistical attributes, and so, they can be
categorized easily corresponding to different attack stages. Statistical computation can be
categorized into (1) detection of repeated and repetition patterns; (2) estimation of causal
relationships between alerts, predicting next alert occurrence, and detecting attacks; and
(3) combining reliability by mixing completely similar alerts. Since these methods are
based on statistics, pre-defined knowledge about attack scenarios is not required. How-
ever, they lack in discovering dependencies, structural cause relationships between alerts
and it is difficult to estimate correlation parameters. Exemplary work using statistics-
based methods is provided in [171, 177].

Sequence-based methods attempt to determine causal relationships between alarms
using defined preconditions and consequences. This is done by describing events or states,
which are necessary for an attack step, as preconditions and describing the respective ef-
fects or states, which result from successful execution of this attack step, as consequences.
Thus, they are not limited to known attacks but the correlation may result in many false
correlations due to the misconfiguration of the relationships mainly represented as logi-
cal operators such as AND/OR or the inadequate quality of sensors. According to [165],
they can further be subdivided into, e.g., pre/post conditions (using the concept of hyper-
/meta-alerts as a tuple of prerequisites and consequences), graphs (DAGs in which the set
of nodes represent alarms and the edges represent the temporal relation), codebook (ma-
trix representation of alerts (rows) and problem symptoms as columns), Markov models
(stochastic model composed of discrete states and a matrix of state transition probabili-
ties trained by sequence of events), Bayesian networks (probabilistic DAG model of alerts
representing their probabilistic inference), ANNs (a collection of connected units or nodes
called neurons working interconnected to perform AC).

Ning et al. [178] are presenting a possibility to reconstruct attack scenarios based on
prerequisites and consequences by correlating alarms. For the representation of prerequi-
sites and consequences, the use of predicates is suggested which can be linked by logical
combinations if necessary. The prerequisites and consequences of an event are repre-
sented by so called hyper alerts which encode the knowledge about an attack. A hyper
alert consists of three components: fact, prerequisite and consequence. Fact states what
information is reported with the alert. This consists of a set of attributes, each with its
own range of possible values. Prerequisite is a logical combination of predicates whose
variables occur in fact and specify which criteria must be met for an attack to be success-
ful. Consequence describes the effects if the attack is actually successful. A correlation
occurs when the consequences of one hyper alert fulfill the prerequisites of another one.
This is also referred to intuitively as a “prepares-for” relationship, since two hyper alerts
h1 and h2 are correlated if h1 is prepared for the following hyper alert h2. By describing a
hyper alert type, hyper alert instances are created when events occur that are described in
the prerequisites of the hyper alert types. From the prepare-for relationship and thus the
relationships between hyper alerts, the authors create an Alert Correlation Graph (ACG)

45

based on hyper alerts to represent attack scenarios step by step. The ACGs consist of a
number of nodes (hyper alerts) and edges, which represent the connection between nodes
and thus the relation. The result is a DAG that corresponds to the detected scenario.
Zhu and Ghorbani also use the concept of hyper alerts to determine attack scenarios
in [179]. Their correlation engine is based on ANNs using Multilayer Perceptrons (MLP)
and SVM. MLP and SVM learn the desired behavior with one training set, using a total
of 6 features. The networks are used to decide whether two alarms should be correlated
and, if so, provide a correlation value between 0 and 1. Determined correlation values
between two alarms are stored in an AC matrix and later updated by the correlation
engine. In addition, alarms with the best matching alarms are grouped into hyper-alerts
using thresholds. Based on this, graphs are created to show the attacker’s approach.

The authors of [180] present an approach to reconstruct attack scenarios from alarms
coming from heterogeneous sensors. The process is divided into two steps: semantic-
based alert clustering and causality-based attack analysis. For the semantic analysis
of alarms, an ontology is introduced using classes and explicitly defined relationships
that contain relevant information regarding the intrusion detection environment. The
emerging relationships between intrusion alerts can be used to determine how relevant
semantic alarms are. Semantically related alarms are converted into ACGs. The ACG is
a non-directed weighted graph with nodes representing alarms and edges representing the
relationships between alarms based on the previously determined semantic relevance with
numerical values ([0, 1]). Groups of nodes are determined from the created ACG, whereby
all nodes of a group are connected to each other by edges. In graph theory such groups
are called cliques. Here, cliques are regarded as candidate attack scenarios. Based on the
time stamp information from the alarms, the sequence of the individual steps of the attack
is determined. If the dependencies between preconditions and consequences are clearly
defined, sequence-based methods are well suited for detecting known but also unknown
attack scenarios allowing to detect zero-day and multi-step attacks. However, the weak
point here is that individual steps of an attack can be overlooked by the applied IDSs
which would not lead to the fulfillment of a consequence (refer also to hypothesizing).
Furthermore, in a network with heterogeneous sensors describing an attack differently
but with the same meaning, the alarms must be described for each sensor. A combined
approach with a similarity-based method for clustering and normalizing alarms would be
well suited here.

Case-/Knowledge-based methods, also referred to as AC based on known scenarios,
usually rely on well-described attack definitions in a knowledge base. The knowledge
can be based on either prerequisites and consequences, attack scenarios or case-based
reasoning which is defined as the process of solving new problems based on the solutions
of similar past problems [173, 181]. Those are typically described by rules such as in [176]
or a correlation language such as LAMBDA [182], STATL [183] or CAML [184]. Methods
from correlation languages, from data mining or ML search the knowledge base for the best
fitting case and update it if the case is successfully solved. According to [165], examples for
case matching algorithms are nearest neighbor, inductive, and knowledge-based indexing
and case-based methods can be further subdivided into expert-based (knowledge base
is build by human using expert rules or predefined scenarios) and inferred knowledge
(symbolic classification rules are automatically constructed from some training cases -
alerts or meta-alerts whose classification is known - by ML). According to [29], the main
drawbacks of these methods are the manual definition of prerequisites, the limitation to
deal with new pattern, the difficulty in updating the correlation knowledge, the inability

46

to discover structure and statistical relationships and their impracticability for the use in
large scale or real time environments due high computational expense.

To exploit the benefits of the different techniques, hybrid approaches are often proposed.
Ahmadinejad et al. [185], for instance, are presenting a model consisting of two modules
for alarm correlation. Received alerts are passed to the first module to check if it can be
placed in an already known attack scenario. The analysis is done using attack graphs, here
called “queue graph”, by checking for incoming alarms whether a prepares-for relationship
can be identified with already existing alarms. Using a depth search in the queue graph,
alarms or steps of a known attack can be found that have been overlooked by the IDS.
A threshold value is used to decide whether this belongs to a known attack scenario with
missing detected steps or whether a potentially unknown scenario exists. Alarms that
cannot be classified in the queue graph by the first module are forwarded to the second
module of the model for similarity-based analysis. Selected features are taken into account
and a similarity vector with values [0, 1] is formed on the basis of similarity functions.
Based on the similarity vector and the existing hyper alert, a “CorrelationThreshold” is
used to decide with which hyper alert the new alarm should be correlated. The authors
of [186] propose a hybrid approach that is based on hierarchical clustering composed of
an offline correlator (aggregates historical data, extracts attack strategy graphs and uses
hierarchical clustering to group similar attack strategy graphs – the attack characteristics
of each cluster is then identified) and an online correlator (generates hyper-alerts which
contain useful attributes for security analysts. Hyper-alerts are composed of different low-
level alerts and are updated in real-time as the upcoming low-level alerts are triggered.
Hyper-alerts are associated to the clusters generated by the offline correlator in order
to understand the characteristic of an attack). Since the approach correlates historical
alerts into clusters using data mining techniques and associates upcoming alerts to these
clusters in real time, an efficient security alert analysis technique could be achieved and
useful information from historical data can be discovered to assist the analysis of new
alerts that reduces the time between the detection and response to an incident.

New Attack Scenario Detection
New attack strategy detection copes with the discovery of novel attack scenarios from
the sequence of events and tries to overcome limitations of correlation methods that are
typically unable to extract unknown malicious behavior of intruders [187]. This includes
finding new multi-step attack scenarios from the analysis of alerts to which no “template”
is available. Simple changes to those templates (or attack patterns) might result in a
failure of attack detection. Especially, with the application of anomaly-based IDSs which
output either simple classification values - anomaly or not - or scoring values representing
only indicators of malicious activity, it is more difficult to analyze alerts than with misuse-
based ones. Those are able to interpret events/indicators due to their existing knowledge
base and provide more detailed information. Soleimani and Ghorbani are presenting an
approach in [188] that aggregates alerts and generates episodes which represent a sequence
or a partially ordered collection of events. After a learning phase, that includes learning
real multi-step attacks, the framework is able to either filter critical episodes predicting
future steps of attacks or to filter uncritical episodes which might correspond to new at-
tack strategies. A three-phase AC framework called 3PAC is proposed by Ramaki and
Rasoolzadegan in [189] which processes real-time alerts, correlates them utilizing causal
knowledge discovery, constructs attack scenarios via the Bayesian network concept and is
able to predict next attack steps. The authors state that the Bayesian inference model in

47

conjunction with statistical data mining techniques has several merits for alert analysis,
e.g., processing speed, incorporating expert knowledge, computation of a correlation out-
put probability instead of a binary result. New attack strategies are extracted from the
attack tree construction phase based on classified benign episodes. Those serve as a basis
for the presented causal knowledge analysis algorithm to identify critical new episodes.
ZePro [190] by Sun et al. is an approach targeted towards zero-day attack path identifi-
cation. The approach assumes that a chain of attack actions, typically composed of both
zero-day and non-zero-day exploits, forming an attack path is necessary by adversaries
to achieve their malicious goal. ZePro builds a comprehensive network-wide graph based
upon system calls from which it effectively and automatically identifies zero-day attacks.

Missed Attack Hypothesizing
Missed attack hypothesizing is dealing with the problem of FNs that might occur with
IDSs which does not lead to the generation of an alert. Alert analysis, especially con-
sidering multi-step attack detection relying on each alert, must be able to cope with the
missing ones. However, this functionality poses still a major problem in the field of alert
analysis. According to [28], hypothesizing can be categorized into approaches with or
without any predefined knowledge about attacks. The former require knowledge, e.g.,
in form of attack templates to compare the received attack types with existing attack
patterns. Exemplary work is provided in [191, 192]. The more interesting and innova-
tive hypothesizing approach uses data-mining techniques that can generate some artificial
clusters that represent attack classes which are then validated whether the quality of the
cluster is higher than a certain threshold representing a missed attack. According to [193],
three main steps are necessary for the hypothesis process: cluster generation, cluster val-
idation, and cluster tuning. Fatma and Limam are presenting a two-staged approach
in [194] that firstly deals with FP alerts aggregated from multiple IDSs and secondly tries
to identify potential FNs representing missed attacks. Therefore, the first stage clusters
IDS alerts into a set of meta-alerts based on several attributes and identifies FPs using
binary optimization. The second stage discards meta-alerts that have been created by the
majority of IDSs. Remaining alerts are grouped and yield the set of potential FNs from
which - via a binary classification algorithm - the set of FNs is identified.

2.2.3 Post-Processing

Post-processing is performed after AC, in a particular attack scenario construction, and
is composed of intention recognition, (propagation) prediction, alert prioritization, im-
pact analysis and visualization (presentation, representation and visualization of detected
security events or corresponding attack scenarios in a SIEM and/or to a SOC).

Intention Recognition
Intention recognition is mainly a forensics topic and deals with the derivation of an adver-
saries’ intention (typically unpredictable) caused by a malicious activity by analyzing the
alert analysis results. It deals with the interpretation and judgment of the purpose, vision
and intention of attackers according to their behavior and network environment by ana-
lyzing the alert information. However, in a broader spectrum, it tries to give a reasonable
explanation of the real purpose of malicious activity and predicts the subsequent attack
steps which is, according to [195], the premise and foundation of threat analysis and the
important part of network security situation awareness. Malicious activity in this work is

48

either referred to as (self-propagating) malware as it is mainly discussed in the literature
and represented by a worm/virus software, by a human-controlled or an AI-driven attack.
However, with the advent of artificial intelligence for cyber attacks the boundaries blur
which might make it difficult to strictly distinguish between them. Malicious activity
may contain parts of the attack phases (sometimes referred to as kill chain) itemized and
summarized below. The main goal of malicious activity is, however, to infect/compromise
victim systems even if the motivation/intention behind may differ.

• Planning and Discovery: Social Engineering, Permission/Authorization, Infor-
mation Gathering, Scoping and Exploration, Service Identification, Scanning and
Fingerprinting

• Exploitation and Assessment: Vulnerability Identification, Vulnerability As-
sessment, Enumeration, Gaining Access, Exploitation (External vs. Internal)

• Post-Exploitation and Reporting: Discovery and Forensics, Finding Analysis,
Data Collection, Maintaining Access, Covering/Cleaning Tracks, Placing Rootk-
its/Backdoors, (Network) Spreading, Privilege Escalation, Reporting

A kill chain describes the ability to disrupt the sequence of events an attacker must
perform in order to achieve success during an attack. Thus, it breaks down attacks into
levels which represent the structure and procedure of an attack. For each level, the model
indicates which activities attackers undertake, so that one can set up the defense including
reaction mechanisms accordingly. Although the cyber kill chain is already several years
old, it can not only be applied to classic malware attacks. APTs can also be mapped
to it and broken down into steps. While the attacker has to go through the complete
process to reach the target according to the model, the defense can try at any level to
interrupt the kill chain and thus stop the attack. However, it is necessary to build up the
defense in several levels, because at each level the attacker can already do damage. The
earlier the attack can be detected and stopped, the less damage can be expected. Several
existing kill chain models are discussed and a new kill chain model is proposed in [196]
for a remote security log analysis with a SIEM software.

Malware are meant to be programs that self-propagate across a network exploiting se-
curity flaws having the ability to propagate from host/network to host/network. The
program first explores vulnerabilities in the network by utilizing various discovery tech-
niques and infects entities by exploiting them. The infected entity serves then to spread
itself automatically or through human triggering. Typical properties are the fast and
various different automated scanning techniques, the functional range of either targeted
to one or more (limited) number of vulnerabilities to exploit and spread as well as the aim
of infecting as much vulnerable victims as possible (dedicated for large-scale networks).
However, if vulnerabilities are once fixed, the certain type of self-propagating malware is
no threat anymore. In contrast to an automated malware, the human-controlled attack
performing the above listed attack phases has different properties. Scanning, especially
in the sense of APTs, could take more time when performed stealthy. They have a large
number of tools at their disposal with a broad spectrum of attack vectors to gain access.
If a vulnerability has been fixed, there might exist various others such that the host can be
reinfected again. Further, the latent time between the initial possible low-privileged access
to gain system privileges which might be necessary to further reach other networks (e.g.,
pivoting on dual-homed machines or gateways) can be longer. Hackers might adapt the
exploits for gaining access or privilege escalation which often result in a crash of a system
depending whether the attacker has not tried the exploit in advance. This could translate

49

into a slightly higher death rate of machines compared to the malware case. The goal
differs from malware since maybe only certain targets are tried to be compromised, e.g.,
high value administrating machines, or all machines should be compromised depending on
the initiator of the malicious activity (script kiddie, expert hacker, hacker organization)
with their motivation in mind. However, from the information gained from analysis it
might be possible to draw conclusions on the initiator. With a dedicated motivation in
mind the human-controlled attack is more targeted for small-scale networks, e.g., inside
a companies industrial site. Hui and Kun have proposed a dynamic real-time network
attack intention recognition method based on attack route graphs [195]. By correlating
real-time network attacks and vulnerabilities in their framework, shown in Figure 2.13,
the method determines spread routes and stages of an attack based on graph theory and
probability theory. They are then able to dynamically reason the possible intrusion inten-
tion and its probability according to the attack behavior characteristics and the network
environment.

Figure 2.13: Framework of real-time network attack intention recognition [195].

Prediction
Intention recognition is closely related to prediction (or attack forecasting, attack pro-
jection) which tries to predict the next step of malicious activity during an ongoing
(multi-step) attack with reference to the killchain model and how likely a next step will
occur. Abdlhamed et al. are categorizing the prediction of cyber-attacks into three ma-
jor methodologies: alert correlation, system call sequences as well as statistical methods
and they are discussing prediction methods including hidden Markov models, Bayesian
networks and genetic algorithms [197]. They state that the type of prediction is an impor-
tant factor, for instance, solutions dedicated to predict attacks usually use hidden Markov
models, while devoted for forecasting the intentions or the abnormal events mostly exploit
the Bayesian networks. Anumol proposes in [198] an Intrusion Prevention System (IPS)

50

which performs event analysis and predicts future probable multi-step attacks using a
SVM based on network log files collected in the OSSIM4 SIEM solution. Features con-
sisting of, e.g., number of packets, number of bytes or packet rate are subject to formulas
for information gain in order to get the best features with maximum gain ratio. However,
the information provided by the article is quite sparse and its title therefore misleading
in terms of predicting multi-step attacks based on raised alerts. As a proactive approach
targeting to prevent attackers from reaching their malicious goals, Ramaki and Atani
are providing a survey of early warning systems which acts beyond the scope of IDSs or
IPSs in [199]. In order to proactively counteract new emerging high sophisticated threats,
the aim of early warning systems complementary to intrusion detection/response is to
detect potential malicious behavior in a system, evaluating its scope and implementing
appropriate response mechanisms as early as possible (Figure 2.14). According to [200],
the term early has two different meanings: (1) starting on-time to prevent or minimize
the damage or damages and (2) the ability to process incomplete information. A dis-
cussion of characteristics (e.g., functionality, detection scope, challenges, data collection),
architectures (centralized, hierarchical, distributed) and a comprehensive overview of ex-
isting early warning systems as well as those under research and development is provided
by [199]. Further work of Ramaki et al. [201, 189] intensively deals with real-time AC and
prediction using, e.g., Bayesian networks.

Figure 2.14: Operation of a generic early warning system [199].

In [172] Ghasemigol et al. are presenting an attack forecasting approach in form of an
extended attack graph which is able to predict future network attacks based on informa-
tion such as intrusion alerts, active responses, and service dependencies. Therefore, they
combine the information acquired from an uncertainty-aware attack graph, a hyper-alerts
graph, a multi-level response graph and a dependency graph into their proposed forecast-
ing attack graph which increases its accuracy for predicting future attacks based on the
additional information. The problem of a real-time multi-step attack prediction has been
targeted by Holgado et al. in [202]. In this work, IDSs send their alerts using IDMEF to
the system which turns them into a hidden Markov model capable of observations utilizing
a clusterization process that incorporates a tag (inferred by matching the significant words
in the alert description with the words occurrence frequency in the Common Vulnerabil-
ities and Exposures (CVE) reports) and a severity (corresponding to the alerts severity

4https://cybersecurity.att.com/products/ossim (accessed on 05 September 2021)

51

https://cybersecurity.att.com/products/ossim

parameter). The hidden Markov model states are representing the chain of different attack
steps. By computing the mean number of alerts for each state, a final attack probability
can be computed. The training of the hidden Markov model is performed by applying
a supervised and an unsupervised (Baum-Welch) algorithm. An evaluation is performed
using the LLDDOS1.0 attack scenario of the DARPA data set and the alerts provided by
a Snort IDS. The authors of [203] are modeling vehicle states, e.g., door open/closed, ve-
hicle moving/stationary, using a hidden Markov model extracted from the CAN network
traffic. Considering the movement of a vehicle as a sequence of states that depend on
the previous ones, the model can be derived and anomaly detection is performed within
a sliding window of 𝑛 previous observations that slide over the various states. If the
posterior probability is 0 or less than a defined threshold, an alert is generated indicating
an anomaly. In each case an observation would be a vector of different sensor values that
generates a set of probabilities corresponding to each observation. The proposed approach
seems quite promising for detecting anomalies in time series data. However, it could be
seen as a utility for further appliances to work beside low-level detection mechanisms on a
higher level of abstraction for cross-evaluation. Thus, for instance, if a car is driving with
an implausible speed and the applied IDS sensors are detecting a huge number of alerts,
the security state of the vehicle is critical and an immediate interaction by the driver needs
to be taken. The prediction system of Abdlhamed et al. in [197] incorporates multiple
sources of information and different methodologies. There are two modes of operation:
if there are little security incidents, prediction is done by using statistical methods. If
the information is sufficient, the system builds attack scenarios and constructs profiles for
suspected users. A risk assessment is dynamically calculated when there is an abnormal
behavior affecting the system. The prediction is produced when the profiled user actions
and the dynamic risk assessment are indicating specific stages on the security master plan.
However, the system is predicting attacks over multiple days as shown in the evaluation
which does not satisfy real-time requirements.

Apart from the selection of aforementioned prediction approaches, malware propaga-
tion (prediction) models can be exploited to forecast the further network spreading of
malicious activity. Not only attacks controlled by humans but also unassisted malware
gains more sophistication. The classical separation of malware in the categories with
their different flavours, e.g., fuzzers, backdoors, denial-of-services, exploits, shellcode ex-
ecution, worms, viruses, or trojans, is not possible anymore since new malware shows
various characteristics or functionality of other. Therefore classical worms can show be-
havior/characteristics/functionality (e.g., stealthiness, polymorphism, context awareness)
of other malware and turn into self-spreading programs. Their propagation - charac-
terized by random effects - can be modeled using a stochastic process. Those effects
can be malware-related (e.g., scanning strategy), network-related (e.g., bandwidth, topol-
ogy), system-related (e.g., vulnerable hosts), policy-related (e.g., intrusion prevention) or
human-related (e.g., removal, patching, isolating, restoring) and leads to an overall com-
plexity. Especially when considering the human-related portion which mainly affects the
response/reaction to malware, their actions could be performed (semi-)automated. Under-
standing the behavior (propagation) of malicious activity inside an IT-network could help
an incident management to be a step ahead. The model of malicious propagation based on
information gained from detection and analysis components could help to individuate and
describe symptoms of malicious activity such that useful data could be provided to trigger
emergency responses or the implementation of automatic reactions. Mathematical models
in general can be categorized into three different characteristics [204]: (1) deterministic or

52

stochastic, (2) continuous or discrete, and (3) global or individual. Those models depend
on whether the variables (and parameters) are random or not, if the variables take an
infinite or finite number of values and aims either to simulate the behavior of a complex
system providing the global evolution or, in contrast, only focuses on the dynamics of
individual nodes. Malware propagation models are based on those initially developed for
the spreading of infectious diseases. The epidemiological models are compartmental, that
is, the population (through which the infectious disease is propagated) is divided into
different types of behavior bearing in mind the characteristics of the disease: susceptible,
exposed (with or without symptoms), infectious, recovered, quarantined, vaccinated, iso-
lated, and so on [204]. Possible states and interactions of the compartment models, e.g.,
Susceptible-Infected (SI), Susceptible-Infected-Recovered (SIR), or Susceptible-Exposed-
Infectious-Recovered (SEIR) are shown in Figure 2.15.

Figure 2.15: Different types of behavior in compartmental models [204].

Epidemic models in general can be classified into deterministic ones e.g. [205], stochas-
tic ones e.g. [206] which typically refer to global models representing the dynamic of the
overall population without taking into account the local interactions between individu-
als and, according to [207], spatial-temporal ones considering individual-based models,
e.g., cellular automata [208] or agent-based [209]. Deterministic models are usually based
on Ordinary Differential Equations (ODE) or difference equations and perform better in
large-scale networks. Stochastic models can be subdivided into three types differing in
their underlying assumptions regarding time and state variables: Markov chains (discrete
time with discrete state variable), Markov chains (continuous time with discrete state
variable) and Stochastic Differential Equation (SDE) with continuous time and discrete
state variables. Stochastic models show their strength considering small-scale networks.
However, both global models offer a good insight in the dynamics of networks providing
characteristics, e.g., stability or equilibrium [210] but do not consider individualized in-
fections because the global parameters are fixed. Thus, changes of individual computers
by, e.g., an updated anti-virus software are not taken into account. Furthermore, global
models assume a homogeneous distribution of malware in a network meaning that each
system is connected to another. This is true considering large-scale networks, e.g., mal-
ware spreading in the internet but in microscopic environments, e.g., local networks, the
results are less reliable since the dynamics strongly depend on individual interactions.
Individual-based systems overcome those drawbacks by including other information, e.g.,
update policy, applied operating systems and the topology by, e.g., utilizing directed or
undirected graphs, but demand a high computational cost when considering large-scale
networks or they require a comprehensive gathering of information from the system com-

53

ponents. A comprehensive introduction in the field of graph theory, network topologies,
community structures and diffusion models with regard to malicious attack propagation
is given by [211].

A selection of research activities regarding the use of SDE for malware propagation is
presented in the following. The authors of [212] are providing a survey and comparison
of worm propagation models by categorizing them into scan-based (propagation with-
out dependence on topology possible by various scanning techniques) and topology-based
(spreading through topological neighbors) worms based on their characteristics. The au-
thors provide information about propagation models on these categories but, however,
they do not consider stochastic models, e.g., in form of SDE. In the first part of the dis-
sertation [213], stochastic epidemic models and inference for the propagation of computer
viruses are studied. A comprehensive literature review on deterministic and stochastic
models is provided with a focus on Markovian- and SDE-based SEIR models. With re-
spect to SDE, the author developed a new model for multi-group stochastic SEIR. It is
stated that, although ODEs can be safely used to approximate a stochastic process when
the population size is large, no probabilistic event is considered. Moreover, the ODEs only
describe the average tendency of virus propagation. Thus, deterministic models cannot
represent rare events such as saturation and extinction of malicious activity. The two main
findings of the work in [213] considering the multi-group based SDE approach are that
a SEIR framework including a latent period is superior to other models and the impact
of the network structure can be explored via multi-group variants with different param-
eterization within subnets/subgroups clustered of individuals which differ substantially
in communication activity profiles and in their purposes. For future work, the authors
propose to consider the integration of human countermeasures in the model since appro-
priately including the effects of such countermeasures can substantially further improve
such a models’s predictive ability and the impact of the malicious activity propagation.
Another point is to consider the infection rate which is normally constant as a function
of time. This can especially be the case when an adversary is invading deeper inside a
network trying to reach a high value target such as a domain admin machine. The author
also states the investigation of the effects of the network topology on computer malware
propagation must be included in further work for instance by tying together the ideas and
tools of random graph dynamics to describe the stochastic behavior of the topological
structure of large computer network.

In [206], the authors build on a stochastic worm propagation model based on SDEs
modeling random effects during worm spreading. Derived from the paper, the essential
SDE for the modeling of infected hosts is given by Equation 2.9 in Itô notation in which
𝐼(𝑡) is the function representing the infected hosts. 𝑁 are the unique hosts in a network
scanned by the worm where 𝑁𝑆 is the number that could potentially become infected.
< 𝛽 > is the mean of the total infection rate incorporating randomness including the
worm’s decisions, e.g., scanning strategy, scan rate or changes in the network environment,
e.g., bandwidth or congestion. Using the Euler-Maruyama method, Figure 2.16 shows 10
plotted paths in red including the computed mean (500 simulated paths) for the infection
function 𝐼(𝑡) of Equation 2.9 where 𝑁 = 254, 𝑁𝑠 = 100, < 𝛽 >= 1.4 and 𝐼0 = 5.

𝑑𝐼(𝑡) =
< 𝛽 >

𝑁
(𝑁𝑆 − 𝐼(𝑡)) · 𝐼(𝑡) · 𝑑𝑡+

1

𝑁
(𝑁𝑆 − 𝐼(𝑡)) · 𝐼(𝑡) · 𝑑𝐵(𝑡) (2.9)

The authors state that the size of the network, small-scale or large-scale, e.g., Internet,
needs to be considered since a small network size reduces the time for early detection but
increases false alarms because large-scale networks will diffuse the network heterogeneity’s

54

and better describe the phenomenon. In order to counteract this, the authors provide a
theoretical estimation of a critical network size which is sufficient to be monitored. For
network monitoring and intrusion detection this information for critical size in subnet-
works can be useful. Thus, worm projection basically involves collecting data and then
estimating the infection rate and expected damage caused by the worm. Early projection
results, paired with a well-established early warning policy, may lead to robust response
strategies against fast-spreading, unknown worms. Since, in an unknown network the
size could either be far smaller, far greater or close to the critical size, a hierarchical
distributed early warning system is proposed by the authors. Each network domain 𝑘
monitors 𝑛 subnetworks with variable sizes and internal characteristics (e.g., bandwidth
or topology). An early detection component which is able to detect the presence of a
fast-spreading worm and is able to define the worm propagation model parameters. Each
domain is locally monitored by one Local Monitoring Center. A local agent runs in each
LMC and is programmed to act as a communication interface between the LMC and the
root of the hierarchy, namely a Global Monitoring Center (GMC). The operation of the
local agent is practically the basic requirement in order to participate in the warning
system. Finally, the GMC receives infection information from the LMCs and sends back
warning information for an emergency response. The LMCs could, as a response mea-
sure, adapt their network or host-level firewall policies, automatic quarantine policies or
disconnect/isolate particular hosts or services. The authors state that an early warning
system is meant to complement current systems and they suggest the deployment of an
anomaly-based IDS that will collect preliminary data from default locations, analyzes it
and makes a decision on whether the examined traffic contains potential scanning worm
behavior.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0

20

40

60

80

100

I
(t

)

sample paths

computed mean

Figure 2.16: Simulation of an SDE for malware propagation (cf. [206]).

Impact Analysis
The characteristics of the malicious activities’ impact may also be different (impact anal-
ysis) apart from the stated above. For instance, a malware exploiting a certain discovered

55

vulnerability that effects all models of a series (either a certain vehicle [automotive] or
Programmable Logic Controller (PLC) [industrial] type) has a more devastating impact on
the whole vehicle fleet [automotive] or various companies applying the PLC type [indus-
trial] than a single hacked/compromised vehicle [automotive] or compromised industrial
plant [industrial] by an adversary. Along with this, the topology of single compromisable
entities and reachability with others, e.g., Electronic Control Units (ECU) inside a vehicle
and their connection between them vs. the vehicles of a whole fleet and their communi-
cation among them and their infrastructure, plays a major role and has to be considered.
Apart from the close relation of impact analysis with topics such as incident response and
forensics analysis, the most inferred is the threat and risk assessment. Its main goal is
to identify the consequences of malicious activity which helps administrators to find out
the implicit and explicit relations between the attacks and the assets of an organization
using information sources such as asset database, topology database, and vulnerability
database for analyzing the impacts [214]. Risk management describes the process of the
consideration of potential risks in a certain domain. It is further composed of risk as-
sessment and risk mitigation. The former is the process of determining, analyzing, and
interpreting the risk analysis results, and risk mitigation is the process of selecting and
implementing security controls to reduce risks to an acceptable level [172]. Especially in
the automotive domain, the Hazard and Risk Analysis, abbreviated HARA, targeted for
safety as well as the Threat and Risk Analysis, abbreviated TARA, targeted for security
are widespread. Network risk assessment approaches can be categorized into network risk
assessments based on (1) attack graphs, (2) dependency graphs and (3) on non-graph
approaches, e.g., hidden Markov models or fuzzy logic [5]. An overview and discussion of
available literature on these categories can be found in [172].

Prioritization
Prioritization focuses on categorizing and ranking alerts based on their importance since
generated alerts by security components do, according to [215], not have equal importance.
Salah et al. state that for analyzing the significance of suspicious events, a prioritization
component needs to be added to the correlation system [165] such that it can be distin-
guished between moderate and devastating threats/attacks. Porras et al. propose an AC
and ranking technique called M-Correlator [216] which ranks alerts based on the likeli-
hood of the attack to succeed, the importance of the targeted asset, and the amount of
interest in the type of attack [217]. Alsubhi et al. state in their work that these tech-
niques are promising in the evaluation of alerts generated by signature-based IDSs, but
cannot evaluate alerts raised by anomaly-based IDSs, since they heavily rely on the vul-
nerability knowledge base. Thus, in their work [217], they extend Porras et al.’s approach
by offering a technique which works with both signature-based and anomaly-based IDSs
and makes use of additional criteria, such as the sensor sensitivity, relationship between
alerts, service stability, and social activity between source and target for a more accurate
evaluation of the alerts. A few alert prioritization score metrics from [217] are categorized
in [29] to applicability metric (applicability of a raised alert to the current environment
based on information from various knowledge bases, e.g., vulnerability knowledge base),
victim metric (specifying the properties of critical machines, services, applications, ac-
counts, and directories in the current network environment), sensor status metric (based
on the Bayesian detection rate formula estimating the TP probability that an alert is
raised when an attack is detected), attack security metric (measuring the risk level of the
vulnerability based on known attack metrics such as MITRE or CVE), service vulnera-

56

bility metric (representing the strengths and weaknesses of a host based on the targeted
services) and social activity metric (exploiting features of a social network to find hid-
den participants in a communication session). McElwee et al. are proposing a deep
learning based approach for prioritizing and responding to alerts in [218]. Their FASTT
(Federated Analysis Security Triage Tool) concept uses a TensorFlow deep ANN classi-
fier to automatically categorize IDS alerts and determine which type of security analyst
should review the alerts. In addition, FASTT uses an Elasticsearch indexed data store to
speed the retrieval of IDS alerts and a Kibana user interface to allow flexible display of
visualizations and dashboards that can be tailored to meet the security analysts’ work-
flow. ACSAnIA (A Comprehensive System for Analysing Intrusion Alerts) is proposed
by Shittu et al. in [219] which is a post-correlation framework that consists of seven
components. The Offline Correlation uses a set of historic alerts to build a correlation
model which gets updated periodically by the Online Correlation module. This module
analyzes it for every incoming alert against a set of past alerts of a certain time window.
The Meta-alert Comparison measures differences between meta-alerts that are produced
by the correlation process and Meta-alert Prioritisation maps, a prioritizing value to each
meta-alert based on the degree to which it is an outlier computed by the local outlier
factor algorithm. The Meta-alert Clustering receives the set of meta-alerts and groups
them into clusters. The Attack Pattern Discovery receives the clusters of meta-alerts and
attempts to extract a set of representative features for each cluster using frequent pattern
mining. The Reporting System receives the outputs and prepares them for human inter-
action. The results of alert prioritization are useful for countermeasure selection, where
the system is able choose a suitable response automatically based on the assigned values
for detected attacks (Section 2.3).

Root Cause Finding
Alerts are typically indicators of problems representing the symptoms of incidents but do
not provide explicit information regarding the actual root cause of them. However, iden-
tifying the “culprit” of malicious activity is not only important for forensic purposes but
also for finding the causation as quickly as possible to establish countermeasures as nearly
located as possible. Simple mechanisms such as IP traceback, a method for identifying
the origin of a packet on the internet based on its source address, seem insufficient for root
cause finding since for the propagation of malicious activity, the source of packets is almost
never the source but just one of the many propagation hops. Furthermore, IP-spoofing
prevents its application. Even the detection of stepping-stones, by techniques stated and
discussed by Kumar and Gupta [220], only focuses on the IP level of packets which make
finding the root cause difficult. Furthermore, they are vulnerable to time delays, chaff
perturbation, and have a high FP rate. Root cause finding methods are tractable esti-
mators performing on multiple topologies to find propagation sources in higher level of
networks, e.g., an application level to find logical structures. Approaches of identifying
malicious attack sources can be divided into three main categories of source detection:
the complete observation based (requires a complete observation of the attacked network
after a certain time of the malicious propagation), the snapshot based (requires a partial
observation of the attacked network at a certain time), and the detector/sensor based
(requires the observation of a small set of nodes but all the time in the attacked net-
work) [211]. Figure 2.17 illustrates the three categories and Figure 2.18 a taxonomy of
source identification methods based on this categorization. For a detailed description of
the following refer to [211].

57

Figure 2.17: Illustration of three categories of observation in networks. (a) Complete
observation; (b) Snapshot; (c) Sensor observation [211]

Examples for the former are the Rumor Center of the work in [221] or the Dynamic
Age found in [222]. In their works [221, 223, 224], Shah and Zaman provided models for
rumor spreading in a network based on the SI model and then constructed an estimator
for the rumor source based on a novel topological quantity, called rumor centrality. They
established a maximum likelihood estimator for a class of graphs: the regular tree graph,
the general tree graph, and the general graph. The second category deals with the problem
that in real-world networks a complete observation might not be possible. Thus, a given
snapshot at a certain time serves as a basis for source identification. Representative
for this class is the work of Zhu and Ying [225], which base their solution on the SIR
model and are providing a reverse infection algorithm based on a given network snapshot.
A node with the minimum infection eccentricity, called Jordan center, is the estimated
source node by the algorithm. Approaches using sensor observations are, among others,
based on Bayesian [226], Gaussian [227] or Moon-Walk [228] (Figure 2.18).

Figure 2.18: Taxonomy of current source identification methods [211].

The aforementioned approaches for a root cause identification mentioned in [211] are,
however, not relying on the output of IDSs in form of alerts. Julisch [229] initially proposed
a different approach for source identification using a set of unlabeled NIDS alerts and gen-
erating clusters of similar types. The work discusses alarm clustering as a method that
supports the discovery of root causes. Another clustering based approach is Y-AOI [230]

58

that bases on the Y-means anomaly detection method [231] and uses an attribute-oriented
induction algorithm. Firstly, Y-means divides the alerts into several clusters based on
their occurrence time and secondly an adopted oriented induction algorithm inducts the
clusters into short, highly comprehensible and more informative summary tables which
help administrators to more easily find the root cause. Al-Mamory and Zhang are using
the root cause analysis in [232] to discover the sources that make IDSs trigger a large
number of alerts by supposing that most of the root causes are no attacks. Similar alarms
are clustered by their semi-automated clustering system, also basing on the attribute-
oriented induction algorithm, helping the security analyst in specifying the root causes
behind these false alarms and in writing accurate filtering rules. Kechadi et al. present an
approach called Behavioral Proximity Discovery which is a framework for root cause anal-
ysis that consists of three complementary clustering algorithms based on alarm behaviors.
The first algorithm (SM) identifies periodic alarm behaviors. The two other algorithms
(FECk and CUFRES) correlate events leading to the identification of faults by the net-
work operator [233]. An automated root cause identification approach is proposed by
Cotroneo et al. in [234]. Their framework (Figure 2.19) consists of a filter and a decision
tree to address a large number of alerts and to support the automated identification of
root causes by adopting term weighting and conceptional clustering approaches to fill the
gap between the unstructured textual alerts and the formalization of the decision tree.

Figure 2.19: Root cause identification framework [234].

Another promising possibility for identifying the root cause comes from the field of
exploiting the physical properties of network participants. Physical device fingerprinting
builds fingerprints to uniquely identify a machine by, e.g., measuring the differences in
machine internal clock signals. In [235] a time-based device fingerprinting technique is pro-
posed that is generic and can work with different functions, making the method adaptable
to different environments. Cho and Shin proposed an anomaly detection approach called
Clock-based IDS (CIDS) that is based on the unique clock skews of an ECU in [154]. Since
the CAN frame in an in-vehicle communication does not deliver any information about
its source ECU, the downside of many IDS approaches is that anomalies cannot be traced
back to its source. By associating a clock skew to each ECU in the CAN network, every
message can be backtracked to its source ECU. CIDS first creates a norm baseline based
on clock skews which is done by measuring the intervals of periodic messages constructed
on the recursive least squares technique. After the construction of the norm baseline, each
ECU is associated with its own clock behavior or fingerprint. The detection of anomalies
is conducted from using the cumulative sum method which is used to detect abnormal

59

shifts in identifying errors. With Viden (Voltage-based attacker identification), Cho and
Shin are providing another possibility in [236] to identify the attacker ECU by measuring
and utilizing voltages on the in-vehicle network. Viden exploits the voltage measurements
to construct and update the transmitter ECUs’ voltage profiles as their fingerprints and
uses these profiles to pinpoint the attacker ECU with a low false identification rate. A
major benefit of Viden compared to CIDS is the ability to function even in the presence
of event-triggered messages. CIDS rely on the timing information from periodic messages
but since Viden determines the transmitter ECU based on voltages, it is able to pinpoint
attacker ECU regardless of the communication technique.

2.3 Incident Response

Incident response or reaction implies the set of actions a system executes after security-
relevant incidents have been identified. An IPS, as a proactive solution, works as an IDS
but in the case of an detection it drops malicious traffic automatically before it causes
any harm to the network rather than raising an alarm afterward. Similar to the term
countermeasure defined in RFC 2828 [237] as “an action, device, procedure, or technique
that reduces a threat, a vulnerability, or an attack by eliminating or preventing it, by
minimizing the harm it can cause, or by discovering and reporting it so that corrective
action can be taken”, a response refers to a specific action that is triggered by an alert or
an alert analysis after an intrusion detection phase (reactive). Evaluating the severity of
attacks, identifying the cause of incidents, and selecting an appropriate response under
considerations of, e.g., the correct time or the available resources are typical tasks of an
Intrusion Response System (IRS). Intrusion risk assessment is closely related to the field
of IRSs. This process helps to determine the probability that a detected incident is a
valid, action demanding attack towards an important compromised target that requires
a certain form of a response. Properties and characteristics that influence the response
model, e.g., incident response time are provided in [238].

2.3.1 Taxonomy of Intrusion Response Systems

A taxonomy for IRSs is provided by Shameli-Sendi et al. in [5] and shown in Figure 2.20.
The characteristics and criteria of their taxonomy resulted from a comprehensive literature
review and are listed in the following. Some additional requirements that should be
fulfilled for the development of an IRS stated by [238, 239] are added in italics.

• Activity: The activity of a triggered response can be categorized into passive (do
not attempt to minimize damage already caused by the attack or prevent further
attacks - main goal is notification) and active (aim to minimize the damage done
by the attacker and/or attempt to locate or harm the attacker).

• Level of Automation: An important feature of an IRS is whether it can be fully
automated or requires administrator intervention after each incident. Therefore,
the level of automation can be categorized into notification systems (alert informa-
tion is used by an administrator to select applicable response measures), manual
response systems (preconfigured set of responses based on the type of attack that
an administrator has to trigger) and automated response systems (automated ex-
ecution of responses without human intervention). Cooperation and autonomy for
response systems are two features used respectively in a NIDS and HIDS. Thus, it

60

is necessary to have both features in a single system to be more accurate. According
to [66], automated IRSs can further be divided into: adaptive (feedback loop to
evaluate previous response), expert (response decisions are based on one or more
metrics) and association (simple decision table approach in which a specific response
is associated with a specific attack).

• Response Cost: Knowing the power of responses to attune the response cost with
attack cost plays a critical role in IRSs. The evaluation of the positive effects and
negative impacts of responses are very important to identify response cost. Thus,
the selected response should not be more costly than the attack.

• Response Time: This criterion refers to whether the response can be applied
with some delay after an intrusion is detected (delayed, reactive) or before the
attack affects the target by applying an intrusion prediction mechanism or IPS
(proactive). Thus, proactive response mechanisms should be included within the
intrusion response system to enable early responses to intrusions.

• Adjustment Ability (Adaptiveness): Usually, an IRS framework is run with a
number of pre-estimated responses. It is very important to readjust the strength of
the responses depending on the attacks. Adaptiveness is a powerful feature required
to ensure normal functionality while still providing effective defense against intrusive
behavior, and to automatically deploy different responses on the basis of the state of
the current system. Adjustment models can be categorized into non-adaptive and
adaptive. The former keeps the order of responses during the life of the IRS, whereas
the adaptive has the ability to adjust the order based on their history. Non-adaptive
adjustment models can be converted into adaptive ones. Response goodness refers
to the history of success and failures of each response mitigated over time.

• Response Selection (Effectiveness): The task of an IRS is to choose the best
possible response. Existing techniques vary in the way response selection is achieved.
The response should be tailored to the type of attack and incident context. In fact,
the response could be different for the same attack affecting two kinds of resources.

• Applying Location: There are different locations in the network to mitigate at-
tacks. Using information from an “attack path” (consisting of (1) adversary’s start
point, (2) firewalls/routers, (3) intermediary devices and (4) target device) appro-
priate locations with the lowest penalty cost for implementing response measures
can be identified.

• Deactivation Ability: Another distinguishing feature that separates IRSs is the
response deactivation (response lifetime), which can take the users’ needs in terms
of Quality of Service (QoS) into account. Most countermeasures are temporary
actions which have an intrinsic cost or induce side effects on the monitored system,
or both. Thus, there must be an ability to deactivate response measures.

A phylogenetic tree showing the history and advancement of intrusion response ap-
proaches is provided by [66]. The authors further propose characteristics (adaptive na-
ture, cost-sensitive, semantic coherence, manage false alarm, and response metrics policy)
for designing proper response systems since poorly designed ones may lead to a genera-
tion of a large number of false alarms and degrade the performance of the system. They
state that existing IRSs are unable to provide a real-time optimum response because of
the absence of semantic coherence and dynamic response metrics features. A survey of
research activities with respect to IRSs highlighting their novelty and core characteristics

61

Figure 2.20: Taxonomy of intrusion response systems [5].

of relevant ones is provided in [7]. Challenges and future direction of IRSs are discussed
in [7, 66] and a selection is illustrated in Figure 2.21. Further, open issues and some
proposed solutions in the field of IRSs in general and with respect to cloud-environments
for smart mobile devices are provided in [3, 4].

Response Cost
Response cost describes the impact of implementing responses on the system’s protection
goals. This may not only include security-relevant ones, such as data confidentiality, in-
tegrity and authenticity, but also safety-critical ones, e.g., availability or performance. For
instance, switching off a service to mitigate an attack results in the loss of its function.
An evaluation of the response cost makes only sense when considering possible attack
scenarios. A dynamic response model (static cost, static evaluated cost, dynamic eval-
uated cost) offers the best response based on the current situation of the network, and
so the positive effects and negative impacts of the responses must be evaluated online at
the time of the attack [5]. For the static cost model an expert assigns a static value to a
response (𝑅𝑠

𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑛𝑠𝑡.). If an evaluation function is applied, typically incorporating the
impacts on the protection goals, associated with each response, a statically evaluated cost
is obtained (𝑅𝑠𝑒

𝑐𝑜𝑠𝑡 = 𝑓(𝑥)). In the dynamic evaluated cost (𝑅𝑑𝑒
𝑐𝑜𝑠𝑡) the systems’ situation is

evaluated in an online fashion such that certain responses are only implemented if other
entities, e.g., other services, processes and resources are not threatened.

Herold presents possibilities to assess the costs of a response as well as the potential
damage of a security incident in [238]. The author categorizes them into basic approaches,
e.g. [240, 241, 242, 243], that select a response if the cost of it is lower or equal to the
damage cost, approaches including system importance, e.g. [151, 244, 245], approaches us-
ing probabilities based on the success likelihood of an ongoing attack, e.g. [245, 246], and

62

Figure 2.21: Challenges for IRSs [66].

approaches including IDS capabilities e.g. [247, 248, 249]. Fessi et al., for example, present
an approach for automated reaction measures with a multi-attribute decision model and a
cost-benefit analysis of the selected reaction in [250]. They present an intrusion response
architecture composed of a collection module, a detection module and a response mod-
ule, with the actual focus of the paper on the response module. The response module
contains information regarding the known intrusions, possible reaction measures in case
of an intrusion and a response mechanism for deciding on a suitable reaction measure.
The problem of finding a suitable response to an intrusion is defined as a multi-attribute
decision making problem. It is based on the three parameters: financial cost (loss for the
company in financial terms), enterprise reputation loss (reputation of the company which
is related to its survival and existence) and processing resources (regarding personnel and
information assets). These attributes are normalized using a weighted linear combination
method such that the values can be used later in the evolutionary algorithm’s fitness func-
tion. Using the evolutionary algorithm, the best possible response measure for intrusion
is then determined by a cost-benefit analysis. A matrix with n columns, which represent
the resources in the system, and m rows, representing the reaction measures, is used.
This means that one row indicates the effects of the reaction measure m on the overall
system and is regarded as a chromosome for the algorithm. The evolutionary algorithm
follows the usual operations (random initial population, selection, crossover, mutation and
natural selection) and, after scheduling, provides the optimal reaction measure in terms
of cost-benefit for the overall system. Shameli-Sendi and Dagenais proposed a practical
framework in [241] for online response cost evaluation to encounter the problem that typ-
ically a good response decreases the service quality. Thus, a balance between response
cost and the cost for an attack in a cost-sensitive fashion can be achieved. A service
dependency graph is utilized to consider the negative effects that consist of impacts on,
e.g., the network or hosts. Their framework includes information of affected resources
determined by an expert’s opinion.

63

Response Selection
Security administrators often face multi-criteria decision making problems when it comes
to select an optimal response in a timely and cost-effective fashion. According to [5],
there are three response selection models namely static mapping (an alert is mapped to a
predefined response), dynamic mapping (response mapping to an attack differs depending
on, e.g., system state, attack metrics such as frequency or severity, or network policy) and
cost-sensitive mapping. Static mapping itself can be exploitable since an attacker may
predict response measures. Dynamic mapping lacks on intelligence by improving itself
with every new responded attack without any dedicated upgrade. Cost-sensitive mapping
attempts to attune intrusion damage cost which represents the amount of damage to an
attack target when the IDS is either unavailable or ineffective. It is closely related to
risk assessment which itself can be categorized into static and dynamic. Dynamic (real-
time) risk assessment approaches can be subdivided into (1) attack graph-based (referring
to Chapter 2.2 by constructing attack steps based on correlation methods), (2) service
dependency graph-based (impact on confidentiality, integrity, and availability on a service
interacting with or depending on others), and (3) non graph-based (risk assessment carried
out independent of the attack by performing risk analysis on alert statistics and other
information provided by alerts) [5, 172]. An overview of attack modeling techniques
including their strengths and weaknesses is presented in [7] structured into attack graph,
attack tree, service dependency graph and Markov decision process models. A method
for risk assessment based on the dynamic Bayesian network (static Bayesian network
extended in time) is proposed by Wang et al. in [251].

Already in 2000, Schackenberg and Djahandari proposed an architecture based on the
Intruder Detection and Isolation Protocol (IDIP) in [252] which represents an early work
in the area of automated intrusion response. IDIP’s objective is to track intrusions by
sharing information between neighboring devices to attempt responding or tracing back
the attack along it’s path. Local IDIP agents are equipped with detection, audit or
response functionality and reports are not only distributed among each neighboring agent
for local decision making but also sent to a discovery coordinator which is able to correlate
reports and to gain a better overview. For response functions, IDIP defines trace messages
(including a description of the anomaly, a value indicating how certain the detector is of
this attack, a severity value based on the potential services lost from this attack, and a
requested response) and directives (messages sending “do” and “undo” messages in order
to, e.g., block or unblock network traffic). With the Cooperative Intrusion Traceback and
Response Architecture (CITRA) presented in [253], the authors extended their work to
trace attacks to their source and block them as close as possible to it. CITRA allows
to use immediate responses and utilizes a simple cost model to select a limited number
of responses which are based on thresholds and can not be adapted. However, CITRA’s
main focus is on the traceback of an attacker to the source of the security incident.

Zonouz et al. are proposing a game-theoretic intrusion response engine in [254], called
the Response and Recovery Engine, which allows to analyze security incidents and to take
their optimal countermeasures using attack-response trees modeling a two-player Stack-
elberg stochastic game. The engine considers inaccuracies associated with IDS alerts and
chooses an optimal response action by solving a partially observable competitive Markov
decision process derived from the attack-response trees. An extraordinary approach has
been presented by Sharma et al. in [255, 256] proposing an intrusion response mechanism
inspired by plant-based biology. The PIRIDS (Plant-based Inspiration of Response in
IDS) is a three-layered bioinspired detection and response method composed of the layers

64

PRR (Pattern Recognition Receptors), Guard Agent & SAR (Systematic Acquired Resis-
tance) and HR (Hypersensitive Response). With their approach the authors were able to
cope with known attacks, zero-day ones and the infection spread of malicious activities
could be stopped.

Kholidy et al. are presenting ACIRS (Autonomous Cloud Intrusion Response System)
in [257], an effective attack and vulnerability detection and response framework to ac-
curately identify the attacks targeted to cloud environments. Its architecture integrates
both, behavior and knowledge based techniques, and considers different service models
and user requirements, collects and correlates security events and user behaviors from all
environments in the cloud system. It provides a security measure to assess the system
risk to select an appropriate response to mitigate the risk consequences. Alert integra-
tion, correlation and risk assessment is based on IDMEF to include multiple detection
mechanisms such as Snort (network-based) and OSSEC5 (host-based) for instance. Thus,
as normalization process, all alerts are brought into IDMEF to simplify their analysis
and correlation in the next layer. A prioritization process ensures that each detector
(analyzer/sensor) has its own prioritization system. AC and summarization correlates a
large number of normalized alerts from different detectors to highlight the few critical
ones. This technique looks for evidences of an alert to discover if it signals a true attack
and it correlates logically related alerts. Logically related alerts denote the same attack
signature, have the same source and destination addresses and are close in time. These
alerts may also denote a step of a multi-stage or compound attack that consists of a set of
steps performed by one attacker. Beside reducing FPs alerts and summarizing the huge
number of alerts to the cloud administrator, this results in a correlation process that deals
efficiently with multi-stage attacks and facilitates the risk assessment and mitigation pro-
cesses. The authors propose to use OSSIM, an open source correlation engine that uses
a tree of logical conditions (rules) or AND/OR a tree in the correlation process. In each
correlation level of the correlation tree (or respective to a “tree” of hyper-alerts) a risk
value is updated according to an equation in the paper. The respective correlation and
risk assessment flowchart with 𝑁 correlation levels, each with different number of rules,
is shown in [257].

In [151], Ossenbühl et al. are presenting REASSESS (Response Effectiveness Assess-
ment), a response selection model that evaluates negative and positive impacts associated
for countermeasures to mitigate network-based attacks. Requirements are automatic de-
ployment, scalability, adaptability, system independency, calculation efficiency, usability
and protection preventing unauthorized access by deploying security mechanisms. The
negative effects lead from possible service degradation and penalty costs can occur from
service level agreement violations. Furthermore, alert priorities are taken into account.
REASSESS is based on several stages related to the NIST incident response cycle for the
response selection process as shown in Figure 2.22 and follows a sequential execution. The
assumptions, namely aggregation and confidence which assume that each alert raised by a
detection engine is treated as one attack and a strong confidence with a hundred percent
certainty of alerts, however, strongly mitigate the usage of anomaly-based IDSs which
might raise a large number of false alerts. Furthermore, REASSESS in its current state
is working sequential, not able to cope with multiple IDS nodes, does not use common
standards for the exchange of incident related information and is not capable of coping
with more advanced attack scenarios due to the lack of an AC mechanism.

An optimal metric-aware response selection strategy using mixed integer linear pro-

5https://www.ossec.net/ (accessed on 05 September 2021)

65

https://www.ossec.net/

Figure 2.22: Response selection process of REASSESS [151].

gramming to obtain an optimal subset of responses is presented by Herold et al. in [258].
Thus, they were able to provide response strategies much faster and with higher quality
than using simplistic heuristics allowing, e.g., a larger number of responses or entities.
GhasemiGol et al. proposed a network attack forecasting strategy in [172] by using an
attack graph and a dependency graph approach enriched by analyzed IDS alerts (hyper-
alerts graph) to identify possible risky nodes and IRS activated responses (multi-level
response graph). The utilized attack graph handles the uncertainty of an attack proba-
bility by measuring the probability of vulnerability exploitation. Instead of using IDMEF
for alert analysis, the authors use their E-correlator, which is a similarity correlation sys-
tem that functions on raw alerts and outputs a directed hyper-alert graph. They define
a response graph with eight levels (refer to Figure 2.25). By the combination of various
graph-based approaches, the authors were able to handle uncertainties of current attack
graphs and predict future network attacks by the inclusion of additional information.
In their consecutive article [259], GhasemiGol et al. extended their work to a foresight
model for intrusion response management that includes a response cost estimation based
on whether the impact of a response is negative or positive on each level of their multi-level
model considering the confidentiality, integrity, and availability parameters. In a recent
work [260], Shameli-Sendi et al. are proposing a framework for selecting and deploying
optimal countermeasures to intrusions dynamically. Therefore, an optimal countermea-
sure is identified by evaluating the current and potential damage cost, the accuracy of the
countermeasure risk reduction, the impact on QoS and the balance between countermea-
sure and attack damage cost. An advantage of this framework is that countermeasures
are not predictable for an adversary since they are not statically defined.

2.3.2 Intrusion Response Representation

With respect to Herold [238], responses may be reconfigurations of hosts or network ele-
ments. Targeting the implementation of reactions on network elements, Herold presents

66

the SNMP and Network Configuration Protocol (NETCONF) defined in RFC 6241 [261].
NETCONF makes it possible to read out, install and manipulate the configuration of
devices and is based on a simple RPC layer (Remote Procedure Call). It uses XML-based
encryption to transfer both configuration data and protocol messages. Among the advan-
tages are the human readable representation of the data, the reusability of the message
structures as well as the easy extensibility. The data model belonging to NETCONF is
called YANG (Yet Another Next Generation). This model explicitly and unambiguously
defines the structure, syntax and semantics of the configuration and operational data of
network devices. It thus offers a uniform interface to their manipulable and operational
data. NETCONF has not been defined to inherit information of intrusion responses.
However, it could be applied when it comes to network device reconfiguration triggered
by an IRS.

The IDIP application and message layer is defined in [262] providing details on the
objectives, specification and operations of IDIP and has been used by [252, 253]. IDIP
applications use trace messages to describe network-based intrusions which are passed
to neighboring devices to trace the path of the intrusion and provide the information
necessary for each device along this path to determine an appropriate response. Other
IDIP application messages are used to support this tracing and response mechanism. As
stated in the specification, IDIP is designed to minimize the size and number of messages
required to support intrusion response. Application layer messages are primarily sent only
after an intrusion has been detected. Once the response has been initiated, the protocol
attempts to only send messages to components that potentially could have witnessed parts
of the attack. In addition, IDIP components send reports of the responses to a centralized
management component called the discovery coordinator. [262]

Since IDMEF does lack in messages for specifying responses, Klein et al. are introducing
the Intrusion Response Message Exchange Format (IRMEF) in [263]. It extends IDMEF
as shown in Figure 2.23 by a response class that uses elements that are already defined in
the IDMEF message class. Those are the CreateTime, set to the time the response message
is created, the DetectTime to schedule the time of response execution, the Source issuing
the response, the Target(s) to which the response should be applied, an Assessment field
containing the action that should be performed, e.g., kill process and an AdditionalData
field containing optional elements, e.g., parameters for the response, e.g., process ID for
the process to be killed. The proposed communication protocol between those agents and
a console is SNMP in version 3. This scheme does not allow to schedule more actions in
an appropriate manner, for example, neither sequential or otherwise timed actions or the
interconnection of multiple actions are possible nor the specification of the control flow in
more detail [238].

An intrusion response message format similar to the IDMEF is proposed in [259] and
represented by XML based on the multi-level model information from [172]. Figure 2.24
shows the corresponding data model consisting of the Intrusion Response Message (IR-
Message) and its subclasses providing further response information. The attributes of the
IR-Message are a response identification number (Response-ID), a Response-status indi-
cating the response condition being active or inactive and a Response-cost containing the
impact of the response on the network entities. The Response-Target contains information
about the target with respect to the authors’ multi-level response model. Response-Type
indicates the kind of responses in terms of impact level and Response-Location, the place
of applying responses such as a Firewall. The Response-Action shows the kind of actions
that can be applied by responses, e.g., shutdown, reset, block, or notify.

67

Figure 2.23: Intrusion response message format - IRMEF [263].

2.3.3 Possible Response Measures

Table 2.3 illustrates different classes of response actions with examples that might be
applicable, depending on the type of consequence and the involved assets. Those measures
are used to neutralize an individual attack or execute preventive measures to secure the
system against future attacks of the same type. GhasemiGol et al. define different levels
in [259], as shown in Figure 2.25, that can also be applied to map response measures
to different levels. Those are composed of notification-level (generation of a report or
alarm), attacker-level (targeting the attacker machine by, e.g., blocking the attacker IP),
vulnerability-level (patching or updating software to remove vulnerabilities, e.g., CVE
countermeasures), file-level (block file or change file permissions), user-level (block user
or reduce user privilege), service-level (block affected processes, services or ports), host-
level (affects victim machine by, e.g., shutting it down) and unclassified-level.

Action class Description Examples
Rollback bring the component back to a

saved secure state
restart virtual ma-
chine or software

Rollforward find a new state from which the
component can operate

restore or update
process

Isolation perform physical/logical exclu-
sion of the “faulty” components

block attacker’s IP
address

Reconfiguration reconfiguring a system, compo-
nent or reassign tasks to others,
activate spare components

reconfigure net-
work routing

Reinitialization check/record new configuration
and update system tables

restart a TCP
connection

Table 2.3: Response and recovery action classification (cf. [264]).

According to [265], responses with respect to virtual cloud systems can be categorized
into filtering (e.g., updating upstream filters to block traffic), rate limiting (attempts to
relieve the pressures on bottlenecks), adapting the use of virtual machines (e.g., increase
or decrease its number) and identifying the attack source (using trace-back techniques).

68

Figure 2.24: Intrusion response message format - IR-Message [259].

A more generic categorization into passive and active responses with lists of common
responses per category based on the work of [4, 239, 266] and inspired by the multi-level
categorization of [259] is illustrated in Figure 2.26. The dotted arrow indicates that some
response measures (unclassified-level) categorized under passive might also be active ones
depending on their interpretation and level of automation.

Chapter 6 introduces Uncoupled MAC providing adaptive IDS-functionality by utilizing
sampling and self-regulation that can be used to adapt IDSs as a response measure. The
Uncoupled MAC algorithm is a cryptographic scheme that applies message authentication
codes decapsulated from the original packet and is able to dynamically adjust its sampling
parameters depending on the detection of both, a message’s data integrity as well as its
authenticity violation. However, in the following, an exemplary response measure for the
reconfiguration of a network infrastructure applying SDN, e.g., isolate a malicious host
and reroute its traffic, is provided.

Network Reconfiguration Leveraging SDN
Note: The following paragraph has been published by the author in [6] presenting a generic
incident handling framework. Exploiting SDN technology to reconfigure the network-
ing environment is a further reaction possibility. Controlling network flows dynamically
enables to separate malicious (or suspicious) network flows from benign ones dynami-
cally. For example, supposed that a NIDS detects some suspected flows, the flows can be

69

Figure 2.25: Different intrusion response levels [259].

rerouted for in-depth investigation, e.g., in a honeypot [267]. Further firewall function-
ality can be implemented using SDN. When a switch receives a new packet and there is
no rule matching this packet in the flow table, it reports it to the SDN controller which
forwards the packet to the firewall application. The firewall checks whether the incoming
packet violates security policies or not and enforces a new flow rule accordingly. This rule
is delivered to the switch by the controller and all future packets from the flow of the
first packet would be handled directly in the switch without the need to interact with the
controller again [268]. Another possibility applying SDN to respond to a specific incident
is through network separation. In traditional networks, the common way to separate a
network is employing Virtual LAN (VLAN) technique, which adds specific IDs in a packet
header (12-bits VLAN ID field). However, VLAN technology incurs scalability limits in
large-scale networks, since it can only assign 4,096 different virtual networks. SDN-based
separation solutions provide the capability of different level abstractions with desired se-
curity properties, which not only separates the network segments efficiently at scale, but
also veils the physical view of networks to users [269].

A “pluggable” software platform aimed to provide centralized administration and ex-
perimentation for anomaly detection techniques in software defined data centers is pro-
vided by [270]. The proposed SDN-PANDA consists of three controller-centric application
modules responsible for (1) data collection and pre-processing of switch aggregated flow
statistics, (2) anomaly detection based on a flexible interface and (3) performing response
actions defined on standard policies independent of the anomaly detection method. The
response policies must be accurately defined such that they only mitigate the identified
attack and not cause a loss of service by, e.g., dropping packets. To address this issue they

70

Passive

Unclassified-
level

Notification-
level

Active

Host-based
response

Network-based
response

 enable additional IDS
 enable local/remote/network

activity logging
 enable intrusion analysis tools
 backup files, machines, etc.
 trace connection for information

gathering purposes

 generate alarm
(e.g. Email, SMS)

 generate report
(e.g. contains infor-
mation about intrusion)

Service(Vulnerability)-level
 restart suspicious service
 terminate suspicious process
 disable compromised services
 abort/delay suspicious system calls
 update or patch vulnerability of

compromised software
User(Attacker)-level
 restrict/disable user account
 force additional authentication
 warn/inform intruder
File-level
 deny full/selective access to file
 delete tampered file
 restore tampered file from backup
Host-level
 shutdown compromised host
 restart suspicious host

Attacker-level
 host isolation/quarantine
 traffic filtering (block suspicious

incoming/outgoing network
connection e.g. by blocking ports
or ip addresses)

 remotely restart targeted system
Unclassified-level
 enable/disable additional

firewall or IDS rules
 create remote decoy
 traffic redirection
 adjust/adapt parameters of

detection systems
 increase/decrease rates of

sampling systems
 QoS adjustment

Common response
measures

Figure 2.26: List of common response measures (cf. [239, 4, 259, 266]).

propose to apply redundant services in different spots of the infrastructure and reroute
the traffic in the case of incidents which allows, e.g., the investigation of the compromised
host while still guaranteeing the availability of the service. In [37] the authors leverage
SDN and Network Function Virtualization (NFV) technologies for incident response in
industrial control systems. They provide potential response use cases including rerout-
ing attacker traffic to a honeypot, changing forwarding rules to drop communications or
transfer services from compromised devices to redundant ones using virtualized resources.
In a proof of concept they are extending MiniCPS providing SDN functionality and deploy
an IDS in the SDN controller which is working threshold-based and compares actual and
estimated sensor values. Incident response functionality is quite limited following pre-
configured policies such as discarding packets from the compromised sensor and replacing
them with the estimated values of the IDS. Afterwards, the SDN controller modifies the
flow table of the SDN-capable switch to leverage the response. The authors state that
although their application is simple, the model can be extended to include different de-
tection mechanisms and various incident-response policies for different types of attacks.
A similar work [271], utilizing SDN and NFV, proactively detects (low-level deep packet
inspection) and mitigates botnets in 5G mobile networks by a dynamic reconfiguration
(isolating botnet communication).

71

3 Unsupervised Feature Selection for
Outlier Detection on Streaming
Data to Enhance Network Security

This chapter provides details on the Unsupervised Feature Selection for Streaming Outlier
Detection (UFSSOD) algorithm and is organized as follows — An extensive review of the
state-of-the-art for unsupervised FS from two different viewpoints (SD, OD) is provided
in Section 3.1 and compared with thoroughly engineered requirements for this tasks. In
Section 3.2, details on the conceptualization, operation modes and operation principle of
UFSSOD can be found to achieve unsupervised FS for OD on SD. In Section 3.3, the
performance of two representative algorithms for FS with a focus on SD and OD, FSDS
and IBFS is evaluated, and compared with UFSSOD using extensive measurements. The
discussion reveals that UFSSOD is comparable to (offline) IBFS while working online and
shows that FSDS cannot be applied for the purpose of OD.

3.1 Requirements Engineering and Comparison with
Related Work

FS has become a mighty tool in the field of network security to enhance the performance
of IDS. For better clarity of the plenty of available solutions in this field, this section
has been structured in such a way that first requirements for FS are engineered. Second
a thorough review of state-of-the-art work which is structured in two parts is compared
with the requirements manifesting the research gap of FS for OD in a SD setting.

3.1.1 Requirements with Respect to Feature Selection for Outlier
Detection on Streaming Data

Much attention has been paid towards OD on SD in the field of network security mon-
itoring over the past years since data is increasingly generated, e.g., with high velocity,
in tremendous volume and afflicted with the phenomenon of concept drift due to their
dynamic. Many state-of-the-art works try to come up with new algorithms or try to tune
the algorithm setting in order to improve their classification performance to the best.
Most of them compete on the same (outdated) benchmark data set but might perform
insufficiently with other data sources or in real-world applications. Due to the technolog-
ical advancement in the last years, the amount of unlabeled data generated across many
scientific disciplines, such as text mining, genomic analysis, social media, and intrusion
detection has steadily increased which demands unsupervised learning leading to the first
requirement [R-FS01]. Apart from its supervision, the application of AutoML methods
is not possible due to its non-applicability on SD. We state that due to those circum-
stances a certain amount of false positives and false negatives is acceptable for the sake

72

of a subsequent applied root cause analysis which is conducted on details provided by
the ML algorithms. This position contradicts to the general approaches that tailor their
algorithms to specific data sets by highly tuned parameter sets or by a specific system ar-
chitecture. However, the high complexity by various intervolving or complex algorithms,
the high degree of freedom in the ML pipeline and the coherent resource requirements
oppose the application in real-world scenarios.

If FS is considered in the same setting as online OD, requirements roughly coincide.
Compared to models trained in batch (offline) learning, methods for online OD and for
FS respectively must be more sophisticated in a few points. Especially, training from
imbalanced data from an infinite data stream in a pass-efficient way, meaning one pass
at a time [R-FS02], is a huge challenge since some approaches need to temporarily store
the incoming data. Also the time-varying nature of an infinite data stream compared to a
fixed set might lead to concept drifts. With the different types of concept drifts (sudden,
gradual, incremental, recurring, blips) [272], online processing, especially unsupervised,
will be impeded. Models in batch approaches would quickly be outdated and lead to a
performance degradation such that online algorithms must be able to continuously re-
train or update their model to handle this situation [R-FS03]. Due to the steady growth
of high-dimensional data volumes, offline approaches storing the entire data for training
or scanning the data set multiple times (many passes over the data) lead to consider-
able memory limitations and demand lightweightness [R-FS04]. The major downside
of online methods in general, especially unsupervised methods compared to their batch
opponents, is the poorer performance when it comes to classifying abnormal and normal
data instances. However, we strongly support the hypothesis in [34], when considering
critical streaming applications as for detecting network-based malicious activity, a fast
model, even with less accuracy, is preferred. However, applying FS shall at least improve
the classification performance of OD methods [R-FS05].

In this work, the focus of FS and OD on SD is not in the context of time-series data
as it is the object in many other research works [31, 32]. SD within this context is any
flow of information characterized by incoming instances of data chunks that might be pro-
cessed in near real-time. The information of time, which might be a specific piece of data
received, may not represent the time of measurement and may thus not be an important
feature at all. Regarding time-series data, the order and time are fundamental aspects
with a central meaning of the data such that, based on past observations, predictions to-
wards the future time can be made. It is the goal to detect outlying time-series patterns
based on temporal dependencies, rather than independent outliers in data [120]. More
generally, data streams, becoming more and more prevalent in real-world applications,
can broadly be classified into streaming data and streaming features. The first-mentioned
defines incoming data in a record-by-record manner having a static number of features 𝑑
while in a feature stream new features can be generated dynamically. Thus, the stream
{𝑋𝑡 ∈ R𝑛𝑡×𝑑, 𝑡 = 1, 2, ...} is a continuous transmission of data instances (data points)
which arrive sequentially at each time step 𝑡. The count of features is denoted as 𝑑 (di-
mension) and 𝑥𝑡 the 𝑛𝑡-th 𝑑-dimensional most recent incoming data instance at time 𝑡.
In the field of cyber security and the monitoring of network data the number of features
is fixed [R-FS06] and can be defined a priori by an expert since incorporating domain
knowledge can help select relevant features to improve learning performance greatly. For
network-based features, one may distinguish between basic features (derived from raw
packet headers (meta data) without inspecting the payload, e.g., ports, MAC or IP ad-
dresses), content-based features (derived from payload assessment having domain knowl-

73

edge, e.g., protocol specification), time-based features (temporal features obtained from,
e.g., message transmission frequency, sliding window approaches) and connection-based
features (obtained from a historical window incorporating the last 𝑛 packets) [80]. Those
features are streaming from a single source (single-view) [R-FS07], e.g., a raw network
interface, as statistics from network switching elements or in form of log-files from devices.
However, a human expert cannot be expected to recognize correlations from the variety
and multitude of multivariate features [R-FS08] occurring in high-dimensional real-world
applications. Typically, this manual feature engineering is a time-consuming ad hoc pro-
cess composed of trial and error to determine the features most relevant to the detection
problem which inhibits the application of ML to network security [30, 273]. Thus, FS
is needed whose output can either be a ranked list of the input features or a dedicated
subset. The former allows a better insight into which features contribute the most in
order to select the top-performing-features [R-FS09]. The requirements are summarized
in the list below.

• R-FS01: operation without knowledge of data labels (unsupervised)
• R-FS02: processing incoming data sequentially record-by-record (SD)
• R-FS03: adaptability in highly dynamic networks (dealing with concept drift)
• R-FS04: lightweight in terms of space and computational complexity
• R-FS05: applicable for the classification task on imbalanced data i.e. OD (no

clustering)
• R-FS06: incoming data has the same cardinality (static amount of features - no

streaming features)
• R-FS07: single data source with the assumption that the data is independent and

identically distributed (single-view)
• R-FS08: dealing with multivariate features (identifying redundant and irrelevant

(univariate) features)
• R-FS09: providing a ranked list of features to select (feature scoring)

3.1.2 Feature Selection for Streaming Data

For the purpose of anomaly detection we state that the cardinality of features is known
beforehand by a domain expert’s feature engineering process but the number of data
instances is not known or even infinite. Thus, it is impractical to wait until all or a
significant amount of data is available to perform FS. A batch-mode method especially
in highly dynamic networks with concept drifts is not able to select relevant features in a
timely manner. In contrast, solutions like OSFSMI [274], UFSSF [275] or DOFS [276] are
facing, independent of their supervision, feature streams in which the number of instances
is fixed and the features arrive one-by-one or in groups. In domains where the global
feature space is defined by a domain expert, these methods might only be applicable if
they can fix the number of features and are capable to operate on streaming data.

Much work is dedicatedly tailored towards the clustering task [277, 278, 279] which
can immediately be excluded for the application of anomaly detection as a classification
task on imbalanced data sets. However, other work does not explicitly focus on clustering
but evaluate their approaches applying those algorithms. Therefore, the question arises
to what extent such algorithms can be used for the task of OD. From a supervision
perspective, a supervised FS approach for binary classification on SD called OFS has been

74

proposed in [280] that is able to learn either on all features of a training data instance as
well as only a small number to select the relevant feature subset. The authors of [281] focus
on data stream mining classification algorithms often applied in machine learning with
applications in network intrusion detection. Their real-time FS method is called MC-NN
which describes a concept drift detection method for data stream classification algorithms
including the capability of feature tracking. The method can either be applied as a real-
time wrapper or a batch classifier independent of any learning algorithm. However, the
authors state that their study was not concerned with the classification capabilities of
MC-NN, but with the behavior of the underlying model during concept drift. A similar
approach, we denote it as EaSU, hypothesizes that features can be dynamically weighted
in order to augment the importance of relevant features and diminish the importance of
those which are deemed irrelevant according to observed feature drifts [282]. Therefore
they introduce the concepts of entropy and symmetrical uncertainty in a sliding window
approach to track the relevance of features and could enhance k-Nearest Neighbor, naive
Bayesian and Hoeffding Adaptive Tree algorithms in a supervised setting.

With a focus on unsupervised FS, a comprehensive and structured review towards
the most referenced state-of-the-art work has been given in [283]. However, the review
does not give any details for the specific domains such as text data, link data nor to
SD. An online unsupervised multi-view FS method, called OMVFS, is proposed in [284],
which in addition to the features of FSDS is also capable of handling multi-view data.
It performs unsupervised FS using the concept of nonnegative matrix factorization with
sparse learning and processes incoming multi-view data into several small matrices by
using a buffering technique to reduce the computational and storage cost. FSDS as
proposed in [285] is, to the best of our knowledge, the only unsupervised FS scheme truly
operating in single-view on SD for clustering and classification applications. It utilizes
the ideas of matrix sketching where a sketch of a smaller matrix still approximates its
original to maintain a low-rank approximation of the entire observed data at each time
step. Hence, they modified the so called Frequent Directions algorithm proposed by
Liberty [286] and use regression analysis to generate a feature importance score with each
incoming data. It is space and time efficient requiring only one pass over the data.

The related work regarding approaches towards unsupervised FS for SD is compared to
the requirements from Section 3.1.1 in Table 3.1. Most of the approaches can be neglected
due to their supervision perspective, their design towards streaming features rather than
SD, their focus on clustering task or their need for training instances. Two approaches,
FSDS and OMVFS, even if evaluated on clustering algorithms, seem promising to function
on the classification class. However, it must be evaluated if they are able to produce valid
results in imbalanced data for the purpose of OD. Although OMVFS might be capable of
functioning in single-view, it is designed for multi-view. Therefore, as of now, we set our
focus on FSDS.

75

Table 3.1: Comparison of existing FS work for SD with the requirements defined in Sec-
tion 3.1.1 (3 and 7 denotes the requirement is either fulfilled or not, ∅ denotes
missing information to analyze the respective requirement, (++/+/-) for R-
FS04 and R-FS08 denotes, as objectively as possible, how well the requirement
is fulfilled, R-FS02 and R-FS03 are combined since R-FS03 is a phenomenon
associated with R-FS02 and the existing work in this table fulfills both equally).

Work R
-F

S0
1

R
-F

S0
2/

R
-F

S0
3

R
-F

S0
4

R
-F

S0
5

R
-F

S0
6

R
-F

S0
7

R
-F

S0
8

R
-F

S0
9

OSFSMI [274] 3 3 - 7 ∅ 3 ++ 3

UFSSF [275] 3 3 ++ 7 7 3 - 7

DOFS [276] 3 3 - 7 7 3 + 7

OFS [280] 7 3 ++ 7 3 3 ++ 7

MC-NN [281] 3 3 ∅ 7 3 3 ++ 3

EaSU [282] 7 3 ++ 7 3 3 + 3

OMVFS [284] 3 3 ++ 7 7 3 ++ 3

FSDS [285] 3 3 ++ 7 3 3 ++ 3

3.1.3 Feature Selection for Outlier Detection

FS for IDS must be able to determine the most relevant features of incoming data, e.g.,
network traffic, to minimize the cardinality of the set of selected features which affects
their effectiveness without dropping features indicating abnormal behavior. A review on
FS algorithms for anomaly-based network IDS can be found in [287] dividing them into
bio- and non-bio-inspired ones. However, the authors do not focus on the supervision
perspective, thus, their reviewed work only leverages different supervised FS methods.
None of the reviewed approaches seem to address the requirements defined in Section 3.1.1.
This is discussed by the authors since most of the methods are based on the wrapper
nature or on a combination of FS algorithms which increases the computation and time
complexity.

A lot of FS methods [288, 289, 290, 291, 292] within the context of OD, even recent
ones [293, 294, 295], are operating supervised. Those approaches are mainly performing
multiple evaluations due to their wrapper nature on a dedicated data set typically KDD’99
or NSL-KDD to test different feature subsets using a certain classifier. Within their
setting, they achieve the best subset of features resulting in an optimal classification
performance. However, facing highly dynamic networks with large volumes of data and
high velocity, an analysis is necessary that is beyond the aforementioned approaches.
Some of the authors even state that their approaches take a lot of time to train [292] or
to use other classifiers and verify them under more realistic environments [290]. However,
with the improvements mentioned in the outlook of [292], it is the only work in the field of
FS for OD considering support for online processing even though still being of supervised
nature. For the rest of this section, we set our focus on unsupervised approaches since
those are more meaningful for real-world applications of OD methods.

A limited amount of papers deal with FS approaches for the purpose of OD in an un-
supervised nature. The algorithm in [296], denoted in this chapter as FS-CVI, uses a
genetic algorithm to optimize a cluster validity index, a measure of how well a clustering

76

algorithm manages to identify and assign clusters in a data set, over a search space con-
sisting of feature subsets. Classification based on the proposed subsets from the genetic
algorithm is performed in such a way that clusters are being built which are representing
legitimate traffic and others more prevalent pertaining to intrusions. An unsupervised
backward elimination FS algorithm based on the Hilbert-Schmidt independence criterion,
named BAHSIC-AD, is proposed in [24]. The authors compare their approach with a
recent Spectral Ranking for Anomalies algorithm and show that a combination of this
algorithm and BAHSIC-AD is able to detect point, collective and contextual anomalies.
Their evaluation is performed on real-world data sets taken from various application do-
mains. However, the field of cyber security with intrusion detection is not covered. With
a focus on categorical features, [297] proposed a method that we denote as MI-FS based
on mutual information measure and entropy computation for FS that is employed using
two OD methods: AVF and Greedy method. Thus, within this filter approach categori-
cal features are selected that expect to highlight the deviations characterizing the outliers
with minimum redundancy among them by performing feature-wise entropy computation.
Also aimed for categorical data, [298] proposes CBRW_FS, a coupled biased random
walks approach providing feature weights for categorical data with diversified frequency
distributions, and in [109] a Coupled Unsupervised Feature Selection (CUFS) frame-
work instantiated into a parameter-free Dense Subgraph-based Feature Selection (DSFS)
method. With their instantiation called CINFO in [299], the authors further developed
CUFS by using unsupervised discretization methods like equal-width and equal-frequency
to adopt the methods to numeric data rather than categorical data. Another approach
is given in [300] with Unsupervised Feature Selection and Cluster Center Initialization,
denoted in this work as UFS_CCI. It derives feature scores as the difference of feature
entropy from unlabeled data by computing the ratio of the maximum count of occurring
values by the total amount of samples. Assuming that the value of the result is in between
a threshold range, UFS_CCI considers the feature to be non-redundant. However, the
main focus of this work lies on clustering samples with reduced dimension for intrusion
detection and less on feature relevancy for OD. In CINFO an outlier detector generates
scores in an unsupervised fashion that are fed into a supervised learning sparse Lasso
regression based on pseudo-labels from outlier candidates. Those steps are executed in
an iterative manner to build a sparse sequential ensemble OD framework and is even fur-
ther improved by bagging. Although working unsupervised overall to obtain a dependent
set of an OD and FS model, it requires all of the data objects beforehand. Similarly,
ODEFS proposed in [301] integrates OD and FS into a combined framework by also using
ideas from [299]. The ODEFS framework consists of multiple feature learning components
whose individual outlier scores based on diverse feature subsets are weighted together in
a final score. Therefore, (i) outlier thresholding based on Cantelli’s inequality using the
results from the outlier detector, in this example the distance-based LeSiNN, is applied
to obtain possible outlier candidates. Each feature learning component (ii) randomly
chooses unlabeled examples from the initial data and from the set of outlier candidates to
be fed into a pairwise ranking formulation that embeds FS into OD. The training process
(iii) utilizes the thresholded self-paced learning approach to learn example and feature
weights which will in (iv) be used to compute the final score by the idea of boosting to
combine the outlier score vectors with associated loss as weights. Although, the approach
by ODEFS seems promising, it is designed to know the input data beforehand and heavily
relies on a training phase. Thus, an application in the context of SD is forfeited. The
work of [302] exploits the strengths of the widely known iForest OD algorithm [51] to

77

handle large data size and high dimension with many irrelevant features while having the
potential to identify those to reduce dimensionality. Thus, their proposed method IBFS
calculates feature imbalance scores using an entropy measure during the training process
of iForest and is immune to feature scaling. Features are ranked in a descending order
according to their feature scores. However, the authors did not discuss how to select the
top-features rather evaluating their approach on multiple settings in an offline fashion.

The related work regarding approaches towards unsupervised FS for OD is compared to
the requirements from Section 3.1.1 in Table 3.2. Most of the approaches can be ignored
due to their supervision perspective, their demand for training data or their wrapper-like
nature that are highly tuned and optimized for a data set and the ML classifier. Only a
few test their approach on different data sources or with different classifiers. Good subsets
of features for the purpose of OD are obtained after multiple iterations in a supervised
manner or offline with training data which are often computationally costly. Most of them
lead the argument to use FS in order to reduce the performance costs for OD but do not
discuss the significant costs necessary to obtain a relevant subset that is tailored to one
data set and a corresponding classifier. Despite its supervision, the only work considering
the application in online processing in their future work is [292]. In real-world applications
with highly dynamic networks, FS must work online to deal with concept drift, tailored to
OD without multiple iterative validation rounds and must function unsupervised because
of the lack of labeled data. IBFS is the only approach that might be able to satisfy
those requirements since it works unsupervised and is tailored for the purpose of OD
by exploiting the nature of iForest. Numerous recent advancements of iForest in the
streaming setting [124, 123, 52], in particular, let IBFS constitute a promising candidate
for FS on SD.

Table 3.2: Comparison of existing FS work for OD with the requirements defined in Sec-
tion 3.1.1 (3 and 7 denotes the requirement is either fulfilled or not, ∅ denotes
missing information to analyze the respective requirement, (++/+/-) for R-
FS04 and R-FS08 denotes, as objectively as possible, how well the requirement
is fulfilled, R-FS02 and R-FS03 are combined since R-FS03 is a phenomenon
associated with R-FS02 and none of the existing work in this table fulfills both).

Work R
-F

S0
1

R
-F

S0
2/

R
-F

S0
3

R
-F

S0
4

R
-F

S0
5

R
-F

S0
6

R
-F

S0
7

R
-F

S0
8

R
-F

S0
9

FS-CVI [296] 3 7 ∅ 3 3 3 - 7

BAHSIC-AD [24] 3 7 - 3 3 3 ∅ 3

MI-FS [297] 3 7 ++ 7 3 3 + 3

UFS_CCI [300] 3 7 ∅ 7 3 3 ++ 7

CBRW_FS [298] 3 7 - 7 3 3 + 3

CUFS-DSFS [109] 3 7 - 7 3 3 + 3

CINFO [299] 3 7 + 3 3 3 ++ 3

ODEFS [301] 3 7 + 3 3 3 ++ 3

IBFS [302] 3 7 ++ 3 3 3 ++ 3

78

3.2 Unsupervised Feature Selection for Streaming
Outlier Detection

Existing work targeting FS for SD is mainly supervised and for the clustering, regression or
classification task on balanced data. FS for OD is either supervised or in the unsupervised
case, where even fewer publications are available [109], not capable of coping with SD.
Most of the latter requires a dedicated training phase thus making it impossible to function
for SD in near real-time. However, there is limited work of FS for OD because it is
challenging to define feature relevance given its unsupervised nature. Some work defines
relevancy in the context of correlation between features which is not really useful for
detecting outliers since some features can be strongly relevant for OD but do not correlate
to others. In addition, if there is no dedicated batch training phase, as it is the case with
SD, FS becomes a challenging task. To the best of the authors’ knowledge unsupervised
FS for OD on SD is a completely new field. Thus, we propose UFSSOD referring to
Unsupervised Feature Selection for Streaming Outlier Detection that can be applied to
improve off-the-shell online OD methods.

However, the two following assumptions are made in order to deal with the problem
that is mostly neglected in the literature due to either the supervised nature or the batch
approach but is present with FS on SD within the context of OD. Discarding irrelevant or
redundant features in time 𝑡 due to unsupervised and streaming FS might contain outliers
in time 𝑡+ 𝑖. Therefore we assume that (i) attacks are complex and indicators of attacks
resulting in outliers might affect not only the one feature being identified as irrelevant
or redundant, thus dropped, and (ii) attacks and their affecting outliers predominantly
correspond to the same features. Particularly the second could be shown in [303] where
some features have been more significant over multiple attack scenarios, e.g., B.Packet
Len Std, Flow Duration or Flow IAT Std. Most of the state-of-the-art work of FS within
the context of OD does not discuss this dilemma since they either work supervised and
know which features contain the outliers or work in an offline setting having training data
available. Therefore they know all the data including those containing outliers beforehand.
In the next two sections we present the conceptualization alongside operation modes for
UFSSOD and provide its internal functionality with regard to cluster feature scores in
order to obtain the top features for OD on SD.

3.2.1 Operation Principle

The operation principle of UFSSOD is shown in the block diagram of Figure 3.1. Data
instance (data point) 𝑥𝑡 with dimension 𝑑 of the data stream {𝑋𝑡 ∈ R𝑛𝑡×𝑑, 𝑡 = 1, 2, ...}
streams into the module UFSSOD at each time step 𝑡 composed of the global feature
space ℱ = {𝑓1, 𝑓2, ..., 𝑓𝑑}. UFSSOD is capable of computing a ranked list of features
contributing the most for the purpose of OD leading to a subset ℱ𝑆 = {𝑓𝑖1, 𝑓𝑖2, ..., 𝑓𝑖𝛾} of
the top-𝛾-features for each time step 𝑡 where a higher value of 𝑓𝑖 indicates a highly con-
tributing feature for the purpose of OD. Using ℱ𝑆, 𝑥𝑡 is reduced to 𝑥*

𝑡 where 𝑥*
𝑡 = 𝑥𝑡∩ℱ𝑆

applies. Besides, if desired, UFSSOD is able to produce possible outlier candidates by
providing scaled outlier scores 𝑦0 for each 𝑥𝑡 without increasing the overall complexity
in big 𝒪 notation referring to [119]. Algorithm 1 provides a high-level overview of UFS-
SOD’s operation principle consisting of the scoring and clustering functionality for feature
scores, denoted as ufssod_scoring and ufssod_clustering. The internal working of both
key modules is described in detail in Section 3.2.3.

79

xt Xt

F={f1,f2,f3, ,fd}

 ufssod_scoring

UFSSOD

y0 Moving Mean /
Standard
Deviation

Scaling
y0 ~

LodaCont.

sf

μt, σt

 ufssod_clustering

Moving Mean
sf
-

flag

γ

ckmeans_1d_dp
indices

indices FS
xt*

Figure 3.1: Block diagram and operation principle of UFSSOD

Algorithm 1: High-level operation principle of UFSSOD.
Input: A sample 𝑥𝑡 and a 𝑓𝑙𝑎𝑔 to control ufssod_clustering
Output: A reduced sample 𝑥*

𝑡 based on feature subset ℱ𝑆
1 𝑦0, 𝑠𝑓 ← ufssod_scoring(𝑥𝑡) ◁referring to Algorithm 2
2 if flag is set then
3 indices ← ufssod_clustering(𝑠𝑓) ◁referring to Algorithm 3
4 else
5 indices ← the lastly acquired indices

6 𝑥*
𝑡 ← 𝑥𝑡[indices]

7 return 𝑥*
𝑡

3.2.2 Operation Modes

The conceptualization for an online unsupervised FS in an application for streaming OD is
depicted in Figure 3.2 showing the sequential operation mode for UFSSOD. Independent
of the applied operation mode, in the starting point 𝑡0, where no FS has been performed,
or the initialization of each algorithm takes place, 𝛾 is set to 𝑑 in order to work with all
features. The module Unsupervised Online OD operates an online capable unsupervised
OD algorithm, e.g., xStream [120], iForest_ASD [122] or Loda [119], and uses the pro-
posed subset ℱ𝑆 to boost its performance yielding a more precise outlier score 𝑦𝑖 based
on 𝑥*

𝑡 . One might also apply multiple classifiers in parallel in the Unsupervised Online
OD module to exploit the power of a combination of 𝑚 individual classifiers depending on
the available resources. For this, one might define a certain resource budget 𝑟 comprising
of computational resources such as CPU or wallclock time as well as memory usage and
let 𝑚 = 𝑓(𝑟) be a function of 𝑟. Thus, even during runtime, some classifiers might be
turned off for the sake of resource preservation. The outlier scores 𝑦0 and 𝑦𝑖 are nor-
malized using Gaussian Scaling proposed by [304] to 𝑦 = 𝑚𝑎𝑥{0, 𝑒𝑟𝑓(𝑦−𝜇𝑡

𝜎𝑡
√
2
)} in which

𝑒𝑟𝑓() is the Gaussian Error Function which is monotone and ranking stable. The moving
average 𝜇𝑡 and standard deviation 𝜎𝑡 of the outlier scores until time 𝑡 are obtained by
applying, e.g., the well-known Welford’s algorithm [305] or one of the methods proposed
in [32]. Scaling is necessary when combining algorithms of different nature with different
characteristics. For instance operating LodaTwo Hist. with different window sizes will re-
sult in different averaged score values due to the different state of knowledge on normal

80

data. With increasing window sizes the model becomes more accurate while seeing larger
amounts of normal data which are then scored less compared to models obtained from
smaller window sizes. With the mean and standard deviation proportion of the Gaussian
Scaling this difference will be eradicated and the Error Function the scores are tailored
to the interval between 0 and 1. With the normalized outlier scores, a final score can be
computed that might also be weighted. The confidence level of the Unsupervised Online
OD module is typically higher than those of UFSSOD since it operates on the reduced
representation of a sample 𝑥*

𝑡 and thus one might give a higher weight to its score. We use
𝑦 = 𝑔0𝑦0 +

∑︀𝑚
𝑖=1 𝑔𝑖𝑦𝑖 depending on the weights 𝑔0 for UFSSOD and 𝑔𝑖 for each classifier

(typically 𝑔𝑖 > 𝑔0) where 𝑔0 +
∑︀

𝑖 𝑔𝑖 = 1 and 𝑦 ∈ [0, 1] applies. Using domain expertise,
a reasonable threshold can be determined over runtime yielding a decent classification
performance that assigns a binary value from the set {𝑛𝑜𝑟𝑚𝑎𝑙, 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙} for each 𝑦.

UFSSOD

Σ
y0 (xt)

xt Xt

F={f1,f2,f3, ,fd} FS={fi1,fi2,..,fi γ }

xt*

y (xt)
~

~yi (xt*)
Unsupervised

Online OD

~

Figure 3.2: Conceptualization of module interaction for unsupervised FS for OD on SD
(sequential approach).

Since the UFSSOD module is able to provide different feature scores at each time step
𝑡, resulting in possible other top-𝛾-features than at time 𝑡 − 𝑖, the downstream applied
Unsupervised Online OD module might be capable of dealing with those changing features.
If this is the case, the setup can truly work online, meaning that UFSSOD provides an
updated version of the feature subset 𝐹𝑆 with a potentially changing cardinality that is
used by the Unsupervised Online OD module to detect outliers in each 𝑡. To the best
of our knowledge, only xStream is able to handle this situation. Moreover, xStream not
only handles a varying cardinality of the feature subsets but is also able to deal with
completely newly occurring features. However, the latter is not the focus of this work
since for domain specific applications features are assumed to be known beforehand. Since
most of the state-of-the-art unsupervised OD algorithms operate on a fixed set of features
with a fixed cardinality, a windowed approach can be utilized if the subsequently applied
online OD algorithm is able to dynamically change its model during runtime. Thus, it
can replace the old feature subset with the newly proposed one after the current time
window elapsed. Possible algorithms would be iForest_ASD, which rebuilds its forest
after a certain condition is met, thus also allowing to rebuild it with a different feature
subset, or LodaTwo Hist. and HS-Trees using windowing where models are replaced with
the ones currently built and the ones that will be built can use the current feature subset.
With respect to LodaTwo Hist., the old histograms built and classified with ℱ𝑆(𝑡−𝑖) will be
replaced with the new histograms using ℱ𝑆(𝑡), also allowing to change the cardinality
(different top-𝛾-features).

If this sequential operation limits the throughput, a parallel approach can be utilized
where both modules UFSSOD and Unsupervised Online OD work in parallel. As depicted
in Figure 3.3 the online OD algorithm for each 𝑡 operates with the previously proposed
subset ℱ𝑆2, while the UFSSOD module continuously proposes a new ℱ𝑆, which is stored
within ℱ𝑆1. The Unsupervised Online OD module can now decide whether it changes its
feature subset for each 𝑡 by using the one proposed by UFSSOD in 𝑡−1 switching between

81

ℱ𝑆1 and ℱ𝑆2 or switching subsets again in a windowed fashion. The latter seems more
convenient if the setup must not truly work online since the OD algorithm can work with
the full throughput using the static feature subset until its model gets replaced or updated
with the new subset, which was generated within the current time window. Furthermore,
it should be noted that ufssod_clustering with respect to Algorithm 2 must not neces-
sarily be performed for each sample in order to preserve resources while operating in the
windowed mode. Thus, continuously ufssod_scoring is performed but ufssod_clustering
is only performed if the subsequent classifier demands a new feature subset. With respect
to LodaTwo Hist. and Figure 3.3, the old histograms built and classified with ℱ𝑆2 will be
replaced with the new histograms switching to ℱ𝑆1 when the window size is reached,
whereas UFSSOD continuously updates ℱ𝑆1 until switching.

xt Xt

F={f1,f2,f3, ,fd}
y (xt)

y0 (xt)

yi (xt*)
Σ

 FS1

 FS2

FS={fi1,fi2,..,fi γ }

UFSSOD

Unsupervised
Online OD

 xt*

~

~ ~

Figure 3.3: Conceptualization of module interaction for unsupervised FS for OD on SD
(parallel approach).

3.2.3 Model for Scoring and Clustering Features

In this section, details of the internal working of UFSSOD (Figure 3.1) with regard to the
core modules, ufssod_scoring() and ufssod_clustering(), is provided. Motivated by the
functionality of Loda to rank features according to their contribution, UFSSOD leverages
an adapted version of LodaCont. that continuously processes the feature scores for ranking
and proposing the top-𝛾-features. Besides, it is able to provide outlier scores for each
incoming 𝑥𝑡. It fulfills all the requirements of FS for SD and OD stated in Section 3.1.1.
Also encouraged by IBFS, which exploits the training process of iForest for FS, we aimed
to bring the nature of an online OD algorithm into this field as well but for the SD
context. However, Loda seems more appropriate since it handles high-dimensional data
more efficiently and is able to handle concept drifts. We see ourselves validated in our
approach, since the evaluations of [120] prove that projection-based methods, as is the case
with Loda, are advantageous in high dimensions with many irrelevant features, because
the features relevant for OD are less likely to be selected by other methods that operate
with ℱ . Therefore, sorting out those irrelevant features from high-dimensional data will
significantly aid other OD methods by increasing their performance. Furthermore, the
author of Loda already showed the capability of the algorithm to identify meaningful
features in his experiments.

Our basis for LodaCont. is the Appendix: online histogram stated in [119]. However, it
must be noted that both of its Algorithms 3 and 4 contain minor mistakes. In the former
𝑧𝑚𝑎𝑥 is computed by the 𝑚𝑖𝑛 instead of the correct 𝑚𝑎𝑥 function and referring to the
latter, the formula for the probability 𝑝(𝑧) should depend on a weighted average of the bin
counts. With the formula given, one obtains negative results in the case for negative 𝑧𝑖 and
𝑧𝑖+1. A corrected version has also been proposed by [306] as 𝑝(𝑧) = (𝑧𝑖+1−𝑧)𝑚𝑖+(𝑧−𝑧𝑖)𝑚𝑖+1

𝑀(𝑧𝑖+1−𝑧𝑖)
such that for instance if 𝑧 is closer to 𝑧𝑖, 𝑝(𝑧) gets weighted closer to 𝑝(𝑧𝑖) accordingly.

82

The one-tailed two-sample 𝑡 test has been proposed by the author of Loda, referring to
Equation 4 in [119] to measure the statistic significance of each feature to its contribu-
tion of a sample’s anomalousness. Apart from the complexity of LodaCont. in time with
𝒪(ℎ𝑑−

1
2) and space 𝒪(ℎ(𝑑−

1
2 + 𝑏)), referring to the naïve implementation of continuously

updated histograms where ℎ is the number of histograms and 𝑏 the number of histogram
bins, the identification of relevant features does not increase the complexity. This is be-
cause the statistical test performed is linear with respect to the number of projections ℎ
and number of features 𝑑 and only increases the complexity in big 𝒪 notation by a neg-
ligible constant [119]. We integrated the functionality of relevant feature identification of
LodaCont. in UFSSOD as a fundamental part and are able to produce feature scores 𝑠𝑓𝑖(𝑡)
for the 𝑖𝑡ℎ feature 𝑓𝑖 at each time step 𝑡 for one sample 𝑥𝑡, resulting in a one-dimensional
array 𝑠𝑓 = {𝑠𝑓1, 𝑠𝑓1, ..., 𝑠𝑓𝑑} of 𝑑 feature scores per sample. Similarly to the continuous
updating of the histograms, we propose to continuously update the feature scores for
each sample by incremental averaging. There are various approaches discussed in [32],
e.g., Exponentially Weighted Moving Average, that are better able to cope with occurring
concept drifts in the feature scores while incrementally averaging them. As of now, how-
ever, we apply the incremental average 𝑠𝑓𝑖(𝑡) = 1

𝑛𝑡
(𝑠𝑓𝑖(𝑡−1)𝑛𝑡−1 + 𝑠𝑓𝑖(𝑡)) with a continuous

counter value 𝑛𝑡 for each new data instance, in order to obtain the averaged array of
feature scores 𝑠𝑓 but reserve the right to use more advanced moving methods in future
work. While only preserving 𝑑 values for the current average scores, one value for the
continuous counter 𝑛𝑡 and performing 𝑑 updates of the scores, both the space and time
complexity for each feature score averaging is 𝒪(𝑑) when applying Welford’s algorithm.
This does not significantly increase the overall complexity of UFSSOD since 𝑑 is fixed.
A summary of the scoring functionality of UFSSOD for both, the outlier score and the
feature scores, inclusive of their processing, is shown in Algorithm 2.

Algorithm 2: Scoring functionality of UFSSOD - ufssod_scoring().
Input: A sample 𝑥𝑡

Output: The scaled outlier score 𝑦0 and the averaged feature scores 𝑠𝑓
1 𝑦0, 𝑠𝑓 ← Loda_cont.update_score(𝑥𝑡)
2 𝜇𝑡 ← outlier_score.moving_mean(𝑦0)
3 𝜎𝑡 ← outlier_score.moving_sd(𝑦0)
4 𝑦0 ← argmax(0, erf(𝑦0−𝜇𝑡

𝜎𝑡
√
2
))

5 𝑠𝑓 ← feature_scores.moving_mean(𝑠𝑓)
6 return 𝑦0, 𝑠𝑓

Since the features within the subset not only influence the efficiency of the OD task but
also the cardinality of the set significantly, the number 𝛾 referring to the top-features is
crucial. However, this is an optimization problem where the intention is to optimize the
solution in such a way that the highest accuracy can be reached together with the lowest
execution time achieved, e.g., by a smaller number of features. According to [100] it is
still a challenging and known problem to determine the optimum number of features to
select. Since this mostly applies for the supervised and offline case, we state that finding
an optimal solution and therefore a point of equilibrium between the best classification
with the lowest computational performance is impossible in the online setting.

When the Unsupervised Online OD module demands a new subset of the top-𝛾-features,
UFSSOD clusters 𝑠𝑓 to obtain the cluster(s) with the top scoring features. Even if clus-

83

tering in one-dimensional space is not as trivial as it sounds, some algorithms are capa-
ble of solving this task, e.g., by applying Kernel Density Estimation (KDE), having a
strong statistical background and seeking for local minima in density to split the data
into clusters. However, we propose the 𝑘-mean adaption for one-dimensional clustering
Ckmeans.1d.dp [307, 308]. It achieves 𝒪(𝑘𝑑) by the optimization proposed in [308] for
both time and space complexity, where 𝑘 refers to the number of clusters built. Three
improvements have been made for Ckmeans.1d.dp for the application within UFSSOD.
We (i) increased the factor of the Log-Likelihood within the BIC (Bayesian Information
Criterion) computation, relevant to finding the optimum number of clusters 𝑘 in order
to better cluster the feature scores by more distinct spacing between data points. To
avoid the case of too few feature scores in the top cluster yielding a small 𝛾, we (ii) add
a minimum constraint of having at least 𝛾𝑚𝑖𝑛 feature scores in the top cluster. Thus, Ck-
means.1d.dp is performed as long as |𝑐𝑙𝑢𝑠𝑡𝑒𝑟1| ≥ 𝛾𝑚𝑖𝑛 by successively reducing 𝑘 starting
from the initial optimum number of clusters 𝑘𝑜𝑝𝑡. This adds a negligible constant to big
𝒪 notation in the worst case where |𝑐𝑙𝑢𝑠𝑡𝑒𝑟1| = 1 of 𝛾𝑚𝑖𝑛 − 1. For 𝛾𝑚𝑖𝑛, we propose a
minimum number of ⌈

√
𝑑⌉ features which is often used as a rule of thumb for selecting

features and achieved promising results in our evaluation. However, 𝛾𝑚𝑖𝑛 can also be freely
set by the domain expert. Since 𝛾𝑚𝑖𝑛 only states the least requirement and the second,
third, etc. best clusters might have promising feature scores as well, we (iii) also propose
to check the distances between the cluster centers and their radii which are defined by the
utmost feature score from the cluster center as depicted with semicircles in Figure 3.4.
Thus, not only the features of the cluster with the top scoring features 𝑐𝑙𝑢𝑠𝑡𝑒𝑟1 are re-
turned, with |𝑐𝑙𝑢𝑠𝑡𝑒𝑟1| ≥ 𝛾𝑚𝑖𝑛, but also those where the distance between the centers of
𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖+1 is less than the sum of radii of 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖+1. Within the
example of Figure 3.4 for 𝑑 = 20, ⌈

√
𝑑⌉ = 5, |𝑐𝑙𝑢𝑠𝑡𝑒𝑟1| = 6 the feature scores of 𝑐𝑙𝑢𝑠𝑡𝑒𝑟1

are returned with (ii) and 𝛾 = 6 whereas those of 𝑐𝑙𝑢𝑠𝑡𝑒𝑟1 + 𝑐𝑙𝑢𝑠𝑡𝑒𝑟2 are returned with
(iii) and 𝛾 = 11.

0 0.2 0.4 0.6 0.8 1

𝑐𝑙𝑢𝑠𝑡𝑒𝑟1
𝑐𝑙𝑢𝑠𝑡𝑒𝑟2𝑐𝑙𝑢𝑠𝑡𝑒𝑟3𝑐𝑙𝑢𝑠𝑡𝑒𝑟4

𝑠𝑓𝑖(𝑡)

Figure 3.4: Visualization aid of ufssod_clustering with four exemplary clusters and semi-
circles around the cluster centroids.

It is again noted that the cardinality has a significant impact on the classifier since some
even perform well with only a few features [283, 303] whereas others operate best in high
dimensions [120] or fluctuate with a varying number of relative features [119]. However,
depending on the classifier used, one might adapt 𝛾𝑚𝑖𝑛 or not use the cluster approach at
all by setting 𝛾 to a certain value. UFSSOD then ranks the feature scores in descending
order, e.g., by the widely accepted Quick Sort or Merge Sort algorithm, and returns the
top-𝛾-features. Depending on the chosen setup, in terms of complexity, we propose Merge
Sort since the space and time complexity of 𝑑 feature scores, even in the worst case, is
𝒪(𝑑). A summary of the clustering functionality of UFSSOD is shown in Algorithm 3.

84

Algorithm 3: Feature clustering of UFSSOD - ufssod_clustering().
Input: The averaged feature scores 𝑠𝑓 and optional=(𝛾, 𝛾𝑚𝑖𝑛, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
Output: The set of indices of ℱ𝑆 for 𝑥𝑡 to obtain 𝑥*

𝑡

1 if 𝛾 is set then
2 return indices ← first 𝛾 of argsort(𝑠𝑓 , descending)

3 if 𝛾𝑚𝑖𝑛 not set then
4 𝛾𝑚𝑖𝑛 ←

√︀
|𝑠𝑓 |

5 result ← ckmeans_1d_dp(𝑠𝑓)
6 while result.|𝑐𝑙𝑢𝑠𝑡𝑒𝑟1| < 𝛾𝑚𝑖𝑛 do
7 k ← result.k𝑜𝑝𝑡 - 1
8 result ← ckmeans_1d_dp(𝑠𝑓 , k)

9 indices ← result.cluster1
10 if distance == true then
11 𝑐𝑟1 ← Ø 𝑐𝑙𝑢𝑠𝑡𝑒𝑟1/2
12 𝑐𝑟2 ← Ø 𝑐𝑙𝑢𝑠𝑡𝑒𝑟2/2
13 𝑖← 1
14 while 𝑐𝑟𝑖 + 𝑐𝑟𝑖+1 > center_distance(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖+1) do
15 𝑖← 𝑖+ 1
16 𝑐𝑟𝑖+1 ← Ø 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖+1/2
17 indices← indices + result.cluster𝑖+1

18 return indices

3.3 Evaluation

This section gives a glance at the experimental setup used for evaluation. First the test
environment is presented, followed by information on the data set collection used and a
description of the evaluation methodology.

3.3.1 Test Environment

Experiments were conducted on a virtualized Ubuntu 20.04.1 LTS equipped with 12 x
Intel(R) Xeon(R) CPU E5-2430 at 2.20 GHz and 32 GB memory running on a Proxmox
server environment. All programs are coded in Python 3.7. Unless otherwise stated, com-
monly used Python libraries, e.g., numpy, are used for instance with the argsort function
applying Merge Sort to sort the feature scores. We implemented ufssod_clustering in
Python according to Ckmeans.1d.dp [308] with only the relevant functions for BIC and
the one-dimensional cluster-routine and adapted it with respect to Section 3.2.3. As of
now, however, we did not implement the return of additional clusters based on the cluster
center distance verification.

For FS, we integrated the code1 for FSDS [285] and implemented IBFS according to the
original paper [302] in the code2 of iForest. UFSSOD has been implemented according to
Section 3.2.3 in Python as well.

1https://github.com/takuti/stream-feature-selection (accessed on 05 March 2021)
2https://github.com/mgckind/iso_forest (accessed on 05 March 2021)

85

https://github.com/takuti/stream-feature-selection
https://github.com/mgckind/iso_forest

For online OD on SD, we have chosen 6 off-the-shelf ensemble algorithms. Most of
them have been shown to outperform numerous standard detectors [121]. The Python
framework called PySAD3 (Python Streaming Anomaly Detection) proposed in [309] is
used to provide multiple implementations for online/sequential anomaly detection. It con-
tains among others RS-Hash [118], HS-Trees [117], iForest_ASD [122], Loda [119], Kit-
sune [115] and xStream [120]. However, some of them are not yet fully implemented, e.g.,
iForest_ASD, or their offline (batch) implementation is included, taken from PyOD [310],
rather than their online counterparts as for Loda and xStream. Thus, we integrated RS-
Hash, HS-Trees and Kitsune from PySAD and used our own Python implementation of
LodaTwo Hist.. We avoided the use of the Rozenholc formula, stated by [119], to obtain
the optimum number of bins per histogram and used default numbers of histograms and
bins for all runs. Furthermore, iForest_ASD from scikit-multiflow [34] and the iMForest
implementation4 provided along with [124] was added for the online case. However, iFor-
est_ASD was not included in the measurements due to (i) the lack of properly setting
the drift threshold depending on the used data sets, which led to intense time-consuming
measurements, and (ii) our desire to rely on the more advanced and recent iForest stream-
ing competitor iMForest. xStream was taken from the StreamAD library5 providing the
streaming version rather than the static one, as with PySAD. Unless otherwise stated
the default hyperparameters of the algorithms have been used and outlier thresholds have
been fixed for all measurements. In order for the classifiers not to start their classification
with empty models, all measurements are first initialized by processing 40% of the same
input data later used for classification. This approach seems legitimate to us since we
do not focus on the actual performance of each individual online OD classifier but rather
want to evaluate the impacts of FS to them.

In terms of evaluation metrics, for each measurement, we computed the typical pa-
rameters of the confusion matrix for binary classification, True Negatives (𝑇𝑁), False
Negatives (𝐹𝑁), False Positives (𝐹𝑃) and True Positives (𝑇𝑃) to derive the harmonic
mean of precision and recall, denoted as 𝐹1 score. It represents the classification per-
formance of an algorithm and can be computed by 𝐹1 = 𝑇𝑃

𝑇𝑃+ 1
2
×(𝐹𝑃+𝐹𝑁)

. Compared to
other work that relies on the ROC (Receiver Operating Characteristic Curve), AUC (Area
under the ROC) or only accuracy metric, e.g. [291, 293, 302], we see the 𝐹1 score is more
appropriate for OD since, e.g., the false positive rate used in the ROC metric depends on
the number of 𝑇𝑁 whose proportion in OD is typically quite large. Thus, the ROC curve
tends to be near 1 when classifying imbalanced data and thus is not the best measure for
examining OD algorithms. A good 𝐹1 indicates low FP and FN and is therefore a better
choice to reliably identify malicious activity in the network security domain without being
negatively impacted by false alarms.

Furthermore, we measured the average runtime per OD algorithm, denoted as 𝑎𝑣𝑔_𝑡,
as a representative metric for the computational performance. Thus we accumulated the
elapsed time for individual steps necessary to perform, e.g., partial fitting or prediction to
derive the average runtime after multiple iterations for processing a particular data set.
Having a tradeoff between the classification and computational performance, the third
metric is the ratio of 𝐹1/𝑎𝑣𝑔_𝑡.

3https://pypi.org/project/pysad/ (accessed on 05 March 2021)
4https://github.com/bghojogh/iMondrian (accessed on 05 March 2021)
5https://pypi.org/project/streamad/ (accessed on 05 March 2021)

86

https://pypi.org/project/pysad/
https://github.com/bghojogh/iMondrian
https://pypi.org/project/streamad/

3.3.2 Data Source

Rather than relying on a security-domain specific single data set such as KDD’99, NSL-
KDD or a predestined younger one CSE-CIC-IDS20186, we have deliberately chosen real-
world candidate data sets from the Outlier Detection DataSets (ODDS)7 Library [311]
which are commonly used to evaluate OD methods for various reasons. In recent years,
the majority of state-of-the-art IDS data sets have been criticized by many researchers
since their data is out of date or do not represent today’s threat landscape [303, 312,
313]. Even if CSE-CIC-IDS2018 overcomes some shortcomings, it was not optimal for the
extensive number of measurements performed (Figure 3.5) due to its enormous number
of data instances in multiple files. Furthermore, we wanted to stress test UFSSOD with
very dynamic data sets meaning that outliers might occur in various features, which are
typically not the same. As could be shown with its predecessor, the CICIDS2017, only a
subset of three to four features per attack is enough to describe it best [303], making it
look quite static. With an ensemble of the 15 data sets from ODDS shown together with
their characteristics in Table 3.3, we focused on a variety of data sets in terms of length,
dimension and outlier percentage from multidisciplinary domains. Except for lympho and
vertebral, which have been neglected due to their insignificant number of data instances
or dimensions, those data sets are also used by PyOD for benchmarking. Furthermore, to
reduce the processing runtime of each OD algorithm we truncated mnist, musk, optdigits,
pendigits, satellite, satimage-2 and shuttle while mostly maintaining its outlier percentage.

Table 3.3: Characteristics of the utilized and partially adapted data sets from ODDS [311].

ID Data set #
In

st
an

ce
s

#
D
im

en
si
on

s

O
ut

lie
rs

(%
)

1 arrhythmia 452 274 14.6
2 cardio 1831 21 9.6
3 glass 214 9 4.2
4 ionosphere 351 33 35.9
5 letter 1600 32 6.25
6 mnist 2603 100 26.9
7 musk 1000 166 9.7
8 optdigits 2216 64 6.8
9 pendigits 2000 16 2.3
10 pima 768 8 34.9
11 satellite 3000 36 31.1
12 satimage-2 1750 36 1.0
13 shuttle 3000 9 7.9
14 vowels 1456 12 3.4
15 wbc 378 30 5.6

6https://registry.opendata.aws/cse-cic-ids2018/ (accessed on 05 March 2021)
7http://odds.cs.stonybrook.edu/about-odds/ (accessed on 05 March 2021)

87

https://registry.opendata.aws/cse-cic-ids2018/
http://odds.cs.stonybrook.edu/about-odds/

3.3.3 Evaluation Methodology

For the comparison of FSDS and IBFS, as representatives of FS for SD and OD, with
UFSSOD, our methodology is shown in a flow chart in Figure 3.5. For each data set
of Table 3.3 we performed extensive measurements by first setting an FS algorithm. It
must be noted that FSDS relies on the number of singular values 𝑘. The authors of
FSDS state that this parameter should be equal to the number of clusters in the data
set. However, since our focus is on classification rather than on clustering, we performed
measurements with different values for 𝑘 to test the applicability of FSDS for OD. After
the FS algorithms yield their scores for each feature, the subset is obtained by different 𝛾,
e.g., the top 25% ranked features, randomly chosen 𝛾 features, or automatically proposing
𝛾 features by using ufssod_clustering to avoid the top-𝛾-problem. Each obtained subset
has been used by 6 online capable OD algorithms per measurement yielding 𝑎𝑣𝑔_𝑡 and
𝐹1 per classifier. Finally, the results have been averaged across 10 independent runs,
since most of the methods are non-deterministic, e.g., negatively affected by Random
Projection.

Datasets

10 iterations







FSDS (k=1) γ = 25%

IBFS

UFSSOD

γ = 50%FSDS (k=2)

FSDS (k=8)







ID=1

ID=2

ID=15

γ = 75%

γ = 100% (full_dim)

γ = ufssod_clustering

RS-Hash

HS-Trees

Kitsune

xStream

iMForest

Loda Two Hist.

Measurement

Measurement

Measurement

Measurement

Measurement

Measurement

random

Figure 3.5: Flowchart of the evaluation measurements.

Since no other unsupervised FS algorithms for OD with regard to a streaming fashion
exist, we tested our conceptualization in the two proposed settings of Figure 3.2 and 3.3.
Thus, we let UFSSOD compute an outlier score and propose the top-𝛾-features for each
data instance that will immediately be used and processed sequentially by xStream. For
LodaTwo Hist. we used the parallel approach and let Loda build histograms using the current
feature subset while classifying with the old one. The window size was set to 200 samples
rather than 256 used by [119] because of the limited number of data instances in the glass
data set. After the window size is reached, the current classifying histograms are replaced
with the ones built and the new histograms are built using the currently proposed subset
by UFSSOD. The streaming setting was only performed on the data sets with IDs 2,
5, 6, 8, 9, 11, 12, 13, 14 due to their more meaningful number of data instances for a
streaming setting. Since we stick to the default threshold values for most of the classifiers
and do not extract the score values but their binary prediction, we have not utilized the
scaled combination approach so far. Despite that, we combined the results of UFSSOD,
xStream and LodaTwo Hist. by a simple logical or -conjunction in three settings: UFSSOD
with xStream, UFSSOD with LodaTwo Hist. and UFSSOD with xStream with LodaTwo Hist.

as a combination of UFSSOD with two downstream applied OD algorithms. Although
achieving a higher 𝑇𝑃 while also producing more 𝐹𝑃 , our approach is legitimate under
the assumption that it is more important to detect attacks while coping with 𝐹𝑃 in a

88

consecutive alert analysis. Albeit not within the scope of this work, it must be noted that
most of the classifiers are not able to perform root cause analysis, e.g., Kitsune as stated
in [314], which might be relevant for a subsequent alert analysis.

3.4 Discussion of Results

In this section we discuss some of the key results obtained by the comprehensive evalu-
ation. We structured this section into three parts. First we discuss the applicability of
FSDS as an FS algorithm for SD when utilized for the purpose of OD by comparing it
with IBFS and UFSSOD. Then, IBFS as an FS algorithm for OD is compared with UFS-
SOD in different feature subset settings to discuss the comparable operational capability
of UFSSOD as an FS algorithm for OD. Lastly, we prove the applicability of UFSSOD
in conjunction with the online OD algorithms xStream and LodaTwo Hist. in two different
streaming settings.

3.4.1 Comparison of FSDS, IBFS and UFSSOD with the Best
25% Features

First, we compare the results for 𝛾 set to the 25% of the top-ranked features for FSDS,
IBFS and UFSSOD. The reason behind only considering the top 25% is that if the FS
algorithm is able to rank the features according to their contribution of anomalousness
properly, the results should, even with this limited amount of features, be noticeable for
the task of OD. If one of the FS algorithms yielded poor results even for the top features,
we could show its non-applicability to the task of OD. The results of the 𝐹1/𝑎𝑣𝑔_𝑡 metric
are shown in Table 3.4. We have chosen the 𝐹1/𝑎𝑣𝑔_𝑡 metric in this setup since, inde-
pendently of IBFS being an offline FS algorithm, we wanted to include the information of
the tradeoff between classification and computational performance, especially to compare
FSDS with UFSSOD being of online nature. Since we also compared feature subsets of
the same cardinality, this approach is legitimate. Nevertheless, the results for 𝐹1 show
a similar behavior. It is noted that FSDS is able to process more than only one sample
at each time 𝑡. The implementation used required 10 samples at each time to function
properly. Thus, the results, with regard to 𝑎𝑣𝑔_𝑡, would even be worse for FSDS if it
would only process one instead of 10 samples due to longer runtime.

89

Table 3.4: 𝐹1/𝑎𝑣𝑔_𝑡 results for FSDS (different 𝑘), IBFS and UFSSOD for 𝛾 set to 25%
of 𝑑 for data sets with ID 𝑖 (values are scaled with ×10−3 and in unit 1/𝑠, best
performing feature set in bold).

ID F
S
D

S
_

k_
1

F
S
D

S
_

k_
2

F
S
D

S
_

k_
3

F
S
D

S
_

k_
4

F
S
D

S
_

k_
5

F
S
D

S
_

k_
6

F
S
D

S
_

k_
7

F
S
D

S
_

k_
8

IB
F
S

ra
n
do

m

U
F
S
S
O

D

1 10.01 10.35 10.28 9.92 9.97 10.11 9.97 9.99 11.27 8.18 9.89
2 2.41 2.03 2.21 1.55 1.62 1.71 1.77 1.71 2.83 2.24 2.58
3 7.30 7.92 6.40 9.36 7.21 11.00 8.80 9.39 12.20 6.88 3.30
4 17.19 19.52 18.76 18.26 18.17 18.94 18.34 17.61 18.55 18.47 18.99
5 1.36 1.42 1.41 1.40 1.06 1.16 0.88 1.21 1.39 1.15 1.32
6 2.01 2.11 2.07 2.18 1.99 2.02 2.31 2.46 1.77 1.69 1.81
7 6.43 6.95 8.56 8.86 7.12 6.20 5.02 5.10 7.75 6.62 6.49
8 1.39 1.36 1.16 1.41 1.30 1.31 1.41 1.88 0.68 0.54 0.68
9 0.93 0.85 0.68 0.63 0.67 0.49 0.51 0.55 0.63 0.78 0.61
10 7.02 7.06 6.15 7.32 6.11 5.45 6.39 8.81 7.84 7.41 8.91
11 1.58 2.20 2.01 2.01 2.40 2.12 2.17 2.05 3.21 2.00 3.17
12 0.54 0.39 0.51 0.60 0.59 0.62 0.67 0.56 1.26 0.58 0.95
13 1.08 0.70 0.59 1.93 1.65 1.40 1.66 1.24 1.24 0.76 2.82
14 0.60 0.66 0.73 0.80 0.86 1.09 1.00 0.64 1.64 0.97 1.23
15 13.39 12.40 11.17 10.55 11.05 12.97 12.73 10.51 25.75 11.47 24.84

Surprisingly, for some data sets FSDS performs comparably or even better than IBFS
or UFSSOD. However, for those data sets even randomly choosing 25% of 𝑑 features
performs mostly comparably too and the better 𝐹1/𝑎𝑣𝑔_𝑡 is mostly explained by the
better average runtime of FSDS compared to IBFS and UFSSOD, especially for data
sets with a high dimension. For instance, with musk (𝑑 = 100), IBFS and UFSSOD
have an approximately 29% higher runtime compared to all FSDS subset results. For
better comprehensibility two exemplary plots of the 𝐹1 for letter and musk are shown in
Figure 3.6 where IBFS and UFSSOD performed poorly and FSDS achieves better results.
For letter in Subfig. 3.6a, the overall 𝐹1 is quite poor also showing that randomly choosing
25% of features achieves results comparable to the other subsets. It is due to the nature
of both IBFS and UFSSOD, being based on an OD algorithm, that if the overall 𝐹1 is
poor, to not reliably score the feature contributions with regard to their anomalousness.
With an overall decent 𝐹1 achieved by the subsets in musk (Subfig. 3.6b), one can clearly
see that IBFS and UFSSOD perform significantly better than the random subset and for
most of the FSDS subsets with different 𝑘.

90

fs
ds

k
1

25
fs

ds
k

2
25

fs
ds

k
3

25
fs

ds
k

4
25

fs
ds

k
5

25
fs

ds
k

6
25

fs
ds

k
7

25
fs

ds
k

8
25

ib
fs

25
ra

nd
om

25
uf

ss
od

25

0.09

0.10

0.11

0.12

0.13

0.14
F

1

letter.mat

(a)

fs
ds

k
1

25
fs

ds
k

2
25

fs
ds

k
3

25
fs

ds
k

4
25

fs
ds

k
5

25
fs

ds
k

6
25

fs
ds

k
7

25
fs

ds
k

8
25

ib
fs

25
ra

nd
om

25
uf

ss
od

25

0.25

0.30

0.35

0.40

0.45

F
1

musk.mat

(b)

Figure 3.6: Exemplary 𝐹1 plots for badly-performing IBFS and UFSSOD using top 25%
feature subsets.

fs
ds

k
1

25
fs

ds
k

2
25

fs
ds

k
3

25
fs

ds
k

4
25

fs
ds

k
5

25
fs

ds
k

6
25

fs
ds

k
7

25
fs

ds
k

8
25

ib
fs

25
ra

nd
om

25
uf

ss
od

25

0.18

0.20

0.22

0.24

0.26

0.28

F
1

cardio.mat

(a)

fs
ds

k
1

25
fs

ds
k

2
25

fs
ds

k
3

25
fs

ds
k

4
25

fs
ds

k
5

25
fs

ds
k

6
25

fs
ds

k
7

25
fs

ds
k

8
25

ib
fs

25
ra

nd
om

25
uf

ss
od

25

0.250

0.275

0.300

0.325

0.350

0.375

F
1

pima.mat

(b)

fs
ds

k
1

25
fs

ds
k

2
25

fs
ds

k
3

25
fs

ds
k

4
25

fs
ds

k
5

25
fs

ds
k

6
25

fs
ds

k
7

25
fs

ds
k

8
25

ib
fs

25
ra

nd
om

25
uf

ss
od

25

0.225

0.250

0.275

0.300

0.325

0.350

F
1

satellite.mat

(c)

fs
ds

k
1

25
fs

ds
k

2
25

fs
ds

k
3

25
fs

ds
k

4
25

fs
ds

k
5

25
fs

ds
k

6
25

fs
ds

k
7

25
fs

ds
k

8
25

ib
fs

25
ra

nd
om

25
uf

ss
od

25

0.26

0.28

0.30

0.32

F
1

wbc.mat

(d)

Figure 3.7: Exemplary 𝐹1 plots for well-performing IBFS and UFSSOD using top 25%
feature subsets.

91

Figure 3.7 shows the 𝐹1 results of data sets where IBFS and UFSSOD performed well
and an overall decent 𝐹1 could be achieved. In all subfigures it can be seen that both IBFS
and UFSSOD achieved better results than randomly selecting 25% of features proving that
even for this fixed small amount of features, IBFS and UFSSOD are able to score features
reliably according to their contribution of anomalousness. Two key outcomes can be
noted. First, in most of the cases FSDS could not achieve better results than randomly
selecting features while IBFS and UFSSOD are able to produce better ones. Second,
independent of the used parameter 𝑘, the results significantly vary for each 𝑘 per data set
without any pattern apparent, e.g., the smaller the dimension the smaller the 𝑘. Even if
promising results can occasionally be obtained for some 𝑘, without any pattern behind,
one is not able to properly set the parameter. Those individual cases, e.g., in Subfig. 3.7d
with FSDS and 𝑘 = 1, might be explained by FSDS’ ability to find redundancy among
features in a higher dimension which scored worse and coincidentally might not contain
any outliers. Thus, their removal will positively affect the 𝐹1. However, this way of
sorting out irrelevant features is not the actual intention of FS for the task of OD.

To find an explanation for the worse performance of IBFS and UFSSOD compared to
FSDS in terms of 𝐹1/𝑎𝑣𝑔_𝑡 for some data sets, we examined two exemplary ones: musk
(Subfig. 3.6b) as a representative for the badly-performing and satellite (Subfig. 3.7c) for
the well-performing with decent 𝐹1 scores. We then examined the plotted feature scores
of both, which are depicted in Figure 3.8. It can clearly be seen from Subfig. 3.8a and
especially from 3.8b that the majority of scores lie densely within a certain range and
are homogeneously distributed, which is an indicator that outliers tend to occur in any
feature. Referring to Subfig. 3.8c and especially 3.8d, a more heterogeneous distribution
of the feature scores for the satellite data set can be seen, reasoning that outliers might
tend to occur in the same features, which generally contribute more to the outlier score.

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225
s̄fi(t)

musk.mat

(a)

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4
s̄fi(t)

musk.mat

(b)

0.040 0.045 0.050 0.055 0.060
s̄fi(t)

satellite.mat

(c)

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4
s̄fi(t)

satellite.mat

(d)

Figure 3.8: Exemplary plots for feature scores 𝑠𝑓𝑖(𝑡) of IBFS (a,c) and UFSSOD (b,d)
applied on musk (a,b) and satellite (c,d) (the more intense the color, the
higher the score and the more important the feature).

92

3.4.2 Comparison of IBFS and UFSSOD with Different Feature
Sets

Since FSDS did not prove to be a promising candidate for OD, we proceed our result
discussion by comparing IBFS and UFSSOD. Because of applying different feature set
lengths and an offline with an online algorithm, we now focus on the results of the 𝐹1
metric for different subsets, as shown in Table 3.5, since we do not want to blur results
with shorter average runtimes. For only two data sets, optdigits and satellite, using all
features is more promising whereas, for optdigits, the feature subsets perform much worse.
For satellite the 𝐹1 scores across all columns are comparable.

Table 3.5: 𝐹1 results for IBFS and UFSSOD for different 𝛾 (feature subsets) for data sets
with ID 𝑖 (full_dim refers to using all features 𝛾 = 𝑑, *_25,50,75 refers to
setting 𝛾 to the top scoring 25, 50 and 75% features and *_ckm refers to the
top-𝛾-features obtained by ufssod_clustering, best performing feature set in
bold).

ID fu
ll_

di
m

ib
fs
_

25

ib
fs
_

50

ib
fs
_

75

ib
fs
_

ck
m

uf
ss

od
_

25

uf
ss

od
_

50

uf
ss

od
_

75

uf
ss

od
_

ck
m

1 0.279 0.305 0.290 0.277 0.308 0.274 0.282 0.286 0.266
2 0.295 0.297 0.284 0.293 0.296 0.261 0.298 0.297 0.264
3 0.092 0.158 0.090 0.110 0.090 0.054 0.062 0.138 0.060
4 0.470 0.408 0.458 0.491 0.398 0.409 0.438 0.472 0.459
5 0.129 0.137 0.134 0.141 0.120 0.124 0.113 0.115 0.123
6 0.271 0.266 0.295 0.319 0.312 0.340 0.303 0.344 0.312
7 0.359 0.482 0.435 0.420 0.463 0.404 0.420 0.404 0.411
8 0.158 0.079 0.096 0.138 0.092 0.086 0.083 0.099 0.065
9 0.101 0.072 0.094 0.090 0.060 0.072 0.097 0.097 0.102
10 0.350 0.345 0.245 0.351 0.248 0.390 0.234 0.327 0.348
11 0.364 0.354 0.297 0.306 0.292 0.352 0.300 0.339 0.347
12 0.061 0.067 0.075 0.067 0.064 0.056 0.073 0.064 0.058
13 0.395 0.113 0.303 0.406 0.447 0.260 0.341 0.340 0.397
14 0.093 0.075 0.096 0.109 0.095 0.057 0.098 0.091 0.097
15 0.283 0.321 0.292 0.249 0.305 0.302 0.293 0.273 0.310

A better picture of the bad performance for optdigits can be made by examining the
feature scores 𝑠𝑓𝑖(𝑡), as shown in Figure 3.9. The red crosses mark those features that are
returned by ufssod_clustering applied on the scores of IBFS and UFSSOD. From a number
of 64 features for full dimension, ufssod_clustering applied on IBFS and UFSSOD only
marks 9 features to be the most important. Since for optdigits it generally applies that the
higher the number of features in the subset the better the score, even the measurements
with 75% of features seem not sufficient enough. Again, this supports the assumption
that for optdigits outliers tend to occur in any feature. An overall 𝐹1 of only 0.162 by
using all features shows that the online OD algorithms also performed quite poor on this
data set.

93

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
s̄fi(t)

optdigits.mat

(a)

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4
s̄fi(t)

optdigits.mat

(b)

Figure 3.9: Exemplary plots for feature scores 𝑠𝑓𝑖(𝑡) of IBFS (a) and UFSSOD (b) applied
on optdigits (the more intense the color, the higher the score and the more im-
portant the feature; red crosses mark the top-𝛾-features by ufssod_clustering).

Even if IBFS and UFSSOD with the ufssod_clustering subset performed approximately
7% faster with regard to 𝑎𝑣𝑔_𝑡, considering the 𝐹1/𝑎𝑣𝑔_𝑡 metric for all subsets depicted
in Figure 3.10, it did not significantly influence the results at all.

fu
ll

di
m

ib
fs

25

ib
fs

50

ib
fs

75

ib
fs

ck
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

0.8

1.0

1.2

1.4

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

optdigits.mat

(a)

fu
ll

di
m

ib
fs

25

ib
fs

50

ib
fs

75

ib
fs

ck
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

100

102

104

106

a
v
g
t

(s
)

optdigits.mat

(b)

Figure 3.10: 𝐹1/𝑎𝑣𝑔_𝑡 and 𝑎𝑣𝑔_𝑡 results for optdigits referring to Table 3.5.

Independently of whether using IBFS or UFSSOD, in the majority of cases using a sub-
set of features performs better than using the full set. For better comprehensibility, two
exemplary plots for data sets that achieved decent 𝐹1 scores are shown in Figure 3.11. In
Subfig. 3.11a, it can be seen that using all 100 features of the mnist data set degrades the
classification performance, whereas ufssod_clustering with 37 (IBFS) and 21 (UFSSOD)
features achieved very good results in terms of 𝐹1/𝑎𝑣𝑔_𝑡. For UFSSOD, slightly more
features as shown with the 25% measurement would have achieved even better results.
Subfig. 3.11b shows the results for the wbc data set and that it is not always better to
choose a high percentage of top scoring features. From the 30 features in total, using ufs-
sod_clustering with 10 (IBFS) and 14 (UFSSOD), features achieved much better results
than subsets with a higher number.

94

fu
ll

di
m

ib
fs

25

ib
fs

50

ib
fs

75

ib
fs

ck
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

2.2

2.4

2.6

2.8

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

mnist.mat

(a)

fu
ll

di
m

ib
fs

25

ib
fs

50

ib
fs

75

ib
fs

ck
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

14

15

16

17

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

wbc.mat

(b)

Figure 3.11: 𝐹1/𝑎𝑣𝑔_𝑡 results for well-performing data sets mnist and wbc referring to
Table 3.5.

In order to show the influence of applying ufssod_clustering for IBFS or UFSSOD for
each classifier, we refer to Table 3.6. As a representative example with the wbc data
set the percentage increase or decrease of the metrics 𝑎𝑣𝑔_𝑡 and 𝐹1 compared to the
measurements using the full feature dimension is shown. For each classifier, applying
ufssod_clustering, whether on IBFS or UFSSOD, could decrease the runtime by approxi-
mately 12% on average considering the significant improvement on Kitsune. The 𝐹1 score
could be increased by approximately 14% on average. HS-Trees and Kitsune show a sig-
nificant improvement and a slight improvement could be noticed for LodaTwo Hist., whereas
iMForest and RS-Hash showed a classification degradation. For xStream the application
of UFSSOD even yielded an 𝐹1 improvement compared to IBFS.

Table 3.6: Individual classifier performance in terms of the percentage increase/decrease
of 𝑎𝑣𝑔_𝑡 and 𝐹1 applying ckeans_ufssod on IBFS and UFSSOD compared to
full dimension on wbc data set.

wbc (𝑑 = 30) 𝛾 = 10 (ibfs_ckm) 𝛾 = 14 (ufssod_ckm)
% 𝑎𝑣𝑔_𝑡 % 𝐹1 % 𝑎𝑣𝑔_𝑡 % 𝐹1

RS-Hash -2.33 -1.04 -1.68 -4.24
HS-Trees -1.14 64.97 -1.34 27.25
Kitsune -68.89 56.86 -68.56 66.67
xStream -1.90 -21.15 -1.62 3.23
iMForest -0.08 -16.66 -0.34 -8.25
LodaTwo Hist. -2.52 4.00 -1.33 1.20

3.4.3 Application of UFSSOD, xStream and Loda Two Hist. in a
Streaming Setting

Measurement results for the streaming setting with regard to the sequential and parallel
approach (Figure 3.2 and 3.3) are shown in Table 3.7. The 𝐹1 score results are averaged
by the results of UFSSOD, xStream, LodaTwo Hist. and their logical or -combination stated
in Subsection 3.3.3.

95

Table 3.7: 𝐹1 results for UFSSOD using different 𝛾 (feature subsets) for data sets with
ID 𝑖 in streaming setting with xStream and LodaTwo Hist. (full_dim refers to
using all features 𝛾 = 𝑑, *_25,50,75 refers to setting 𝛾 to the top scoring
25, 50 and 75% features and *_ckm refers to the top-𝛾-features obtained by
ufssod_clustering, best performing feature set in bold).

ID fu
ll_

di
m

uf
ss

od
_

25

uf
ss

od
_

50

uf
ss

od
_

75

uf
ss

od
_

ck
m

2 0.435 0.404 0.402 0.416 0.390
5 0.083 0.083 0.088 0.076 0.093
6 0.161 0.282 0.229 0.204 0.328
8 0.136 0.097 0.122 0.108 0.113
9 0.154 0.169 0.186 0.159 0.170
11 0.349 0.391 0.389 0.384 0.396
12 0.267 0.247 0.247 0.271 0.254
13 0.425 0.350 0.455 0.456 0.394
14 0.039 0.075 0.077 0.075 0.056

For only two data sets, cardio and optdigits, using all features achieved better clas-
sification performance than using a subset. However, instead of yielding worse results,
the subsets performed comparably to the full set. Taking into account the average run-
time decrease using a subset, as shown in Subfig. 3.12b, for optdigits, UFSSOD with
ufssod_clustering even achieved a better tradeoff than the other settings. For cardio
the 𝐹1/𝑎𝑣𝑔_𝑡 could not provide better results. The reason why ufssod_clustering has a
higher influence on the result of the 𝐹1/𝑎𝑣𝑔_𝑡 metric on optdigits than on cardio is due
to the fact that with only 21 (cardio) and 64 (optdigits) the number of dimensions can
be reduced more significantly in the latter case. Therefore, the average runtime can also
be reduced more notably. Since the 𝑎𝑣𝑔_𝑡 of cardio with its minor number of features
can be reduced only marginally with ufssod_clustering, the dominating factor remains
the 𝐹1 score.

fu
ll

di
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

2.25

2.30

2.35

2.40

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

cardio.mat

(a)

fu
ll

di
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

0.40

0.45

0.50

0.55

0.60

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

optdigits.mat

(b)

Figure 3.12: 𝐹1/𝑎𝑣𝑔_𝑡 results for badly-performing data sets cardio and optdigits refer-
ring to Table 3.7.

96

In three data set measurements, letter, mnist and satellite, ufssod_clustering applied
in a streaming setting to xStream and LodaTwo Hist. yielded the best results. We neglect
letter since the overall 𝐹1 score is poor across all feature sets and therefore the results are
non-significant. For mnist, ufssod_clustering notably achieved the best 𝐹1 compared to
the other feature sets, where even when using all features, it performed the worst. With
mnist’s 100 dimensions, the good result is improved, shown in Subfig. 3.13a, considering
the significant reduction of features resulting in a runtime decrease of approximately 40%
and thus a better 𝐹1/𝑎𝑣𝑔_𝑡 metric. Even for satellite having only 36 dimensions, this
effect takes place, shown in Subfig. 3.13b, where the 𝑎𝑣𝑔_𝑡 is decreased by approximately
20%.

fu
ll

di
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

0.6

0.8

1.0

1.2

1.4

1.6

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

mnist.mat

(a)

fu
ll

di
m

uf
ss

od
25

uf
ss

od
50

uf
ss

od
75

uf
ss

od
ck

m

1.1

1.2

1.3

1.4

1.5

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

satellite.mat

(b)

Figure 3.13: 𝐹1/𝑎𝑣𝑔_𝑡 results for well-performing data sets mnist and satellite referring
to Table 3.7.

In order to show the influence of applying UFSSOD to xStream and LodaTwo Hist.,
we refer to Table 3.8 showing the percentage increase or decrease of the metrics 𝑎𝑣𝑔_𝑡
and 𝐹1 compared to the measurements using the full feature set. For all data sets,
xStream achieves better results with UFSSOD in terms of 𝑎𝑣𝑔_𝑡 with an overall improve-
ment of approximately 11% compared to the measurements using all features. However,
with an average runtime per data set (full dimension) of approximately 590 sec yielding
0.27 sec/sample across all data sets, xStream’s Python implementation of StreamAD does
not seem very efficient compared to our LodaTwo Hist. implementation, with approximately
3 sec average runtime per data set and 1.4 msec/sample. Compared to the other clas-
sifiers in the measurements, xStream was the only one with this significant runtime also
explaining why the authors of xStream provided a C++ streaming version rather than a
Python pendant to their static one. Considering the fast runtime of LodaTwo Hist., signifi-
cant improvements of 𝑎𝑣𝑔_𝑡 could only be achieved for data sets whose number of data
instances and dimension ratio is higher (ID 6, 8 and 11) than those of the others and, on
average, reduces 𝑎𝑣𝑔_𝑡 by 7%. As an example, for optdigits with 2216 data instances and
64 dimensions, UFSSOD could reduce 𝑎𝑣𝑔_𝑡 by approximately 22%. As for the percent-
age improvement of 𝐹1, excluding the statistical strays of data set 6 and 15 for xStream,
an improvement of approximately 22% on average could be obtained. For LodaTwo Hist.,
the improvement is even more notable with approximately 45% (ID 6 and 15 excluded).

97

Table 3.8: Performance of xStream and LodaTwo Hist. in terms of the percentage in-
crease/decrease of 𝑎𝑣𝑔_𝑡 and 𝐹1 applying UFSSOD in a streaming setting
compared to full dimension (N/A for ID 15 since no 𝐹1 score could be ob-
tained with full dimension due to poor classification results).

xStream LodaTwo Hist.
ID % 𝑎𝑣𝑔_𝑡 % 𝐹1 % 𝑎𝑣𝑔_𝑡 % 𝐹1

2 -2.74 -30.72 0.49 -6.41
5 -2.29 60.29 3.18 -14.37
6 -42.9 2638.80 -36.38 232.54
8 -28.4 -47.85 -22.22 305.52
9 -1.34 1.50 1.39 41.81
11 -18.75 34.63 -15.21 3.46
12 -3.19 111.16 1.82 -1.34
13 -1.70 22.61 1.68 -16.07
15 -1.15 N/A 0.29 16.00

It should be noted that xStream worked in the truly online mode. Therefore similar
performance boosts, as with LodaTwo Hist., might also be achieved for xStream if using
the proposed windowed approach mentioned in Section 3.2. In summary, applying UFS-
SOD in a streaming setting notably increases both the classification and computational
performance if the data set is of high-dimensional nature and has a high number of data
instances. In a real-world applications, the former depends on the applied domain but
fits perfectly with current observable trends. The latter is only part of this evaluation
setup since in the real-world the data stream has an infinite amount of samples. Although
xStream and Loda are representatives that work better on high-dimensional data [120]
and one might assume that a reduction of features by UFSSOD might degrade their per-
formance, the experiments show the opposite is true, with an overall improved result.
Thus, we assume that using UFSSOD with other online classifiers, such as ones based
on iForest that handle changing feature sets during runtime, may boost the performance
even more.

98

4 On the Improvement of the
Isolation Forest Algorithm for
Outlier Detection with Streaming
Data

This chapter provides details on the Performance Counter-Based iForest (PCB-iForest)
algorithm and is organized as follows — Section 4.1 provides related work with the most
popular state-of-the-art solutions for unsupervised OD on SD, especially existing online
iForest adaptions. Substantial requirements for online OD algorithms are derived in Sec-
tion 4.2 and compared with the related work. In Section 4.3, details on the conceptual-
ization and operation principle of PCB-iForest can be found which is able to satisfy all
requirements stated in Section 4.2. In Section 4.4, the test environment is presented and
details on the extensive evaluation together with the discussion of results (Section 4.5)
revealing the superiority of PCB-iForest on the state-of-the-art in most of the measure-
ments.

4.1 Related Work in Online Outlier Detection

Concentrated on supervised or semi-supervised learning, widely accepted online anomaly
detection algorithms such as Hoeffding Trees [111] or Online Random Forests [112] achieve
good accuracy and robustness in data streams [113]. However, the main focus of this
work lies on unsupervised approaches since the amount of unlabeled data with missing
ground truth generated across many scientific disciplines, especially intrusion detection
has steadily increased. In recent years, many methods have been proposed for unsu-
pervised online OD such as [114, 115, 116] but only a few of them, apart from iForest,
namely HS-Trees [117], RS-Hash [118] and Loda [119] have been shown to outperform
numerous standard detectors and hence are considered the state-of-the-art [120, 121].
Since xStream proposed in [120] is as competitive as those detectors, particularly effective
in high-dimensions, and revolutionized online OD algorithms by being able to deal with
streaming features, we count it to the list of the state-of-the-art.

RS-Hash samples axis-parallel subspace grid regions of varying size and dimensionality
to score data points by utilizing the concept of randomized hashing. Its adaption RS-
Stream is able to operate on SD by computing the log-likelihood density model using
time-decayed scores. Thus, compared to other work that applies sliding windows, for
example, it uses continuous counting where points are down-weighted by their up-to-
dateness. Compared to RS-Hash, the streaming variant requires greater sophistication in
the hash-table design and maintenance, although the approach is quite similar [315].

Loda, a lightweight online detector of anomalies, is an ensemble approach consisting of
a collection of ℎ one-dimensional histograms, each histogram approximates the probabil-
ity density of the input data projected onto a single projection vector. Projection vectors

99

diversify individual histograms which is a necessary condition to improve the performance
of individual classifiers in high-dimensional data. The features used must only be of ap-
proximately the same order of magnitude which is an improvement on other methods such
as HS-Trees. Loda’s output 𝑓(𝑥) on a sample 𝑥 is the averaged logarithm of the proba-
bilities estimated on a single projection vector. It is especially useful in domains where
a large amount of samples have to be processed because its design achieves a very good
weighting between accuracy and complexity. The algorithm exists in different variants
for batch and online learning. For online processing a subdivision can be made. Similar
to HS-Trees, two alternating histograms can be used in Loda, denoted as LodaTwo Hist.,
where the older set of histograms is used for classification while the newer one is built
in the current window. If the new set is built, it replaces the currently used histogram
set. A floating window approach, LodaCont., denotes an implementation of continuously
updated histograms based on [316].

xStream is able to deal with data streams that not only are characterized by SD in
terms of instances (rows) but also evolving, newly-emerging features can be processed
while being constant in space and time per incoming data. Having a fixed number of bins
for the one-dimensional histograms, a growing feature space cannot be handled by Loda.
Thus, the authors of xStream overcome this limitation by so-called half-space chains where
the data, independent of streaming features, is projected via sparse Random Projection
into recursively constructed partitions with splits into small, flexible bins. This density-
based ensemble handles non-stationarity, similar to HS-Trees and LodaTwo Hist., by a pair
of alternating windows.

Random forests are one of the most successful models used in classification and are
known to outperform the majority of classifiers in a variety of problem domains [315,
317]. Due to their intuitive similarity, iForests as an unsupervised approach have been
established as one of the most important methods in the field of OD. Much work has
been done to improve iForest, e.g. [318, 319], or to adapt it to other application scenarios
such as feature selection [302]. Even if it was initially not designed to work as an online
algorithm, over the last years, manifold variants of online algorithms have been proposed
that are either based on iForest’s concept or adapt it to operate in a streaming fashion.

HS-Trees, a collection of random half-space-trees, is based on a similar tree ensemble
concept as iForest. HS-Trees has a different node splitting criteria and calculates the
anomaly scores based on the sample counts and densities of the nodes. Furthermore,
the trees have a fixed depth (height) while iForest uses adaptive depths with smaller
subspaces. For SD with concept drifts, HS-Trees utilizes two windows (batches) of equal
size where simultaneously to the learning of HS-Trees in the current window, the HS-Trees
trained in the previous one replace the old.

One of the first approaches adopting iForest for SD is iForestASD proposed in [122].
It utilizes a sliding window with fixed length to sample data on which the ensemble of
trees is built. Based on a predefined threshold value, changes within the window can
be detected. In the case of an occurring concept drift, this leads to a re-training of the
whole ensemble based on the information of the current sliding window content. The
authors themselves propose significant improvements in their future work. For instance,
the predefined threshold relying on a priori knowledge should be replaced and partial
re-training of only some trees is suggested rather than discarding the complete model. A
description of the differences between HS-Trees and iForestASD can be found in [52].

Recently, iForestASD has been implemented on top of the open source ML framework
for data streams scikit-multiflow [34] and improved in [52] to better handle concept drifts

100

by extending it using various drift detection methods. Therefore, the authors extend
ADWIN [320] and KSWIN [321] drift detectors and denote them SADWIN/PADWIN
and NDKSWIN. Their OD solutions in this article are denoted as IFA(S/P)ADWIN and
IFANDKSWIN. However, some major disadvantages of their proposals, such as partially
updating the model rather than discarding the complete forest, are part of future work.

More recently, the work of [123] improves LSHiForest, a classifier based on iForest, to
handle high-dimensional data while detecting special anomalies, e.g., axis-parallel ones,
to handle SD and produce time-efficient results when processing large high-dimensional
data sets. Their improvement, denoted as LSHiForestStream in this article, consists of a
combination of streaming pre-processing based on dimensionality reduction with PCA
and a weighted Page-Hinckley Test to find suspicious data points. Furthermore, locality
sensitive hashing is applied that hashes similar input items into the same branches with
high probability and dynamic iForest is applied with efficient updating strategies. Thus,
rather than exchanging the whole model as with iForestASD, this approach repeatedly
checks if new suspicious data points exist and updates them into the tree structure.

Another hybrid method called iMondrian forest, denoted as iMForest, is proposed
in [124]. Mondrian forest is a method based on the Mondrian processes for classifica-
tion and regression on SD. The authors embed the concept of isolation from iForest by
the depth of a node within a tree into the data structure used in Mondrian forest to
operate for OD on SD.

The concept of Growing Random Trees or GR-Trees is proposed in [113] which is also
capable of partially updating the ensemble of random binary trees. The GR trees approach
is quite like the iForest with respect to the training process as is the approach for anomaly
score assignment to the data instances. In an initial stage using the first sliding window
content, the ensemble is built without explicit training data. Incremental learning is
achieved by combining an update trigger deciding when to update the ensemble. Tree
online growth and mass weighting ensure that the model can be adapted in time and is
able to handle concept drifts.

Referring to Section 4.3, most related to our PCB-iForest approach, in order to only par-
tially update the ensemble-based model rather than completely discarding it (as present
in iForestASD, IFA-variants) are the solutions presented within LSHiForestStream, iMFor-
est and GR-Trees. Both LSHiForestStream and iMForest do not fulfill the requirement of
algorithm agility because of being tailored to dedicated data structures for online learn-
ing and classification, rather complex in the case of LSHiForest. Since LSHiForestStream is
designed to deal with multi-dimensional multi-stream data, it is seemingly more compu-
tationally intensive than multi-dimensional single-stream solutions and, considering the
inclusion of 𝑘-means clustering for anomaly detection in online mode, the same applies
for iMForest. GR-Trees is similar to the iForest training and classification process and
also their framework for SD. During online detection of an initially created ensemble, the
classified normal instances are stored in a buffer which are used for the streaming update
leading to tree growth and updating the trees in the ensemble. The trees are discarded
based on the mass weight of the results evaluated by each tree for the sliding window.
The tree online growth and mass weighting mechanisms ensure that the detection model
can be adjusted in time as the data distribution changes to avoid misjudgments caused
by concept drift. Apart from the sliding window, our approach does not need an addi-
tional buffer which preserves memory. Additional hyperparameters, like update rate and
discard rate, other than the ensemble size and subsample size, could possibly require a bit
of adjustment to suit the actual needs to obtain better results. Furthermore, apart from

101

the replacement of discarded trees with trees obtained from a building window, existing
trees are updated based on an update window. Both mechanisms source from the buffered
normal instances which could possibly pose a slight performance degradation as stated
in [51] referring to the section “training using normal instances only”.

4.2 Requirement Specification & Validation

In this section, we specify the requirements OD algorithms for SD have to satisfy to be
applied in real-world future-oriented scenarios. Additionally, some requirements are added
that help a holistic incident handling process, for example, by providing functionality in
assisting to identify the root cause of incidents rooted in outliers. We structure the
requirements into operation-, data-, performance- and functionality-related ones.

As already pointed out in the introduction, in particular, the missing ground truth
values in evolving (theoretically infinite) data that requires real or almost near real-time
processing, taking the evolution and speed of data into account, that demands unsuper-
vised methods leading to the requirement we will denote as [R-OD01]. In addition, those
must be capable of dealing with SD [R-OD02]. Both requirements are categorized into
the operation-related ones.

We see additional requirements, as follows, that play a major role in future systems.
Another operation-related requirement is that the setting of hyperparameters should be
of low complexity and especially no information of ground truth should be mandatory for
the setting or, even better, no hyperparameters should be set at all [R-OD03]. This re-
quirement is important since, nowadays, domain experts are expected to have a high level
of multi-disciplinary expertise from data science, e.g., extensive knowledge in statistics,
in order to properly set up a machine learning pipeline. Even if recent developments in
the field of automated machine learning [87] tries to aid domain experts, they require ex-
tensive offline supervised training and testing for each hyperparameter value, thus do not
operate in the unsupervised online case. Hence, aiding the domain experts by not burden-
ing them with setting parameters seems important in manageable systems. Furthermore,
the time-varying nature of SD, especially in highly dynamic networks, is subject to the
phenomenon called concept drift. This means the data stream distribution changes over
time. With the different types of concept drifts (sudden, gradual, incremental, recurring,
blips) [272], algorithms must be able to efficiently adapt to these changes and continu-
ously re-train or update their model [R-OD04] to prevent being outdated, leading to a
performance degradation. Dedicated drift detection methods might come to the rescue
for OD algorithms to deal with data’s varying nature.

From a data-related perspective, in the field of network-based OD, data streams from
a single source (single-view) and does not necessarily have to be normalized [R-OD05],
e.g., a raw network interface, as statistics from network switching elements or in form of
log-files from devices. Features can be defined in advance by an expert since incorporat-
ing domain knowledge can help select relevant features to improve learning performance
greatly. Thus, the cardinality of the feature set (meaning the number of dimensions)
is fixed [R-OD06] not demanding algorithms that are able to deal with streaming fea-
tures. For network-based features, one may distinguish between basic features (derived
from raw packet headers (meta data) without inspecting the payload, e.g., ports, MAC
or IP addresses), content-based features (derived from payload assessment having domain
knowledge, e.g., protocol specification), time-based features (temporal features obtained
from, e.g., message transmission frequency, sliding window approaches) and connection-

102

based features (obtained from a historical window incorporating the last 𝑛 packets) [80].
However, with the technological advancement and the increase of potential features, the
algorithms must efficiently operate on high-dimensional and high-volumes of data [R-
OD07] and must cope with missing variables that might occur due to unreliable data
sources [R-OD08].

Performance-related requirements can be subdivided into computational and classifica-
tion performance. The former demands for lightweight algorithms [R-OD09], in terms of
time & space complexity, for both model-updating and classification, to be implementable
in embedded software. SD is potentially infinite and algorithms must temporarily store
as little data as possible and process it as fast as possible due to the time constraint
of observing incoming data in a limited amount of time. The classification performance
requires to be sufficiently good [R-OD10], i.e. producing decent Area Under the 𝑅𝑂𝐶
curve (𝐴𝑈𝐶), in which 𝑅𝑂𝐶 is the Receiver Operating Characteristics, or 𝐹1 score met-
rics, meaning to detect malicious activity in a reliable way. It should be noted that stream
methods, compared to their batch competitors, typically perform worse in terms of classi-
fication. However, under the assumption of applying a subsequent root cause analysis, we
strongly support the justification in [34] that when considering critical SD applications,
an efficient method, even with less accuracy, is preferred.

Functionality-related requirements can be subdivided as follows. One still unresolved
issue for IDS is the lack of finding the actual root cause of incidents. Instead of yielding
simple binary values (normal or abnormal), requirement [R-OD11] demands for algo-
rithms that provide outlier score values. Those carry more information and could help a
subsequent root cause analysis, for instance, by dealing with false negatives. In addition,
the importance of features can play an important role, thus demanding functionality to
score or rank features according to their outlier score contribution [R-OD12], providing
information about which feature (mainly) caused the outlier. Reducing the data’s di-
mensionality can help deal with the curse of dimensionality referring to the phenomenon
that data becomes sparser in high-dimensional space and can still be represented accu-
rately with less dimensions. This adversely affects both the storage requirements and
computational cost of the algorithms. Reduction by methods such as PCA maps higher
order matrices into ones with lower dimension with a certain probability. However, the
physical meaning of the features is no longer retained by this projection and impedes root
cause analysis (feature interpretability). Feature selection methods reduce the dimension
by only selecting the most relevant features and, hence, preserve their physical meaning.
Applying feature selection on SD would possibly lead to changing top-performing-features
as time passes and thus demand for OD algorithms that are capable of changing feature
sets during runtime [R-OD13]. Considering the multitude of recent work that is tailored
to attack machine learning, e.g. [322, 323], we see, similarly to cryptographic agility, the
flexibility to exchange the actual algorithm as a forward-looking requirement [R-OD14]
in the case where the currently used algorithm (poisoning) or its model (evasion) get
compromised. More likely it is the former, since an evasion of the model seems, due to
the continuous updating, more irrelevant.

Over the past years, much attention has been paid to establish OD algorithms for SD
in the field of network security, and is increasingly facing trends of massive generated
amounts of data with high velocity and afflicted with the phenomenon of concept drift.
Many existing works has tried to improve the algorithm setting in terms of performance-
related requirements by competing on the same (often outdated) benchmark data set. For
real-world applications, in which most of the algorithms might perform insufficiently, we

103

expect that designing algorithms and finding a tradeoff between the stated requirements
is more crucial. Thus, assuming the application of a subsequent root cause analysis
enabled by, e.g., [R-OD12], a certain amount of false positives and false negatives is
acceptable referring to [R-OD10]. In particular, considering critical application domains,
it might be preferred to quickly and efficiently detect outliers even with less accuracy.
Table 4.1 validates state-of-the-art algorithms presented in Section 4.1 using the specified
requirements. It can clearly be seen that none of the existing methods achieve good results
across the majority of requirements.

Table 4.1: Comparison of existing OD work for SD from Section 4.1 with the requirements
specified (3 and 7 denotes the requirement is either fulfilled or not, ∅ denotes
missing information to analyze the respective requirement, (+/++/+++) de-
notes - as objectively as possible - how well the requirement is fulfilled).

Work R
-O

D
01

R
-O

D
02

R
-O

D
03

R
-O

D
04

R
-O

D
05

R
-O

D
06

R
-O

D
07

R
-O

D
08

R
-O

D
09

R
-O

D
10

R
-O

D
11

R
-O

D
12

R
-O

D
13

R
-O

D
14

HS-Trees [117] (3)1 3 ++ + 3 3 + ∅ + ++ 3 ∅ 3 7
RS-Stream [118] 3 3 + ++ 3 3 ++ ∅ ++ ++ 3 (∅)2 7 7

LodaTwo Hist. [119] 3 3 +++ ++ 3 3 +++ 3 +++ ++ 3 3 3 7
LodaCont. [119] 3 3 ++ ++ 3 3 +++ 3 +++ ++ 3 3 7 7
xStream [120] 3 3 + + 3 (7)3 +++ ∅ ++ +++ 3 ∅ (3)4 7

iForestASD [122] 3 3 + + 3 3 + ∅ + + 3 ∅ 3 (3)5
IFA(S/P)ADWIN [52] 3 3 ++ ++ 3 3 + ∅ ++ ++ 3 ∅ 3 (3)5

IFANDKSWIN [52] 3 3 ++ +++ 3 3 + ∅ + ++ 3 ∅ 3 (3)5
LSHiForestStream [123] 3 3 + + 7 3 ++ ∅ + + 3 7 ∅ 7

iMForest [124] 3 3 + + 3 3 ++ ∅ + ++ 3 ∅ 7 7
GR-Trees [113] 3 3 + + 3 3 + ∅ ++ + 3 ∅ 7 (3)5

1 uses only normal data for training (semi-supervised); 2 “... results from the detector are interpretable and provide a good description of the outliers.”;
3 additionally designed for streaming features; 4 feature set can be changed for each arriving data; 5 framework is “wrapped around” the base learner,
thus would allow for exchange

4.3 Generic PCB-iForest Framework

In this section we focus on the design of an intelligent OD solution that is able to satisfy
all of the aforementioned requirements. Thus, we carefully reviewed related work and
combined the merits of the most promising approaches while alleviating their shortcom-
ings. Our focus lies on the iForest-based approaches since iForest is (i) a state-of-the-art
algorithm for OD, (ii) widely used by the community, (iii) efficient in terms of compu-
tational as well as classification performance and (iv) can easily be adapted for the SD
application [52]. The wide acceptance in research is reflected in numerous improvements
and extensions, for instance Extended Isolation Forest (EIF) [318], Functional Isolation
Forest [319], Entropy iForest [324], LSHiForest [325] or SA-iForest [326] for different ap-
plication domains or with focus on special problems such as dealing with categorical and
missing data [327]. However, those adaptions are mainly tailored for static data sets
rather than the application on SD. Thus, our aim is to provide a framework that is able
to exchange the iForest-based classifier with respect to either the ability to exchange the
model in the case of compromising or if the application domain, with its specific task,
demands another base learner. Even more, the framework can be generalized to basically
incorporate any ensemble-based algorithm consisting of a set of components like trees.
The workflow of our so-called Performance Counter-Based iForest framework, denoted as
PCB-iForest, is shown in Figure 4.1.

104

xt Xt model-centricDrift Detection
Method

Sliding Window

y (xt)

data-centric

Base Learner

xt , xt-1, xt-2,

Scoring

Partial Fitting

Performance
Counter-Based

Scoring
Discard & Add
Components

Ensemble Components

...

Figure 4.1: The workflow of the PCB-iForest incremental learning framework.

Data instance (data point) 𝑥𝑡 with dimension 𝑑 of the data stream {𝑋𝑡 ∈ R𝑛𝑡×𝑑, 𝑡 =
1, 2, ...} will be captured as the latest instance at each time step 𝑡 in the count-based
Sliding Window 𝑊 and parallelly will be evaluated in the Scoring module which provides
an outlier score 𝑦 for each 𝑥𝑡. The sliding window is composed of the latest 𝑤 instances
such that 𝑊 = {𝑥𝑡,𝑥𝑡−1, ...,𝑥𝑡−𝑤}. A dedicated Drift Detection Method is applied that
triggers the Partial Fitting process to Discard & Add Components, denoted as 𝐶, of the
ensemble 𝐸. The core of PCB-iForest is the Performance Counter-Based Scoring module
which is able to identify well and badly performing components of an ensemble. Partial
Fitting will then discard only the bad-performing and replaces them with newly created
ones from the most recent instances contained in the Sliding Window. In the following,
we provide more details on the main parts of our framework.

4.3.1 Drift Detection Method

Detecting changes in multi-dimensional SD is a challenging problem, especially when
considering scaling with the number of dimensions. A sometimes applied solution is
to reduce the number of dimensions by either performing PCA (cf. LSHiForestStream)
or Random Projections. Furthermore, one might even reduce the number to one (or
more) uni-dimensional statistics and apply well-known drift detection methods such as
DDM [328] or ADWIN [329, 320]. For IFA(S/P)ADWIN, drift detection will be performed
on the one-dimensional statistic of either the binary prediction value (PADWIN) or the
actual score value (SADWIN). Reduction is achieved by the learning model. Thus, it is
referred to as a model-centric approach. However, generic approaches, such as [330, 331],
exist that deal with multi-dimensional changes performed dedicatedly on the SD, referred
to as data-centric.

We see model-centric approaches (indicated by the dotted line in Figure 4.1) might be
prone to a phenomenon called positive feedback. This means that drift detection caus-
ing partial fitting will be negatively influenced by the actual classification results in such
a way that the ensemble results tend to be the same by discarding “badly” perform-
ing components from the model point of view. Positive feedback is also present within
iForestASD since drift detection depends on the anomaly rate computed by the model’s
scoring results. Furthermore, iForestASD’s anomaly rate is dependent on a priori knowl-
edge, which is hardly feasible in real-world applications. Therefore, we recommend the
usage of data-centric solutions, which are unbiased of the applied model only relying on

105

the SD characteristics. Since NDKSWIN in [52] has, as of now, proven to be a reliable
drift detection method, we are applying it to PCB-iForest but our approach is open to
any data- or model-centric solution. NDKSWIN adapts a recent one-dimensional method
called KSWIN [321] based on the Kolmogorov-Smirnov (KS) statistical test which does
not require any assumption of the underlying data distribution to be capable of detecting
concept drifts in multi-dimensional data.

In KSWIN the sliding window 𝑊 is divided into two parts. The first sub-window,
called 𝑅, contains the latest data instances where a concept drift might have taken place.
The length of 𝑅 is predefined by the parameter 𝑟. The second sub-window, called 𝐿,
contains uniformly selected data instances that are a sampled representation of the old
data. The concept drift is detected by comparing the distance of the two empirical
cumulative distributions from 𝑅 and 𝐿 according to 𝑑𝑖𝑠𝑡(𝑅,𝐿) >

√︀
−𝑟−1𝑙𝑛(𝛼) in which

𝛼 is the probability for the statistical KS-test. NDKSWIN extends this test by declaring a
concept drift if a drift is detected in at least one of the 𝑑 dimensions. However, contrary to
IFANDKSWIN, the application of NDKSWIN in PCB-iForest differs. We do not apply drift
detection inline before scoring. Our parallel setting, that newly arriving data instances are
immediately forwarded to the scoring function, allows us to detect anomalies in near real-
time without losing time when performing an upstream applied drift detection. Although
a possible concept drift might already afflict the new instance, thus legitimating the
approach to first update the model before scoring, we again state that for network-based
anomaly detection an accelerated but less precise model is favored. PCB-iForest’s design
seems obviously more performant, especially, if a high throughput is demanded. Our
approach further improves the computational benefit with NDKSWIN since, contrary to
iForestASD or IFANDKSWIN, we do not discard the whole model in case of detected drifts
but are able to only partially update it. Consequently, even if NDKSWIN detects slightly
more drifts, our approach is a good tradeoff between a resource-saving model up-to-
dateness and a continuously updating model, e.g., HS-Trees or LodaCont. that continuously
fit their model with each arriving instance even if there is no need.

4.3.2 Performance Counter-Based Scoring

Performance Counter-Based Scoring monitors the performance of each component 𝐶
(herein an iTree) in the ensemble 𝐸 (herein the iForest) by assigning it with a Per-
formance Counter (PC). In general, the approach favors or penalizes individual ensemble
components over runtime referring to their contribution to the ensembles overall scoring
result. Thus, the PC-value is changed for each data instance, i.e., increased or decreased
depending on the component’s scoring quality to the ensemble’s anomaly score. The PC-
values increase or decrease by 1 for well and badly performing components depending on
whether each individual score is above or under the anomaly threshold 𝑠 (herein 0.5 for
iForest-based learners as discussed in [51]). For example, the ensemble scores a sample
with 𝑠𝑐𝑜𝑟𝑒_𝐸 > 𝑠, which indicates an anomalous sample. Each individual component’s
score contribution is verified such that if the score of the 𝑖-th component 𝐶𝑖 is greater than
𝑠, 𝑠𝑐𝑜𝑟𝑒_𝐶_𝑖 > 𝑠, the PC-value of 𝐶𝑖, 𝑝𝑐_𝑖 increases. Respectively, if 𝑠𝑐𝑜𝑟𝑒_𝐶_𝑖 ≤ 𝑠,
𝐶𝑖 is penalized by decreasing 𝑝𝑐_𝑖. However, one might even increase or decrease the PC-
values in an even more granular fashion, e.g., ±2, 3, ..., depending on the confidence level
of the ensemble score and each individual component’s score contribution. For instance, if
1 > 𝑠𝑐𝑜𝑟𝑒_𝐸 > 0.8, the confidence level of the ensemble is high that the sample is anoma-
lous. Thus, if any 𝑠𝑐𝑜𝑟𝑒_𝐶_𝑖≪ 0.8, component 𝐶𝑖 might be penalized to a larger extent

106

by decreasing 𝑝𝑐_𝑖 with a higher value. For the sake of simplicity in this article, we apply
the more simple binary approach in which each individual PC is increased/decreased by 1
if its score value is greater/less than the ensemble’s score value. The counting goes until
a drift is detected. Once this happens, the weaker performing components, as indicated
by their negative PC values, are replaced with new ones built on data instances present
in the current window 𝑊 . The PC values of all trees are set to zero after the partial
update is finished, hence, even resetting the values for previously well performing trees
clears the old bias (effect of previous scoring). Referring to Figure 4.1, Algorithm 4 shows
the operation principle including the core of the Performance Counter-Based Scoring.
Also, we neglected the initialization phase in which, once the sliding window is filled, the
components are initially built and the PC values are set to zero.

Algorithm 4: Operation Principle of PCB-iForest.
Input: Sample 𝑥𝑡, Sliding Window 𝑊 , Anomaly Threshold 𝑠
Output: Outlier score 𝑦
Data: Ensemble 𝐸 of Components 𝐶
◁Scoring of Ensemble and each Component

1 for i in |𝐸| do
2 score_C_i ← ComponentScore(𝑖)

3 𝑦 ← 1
|𝐸|

∑︀
𝑖 score_C_i

◁Updating PC values
4 for i in |𝐸| do
5 if score_E > 𝑠 then
6 if score_C_i > 𝑠 then
7 pc_i = pc_i + 1
8 else
9 pc_i = pc_i - 1

10 else
11 if score_C_i < 𝑠 then
12 pc_i = pc_i + 1
13 else
14 pc_i = pc_i - 1

◁Drift Detection & Partial Update
15 drift_detected ← NDKSWIN(𝑊)
16 if drift_detected == true then
17 for i in |𝐸| do
18 if pc_i < 0 then
19 delete 𝐶𝑖
20 𝐶𝑖 ← build(𝑊)

21 pc_i ← 0

22 return 𝑦

107

4.3.3 Base Learner

The PCB-iForest framework is designed to allow exchanges of the base learner. Although
being initially intended for iForest-based approaches, the conceptualization can easily be
generalized for any ensemble method with its components such as trees, histograms or
chains. With the partial updating, compared to iForestASD and the IFA-approaches,
a higher throughput is possible since the complete model does not need to be updated.
Rather, only a certain number of penalized trees are updated allowing it to not completely
and abruptly forget previously learned information by flushing the whole model, similar
to catastrophic interference known from the field of ANNs. Thus, with respect to non-
iForest-based approaches, we see the potential of our framework to replace, e.g., the
alternating windows of HS-Trees or LodaTwo Hist. in which new ensembles are built and
continuously replace those currently used - even if there is no necessity. Our approach
would be more resource-preserving while keeping a set of ensemble components as long as
there is no need to replace them, e.g., due to a concept drift. However, in this article we
focus on iForest-based approaches for the reasons stated in the beginning of this section.
In particular, we want to present two application scenarios underlining the fulfillment of
crucial requirements from Section 4.2.

Algorithm Agility
SD is afflicted with a theoretically infinite flow of data. Thus, in some cases, it might
be necessary to exchange the base learner as time passes. A possible application scenario
would be if the currently used base learner has been compromised. This means it is vul-
nerable to, e.g., poisoning of the algorithm, and an adversary might bypass the detection
of its malicious activity. Another non-malicious use case would be a major change of data
due to the long term running time that is beyond a concept drift which requires a different
type of base learner. Some iForest improvements might then need tailoring for specific
application scenarios. In this article, apart from classic iForest, we prove the algorithm
agility by incorporating EIF. It addresses drawbacks of iForest’s branching using random
horizontal and vertical cuts by substituting them with non-axis-parallel hyperplanes with
random slopes. Thus, to the best of our knowledge, PCB-iForest is the first work that
applies the improved version of iForest on SD. Since the PCB-iForest framework only
“wraps around” EIF, no other specific adaptions are necessary except for adding the Per-
formance Counter-Based Scoring. We denote this variant as PCB-iForestEIF. However,
it should be remarked that feature interpretability is irretrievably lost with the improve-
ment of branching in EIF. Therefore, in addition, we are taking on the topic of feature
importance measurement for OD on SD by a second variant explained in the next section.

Feature Scoring
Apart from popular dimensionality reduction algorithms such as PCA, feature selection for
OD aims to only select relevant features for the classification task by discarding irrelevant
and redundant features, which reduce dimensionality. This leads to more computationally
efficient OD, all the while preserving feature interpretability. Especially in a consecutively
applied root cause analysis, feature interpretability plays a crucial role for future foren-
sics use cases. While some feature selection approaches only provide a subset of relevant
features, others are able to score and rank features according to their contribution to a
sample’s anomalousness. Therefore, one is able to select the best performing features as
indicated by their score values. In particular, since iForest is inferior to projection-based

108

methods on high-dimensional noisy data sets [120], feature selection would significantly
aid to reduce dimensions and, thus, amplify iForests classification performance in lower
dimensions. This coincides very well with the suggestion from Togbe et al. in [52] men-
tioning that feature selection could mitigate the effect of choosing the most important
dimensions for drift detection.

Much work has been done in the field of feature selection but, to the best of our
knowledge, existing approaches either focus on feature selection for SD (but not with the
focus on imbalanced data classification), e.g. [284, 281, 332], or focus on feature selection
for OD, e.g. [24, 302, 301], (but in a supervised and offline fashion). Thus, we see it as
crucial to contribute with feature scoring solutions on SD focusing on OD that might be
exploited for feature selection. Pevný, in [119], proposed a one-tailed two-sample test for
Loda to achieve feature scoring without increasing its overall complexity. This approach
seems most related to the intention of scoring relevant features (for the task of OD) in a
streaming fashion, which one might use to rank and select the top-performing features.

In order to achieve feature scoring, we take advantage of the unsupervised IBFS method
recently proposed in [302] tailored for OD. The method exploits the training phase of
the classical iForest, in particular the random selection of feature values, and computes
score values for each feature by calculating imbalance scores using an entropy measure.
Although this method is designed for offline iForest, it can easily be adapted to our PCB-
iForest in a streaming fashion, denoted as PCB-iForestIBFS. Since it is designed for the
training phase, we only obtain feature scores after each partial update (training). In order
to receive representative feature scores as time passes, we will continuously update the
score values with each partial update as shown in Algorithm 5. Once a partial update
is triggered, we let IBFS compute feature scores 𝑠𝑓𝑖(𝑘) for the 𝑖-th feature 𝑓𝑖 based on
the data instances in 𝑊 resulting in a one-dimensional array 𝑠𝑓 = {𝑠𝑓1, 𝑠𝑓2, ..., 𝑠𝑓𝑑} of
𝑑 feature scores. With each partial update we continuously update the feature scores
by incremental averaging. For the sake of simplicity, we apply the incremental average
𝑠𝑓𝑖(𝑘) = 1

𝑘
(𝑠𝑓𝑖(𝑘−1)(𝑘 − 1) + 𝑠𝑓𝑖(𝑘)) with a continuous counter value 𝑘 for each partial

update, in order to obtain the averaged array of feature scores 𝑠𝑓 . It must be noted that
other methods exist, e.g., discussed in [32], that might be superior when concept drifts
occur within the feature scores. While only preserving 𝑑 values for the current average
scores, one value for the continuous counter 𝑘 and performing 𝑑 updates of the scores,
both the space and time complexity for each feature score averaging yields 𝒪(𝑑) when
applying the well-known Welford’s algorithm [305]. This does not significantly increase the
overall complexity of PCB-iForestIBFS since 𝑑 is fixed. A summary of the feature scoring
functionality is shown in Algorithm 5. As time passes and feature scores are continuously
computed, one might rank the feature scores and identify the top-performing ones. Thus,
it might be necessary to change the feature set or reduce the number of features from
the original set. PCB-iForestIBFS is able to change the feature set during runtime. Once
a partial update is triggered, instead of discarding only poorly performing components,
the whole model can be discarded and the new ensemble can be built using the newly
proposed feature set.

4.4 Experimental Evaluation

This section gives a glance at the experimental setup used for evaluation. First, the
methodology will be explained, followed by information on the data set collection used
and a description of the metrics as evaluation criteria.

109

Algorithm 5: Feature Scoring in PCB-iForest utilizing IBFS.
Input: Sliding Window 𝑊
Output: Averaged feature scores 𝑠𝑓

1 drift_detected ← NDKSWIN(𝑊)
2 if drift_detected == true then
3 𝑠𝑓 ← IBFS.compute_scores(𝑊)
4 𝑠𝑓 ← feature_scores.moving_average(𝑠𝑓)

5 return 𝑠𝑓

4.4.1 Methodology & Settings

Drift detection plays a crucial role when in it comes to detecting changes that require
partial updating. Thus, we (i) perform measurements to check whether NDKSWIN works
within our model using dedicated data sets for drift detection. Since the most related
work historically used the same set or subset of four specific data sets, we aggregate
their results from the original work and (ii) perform measurements on those data sets
utilizing both, PCB-iForestEIF (referring to Section 4.3.3) and PCB-iForestIBFS (referring
to 4.3.3). A major drawback of the aforementioned is the insignificant number of multi-
disciplinary data sets with an outdated small number of dimensions in terms of today’s
real-world applications. Furthermore, most of the related work from Section 4.1 ignore the
existence of some competitors since they include rather insignificant algorithms in their
evaluation (cf. [124]). Therefore, (iii) a selection of state-of-the-art off-the-shelf ensemble
OD algorithms is compared with PCB-iForestEIF and PCB-iForestIBFS in a large collection
of multi-disciplinary data sets with a variety in the amount of dimensions. Additionally,
PCB-iForestIBFS performs online feature (importance) scoring. The scored features are
then used in a second run on a selection of algorithms to evaluate the effects when utilizing
a feature subset. Lastly, since the main application domain is network security, we (iv)
evaluate our PCB-iForest variants and a selection of performant algorithms on an up-to-
date data set for network intrusion detection. It should be remarked that LSHiForestStream

was not included in any of our evaluation since it is designed for multi-dimensional multi-
stream data, thus, a fair comparison is not possible within the focus of this article.

Experiments were conducted on a virtualized Ubuntu 20.04.1 LTS equipped with 12 ×
Intel(R) Xeon(R) CPU E5-2430 at 2.20 GHz and 32 GB memory running on a Proxmox
server environment. Overall, 9 off-the-shelf ensemble algorithms including 5 iForest-based
competitors took part in the experiments. For equal conditions, all algorithms are coded
in Python 3.7. Unless otherwise stated, the default hyperparameters of the algorithms
were used and outlier thresholds fixed for all measurements. In particular, the latter
seems legitimate since one important requirement is to not burden human domain experts
with a complex hyperparameter setting especially to simulate the appliance in real-world
applications. For PCB-iForest we used the default parameters for NDKSWIN as discussed
in Section 4.5.1 and, in terms of iForest, we stick to the default parameter of an ensemble
size with 100 trees and an outlier threshold of 0.5. For EIF, the fully extended version
was used by setting the extension level to 1. Thus, PCB-iForest is hyperparameter-sparse
mainly affected by hyperparameter window size. However, except for Section 4.5.2, the
window size was set to 200 for all window-using or window-based algorithms. All results
(except in Section 4.5.1 and 4.5.4) were averaged across 10 independent runs, since most of
the methods are non-deterministic, e.g., negatively affected by Random Projection. The

110

UNSW-NB15 measurements in Section 4.5.4 were averaged across 3 independent runs due
to the large amount of instances accompanied with an enormous evaluation-runtime for
some inefficient classifiers.

4.4.2 Data Sources

To achieve high quality in our evaluation, we utilized four different data set sources. In
order to measure the performance of NDKSWIN, we utilized the recently proposed en-
semble of synthetic data sets for concept drift detection purposes from the Harvard Data-
verse [333]. It contains 10 abrupt and 10 gradual data sets, each consisting of approx.
40,000 instances and the same three locations where abrupt and gradual drifts were in-
jected. In particular, rt_2563789698568873_abrupto and rt_2563789698568873_gradual
were used in our evaluation.

Since some of the iForest-based related work performed measurements on four data sets
used in [122], we stick to this approach and performed measurements using PCB-iForest
on HTTP, SMTP (from security-related KDD Cup 991), ForestCover and Shuttle (from
UCI Machine Learning Repository [334]) data sets. We truncated the data sets varying
in the number of samples while keeping their outlier percentages as in the original set
(HTTP - 0.39%, SMTP - 0.03%, ForestCover - 0.96%, Shuttle - 7.15%) in order to reduce
processing runtime. In the following, the four data sets are denoted as HSFS.

In recent years, the majority of state-of-the-art IDS data sets including KDD Cup 99
or its improved successor NSL-KDD2 have been criticized by many researchers since their
data is out of date or do not represent the threat landscape of today [303, 313]. There-
fore, we have chosen two improvements compared to the aforementioned evaluation data
sets. First, we have selected fifteen real-world candidate data sets from the Outlier Detec-
tion DataSets (ODDS)3 Library [311] tailored for the purpose of OD. Those will serve to
benchmark PCB-iForest in terms of a variety of different amounts of features, contrasting
outlier percentages and the application across multi-disciplinary domains. In particular,
we included the ensemble of data sets from ODDS shown in Table 4.2 with their charac-
teristics. To reduce the processing runtime of each OD algorithm, mnist, musk, optdigits,
pendigits, satellite, satimage-2 and shuttle were truncated while mostly maintaining its
original outlier percentage.

Table 4.2: Characteristics of the partially truncated data sets from ODDS [311].

ar
rh

yt
h
m

ia

ca
rd

io

gl
as

s

io
n
os

p
h
er

e

le
tt

er

m
n
is

t

m
u
sk

op
td

ig
it

s

p
en

d
ig

it
s

p
im

a

sa
te

ll
it

e

sa
ti

m
ag

e-
2

sh
u
tt

le

vo
w

el
s

w
b
c

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Instances 452 1831 214 351 1600 2603 1000 2216 2000 768 3000 1750 3000 1456 378

Dimensions 274 21 9 33 32 100 166 64 16 8 36 36 9 12 30
Outliers (%) 14.6 9.6 4.2 35.9 6.3 26.9 9.7 6.7 2.3 34.9 31.1 1.0 7.9 3.4 5.6

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on 12 May 2021)
2https://www.unb.ca/cic/datasets/nsl.html (accessed on 12 May 2021)
3http://odds.cs.stonybrook.edu/about-odds/ (accessed on 12 May 2021)

111

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
http://odds.cs.stonybrook.edu/about-odds/

Even though CSE-CIC-IDS20184 overcomes most of the aforementioned criticism and
is said to be well designed and maintained [313], in terms of a network security related
data set, we have selected its competitor UNSW-NB15 [335] for the following reasons. It
is also well structured, as well as labeled, and more complex than many other security-
related data sets, making it a useful benchmark for evaluation [313]. However, apart from
the proneness to the issue of high-class imbalance for CSE-CIC-IDS2018 mentioned in
a recent publication [336], the main reason for choosing UNSW-NB15 is that the aggre-
gated data sets contain the IP address (source and destination), as well as the respective
port features, which we deem essential for a consecutively applied root cause analysis.
Especially, similarity-based alert analysis approaches such [337] cannot be utilized when
those features are missing since they mainly operate on this information.

UNSW-NB15 incorporates nine types of attacks, namely, Fuzzers, Analysis, Backdoors,
DoS, Exploits, Generic, Reconnaissance, Shellcode and Worms created by the IXIA Per-
fectStorm tool. In terms of feature generation, Argus and Bro-IDS tools among others
were utilized to generate 49 features which can be divided into five feature sets: flow,
basic, content, time, and additional. Since the four CSV files available only contain the
raw features, further data preparation steps had to be performed including handling in-
consistent values, dropping irrelevant features and dealing with categorical attributes.
Sanitizing had to be performed for source and destination port features containing some
values that are not conform with others. Hexadecimal values were converted to integers
and for ICMP-protocol-based features, some values containing the character “-” were set to
zero. Empty string values are replaced by 0 and typecasted according to its column-type
defined in [335]. We dropped the timestamp feature since it has no added value for OD,
albeit important for a consecutive root cause analysis. However, in real-world scenarios
the timestamp will be added after the detection of outliers since it is not contained in the
incoming data.

Except for srcip, sport, dstip, dsport, proto, state and service (we do not count the actual
binary prediction label and the attack category), the data sets contain only numerical and
binary data which can be processed by the applied OD algorithms. Various methods can
be applied to handle IP-addresses such as converting them into their binary or integer
representation (one-to-one), splitting them into four numbers (one-to-four) or applying
the widely-used one-hot encoding for categorical features (one-to-many). However, the
latter is not feasible in the real-world online setting since (i) all possible IP-addresses that
might occur must be known in advance and (ii) one-hot encoding leads to a significantly
higher number of features. We chose to convert the IP-addresses into integers since it is an
acceptable option for network intrusion detection [338] and does not increase the number
of dimensions. The port feature can easily be converted into an integer and for proto,
state and service one-hot encoding was used in a way that the number of features does
not grow too large and could be utilized on SD. Since, e.g., proto, only TCP and UDP
have the largest proportion, categories have been limited to only the most important ones
in terms of frequency by merging the least occurring values into one category (beneath
1% occurrence). A domain expert could also predefine those categories based on domain
knowledge. By this method, the generated feature space of the whole data set could be
reduced from 207 to finally 57 features. The four sanitized CSV files with its characteristics
are summarized in Table 4.3.

4https://registry.opendata.aws/cse-cic-ids2018/ (accessed on 12 May 2021)

112

https://registry.opendata.aws/cse-cic-ids2018/

Table 4.3: Characteristics of the four preprocessed CSV files from the UNSW-NB15 data
set [335].

UNSW-NB15 #1 #2 #3 #4

Instances 700k 700k 700k 440k
Dimensions 57 57 57 57
Outliers (%) 3.17 7.53 22.49 20.20

4.4.3 Evaluation Criteria

The confusion matrix, consisting of the parameters True Negatives (𝑇𝑁), False Negatives
(𝐹𝑁), False Positives (𝐹𝑃) and True Positives (𝑇𝑃), is the most intuitive and widely-used
performance measure for binary classification of machine learning algorithms. Further
parameters can be derived such as Accuracy, Precision, Recall, or Specificity. Most widely
used as the standard metric for score-wise evaluation of outlier detectors is 𝐴𝑈𝐶 of the
Receiver Operating Characteristics (𝑅𝑂𝐶) curve. 𝑅𝑂𝐶 is created by plotting the True
Positive Rate (𝑇𝑃𝑅) meaning the Recall against the False Positive Rate (𝐹𝑃𝑅) which
corresponds to 1 - Specificity. 𝑇𝑃𝑅 is computed by 𝑇𝑃

𝑇𝑃+𝐹𝑁
and 𝐹𝑃𝑅 by 𝐹𝑃

𝐹𝑃+𝑇𝑁
. The

𝐴𝑈𝐶 metric is used for the sake of comparing related work results in Table 4.4. It is
computed as 𝐴𝑈𝐶 = 1

2
(1 + 𝑇𝑃𝑅− 𝐹𝑃𝑅) as proposed in [339].

The harmonic mean of Precision and Recall, denoted as 𝐹1 score, is used for represen-
tation of the classification performance for all other measurements. It can be computed
as 𝐹1 = 𝑇𝑃

𝑇𝑃+ 1
2
×(𝐹𝑃+𝐹𝑁)

. Compared to 𝑅𝑂𝐶, we deem the 𝐹1 score more appropriate for
OD since, e.g., the 𝐹𝑃𝑅 used in the 𝑅𝑂𝐶 metric depends on the number of 𝑇𝑁 whose
proportion in OD is typically quite large. Thus, the 𝑅𝑂𝐶 tends to be near 1 when clas-
sifying imbalanced data and, thus, is not the best measure for examining OD algorithms.
A good 𝐹1 indicates low 𝐹𝑃 and 𝐹𝑁 and is therefore a better choice to reliably identify
malicious activity in the network security domain without being negatively impacted by
false alarms.

Furthermore, we measured the average runtime per OD algorithm, denoted as 𝑎𝑣𝑔_𝑡,
as a representative metric for the computational performance. Thus, we accumulate the
elapsed time for individual steps necessary to perform, e.g., partial fitting or prediction,
to derive the average runtime after multiple iterations for processing a particular data
set. Providing a tradeoff between the classification and computational performance, the
last metric is the ratio of 𝐹1/𝑎𝑣𝑔_𝑡.

4.5 Discussion of Results

In this section we discuss some of the key results obtained by the comprehensive evalua-
tion. It is structured into the following parts. We discuss the capability of PCB-iForest’s
drift detection by examining NDKSWIN. Then, PCB-iForestEIF and PCB-iForestIBFS are
extensively evaluated against related work in the following sections. This includes three
different types of data sources and includes the evaluation of the feature importance
scoring functionality by PCB-iForestIBFS.

113

4.5.1 NDKSWIN Drift Detection

NDKSWIN drift detection is mainly affected by the hyperparameters, sliding window size
𝑤, the number of samples to be tested 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒 as a percentage value of the window size,
sub-window size for the latest samples 𝑟, the number of dimensions to be evaluated 𝑛_𝑑𝑖𝑚
and the 𝛼-value of the KS-test. For the sake of low hyperparameter complexity, we will
rely on the default values 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒 = 0.1, 𝑟 = 30, 𝑛_𝑑𝑖𝑚 = 1 and 𝛼 = 0.01 used in [52].
Since the sliding window size is a crucial parameter, not only for NDKSWIN but also
for PCB-iForest, this section examine possible effects of slightly varying hyperparameters
of NDKSWIN and discuss potential impacts on PCB-iForest. Since marginal changes
in 𝛼 did not remarkably influence the results, we will vary parameters with the sets
𝑤 = [100, 200, 500], 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒 = [0.1, 0.2], 𝑟 = [30, 50] and 𝑛_𝑑𝑖𝑚 = [1, 2].

Across all measurements, NDKSWIN was mostly able to detect the gradual and abrupt
drifts but was afflicted to a high number of false detections as exemplary shown in Fig-
ure 4.2 with two different settings. The duration of a gradual drift lasts for 1,000 samples
which is indicated by rectangles in gray. The sliding window size is indicated by rectan-
gles in red which apply to gradual and abrupt drift detection. The detected drift location
can only be pinpointed within the range of a window. Thus, detected gradual drifts are
counted if either the gray or the red rectangle are intersecting and the abrupt drift must
be detected near the red rectangle. From the 24 measurements with the varying settings,
NDKSWIN was able to detect 61 out of 72 gradual and 40 out of 72 abrupt drifts.

Generally, increasing NDKSWIN’s hyperparameters, multiple tests performed for many
dimensions lead to an increasing probability of falsely detected drifts for one dimension,
although none is present. This phenomenon might be reasoned due to the widely known
problem in statistics called multiple comparison or multiple testing. Independent of the
window size, this problem is more distinct for higher values 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒, 𝑟 and 𝑛_𝑑𝑖𝑚 as
shown in an exemplary way in Subfigures 4.2a and 4.2b. To strengthen our assumption,
we have varied 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒, 𝑟 and 𝑛_𝑑𝑖𝑚 each at a time while observing the change in
false detections. Its number was higher every time we increased each value. In particular,
increasing 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒 from 0.1 to 0.2, while keeping the other hyperparameters stable,
resulted in a doubling of false detections. Respectively, increasing 𝑟 (30 to 50) and 𝑛_𝑑𝑖𝑚
(1 to 2) each led to an approximate increase of 40% of false detections. The problem can
be alleviated by choosing small hyperparameter values. Thus, the default parameters
proposed in [52] 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒 = 0.1, 𝑟 = 30, 𝑛_𝑑𝑖𝑚 = 1 and 𝛼 = 0.01 achieved decent
results, mostly mitigate the multiple comparisons problem for its small values, and are
therefore used in our further measurements.

Since, the performed measurements are only non-deterministic snapshots without av-
eraging the results over multiple runs, more intensive measurements for drift detection
are necessary in future work. We deliberately choose to not average the results since this
would blur the results in terms of a better actual drift detection and would not show the
effects in real-world applications. Future measurements will include the comparison to
other data-centric drift detection methods and take into account higher dimensional data
sets. Furthermore, we want to focus on improving the NDKSWIN method by tackling the
proneness to the multiple comparisons problem. Although drift detection plays a crucial
role in our model, it is not the main focus of our article. We conclude from the measure-
ments that NDKSWIN is able to reliably detect actual drifts and regularly updates our
model when triggered by falsely detected drifts. However, it should be remarked that the
used data sets lack information regarding the drift characteristics, meaning how distinct
drifts are to be detected. For the rest of our evaluation, we set the default parameters

114

(except for the window size) to achieve a good tradeoff between updating our model in
regular times and not demanding extensive resources by continuously updating it with
every sample.

0 5, 000 10, 000 15, 000 20, 000 25, 000 30, 000
Indices for drift locations in the dataset

actual abrupt drifts

actual gradual drifts

detected abrupt drifts

detected gradual drifts

(a) 𝑤 = 200, 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒 = 0.1, 𝑟 = 30,
𝑛_𝑑𝑖𝑚 = 1

0 5, 000 10, 000 15, 000 20, 000 25, 000 30, 000
Indices for drift locations in the dataset

actual abrupt drifts

actual gradual drifts

detected abrupt drifts

detected gradual drifts

(b) 𝑤 = 500, 𝑛_𝑠𝑎𝑚𝑝𝑙𝑒 = 0.2, 𝑟 = 50,
𝑛_𝑑𝑖𝑚 = 2

Figure 4.2: Exemplary visualization of NDKSWIN gradual and abrupt drift detection with
two different hyperparameter settings (rectangle in gray - duration of gradual
drift, rectangle in red - sliding window size).

4.5.2 Competitors-Based HSFS

In this section, PCB-iForestEIF and PCB-iForestIBFS are evaluated on the HSFS data
sets used by some of the iForest-based competitors: iForestASD, IFA(S/P)ADWIN and
IFANDKSWIN as well as GR-Trees. Table 4.4 shows the results where the best-performing
values from the competitors’ original work has been included together with the measure-
ment results for the two PCB-iForest versions using different window sizes 𝑤. Although
Togbe et al. in [52] used all four data sets to compare HS-Trees and iForestASD, they only
performed measurements on Shuttle and SMTP utilizing IFA(S/P)ADWIN and IFANDKSWIN.
What is more, contrary to iForestASD and GR-Trees, the authors chose the 𝐹1 instead of
𝐴𝑈𝐶 metric. Since we included Shuttle in our ODDS measurements in the next section
and also rely on the 𝐹1, only the results from iForestASD and GR-Trees are presented.
It must be noted that the authors of GR-Trees constrained the abnormal proportion of
each data set to 10% in their evaluation. This step can be seen as critical since the data
sets normally have an outlier percentage between 0.03% and 7.15% so that classification
results can be blurred by this step. Despite, GR-Trees performed inferior to iForestASD
and both PCB-iForest versions as shown in Table 4.4. For this reason, GR-Trees will
be excluded from the rest of our measurements. As expected, since being an improve-
ment for the outlier scoring of iForest, PCB-iForestEIF yielded the best 𝐴𝑈𝐶 results in
most of the cases except for HTTP. PCB-iForestIBFS achieved very good results on HTTP
across all window sizes. Albeit being outperformed by both PCB-iForest variants on
three data sets, iForestASD achieved decent 𝐴𝑈𝐶 results. However, it is firstly remarked
that the predefined threshold parameter used to trigger concept drifts, and thus updating
the iForestASD model, depends on a priori knowledge, thereby limiting the application
in real-world scenarios. Secondly, the measurements did not take into account compu-
tational performance since we assume that iForestASD performs much worse than our
PCB-iForest, which is able to partially update its model. We discuss the results of our
tradeoff measurements between classification and computational performance in the next
section utilizing multi-disciplinary data sets.

115

Table 4.4: Classification performance of different iForest-based competitors aggregated
from their respective original work with PCB-iForestEIF and PCB-iForestIBFS

(*best setting with 𝑤 = 2048, best performing values in bold).

iForestASD* GR-Trees PCB-iForestEIF PCB-iForestIBFS
𝑤=128 𝑤=256 𝑤=512 𝑤=1024 𝑤=128 𝑤=256 𝑤=512 𝑤=1024

HTTP 0.95 0.95 0.86 0.89 0.90 0.91 0.92 0.95 0.96 0.96
SMTP 0.85 0.83 0.84 0.90 0.93 0.95 0.70 0.67 0.71 0.70

ForestCover 0.84 0.58 0.62 0.71 0.93 0.50 0.75 0.83 0.92 0.50
Shuttle 0.98 0.89 0.97 0.98 0.94 0.66 0.95 0.96 0.96 0.95

4.5.3 Multi-Disciplinary ODDS

Since in real-world applications hyperparamater-optimization is difficult, especially on SD
afflicted with concept drifts, we compared the results of several off-the-shelf state-of-the-
art OD algorithms with our proposed PCB-iForest versions using the default parameters
proposed in the respective original work and across multi-disciplinary data sets with
varying characteristics.

Full Dimension
First, we run each classifier on full dimension. Later, the effects of PCB-iForestIBFS’s fea-
ture importance scoring using a subset of the best-performing features applied on different
algorithms are evaluated. The results of the 𝐹1 metric are shown in Table 4.5. Approxi-
mately in half of the data sets PCB-iForestEIF outperforms the other online OD algorithms
by achieving the best classification result and, hence, achieves the first rank averaged over
all data sets. Except, for data sets with ID 7, 10 and 11, PCB-iForestEIF performs at least
comparably with the other data sets and PCB-iForestIBFS only marginally performs worse
to it with an overall rank 3, only slightly outperformed by iMForest. All iForest-based
competitors achieved similar averaged outlier scores taking the rankings 6-9.

However, considering the slightly better average runtime, PCB-iForestIBFS outperforms
PCB-iForestEIF in terms of 𝐹1/𝑎𝑣𝑔_𝑡 in almost all measurements, as depicted on two
exemplary data sets mnist and optdigits in Figure 4.3, thus presenting itself as an OD
algorithm with a good tradeoff between classification performance and computational
costs. Except for those two data sets, LodaTwo Hist. achieved the best 𝐹1/𝑎𝑣𝑔_𝑡 results
across all online OD algorithms as shown in Table 4.6, summarizing the 𝐹1/𝑎𝑣𝑔_𝑡 results.
Except for the efficiently performing LodaTwo Hist. on rank 1, our proposed PCB-iForestIBFS

and PCB-iForestEIF show consistently remarkable results with rank 2 and 3, even superior
to the well performing iMForest with respect to its 𝐹1 results. Table 4.6 also shows the
inefficient processing of the iForest-based competitors, in particular the IFA-variants take
ranks 7-9 evenly and iForestASD with the last rank.

In most of the measurements, iForestASD yielded the longest 𝑎𝑣𝑔_𝑡 value followed by
IFANDKSWIN as well as IFA(S/P)ADWIN and xStream. The 𝑎𝑣𝑔_𝑡 results for two exemplary
data sets ionosphere and wbc are shown in Figure 4.4. It should be remarked that for
data sets letter, satellite and shuttle the 𝑎𝑣𝑔_𝑡 exceeded 4 hours per data set iteration
due to the extensive runtime of those four classifiers. Therefore, we excluded them from
the remainder of our evaluation.

116

Table 4.5: 𝐹1 results for different online OD algorithms on data sets with ID 𝑖 (best
performing values in bold, ’-’ measurement aborted after 42 hours runtime,
𝑎𝑣𝑔 denotes the average outlier score over all data sets, 𝑟𝑎𝑛𝑘 from best (1) to
worst (11) performance).

ID R
S
-S

tr
ea

m

H
S
-T

re
es

L
od

a T
w

o
H

is
t.

xS
tr

ea
m

iM
Fo

re
st

iF
or

es
tA

S
D

IF
A

N
D

K
S
W

IN

IF
A

P
A

D
W

IN

IF
A

S
A

D
W

IN

P
C

B
-i
Fo

re
st

E
IF

P
C

B
-i
Fo

re
st

IB
F
S

1 0.248 0.207 0.358 0.178 0.256 0.380 0.413 0.400 0.401 0.419 0.268
2 0.143 0.152 0.317 0.353 0.552 0.391 0.365 0.521 0.510 0.642 0.526
3 0.029 0.239 0.134 0.014 0.088 0.204 0.205 0.196 0.213 0.271 0.220
4 0.422 0.605 0.239 0.430 0.601 0.496 0.478 0.488 0.487 0.482 0.479
5 0.001 0.199 0.196 0.087 0.145 - - - - 0.141 0.138
6 0.424 0.040 0.229 0.003 0.493 0.409 0.445 0.451 0.446 0.670 0.582
7 0.425 0.480 0.253 0.264 0.570 0.138 0.222 0.009 0.007 0.007 0.032
8 0.142 0.083 0.104 0.189 0.134 0.149 0.151 0.155 0.142 0.275 0.241
9 0.038 0.139 0.143 0.034 0.063 0.095 0.094 0.095 0.091 0.170 0.095
10 0.000 0.584 0.259 0.397 0.288 0.269 0.265 0.250 0.259 0.274 0.314
11 0.000 0.218 0.385 0.348 0.543 - - - - 0.187 0.244
12 0.105 0.044 0.084 0.005 0.104 0.078 0.068 0.037 0.037 0.037 0.033
13 0.000 0.430 0.548 0.069 0.487 - - - - 0.904 0.828
14 0.109 0.123 0.093 0.001 0.162 0.091 0.096 0.092 0.092 0.094 0.091
15 0.101 0.158 0.482 0.130 0.544 0.527 0.550 0.550 0.523 0.522 0.470

𝑎𝑣𝑔 0.146 0.247 0.255 0.167 0.335 0.215 0.223 0.216 0.214 0.340 0.304
𝑟𝑎𝑛𝑘 11 5 4 10 2 8 6 7 9 1 3

R
S-

St
re

am
H

S-
T
re

es
L
od

a T
w

o
H

is
t.

xS
tr

ea
m

iM
Fo

re
st

iF
or

es
tA

SD
IF

A
N

D
K

SW
IN

IF
A

P
A

D
W

IN
IF

A
SA

D
W

IN
P

C
B

-i
Fo

re
st

E
IF

P
C

B
-i
Fo

re
st

IB
F

S

0

20

40

60

80

100

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

mnist - ID 6

(a)

R
S-

St
re

am
H

S-
T
re

es
L
od

a T
w

o
H

is
t.

xS
tr

ea
m

iM
Fo

re
st

iF
or

es
tA

SD
IF

A
N

D
K

SW
IN

IF
A

P
A

D
W

IN
IF

A
SA

D
W

IN
P

C
B

-i
Fo

re
st

E
IF

P
C

B
-i
Fo

re
st

IB
F

S

0

10

20

30

40

F
1

/
a
v
g
t

(×
10
−

3
1/
s)

optdigits - ID 8

(b)

Figure 4.3: 𝐹1/𝑎𝑣𝑔_𝑡 results for well-performing PCB-iForestIBFS on data sets mnist (a)
and optdigits (b) referring to the results of Table 4.5 and 4.6.

117

R
S-

St
re

am
H

S-
T
re

es
L
od

a T
w

o
H

is
t.

xS
tr

ea
m

iM
Fo

re
st

iF
or

es
tA

SD
IF

A
N

D
K

SW
IN

IF
A

P
A

D
W

IN
IF

A
SA

D
W

IN
P

C
B

-i
Fo

re
st

E
IF

P
C

B
-i
Fo

re
st

IB
F

S

0

50

100

150

200

250
a
v
g
t

(s
)

ionosphere - ID 4

(a)

R
S-

St
re

am
H

S-
T
re

es
L
od

a T
w

o
H

is
t.

xS
tr

ea
m

iM
Fo

re
st

iF
or

es
tA

SD
IF

A
N

D
K

SW
IN

IF
A

P
A

D
W

IN
IF

A
SA

D
W

IN
P

C
B

-i
Fo

re
st

E
IF

P
C

B
-i
Fo

re
st

IB
F

S

0

50

100

150

200

250

300

a
v
g
t

(s
)

wbc - ID 15

(b)

Figure 4.4: 𝑎𝑣𝑔_𝑡 results for the data sets ionosphere (a) and wbc (b) referring to the
results of Table 4.5 and 4.6.

Table 4.6: 𝐹1/𝑎𝑣𝑔_𝑡 results for different online OD algorithms on data sets with ID 𝑖 (best
performing values in bold, ’-’ measurement aborted after 42 hours runtime, 𝑎𝑣𝑔
denotes the average outlier score over all data sets, 𝑟𝑎𝑛𝑘 from best (1) to worst
(11) performance, values are scaled by a factor of ×103 in units of 1/s).

ID R
S
-S

tr
ea

m

H
S
-T

re
es

L
od

a T
w

o
H

is
t.

xS
tr

ea
m

iM
Fo

re
st

iF
or

es
tA

S
D

IF
A

N
D

K
S
W

IN

IF
A

P
A

D
W

IN

IF
A

S
A

D
W

IN

P
C

B
-i
Fo

re
st

E
IF

P
C

B
-i
Fo

re
st

IB
F
S

1 21.29 18.87 369.03 0.25 11.52 1.02 1.76 1.71 1.74 4.85 57.62
2 3.89 4.75 118.89 0.98 29.01 0.06 0.47 0.62 0.63 35.17 95.53
3 5.48 38.42 362.71 0.23 8.21 3.49 3.53 3.34 3.66 88.98 191.21
4 47.23 86.57 355.57 4.52 45.42 1.98 2.49 2.54 2.55 62.55 166.02
5 0.02 6.15 65.84 0.23 6.85 - - - - 7.39 8.42
6 8.26 0.88 60.96 0.01 13.23 0.07 0.56 0.57 0.57 24.97 99.41
7 17.43 22.54 127.22 0.89 21.92 0.09 0.37 0.02 0.01 0.44 8.21
8 3.46 2.19 35.43 0.44 5.57 0.02 0.19 0.19 0.18 13.05 42.16
9 1.04 4.3 55.59 0.1 3.68 0.01 0.1 0.1 0.1 9.63 16.06
10 0 38.25 178.64 2.05 19.87 0.18 0.54 0.51 0.53 27.29 90.4
11 0 3.52 67.08 0.48 16.6 - - - - 4.67 6.57
12 2.91 1.4 30.82 0.01 4.92 0.02 0.07 0.05 0.05 2.16 6.2
13 0 6.83 95.85 0.1 18.43 - - - - 21.58 21.12
14 3.21 4.03 35.8 0 8.66 0.05 0.12 0.13 0.13 5.93 19.92
15 10.79 17.94 671.91 1.28 41.87 1.7 2.45 2.44 2.35 78.35 173.65

𝑎𝑣𝑔 8.33 17.11 175.42 0.77 17.05 0.58 0.84 0.81 0.83 25.80 66.83
𝑟𝑎𝑛𝑘 6 4 1 10 5 11 7 9 8 3 2

118

Feature Subsets
Due to the extensive runtime of some classifiers, we continued our evaluation using RS-
Hash, HS-Trees, iMForest, LodaTwo Hist. and our two PCB-iForest variants to evaluate
the online-capable feature importance scoring functionality of PCB-iForestIBFS. Thus, we
used the scored feature values 𝑠𝑓 obtained by PCB-iForestIBFS, ranked them and supplied
subsets of 25%, 50% and 75% to each online OD algorithm. Ideally, if feature scoring op-
erates correctly, the subset of features on the one hand yields a more precise classification
result, while on the other hand, the computational effort can be limited by minimizing the
cardinality of the selected feature set. Thus, the 𝐹1/𝑎𝑣𝑔_𝑡 metric should tend to achieve
better results using a subset compared to the full dimension measurements with all fea-
tures in average across all algorithms. This can also be seen from the results in Table 4.7.
The full feature set is only top performing for 5 data sets while applied feature subsets yield
the best result for 10 data sets. Since, to the best of our knowledge, (as of now) no other
online unsupervised feature selection method for OD exists, we could not cross-check our
results. In addition no ground truth information is available for ODDS revealing details
on which features mainly cause outliers. Thus, with respect to the 5 badly-performing
data sets (ID 10-13 and 15), outliers tend to occur in a wide range of dimensions leading
to a higher 𝐹1 degradation using a subset than benefiting from the 𝑎𝑣𝑔_𝑡 reduction, thus,
resulting in a worse 𝐹1/𝑎𝑣𝑔_𝑡. This effect is strengthened by Table 4.7 showing that the
higher the number of features in a subset for the badly-performing data sets,it generally
results in higher the 𝐹1/𝑎𝑣𝑔_𝑡. Likewise, without ground truth information, it cannot
be shown that for the 67% well-performing data sets, subsets from 25-75% of the features
cause the majority of outliers and thus result in good 𝐹1/𝑎𝑣𝑔_𝑡 values. Nevertheless,
the focus of the feature selection results should be set on the high-dimensional data sets,
such as arrhythmia, mnist and musk with IDs 1, 6 and 7, since as stated and discussed
in [120] most of the classifiers can efficiently handle lower dimensions. For those data sets
all feature subsets achieved better results than full dimension.

A better picture of the good performance, shown in an exemplarily way for high-
dimensional arrhythmia and musk, can be obtained by examining the feature scores 𝑠𝑓 ,
as shown in Figure 4.5. Having a high number of dimensions, feature selection can signifi-
cantly aid to reduce them, which in turn increases a classifier’s classification performance
while reducing its computational cost only processing relevant features for the purpose of
OD. With regard to the 𝐹1 score results for arrhythmia and musk, as shown in Figure 4.6,
50% of the 274 features from arrhythmia are already sufficient for achieving better results
than utilizing the full feature set. For musk, the same applies at the 25% mark of the 166
features.

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
s̄fi(k)

arrhythmia - ID 1

75% - 206 features 50% - 137 features 25% - 68 features

(a)

0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018
s̄fi(k)

musk - ID 7

75% - 124 features 50% - 83 features 25% - 42 features

(b)

Figure 4.5: Exemplary plots for feature scores 𝑠𝑓 on high-dimensional arrhythmia (a) and
musk (b) including 25%, 50% and 75% subsets in different colors.

119

Table 4.7: 𝐹1/𝑎𝑣𝑔_𝑡 results averaged for each online OD using different feature sets for
data sets with ID 𝑖 (full_dimension refers to using all features, *_25,50,75
refers to setting the top scoring 25, 50 and 75% features obtained by PCB-
iForestIBFS, top performing values set in bold, values are scaled by a factor of
×103 in units of 1/s).

ID full_dimension PCB_IBFS_25 PCB_IBFS_50 PCB_IBFS_75

1 14.49 21.10 18.34 18.32
2 15.34 13.04 15.75 15.97
3 33.52 33.86 30.66 27.81
4 67.95 60.71 67.08 68.89
5 5.22 6.41 6.62 5.58
6 11.87 13.55 13.12 14.09
7 16.24 19.63 17.61 17.86
8 5.49 2.54 3.14 6.22
9 4.15 3.60 5.18 4.86
10 30.01 27.91 20.18 28.89
11 7.69 6.22 7.23 7.59
12 2.76 2.16 2.58 2.71
13 16.04 3.15 11.48 15.05
14 5.44 3.24 5.32 5.51
15 52.78 46.25 45.82 50.06

fu
ll

di
m

en
si

on

P
C

B
IB

F
S

25

P
C

B
IB

F
S

50

P
C

B
IB

F
S

75

0.29

0.30

0.31

F
1

arrhythmia - ID 1

(a)

fu
ll

di
m

en
si

on

P
C

B
IB

F
S

25

P
C

B
IB

F
S

50

P
C

B
IB

F
S

75

0.275

0.280

0.285

0.290

0.295

F
1

musk - ID 7

(b)

Figure 4.6: 𝐹1 results for the high-dimensional data sets arrhythmia (a) and musk (b)
utilizing different feature sets (full_dimension refers to using all features,
*_25,50,75 refers to setting the top scoring 25, 50 and 75% features obtained
by PCB-iForestIBFS).

In order to show the influence of applying a feature set to each classifier, we refer to
Table 4.8 showing the percentage increase/decrease of 𝑎𝑣𝑔_𝑡 and 𝐹1 when applying a
feature subset compared to full dimension on the arrhythmia and musk data set. Except
for PCB-iForestIBFS on both data sets and HS-Trees on musk, the 𝑎𝑣𝑔_𝑡 could be reduced
for all classifiers. Generally, the average runtime could be reduced by approximately 6% on
arrhythmia and 9% on musk. Contrary to PCB-iForestIBFS, as expected, PCB-iForestEIF

significantly benefits by the dimensionality reduction for both data sets. In terms of 𝐹1,

120

again we see a performance degradation for PCB-iForestIBFS but a significant increase for
PCB-iForestEIF on both data sets, especially musk. Generally, the 𝐹1 performance could
be increased by approximately 11% on arrhythmia and 30% on musk. Excluding the
high value achieved by PCB-iForestEIF on musk, the percentage increase is still notable
with an increase of 5%. The poor performance of PCB-iForestIBFS utilizing a feature
subset only takes place for those two data sets and wbc. On all other data sets, PCB-
iForestIBFS could increase the 𝐹1 while additionally reducing the 𝑎𝑣𝑔_𝑡 with at least one
of the subsets. Although being a projection-based method that is designed to operate
on high-dimensional data sets, LodaTwo Hist. achieves performance boosts on both high-
dimensional data sets, arrhythmia and musk, for 𝑎𝑣𝑔_𝑡 and 𝐹1. In summary, it can be
said that each individual method reacts differently to feature subsets and although the
performance partially degrades for some of them, the overall benefit by a combination of
classifiers is clearly evident.

Table 4.8: Individual classifier performance in terms of the percentage increase/decrease
of 𝑎𝑣𝑔_𝑡 and 𝐹1 when applying a feature subset compared to full dimension
on the arrhythmia and musk data set.

arrhythmia - ID 1 (75%) musk - ID 7 (25%)
% 𝑎𝑣𝑔_𝑡 % 𝐹1 % 𝑎𝑣𝑔_𝑡 % 𝐹1

RS-Stream -1.30 -11.52 -0.63 10.91
HS-Trees -0.23 69.45 0.14 -2.72
iMForest -8.55 -0.88 -30.00 3.88

LodaTwo Hist. -3.29 10.35 -5.29 27.42
PCB-iForestEIF -22.65 7.40 -18.87 153.89
PCB-iForestIBFS 1.92 -10.40 2.07 -13.92

4.5.4 Security-Related UNSW-NB15

The results of the time intensive processing - running approximately 38 h - of the four
UNSW-NB15 CSV files for only 3 iterations utilizing 6 online OD methods are presented
in Table 4.9. Again, LodaTwo Hist. achieves the best results across all measurements for
the 𝑎𝑣𝑔_𝑡 resulting in a notable 1.0 ms to process one data instance. This is faster by a
factor of approximately 15 compared to the slowest algorithms, iMForest and RS-Stream,
achieving approximately 15 ms. For HS-Trees it takes approximately 11.6 ms and for
PCB-iForestEIF 5.6 ms to process one sample. Remarkably, PCB-iForestIBFS operates
most competitively to LodaTwo Hist. with 1.6 ms.

Table 4.9: 𝐹1 and 𝑎𝑣𝑔_𝑡 results for different online OD algorithms on the four prepro-
cessed CSV files from the UNSW-NB15 data set (best performing values in
bold).

UNSW-NB15 RS-Stream HS-Trees iMForest LodaTwo Hist. PCB-iForestEIF PCB-iForestIBFS
𝑎𝑣𝑔_𝑡 𝐹1 𝑎𝑣𝑔_𝑡 𝐹1 𝑎𝑣𝑔_𝑡 𝐹1 𝑎𝑣𝑔_𝑡 𝐹1 𝑎𝑣𝑔_𝑡 𝐹1 𝑎𝑣𝑔_𝑡 𝐹1

#1 10211 0.059 7892 0.091 9153 0.062 645 0.057 3165 0.084 943 0.080
#2 10522 0.132 8139 0.138 11341 0.140 660 0.111 4067 0.239 1102 0.380
#3 10489 0.353 8174 0.111 11249 0.367 675 0.202 4103 0.594 1209 0.342
#4 6767 0.326 5244 0.169 6292 0.336 438 0.180 2666 0.310 809 0.597

121

Albeit processing samples very efficiently, in particular with respect to the 𝐹1/𝑎𝑣𝑔_𝑡
metric, LodaTwo Hist. could only outperform our proposed PCB-iForestIBFS for CSV files
#1 and #3. In terms of 𝐹1, our proposed PCB-iForest variants outperform the other
classifiers on all four CSV files except for #1 where all algorithms performed poorly. The
reason behind this poor performance on #1 might be the slightly different distribution of
attack categories as well as the high imbalance of normal and abnormal data. The Generic
attack category has the highest proportion of all other classes, on all files. However, on
file #2-#4 the proportion of the Generic class is higher with approximately 4% on #2,
17% on #3 and 14% on #3 compared to only approximately 1% on #1. Furthermore,
the higher proportion of normal data with approximately 97% on #1 compared to 92%
on #2, 78% on #3, 80% on #4 leads, in general, to poorer 𝐹1 values due to the extreme
imbalance of positive and negative classes [340].

122

5 Exploiting the Outcome of Outlier
Detection for Novel Attack
Pattern Recognition on Streaming
Data

This chapter provides details on the Streaming Outlier Analysis and Attack Pattern
Recognition (SOAAPR) framework and is organized as follows — Section 5.1 provides
relevant background for the reader regarding unsupervised OD on SD as well as aspects
of AC and provides related work with the most popular state-of-the-art solutions for AC
with respect to (i) outlier detection and (ii) streaming alerts. In Section 5.2, details on
the conceptualization and operation principle of SOAAPR, for streaming outlier analysis
to identify attack pattern, can be found. It contains a detailed description of the major
modules for streaming AC and generation as well as comparison functionality for all
three types of signatures. In Section 5.3, the evaluation methodology is described along
with details on the data sources and the evaluation criteria. The discussion of results
(Section 5.4) is split into two major parts. Firstly, the streaming AC from SOAAPR
is compared to the competitor GAC and, secondly, the results, evaluating the signature
generation and comparison, are discussed.

5.1 Related Work for Streaming Alert Correlation and
Outlier Detection

5.1.1 Alert Correlation for Outlier Detection

Bolzoni et al. in [341] formulated the problem, when an anomaly-based IDS raises an alert,
it cannot associate the alert with an intrusion type / class, mostly mandatory for AC.
Anomaly-based IDS can only provide little information, such as the IP-addresses and port
information, and in addition, a security analyst might add the intrusion type or class label,
but only in a laborious manual analysis process. Thus, the authors proposed Panacea [341]
in order to automatically classify attacks utilizing a supervised SVM learning model.
It inspects the payload of data instances and searches for unusual novel patterns, e.g.,
byte sequences of certain intrusion types by leveraging previously learned information.
The intrusion type can be assigned by finding the most similar alert payload. However,
Panacea is payload-centered which hampers the application for certain attack categories
such as Portscan or DDoS not involving malicious payload content. Further, it requires
training data which, in particular for attack-payload, is typically not available and faces
problems when dealing with payload-encrypted traffic.

With a different focus on filtering false alarms, the work in [342] addresses the issue
that reported alarms from anomaly-based IDS also lack rich information. They may only

123

identify the anomalous connection stream but cannot provide intrusion type or class in-
formation. Their proposed framework is composed of the feature constructor, the cluster
constructor and the so-called simple best fit cluster in order to monitor the generated alerts
from an anomaly-based IDS. The feature constructor extracts network traffic flow infor-
mation and derives certain metrics used to construct clusters of normal alarm patterns in
a training phase utilizing the cluster constructor. Incoming alerts from an anomaly-based
IDS are then evaluated in the simple best fit cluster module incorporating information
from their respective network traffic flow features if deviations from the trained model
occurred. However, the main intention of this work is not the identification of novel attack
pattern but rather the reduction of anomaly-based IDS outputs.

An approach that detects multi-stage attacks in an unsupervised way without details
on single-stage attacks is proposed in [343]. Since the authors state that conventional
multi-stage attack detection is designed for misuse-based IDS, which are leveraged for
single-stage attack detection, their proposal is designed to operate on both, signature
and anomaly-based IDS alerts. The main idea of the approach is that suspicious flows
are generated, clustered and labeled in the rule generation phase. Labeling in this phase
means that the intrusion type or class labels are assigned to each cluster. According
to [344], the assignment of clusters to attack stages still remains to be investigated.

A recent work [344] proposes Adept, a distributed framework to detect individual attack
stages in order to uncover a coordinated attack in the IoT security domain. Anomaly
detection is performed on network traffic of IoT devices and potential anomalies are sent
to a security manager. It will aggregate and mine alerts using a method called frequent
itemset mining. The resulting alert- and pattern-level information will be supplied to
a ML approach to identify the individual attack stages. However, the attribution of
incoming alerts to different attack stages is performed using a supervised approach, in
particular, leveraging 𝑘-Nearest-Neighbor, RF and SVM. Furthermore, their extraction
and identification of attack patterns is founded on a simple anomaly detection method
designed for the needs in the IoT domain. Thus, common state-of-the-art off-the-shelf
anomaly detection methods are not compatible with Adept.

A promising generic graph-based AC solution, denoted as GAC, is proposed by Haas
et al. in [337]. Since it only relies on the alert attributes IP and port of source and
destination it can be exploited to correlate alerts generated by anomaly-based IDS. GAC
is composed of three building blocks: alert clustering, context supplementation and attack
interconnection. For alert clustering, similarities between each of the alerts are computed
by attribute-specific comparison functions. Then, an attribute graph is derived with alerts
as nodes and their similarity values as weighted edges. In leveraging community clustering,
in particular the Clique Percolation Method, loosely coupled clusters can be extracted
from the attribute graph which potentially contain alerts of a single-stage attack scenario.
Context supplementation then transforms the resulting clusters into a graph - flow graph -
that characterizes the communication patterns between the alerts. From the resulting flow
graph four different attack categories can be identified depending on the communication
relation between attacker(s) and victim(s). The last block, attack interconnection, aids
to identify multi-stage attacks by revealing relations between individual attack scenarios
by comparing the set of attackers and victims of each attack cluster.

In a subsequent work [54], the authors proposed a more flexible solution than context
supplementation by assigning clusters to one of four attack categories: one-to-one (oto),
one-to-many (otm), many-to-one (mto) and many-to-many (mtm). The so-called motif-
based approach builds upon the alert clustering stage from GAC or any other method

124

that groups alerts into clusters, potentially reflecting attack scenarios. Then, if clusters
are obtained, a communication structure graph is derived by the IP-address and port
information extracted from the alerts. The communication relation of who attacks whom
and which ports are relevant for an attack are reflected in a directed graph structure. A
fingerprint-like characteristic can be extracted from the graph by leveraging a concept
called motif signatures. These are different characteristic sub-graphs, e.g., three nodes
with 16 possible edge patterns among them, whose occurrence in the graph represents a
motif signature. Network motifs were initially proposed by [345] and have been transferred
to the security-domain as discussed in [54]. However, the application of network motifs
in [54] is transferred for the characterization of attacks and allows a fine-grained, privacy-
preserving and dynamic generation of signatures for a multitude of known and unknown
attack scenarios, as well as the differentiation and comparison among them.

5.1.2 Streaming Alert Correlation

A real-time correlation of intrusion alerts is proposed by Wang et al. in [346]. It requires
alerts that contain the intrusion type and relies on a vulnerability-centric correlation
that maps exploit information, and its vulnerability relation, with alerts. Hence, the
focus of the solution is on multi-stage attack detection and by its so-called Queue Graph
approach it is able to counteract the limitations of sliding windows prone to be tricked by
adversaries. Using an extension of the Queue Graph, the attack graph based approach is
able to hypothesize missing alerts and predict future ones.

Ma et al. in [33] propose a real-time system that automatically discovers attack strate-
gies from evolving alert streams. They leverage a well-known streaming clustering method,
called CluStream [347], that is designed with an online and offline module and replaces
the latter with an AC component. The online module is used to generate high-level alerts,
hyper-alerts, that maintain statistics from the streaming alerts, summarizing their char-
acteristics, over different time periods. Alerts must feature, among other attributes, the
intrusion type denoted as SigID, which is obtained by misuse-based IDS. Signature-like
characteristics can then be derived by the assumption that a multi-stage attack of the
same type typically happens in a certain time span and the sequence of their hyper-alerts
is similar.

A framework for incremental frequent structure mining is proposed in [348] that ag-
gregates alerts into structured communication patterns depending on the connectivity-
relation of involved hosts: mto, otm and mtm. The frequency of those patterns is mined
from the streaming alerts and is considered finished if it is not changed for a user-definable
amount of time. From those patterns, a so-called Frequent Structured Pattern Tree,
FSP_Tree, is created that encodes the most significant patterns along with their time-
sensitive information in a Pattern Tree.

Ren et al. in [349] propose online AC using two components. In an offline module, a
Bayesian correlation approach is utilized to extract causal relations among alert features.
Based on those patterns, the relevance of alerts for attack steps can be analyzed, which will
be stored in a Correlation and Relevance Table. Those reference tables can be consulted
if new alerts stream into the online module of the system to uncover multi-step attacks.
Again the intrusion type / class field of an alert plays a crucial role and additional alert
features must be derived in order to form hyper-alerts of the same type. However, as
mentioned by Sundaramurthy et al. in [55], the approach by Ren et al. can only learn
and detect the type of attacks that previously occurred. Therefore, Sundaramurthy et al.

125

proposed a slightly different approach, which is knowledge-based but works on knowledge
of an attacker’s intention and constraints rather than attack specifics. Thus, they use a
semantic model which maps potential meanings to alerts without incorporating types of
attack scenarios.

A real-time method, denoted RTECA, is proposed in [350] that extracts so-called critical
episodes, which are sequences of alerts that could be part of multi-step attack scenarios.
Thus, their framework aggregates alerts, including their intrinsic attributes with the in-
trusion type and attack severity information in order to generate hyper-alerts and merge
similar alerts together. The timely sorted alerts are categorized in larger parts, batches,
each divided into smaller parts, called episode windows. The framework is composed of
an online and offline module. In the former, an online attack tree is generated based on
the alerts and the steps of multi-step attacks are determined. In the offline phase, alert
similarities are computed and an offline attack tree is generated by the alerts of critical
episodes in order to learn multi-step attack scenarios.

Utilizing an offline and online module too, Daneshgar et al. in [351] proposed a method
that clusters alerts as fuzzy events according to their similarities and historical events,
obtained from the offline module, in an online manner. A fuzzy frequent pattern mining
module in the offline phase mines for relations based on statistical characteristics between
alerts to extract fuzzy patterns. The resulting correlation strength can, in turn, be taken
into account for the similarity measure utilized in the fuzzy clustering.

Zhang et al. in [352] proposed a framework named IACF, which stands for Intrusion
Action Based Correlation Framework. Its components, split into an extraction and mod-
eling phase, cover alert normalization, action extraction, session rebuilding and building,
as well as updating a correlation graph. Actions in this work refer to a set of alerts po-
tentially indicating a single-stage attack. Subsequently, sessions are a sequence of actions
that represent the association relation between actions based on temporal metrics. IACF
is able to prune sessions in order to remove redundant actions, fuse them and construct
a correlation graph, which can be utilized to predict future attack steps. In a consecutive
work [24], the authors leverage the Hierarchical Temporal Memory (HTM) algorithm for
online intrusion scenario discovery and prediction. Again, normalizing alerts is the first
step before hyper-alert processing is performed by online clustering, session reconstruc-
tion and session encoding. Alerts are clustered by computing the similarity of the types
field in an online manner. Similarly to IACF, sessions are reconstructed and encoded in
order to feed the HTM online learning as part of the intrusion scenario discovery module.
HTM learns the patterns, predicts potential next steps and scores anomalies. Outcomes
of the HTM are used to update a correlation matrix representing the correlation strengths
between actions from which potential future attack paths can be extracted.

5.1.3 Delimitation from SOAAPR

Inspired by the above literature, this article transfers and improves methods for aggrega-
tion, (streaming) clustering and attack categorization in the field of attack pattern mining
by only utilizing the outcome of OD algorithms. To better guide the reader, a delimitation
from SOAAPR to related work is given in this section.

Regarding the fusion of alerts of multiple IDS sensors in order to derive high-level alerts
with strong confidence about the mitigation of FP and FN, our alert preparation module
in SOAAPR works similarly to the aggregation component in RTECA [350]. Both ap-
proaches fuse similar alerts based on the concept of attribute similarity. However, RTECA

126

strongly relies on alert type and attack severity information which is not present when
operating on anomaly-based IDS. Thus, we take advantage of additional OD functionality
incorporating outlier score and feature contribution of a data instance leading to an alert
generation. Furthermore, as used by [33], similar alerts can be fused if they have only
minor temporal differences. SOAAPR differentiates between two cases in which either
alerts are obtained from multiple algorithms running in parallel on one system or from
multiple distributively operating ones.

In terms of clustering for anomaly-based IDS, GAC’s clustering solution [337] is most
related to SOAAPR. However, our approach differs in various ways. Since working on a
finite set of alerts, it might be difficult for a security operator to choose an appropriate
point in time when to start and end recording alerts which will be fed to GAC. If the
recording time is too short, an attack might not yet be finished and further attack-related
alerts are not included. If the recording time is too large, the GAC approach consumes
considerable resources. This has been discussed in their work and was mitigated by
chunk-based processing in which the alert data set is divided into smaller chunks which
can efficiently be computed by GAC. Doing this might split the alerts of an attack scenario
into two chunks. Furthermore, if no chunks are considered and no notion of time through
alert timestamps is incorporated, it is very likely that alerts with similar attributes might
be clustered together which have no temporal dependency and are from different attack
scenarios. SOAAPR only mines for temporally “unique” attack stages by taking the
timestamp information into account. Furthermore, it automatically checks whether a
cluster is completed such that no old alerts get correlated into a recent cluster. Considering
parametrization, GAC suffers from choosing the parameter 𝑘, searching for fully connected
sub-graphs of size 𝑘 within the community clustering, and a suitable threshold 𝜏 providing
a minimum similarity value between alerts. The former allows the assignment of alerts to
multiple clusters such that may clusters result that potentially contain alerts of unrelated
attacks. For SOAAPR, we assume that each alert can only be assigned to one cluster
and we handle confidence of alerts in a designated alert preparation stage. Furthermore,
instead of having a minimum similarity threshold on the alert level, SOAAPR assigns
alerts into clusters with the highest overall similarity. Having a minimum similarity on a
cluster level, makes it more robust to fluctuations in the alert attributes.

With respect to streaming alert clustering, competitors mainly focused on multi-stage
attack detection by correlating alerts enriched with the intrusion type and assuming that
raised alerts correspond to a single-step attack. Therefore, streaming solutions are mainly
designed for the application of misuse-based IDS. The incremental frequent structure min-
ing approach in [348] is similar to our SOAAPR by creating frequency patterns of alerts
as potential attack scenarios, i.e. single step attacks, and only incorporating IP-address
information. However, our approach differs in various ways. Largely comparable to those
patterns, the clusters in SOAAPR are obtained by more flexible comparison functions
allowing for the consideration of various alert attributes. Problems with the tempo-
ral handling of patterns, stated in the outlook of [348], are slowly developing patterns
with large delays in between the steps and the fixed Keep_Active parameter used to
decide when a pattern is considered “stable”, i.e. finished. By assigning individual and
cluster-characteristic time values, SOAAPR is more flexible when determining a cluster
as “saturated”, i.e. finished. Additionally, requiring a mining interval time in which every
𝑥 minutes the pattern tree structure is updated, makes it possible for an adversary to
perform an attack unnoticed within this time span.

127

Attempts for discovering novel single-stage scenarios as part of multi-stage attacks are
given by RTECA in [350], mining for critical episodes. However, although stating real-
time operation, processing is only started when a window is completed. In contrast, for
SOAAPR each alert is processed immediately and no window needs to be filled. Ag-
gregated alerts in RTECA are merged by utilizing intrusion type and attack severity
attributes. Our approach dispenses with this information and leverages attributes that
can be provided by OD algorithms. Although similarity functions in RTECA used to up-
date the correlation matrix are similar to ours, the online clustering process in SOAAPR
is more efficient compared to the online attack tree generation when considering the pro-
cessing of each newly arriving alert.

The online fuzzy clustering module used in [351] operates most similar to the clustering
in SOAAPR. It exploits a common approach that similar alerts belong to an existing
pattern (in our approach a cluster) whose similarity degree is high or triggers the genera-
tion of a new pattern in the case that existing ones are not sufficiently similar (minimum
threshold of similarity). The fuzzy clustering approach also considers the notion of time
which strengthens our approach introducing a “time to live” for each cluster. However,
the threshold used for the life time of patterns is one timing constraint, which might be
exploited by a strong adversary performing its attack until the life time is not exceeded.
SOAAPR provides two timing constraints preventing such attacks and also takes care of
considering that new alerts are not added to an existing cluster if the cluster’s tempo-
ral existence is outdated. However, contrary to SOAAPR, this time difference is part of
the similarity functions, which makes its threshold less intuitive for the operator. The
parameter tuning is discussed by the authors in their conclusion and some parameter
improvement is part of further work. A membership degree in the fuzzy patterns can be
compared to the outlier score values of each alert representing an alert’s confidence as part
of a cluster. Although not relying on the intrusion type attribute, and thus adaptable for
OD, it is designed and evaluated using alerts from misuse-based IDS.

With their recent work, Zhang et al. in [24] and [352] proposed real-time intrusion
scenario detection methods. With IACF alerts streaming in real-time are grouped into
actions based on the similarity of the intrusion type and destination port. The former
strongly requires existing knowledge such as using misuse-based IDS which is a major
difference to SOAAPR and our clustering, where the comparison functions is less strict
but does not allow duplicate actions because of duplicated alerts or FP. Timely formed
sessions from a sequence of actions are then split by a similar method used in SOAAPR
to determine saturated clusters. However, we compute the discreteness of time intervals
between alerts instead of actions on a session level in IACF. Furthermore, for the sake
of reducing the impact of FP, the pruning algorithm might also filter out single-stage
attacks. We deem this step as critical since we support and transfer the statement in [34]
for OD-based AC that, especially for critical streaming applications, it is more important
not to miss critical TP anomalies forming a single-stage attack while accepting a certain
rate of FP.

In terms of attack characterization, we see the huge potential of generic signatures de-
rived from attack characteristics as proposed by the motif-based approach in [54]. Thus,
we evaluate the applicability of those communication-related fingerprints and extend them
by considering feature attributes and a temporal behavior also potentially characterizing
attacks, since we deem that the communication relation of attacks is not the only and
best option to characterize attacks.

128

Contrary to the mined patterns in [348], SOAAPR provides a more unpredictable,
cluster-specific generation of signatures. The mentioned high number of FP patterns is
not surprising when dealing with alerts that do not state high confidence and map to
a single attack step. SOAAPR will also likely be suffering from FP clusters due to the
impossible prevention of FP and FN alerts in real-world applications and its time-specific
online clustering approach. However, SOAAPR provides signatures from clusters that
can be compared among each other or with ones previously stored as knowledge base,
subsequently allowing for a deeper analysis by a human operator.

Derived candidate attack sequence patterns from the approach in [33] are composed
of hyper-alert sequences within a certain time span, which characterize a multi-stage
attack. Due to the different lengths of those patterns, a comparison with others is impeded
and hyper-alerts still contain privacy-relevant information such as IP-addresses. The
intrusion scenario construction phase in IACF [352] derives correlation graphs extracted
from pruned sessions. However, as stated by the authors in the conclusion, the generated
graphs are not very intuitive for human analysts. This is because sessions are decomposed
into binary correlations of sessions. SOAAPR generates comparable, fixed-sized signatures
in which similarity scores can be computed. Furthermore, those signatures are free from
privacy-relevant information and can be shared with others. Signatures in our approach
represent single-stage attack scenarios and not multi-stage attacks. However, by chaining
our signatures, multi-stage attack comparison is also possible. Also depending on the
attribute intrusion type, the authors’ more recent work [24] performs online clustering in
a similar manner as SOAAPR but clusters actions into clusters with high similarity of
the type field. This makes the framework highly dependent on existing knowledge, for
instance obtained from alerts generated by misuse-based IDS.

We want to note that especially much of the AC work, e.g. [151], which relies on misuse-
based IDS, assumes that raised alerts can be treated as an attack, i.e. single-stage attack
or attack step. Based on those assumptions, much work exists that identifies multi-staged
attacks by analyzing those alerts. However, SOAAPR significantly differs from those by
assuming that raised alerts from anomaly-based IDS, in particular in this work by OD
algorithms, only represent indicators of potential known or unknown attack scenarios, i.e.
single-stage attacks. By equipping OD algorithms to produce enriched alerts, SOAAPR
mines alerts to identify those attack scenarios. Additionally, OD algorithms have their
limitations when identifying a broad spectrum of attack scenarios based on the assumption
that outliers are rare, distinct and do not happen frequently compared to normal data.
Thus, it is difficult to produce alerts for the whole duration of long-term attacks with
a massive amount of data, such as DoS-like or Brute Force, since online OD algorithms
might adapt to them by supposing a concept drift. Furthermore, for attack detection using
OD, it is assumed that detected outliers are indicators for maliciously triggered events
although potentially being only an anomalous event rooted in a non-malicious fault, for
instance. Intentional masking and swamping that might blend OD, as discussed in [353],
are also not considered. Rather, we would like to point out with this work that identifying
attack pattern from OD can work to a certain extent but in real-world applications we
strongly suggest to leverage a hybrid system of anomaly- and misuse-based IDS. Although
the intention of SOAAPR is highly ambitious, we see the approach confirmed since real
attacks are more likely small probability events, and the most dangerous attacks only
happen rarely [24, 354]. This so-called “rare data problem” is the case for which OD
algorithms are especially predestined.

129

5.2 Streaming Outlier Analysis and Attack Pattern
Recognition

5.2.1 Operation Principle

The workflow and operation principle for Streaming Outlier Analysis and Attack Pattern
Recognition, denoted as SOAAPR, is shown in Figure 5.1. One may utilize SOAAPR in
conjunction with online OD algorithms in two different interaction modes depending on
the network infrastructure and the available resources. On the one hand, online OD can be
performed self-sufficiently on a single system applying multiple OD algorithms in parallel,
denoted as single system - multiple algorithms. The amount of algorithms in parallel
depends on the available resources of the single system. All algorithms perform OD on
the same data instances (data points) 𝑥𝑡 with dimension 𝑑 of the data stream {𝑋𝑡 ∈
R𝑛𝑡×𝑑, 𝑡 = 1, 2, ...}. The continuous transmission of data records arrives sequentially at
each time step 𝑡 in which the count of features is denoted as 𝑑 (dimension) and 𝑥𝑡 the
𝑛𝑡-th 𝑑-dimensional most recent incoming data instance at time 𝑡. The feature set of 𝑋𝑡 is
denoted as ℱ = {𝑓1, 𝑓2, ..., 𝑓𝑑}. Alert Generation and Alert Preparation can be performed
locally on the single system after each classifier yields its result, either a TP or a FP.
For a greater extent of visibility across larger network infrastructures, collaboratively
operating IDS sensors, have found their way into alert detection or AC. Therefore, on
the other hand, SOAAPR is able to deal with multiple self-sufficiently working online
OD algorithms, denoted as multiple systems - single algorithms. Each distributively or
decentrally applied algorithm in the network infrastructure operates on data instances 𝑥𝑡,
𝑦𝑡 or 𝑧𝑡 from different data streams 𝑋𝑡, 𝑌𝑡 and 𝑍𝑡. Alert Preparation in this interaction
mode is performed by SOAAPR. A combination of both interaction modes, denoted as
multiple systems - multiple algorithms, is also possible. Thus, Alert Preparation must be
performed on both the multiple single systems utilizing multiple online OD algorithms
and within SOAAPR processing the streaming alerts.

Alert instances 𝑎𝑡 from the stream {𝐴𝑡 ∈ R𝑚𝑡×𝑙, 𝑡 = 1, 2, ...}, generated by either a
TP or a FP, are streaming into SOAAPR at each time step 𝑡, in which the count of
attributes of 𝑎𝑡 is denoted as 𝑙 and 𝑎𝑡 = {𝑎1, 𝑎2, ..., 𝑎𝑙} the 𝑚𝑡-th 𝑙-dimensional most
recent incoming alert at time 𝑡. Within SOAAPR, a Buffer is used to temporarily store
alerts for the Streaming Alert Correlation / Clustering. No longer required alerts, e.g.,
from unusable clusters will be flushed by the Discard Alerts & Clusters module. The
Trigger Signature Generation component monitors the evolving clusters 𝐶(𝑡)

𝑖 from the set
𝐶(𝑡) and triggers the Signature Generation from suitable clusters, ideally representing an
attack or step of an attack, denoted as attack scenario 𝑆(𝑡)

𝑖 from the set 𝑆(𝑡), in order to
create three types of signatures denoted as 𝑠𝑖𝑔(𝑡)<𝑡𝑦𝑝𝑒>.

The further processing of the generated signatures depends on two operation modes
- Runtime and Learning - based on whether an existing knowledge base is available or
not. In the Learning phase, generated signatures can - if desired - be clustered according
to their similarity and are presented to a human analyst. Instead of a massive amount
of alerts generated without applying SOAAPR, the expert must only analyze a reduced
amount of alerts already preprocessed in a set clustered as 𝐶(𝑡)

𝑖 and ideally corresponding
to the attack scenario 𝑆

(𝑡)
𝑖 . In the case of a true attack scenario, the expert condenses

information about the attack scenario using STIX and attaches the respective signature
𝑠𝑖𝑔

(𝑡)
<𝑡𝑦𝑝𝑒> to it. Since the resulting knowledge of the attack scenario only consists of

fingerprint-like attack-characteristic information, free of privacy-relevant or confidential

130

xt Xt
SOAAPRat At

Discard Alerts
& Clusters

Streaming Alert
Correlation / Clustering

Online ODn-1

Online ODn

Online ODn+1

A
le

rt

G
en

er
a

ti
on

A
le

rt
 P

re
p

a
ra

ti
o

n

 B
u

ff
er

...
 a

t
, a

t-
1,

 a
t-

2,

Signature Generation

Trigger
Signature

Generation

Knowledge Base

Signaturesn

Attackn

Scenario Comparison

Sim.

Learning

Runtime

IDEA

STIX

Human Analyst

Analyze Scenario

STIX Unsupervised
Mining

A
le

rt

P
re

p
a

ra
ti

o
n

Online ODn-1

Online ODn

Online ODn+1

Alert Generation

Alert Generation

Alert Generation

xt Xt

yt Yt

zt Zt

Figure 5.1: Flowchart and Operation Principle of Streaming Outlier Analysis for Attack
Pattern Recognition.

data such as in-house IP-addresses. Thus, it can be shared in a cross-company manner.
Having a knowledge base established, in the Runtime phase, generated signatures can
be compared within the Scenario Comparison module by calculating similarity values.
This way, one can take advantage of the strengths of misuse-based signatures with their
fast, efficient and reliable attack identification capability but surpasses it via its ability
to identify completely new, yet unknown, attack scenarios by being similar to known
scenarios (from the same attack category) with a similar pattern. In the following, the
core components of SOAAPR are discussed in more detail.

5.2.2 Alert Generation & Preparation

An OD algorithm 𝑂𝐷(·) : 𝑥𝑡 → 𝑓(𝑥𝑡) assigns either a class label as given by 𝑓(𝑥𝑡) ∈
{𝑛𝑜𝑟𝑚𝑎𝑙, 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙} or a score value 𝑓(𝑥𝑡) ∈ R, describing the strengths of anomalous-
ness, for each data object in 𝑋𝑡. Score values carry more information and aid the Alert
Preparation, for instance, by dealing with FN. Thus, Alert Generation creates alarms
utilizing the IDEA format for instance by enriching the intrinsic alert properties such as
timestamp, IP-address and port source and destination information with (i) a normal-
ized value of the outlier score and (ii) the respective top-𝛾-features mainly causing the
outlierness as the subset ℱ𝑆 = {𝑓𝑖1, 𝑓𝑖2, ..., 𝑓𝑖𝛾} ⊆ ℱ .

We deem (i) crucial when combining multiple OD algorithms with different scoring
functions, since, for instance, algorithms such as Kitsune [115] or Loda [119] score in-
stances higher the more abnormal they are within their model (𝑓(𝑥𝑡) ∈ [0,∞[). This
impedes setting a unified threshold value across all applied OD algorithms, in particular,
when they operate on different hyperparameter sets. As an example, Loda utilizing two
alternating sets of histograms with different window sizes will yield different averaged
score values due to the different state of knowledge about normal data. With increasing
window sizes, the models become more accurate while incorporating larger amounts of

131

normal data instances which, in turn, are then scored less compared to models obtained
from smaller window sizes. We suggest normalizing the outlier scores using an improved
version of the Gaussian Scaling proposed by [304] in which the mean 𝜇 and the standard
deviation 𝜎 are used to encounter the aforementioned problems. Since 𝜇 and 𝜎 work well
for normally distributed values, i.e., assuming a normal distribution of the outlier scores,
we replace them by the median 𝑚𝑒𝑑 and the median absolute deviation 𝑚𝑎𝑑 because they
are a better option for distributions with skewness.

Figure 5.2 depicts an exemplary distribution showing non-negative (positive) skewness
of the Loda online algorithm utilized on the fourth CSV file of the security-related UNSW-
NB15 [335] data set. It clearly points out the difference of mean and median caused by
the unequal ratio of outliers. Thus, the normalization formula leads to Equation 5.1 in
which 𝑒𝑟𝑓() is the monotone and ranking stable Gaussian Error Function and 𝑚𝑒𝑑𝑡 as
well as 𝑚𝑎𝑑𝑡 are moving or rolling variants of the median and median absolute deviation
to be applied in a streaming fashion.

𝑓(𝑥𝑡) = 𝑚𝑎𝑥{0, 𝑒𝑟𝑓(
𝑓(𝑥𝑡)−𝑚𝑒𝑑𝑡
𝑚𝑎𝑑𝑡

√
2

)} (5.1)

Applying this formula will translate the arbitrary outlier score values in the range [0, 1]
as interpretable values describing the probability of a data instance being an outlier. Using
domain expertise, a reasonable threshold can be determined over runtime yielding a decent
classification performance that assigns a binary value from the set {𝑛𝑜𝑟𝑚𝑎𝑙, 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙}
for each 𝑓 .

0 100 200 300 400 500
f(xt)

0

10

20

30

R
el

at
iv

e
F

re
q
u

en
cy

[%
]

m
ea

n

m
ed

ia
n

Figure 5.2: Exemplary Loda outlier score values including the mean and median.

In terms of Alert Preparation, it must be distinguished between the modes single sys-
tem - multiple algorithms and multiple systems - single algorithms. In general, Alert
Preparation helps to reduce FP as well as FN by exploiting the strengths of multiple
classifiers sending their alerts. For single system - multiple algorithms, the classifier pro-
cesses the same data instance from the stream 𝑋𝑡 in parallel, thus feature interpretability
(additional alarm attribute (ii)) is not mandatory since it can strongly be assumed that

132

resulting outliers from the same data instance are caused by the same feature deviating
too much from normal behavior.

However, having multiple systems - single algorithms, with the feature information caus-
ing the outlierness, alerts can be assigned to the same event but from different stream
perspectives, e.g., 𝑌𝑡 or 𝑍𝑡, considering the timestamp information as well. Even in the
distributed case, an attack might cause outliers close in time to be detected by the clas-
sifiers which subsequently generate alerts. If the classifiers are able to determine the
features causing the outlierness, those alerts can be mapped to the same event with high
confidentiality whose 𝛾 most contributing features have high similarity. Independent of
the interaction mode, alerts generated from detected outliers of the same event (data
instance) by multiple classifiers can be fused together to reduce the amount of alerts that
SOAAPR needs to process (alert filtering). We suggest deriving meta-alerts that summa-
rize the multiple alerts generated by the classifiers for the same event. Having the same
alert attributes in terms of IP-address and port source and destination information with
timestamps close in time (and highly similar respective features causing the outlierness
for the multiple systems - single algorithms option) but with different normalized outlier
score values, those alerts can be mapped to a single meta-alert. The normalized out-
lier score values (additional alarm attribute (i)) are combined by 𝑓𝑚𝑒𝑡𝑎 =

∑︀
𝑖 𝑔𝑖𝑓𝑖 into a

meta outlier score depending on potentially additional weights 𝑔𝑖 for each classifier where∑︀
𝑖 𝑔𝑖 = 1 and 𝑓𝑚𝑒𝑡𝑎 ∈ [0, 1] applies. For the sake of simplicity, we assume equal weights

in the following.
Table 5.1 shows an example of five online OD algorithms classifying five data instances

with ground truth {𝑛𝑜𝑟𝑚𝑎𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙, 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙}. Further, we assume
an anomaly threshold of > 0.5 which triggers the generation of alerts by each classifier. A
normal data instance can either be a TN or FP and an abnormal data point can be either
a TP or a FN. Having ground truth information available, even for misclassification of
individual classifiers, meta-alerts would be generated with high confidence referring to the
meta outlier score value, denoted as 𝑓 (𝐺𝑇)

𝑖(𝑚𝑒𝑡𝑎). Since alerts are only generated from TPs and
FPs, 𝑓𝑖(𝑚𝑒𝑡𝑎) can lead to falsely generated meta-alerts without incorporating information
on how many classifiers generated alerts. Thus, the meta-alert outlier score can be pe-
nalized by some measure, e.g., utilizing majority voting or the ratio of alerts generated to
the number of classifiers. Taking advantage of the latter leads to a penalized meta-alert
outlier score, denoted as 𝑓 (𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑)

𝑖(𝑚𝑒𝑡𝑎) . Setting a dedicated threshold for meta-alert gen-
eration based on the penalized outlier scores, for instance 0.3 in Table 5.1, significantly
reduces FPs and potentially alleviates the number of FNs that limit the alert generation
by obscuring the actual TPs.

It is noted that this measure only works for single system - multiple algorithms since
those algorithms definitely operate on the same input data and the total number of clas-
sifiers processing the same event can be determined. In contrast, the number of classifiers
that operate distributively in the multiple systems - single algorithms case, processing the
same event, cannot be reliably determined.

5.2.3 Streaming Alert Correlation & Clustering

The core component of SOAAPR in order to group incoming alerts into clusters, po-
tentially representing attack scenarios, is the Streaming Alert Correlation / Clustering
component. It is again noted, that we are not yet interested in uncovering attack cam-
paigns or multi-stage attacks but attack scenarios or attack steps that are rooted in timely

133

Table 5.1: Exemplary meta-alert generation based on five online OD algorithms classifying
five data instances (3x normal, 2x abnormal) (yellow-colored background for
alerts generated by each classifier for True Positives (𝑇𝑃) and False Positives
(𝐹𝑃); red-colored background for critical False Negatives (𝐹𝑁); (𝐺𝑇) denotes
if Ground Truth about the binary classification was available).

classifier normal normal abnormal normal abnormal

#1 TN (0.2) TN (0.3) TP (0.9) FP (0.6) FN (0.5)
#2 TN (0.1) FP (0.7) FN (0.5) TN (0.3) TP (0.9)
#3 FP (0.6) FP (0.6) TP (0.9) TN (0.3) FN (0.4)
#4 TN (0.1) TN (0.2) FN (0.5) TN (0.2) TP (1.0)
#5 TN (0.2) TN (0.2) TP (0.8) TN (0.1) FN (0.5)

𝑔
(𝐺𝑇)
𝑖 0.20 0.20 0.20 0.20 0.20

𝑓
(𝐺𝑇)
𝑖(𝑚𝑒𝑡𝑎) 0.24 0.40 0.72 0.30 0.66

𝑔𝑖 1.00 0.50 0.33 1.00 0.50
𝑓𝑖(𝑚𝑒𝑡𝑎) 0.60 0.65 0.87 0.60 0.95
#𝑎𝑙𝑒𝑟𝑡𝑠

#𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠 1/5 2/5 3/5 1/5 2/5
𝑓
(𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑)
𝑖(𝑚𝑒𝑡𝑎) 0.12 0.26 0.52 0.12 0.38

Meta-Alert 7 7 3 7 3

correlated outliers. Although so-called Advanced Persistent Threats are characterized by
intelligent adversaries that might exploit the notion of time by stealthily prolonging their
attack campaign, we are focusing on the preliminary steps adversaries have to undertake
which are of a reasonable finite length of time. For multi-stage attack uncovering, we
refer to other work such as [343, 355].

Table 5.2 shows the 14 different attack scenarios of the CICIDS2017 data sets together
with their respective characteristics in terms of number of (anomalous) records associated
for each attack and their duration. Furthermore, the outlier percentage of each attack
within the data set is given. Since OD is tailored for highly imbalanced data, it won’t
work well for the DoS Hulk, Portscan and DDoS attack. However, especially for DoS-like
attacks, plenty of work exists for detection and prevention [356, 357, 358]. It can clearly
be seen from the table that, on average if we exclude the DoS type, attacks are typically
not longer than 4 h. Furthermore, we assume that attacks are rooted in a reasonable
amount of outliers such that - if clustered - meaningful signatures of those potential
attack scenarios can be derived. The number of instances in Table 5.2 confirms this
assumption by showing the average amount of (anomalous) instances per attack scenario
and attack category (excluding the three above mentioned) is 2,830 with a minimum of
11 for Heartbleed. However, we want to note that each attack category has its unique
characteristics in terms of average number of instances per attack scenario and their
duration. Thus, it might be reasonable to apply multiple instances of SOAAPR each
adjusted for a dedicated attack category. This would allow to apply SOAAPR with other
detection mechanisms, except OD ones, which might also be tailored for DoS-like attacks.

Furthermore, we deem it more reasonable that each incoming alert is only assigned
to one cluster. This stands in contrast to approaches such as [337] whose community
clustering might assign alerts to several clusters under the assumption of dealing with

134

Table 5.2: The 14 different attacks with respective characteristics of the CICIDS2017 data
sets (*Although labeled as one attack scenario in the data set, it actually con-
sists of three short-term ones: Meta exploit Win Vista, Infiltration - Cool disk
- MAC and Infiltration - Dropbox download - Win Vista).

Data set Attack Type # Instances Outliers (%) Duration (min)

Tuesday-WorkingHours SSH-Patator 5,897 1.32 62
FTP-Patator 7,938 1.78 73

Wednesday-WorkingHours

DoS Hulk 231,073 33.35 24
DoS GoldenEye 10,293 1.49 9
DoS Slowloris 5,796 0.84 467

DoS Slowhttptest 5,499 0.79 22
Heartbleed 11 0.002 20

Thursday-WorkingHours-Morning
Web Attack - Brute Force 1,507 0.88 45

Web Attack - XSS 652 0.38 20
Web Attack - Sql Injection 21 0.01 2

Thursday-WorkingHours-Afternoon Infiltration* 36 0.01 86
Friday-WorkingHours-Morning Bot 1,966 1.03 205

Friday-WorkingHours-Afternoon Portscan 158,930 55.48 138
Friday-WorkingHours-Afternoon (2) DDoS 128,027 56.71 20

uncertainty in clustering and, although clusters might contain alerts of unrelated attacks,
they might include all TP alerts. This assumption can be seen as critical since alerts
of unrelated attack scenarios, denoted in this work as “noisy”, might lead to blurred
signatures and similar attack scenarios in the future may lead to completely different
signatures without those additional noisy alerts. SOAAPR operates on alerts with high
confidentiality of TPs due to the Alert Preparation mechanism.

The Buffer component serves as a “First In - First Out” data queue which helps to cope
with potential bursts of alert floods while relaxing the processing time of the Streaming
Alert Correlation / Clustering module. The streaming alert processing is performed as
provided with Algorithm 6 for each oldest (first) alert 𝑎𝑡 in the Buffer. The timely order of
alerts is assumed and to be given by the Alert Preparation component. As of now, we limit
ourselves to five alert attributes for streaming clustering: IP-address (source, destination -
{𝑖𝑝𝑠𝑟𝑐, 𝑖𝑝𝑑𝑠𝑡}), port information (source, destination - {𝑝𝑜𝑟𝑡𝑠𝑟𝑐, 𝑝𝑜𝑟𝑡𝑑𝑠𝑡}) and the timestamp
indicating the time when the outlier was detected, denoted as 𝑡𝑎. Moreover, one is able to
weight alert attributes, for instance, to give less weight to the source IP-address or source
port as an adversary might spoof it during its attack scenario [352].

In order to achieve streaming clustering for our purposes, we extend each cluster 𝐶(𝑡)
𝑖

with additional properties beyond the simple subset of alerts, which we deem mandatory
to answer the following fundamental questions: Firstly, when is a cluster saturated, i.e.,
when is it ready for the process of signature generation? Secondly, when is a cluster with
its alerts considered outdated and should be discarded? To answer those two questions,
we refer to Table 5.2 and define two significant user-definable parameters: a maximum
total time to live for a cluster, denoted as 𝑡𝑡𝑡𝑙, and a minimum number of alerts that should
be clustered in order to reasonably represent an attack scenario for signature derivation,
denoted as 𝑚𝑖𝑛_𝑎𝑙𝑒𝑟𝑡𝑠. Based on those parameters, clusters are assigned the additional
information of its create timestamp 𝑡𝑐, a last alert added timestamp 𝑡𝑙𝑎𝑎, an alert counter
𝑐𝑛𝑡, an expiry date 𝑡𝑒𝑥𝑝𝑖𝑟𝑦, a flag 𝑠𝑡𝑎𝑡𝑒 indicating a cluster’s state evolving, saturated
or discard and an alert adding frequency mean 𝑡_𝑓𝑟𝑒𝑞𝑚𝑒𝑎𝑛 and its standard deviation
𝑡_𝑓𝑟𝑒𝑞𝑠𝑡𝑑. The latter two characteristics are used to determine whether a cluster could
be seen as completed in a timely fashion without stressing the very latest expiry date.

135

Algorithm 6: Operation Principle of Streaming Alert Correlation / Clustering.
Input: Alert 𝑎𝑡 composed of attributes {𝑖𝑝𝑠𝑟𝑐, 𝑖𝑝𝑑𝑠𝑡, 𝑝𝑜𝑟𝑡𝑠𝑟𝑐, 𝑝𝑜𝑟𝑡𝑑𝑠𝑡, 𝑡𝑎}, Minimum

Similarity 𝑚𝑖𝑛_𝑠𝑖𝑚, A cluster’s total time to live 𝑡𝑡𝑡𝑙
Output: Updated set 𝐶(𝑡) of clusters each 𝐶(𝑡)

𝑖 composed of an alert subset
𝐴

(𝑡)
𝑖 ⊂ 𝐴𝑡, a create timestamp 𝑡𝑐, a last alert added timestamp 𝑡𝑙𝑎𝑎, an

alert counter 𝑐𝑛𝑡, an expiry date 𝑡𝑒𝑥𝑝𝑖𝑟𝑦, an alert adding frequency mean
𝑡_𝑓𝑟𝑒𝑞𝑚𝑒𝑎𝑛 with its standard deviation 𝑡_𝑓𝑟𝑒𝑞𝑠𝑡𝑑, a flag 𝑠𝑡𝑎𝑡𝑒 indicating
a cluster’s state “evolving”, “saturated” or “discard”

◁Initialization - add alert to new cluster
1 if 𝐶(𝑡) == ∅ then
2 𝐶

(𝑡)
0 ← 𝑎𝑡 𝑡

(𝐶0)
𝑐 ← 𝑡𝑎 𝑡

(𝐶0)
𝑙𝑎𝑎 ← 𝑡𝑎 𝑡

(𝐶0)
𝑒𝑥𝑝𝑖𝑟𝑦 = 𝑡

(𝐶0)
𝑐 + 𝑡𝑡𝑡𝑙

3 𝑐𝑛𝑡(𝐶0) ← 1 𝑠𝑡𝑎𝑡𝑒(𝐶0) ← 𝑒𝑣𝑜𝑙𝑣𝑖𝑛𝑔

4 𝑏𝑒𝑠𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← 0
5 ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑠𝑖𝑚← 0
◁Iterate over all existing clusters

6 for i in 𝐶(𝑡) do
◁Clusters are regularly updated - check if cluster is still evolving

7 if 𝑠𝑡𝑎𝑡𝑒(𝐶𝑖) == 𝑒𝑣𝑜𝑙𝑣𝑖𝑛𝑔 then
◁Compute the similarity of the new alert with the cluster (Equation 5.2
& 5.3)

8 𝑠𝑖𝑚 ← similarity(𝐶(𝑡)
𝑖 , 𝑎𝑡)

9 if sim > highest_sim then
10 𝑏𝑒𝑠𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑖
11 ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑠𝑖𝑚← 𝑠𝑖𝑚

12 𝑛𝑜_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠← 𝑖
13 𝑖← 𝑏𝑒𝑠𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟

◁Add alert to existing cluster or create new cluster
14 if highest_sim ≥ min_sim AND 𝑠𝑡𝑎𝑡𝑒(𝐶𝑖) == 𝑒𝑣𝑜𝑙𝑣𝑖𝑛𝑔 then

◁Add alert to existing cluster
15 𝐶

(𝑡)
𝑖 ← 𝑎𝑡 𝑐𝑛𝑡(𝐶𝑖) ← 𝑐𝑛𝑡(𝐶𝑖) + 1

16 𝑡_𝑓𝑟𝑒𝑞(𝐶𝑖)𝑚𝑒𝑎𝑛 ← t_freq
(Ci)
mean.moving_mean(𝑡𝑎 − 𝑡(𝐶𝑖)𝑙𝑎𝑎)

17 𝑡_𝑓𝑟𝑒𝑞(𝐶𝑖)𝑠𝑡𝑑 ← t_freq
(Ci)
std .moving_std(𝑡𝑎 − 𝑡(𝐶𝑖)𝑙𝑎𝑎)

18 𝑡
(𝐶𝑖)
𝑙𝑎𝑎 ← 𝑡𝑎

19 else
◁Add alert to new cluster

20 𝑖← 𝑛𝑜_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝐶
(𝑡)
𝑖 ← 𝑎𝑡 𝑡

(𝐶𝑖)
𝑐 ← 𝑡𝑎 𝑡

(𝐶𝑖)
𝑙𝑎𝑎 ← 𝑡𝑎

21 𝑡
(𝐶𝑖)
𝑒𝑥𝑝𝑖𝑟𝑦 = 𝑡

(𝐶𝑖)
𝑐 + 𝑡𝑡𝑡𝑙 𝑐𝑛𝑡(𝐶𝑖) ← 1 𝑠𝑡𝑎𝑡𝑒(𝐶𝑖) ← 𝑒𝑣𝑜𝑙𝑣𝑖𝑛𝑔

22 return 𝐶(𝑡)

Thus, as long as the minimum number of alerts per cluster is not reached, the time
difference between each alert is computed and their moving mean and standard deviation
computed by, e.g., the well-known Welford’s algorithm [305]. If the minimum number of
alerts per cluster is reached, alerts can still continuously be added to a correlated cluster

136

as long as this process happens frequently. However, if no more alerts have been added
to a specific cluster for some time, it is considered as saturated and ready for signature
generation. A trivial but yet effective method is a one-dimensional (time) OD method
based on the assumption that, if a value is a certain number of standard deviations
away from the mean, that data point is identified as an outlier. The specified number
of standard deviations is called the threshold whose value is user-definable, denoted as
frequency exceeding threshold 𝑘.

With this set of information, we are able to answer the above questions. Therefore,
a cluster is considered saturated and ready to Trigger Signature Generation when it has
reached a minimum number of alerts and (from a time perspective) either the expiry date
(𝑡𝑒𝑥𝑝𝑖𝑟𝑦 = 𝑡𝑐 + 𝑡𝑡𝑡𝑙) has been exceeded or for a certain amount of time no more alerts have
been added to it. Both time constraints are given by 𝑡𝑛𝑜𝑤 > 𝑡𝑒𝑥𝑝𝑖𝑟𝑦 𝑂𝑅 𝑡𝑛𝑜𝑤 > 𝑡𝑙𝑎𝑎 +
𝑡_𝑓𝑟𝑒𝑞𝑚𝑒𝑎𝑛+𝑘 · 𝑡_𝑓𝑟𝑒𝑞𝑠𝑡𝑑, in which 𝑡𝑛𝑜𝑤 is the current time. Both options are mandatory
since the expiry date prevents, apart from the circumstance that falsely triggered alarms
continuously keep clusters alive, that an adversary might unceasingly trigger alerts on
purpose such that a cluster is not considered saturated for the duration of the attack
concealing its actual one. The second part of the time constraint prevents an adversary
from leveraging its attack until the expiry date is met, allowing a maximum attack time
period of 𝑡𝑡𝑡𝑙. SOAAPR is also robust to attack scenarios that can be performed on
sliding window based approaches as discussed in [346] in which an attacker can prevent
two attack steps from falling into one window. In order to further lower the determinism
for an attacker to not exploit either time boundary, a certain amount of jitter might be
introduced. Thus, similar to the mechanism in [359], the attacker might not exactly guess
both timing constraints.

Algorithm 7 is proposed to monitor the clusters in a regular time-triggered manner (each
time step 𝛥𝑡) to check their conditions. This is necessary since, if no alert is streaming
in SOAAPR for a longer time span, clusters for the event-triggered case might already be
considered saturated or to be discarded.

For better comprehensibility, Figure 5.3 shows an exemplary scenario for two observa-
tion times (a) and (b) of (timely) evolving clusters in three dimensions - two hypothetical
alert attributes and the dimension of time. Although 𝐶𝑖+1 in (a) might have attribute
correlation with 𝐶𝑖, 𝐶𝑖 is already considered saturated since the alert within 𝐶𝑖+1 is out-
dated due to the frequency constraint. A third cluster 𝐶𝑖+2 is currently in the evolving
state. Since 𝐶𝑖 was ready for signature generation and 𝐶𝑖+1 could not reach a minimum
number of alerts till the expiry date, assigned the state discard, both have been removed
as shown in state (b). Cluster 𝐶𝑖+2 is assigned the state saturated in (b) since it reached
the minimum number of alerts and no more alerts have been added for a certain amount
of time. A fourth cluster 𝐶𝑖+3 recently added two alerts and thus is in the evolving state.
Furthermore, a cluster with its corresponding set of alerts can be discarded by the Discard
Alerts & Clusters module, when a signature of a cluster has been computed (assuming
that the above conditions are met) or if the minimum number of alerts per cluster could
not be reached before the cluster is considered to be expired.

Many algorithms for data stream clustering exist that operate on some similarity mea-
sure such as the partition-based approaches incremental 𝑘-means, HPStream or CluS-
tream, which has already been used for AC in [33], or DenStream, I-DBSCAN or LDB-
SCAN as density-based cluster-methods [360]. For instance, established clusters feature
a cluster centroid each in 𝑙 dimensions and a new alert, characterized as a 𝑙-dimensional
data point, could be added to the cluster whose distance to the data point is the lowest.

137

Algorithm 7: Monitoring of Trigger Signature Generation and Discard Alerts &
Clusters.
Input: Time step 𝛥𝑡, Minimum number of alerts 𝑚𝑖𝑛_𝑎𝑙𝑒𝑟𝑡𝑠, Frequency

exceeding threshold 𝑘, Set of clusters 𝐶(𝑡)

Output: Set of clusters with state “saturated” 𝐶(𝑡)
𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 and “discard” 𝐶(𝑡)

𝑑𝑖𝑠𝑐𝑎𝑟𝑑

◁Regularly update clusters
1 foreach 𝛥𝑡 do
2 𝑡𝑛𝑜𝑤 ← current_time()

◁Iterate over all existing clusters
3 for i in 𝐶(𝑡) do

◁Check if cluster is “saturated” or needs to be “discarded”
4 if (𝑡𝑛𝑜𝑤 > 𝑡

(𝐶𝑖)
𝑒𝑥𝑝𝑖𝑟𝑦) OR (𝑡𝑛𝑜𝑤 > 𝑡

(𝐶𝑖)
𝑙𝑎𝑎 + 𝑡_𝑓𝑟𝑒𝑞(𝐶𝑖)𝑚𝑒𝑎𝑛 + 𝑘 · 𝑡_𝑓𝑟𝑒𝑞(𝐶𝑖)𝑠𝑡𝑑) then

5 if 𝑐𝑛𝑡(𝐶𝑖) ≥ 𝑚𝑖𝑛_𝑎𝑙𝑒𝑟𝑡𝑠 then
6 𝑠𝑡𝑎𝑡𝑒(𝐶𝑖) ← 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑
7 else
8 𝑠𝑡𝑎𝑡𝑒(𝐶𝑖) ← 𝑑𝑖𝑠𝑐𝑎𝑟𝑑

9 if 𝑠𝑡𝑎𝑡𝑒(𝐶𝑖) == 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 then
10 𝐶

(𝑡)
𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 ← 𝐶

(𝑡)
𝑖

11 if 𝑠𝑡𝑎𝑡𝑒(𝐶𝑖) == 𝑑𝑖𝑠𝑐𝑎𝑟𝑑 then
12 𝐶

(𝑡)
𝑑𝑖𝑠𝑐𝑎𝑟𝑑 ← 𝐶

(𝑡)
𝑖

13 return 𝐶
(𝑡)
𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑, 𝐶

(𝑡)
𝑑𝑖𝑠𝑐𝑎𝑟𝑑

t

Ci
Ci+1 Ci+2

(a)
t

Ci+2

(b)

Ci+3

Figure 5.3: Exemplary scenario of evolving alert clusters for two different observation
times (a) and (b) - indicated by the frames with gray background - with two
hypothetical alert attributes and the timestamp attribute.

Adding the time 𝑡 as an additional dimension, one could obtain moving (evolving) clusters
in 𝑡 which gets completed as time passes, as illustrated in Figure 5.3. When a new alert is
very far away in time from the ones within the cluster, even if the other alert attributes are
highly similar, it might not be added to it if the time dimension’s weight lets the similarity
fall below the minimum similarity. However, we have deliberately decided against this
approach for two reasons. Firstly, alert attributes are coordinates in the 𝑙-dimensional
space and similarity is only a measure for each coordinate. If one is additionally interested
in the similarity between two different coordinates, such as the similarity of the source IP
from one alert with the destination IP of another alert, this procedure cannot be utilized.
Secondly, the setting of a minimum similarity value 𝑚𝑖𝑛_𝑠𝑖𝑚 as a criterion, whether to
add an alert to an existing cluster or not, depends on 𝑡 which significantly decreases its

138

interpretability. The graph-based approach in GAC allows arbitrary similarity functions,
although the authors limited the attributes to only compare {𝑖𝑝𝑠𝑟𝑐, 𝑖𝑝𝑑𝑠𝑡, 𝑝𝑜𝑟𝑡𝑠𝑟𝑐, 𝑝𝑜𝑟𝑡𝑑𝑠𝑡}
between any two alerts. It is not able to incorporate timing information and an edge
in the graph between two nodes (alerts) is only added if a minimum similarity value is
reached. This fine-granular setting significantly influences the resulting alert similarity
graph and the final alert clusters obtained from it. Thus, we have chosen a more general
approach by adding an alert to a cluster in a streaming fashion by measuring the similar-
ity of a new alert 𝑎𝑡 with the whole 𝑖-th cluster 𝐶𝑖 = {𝑎𝑗|𝑗 ∈ Z, 1 ≤ 𝑗 ≤ |𝐶𝑖|} by utilizing
Equation 5.2 in which 𝐶𝑖[𝑗] is the 𝑗-th alert 𝑎𝑗 of 𝐶𝑖. The notion of time is, contrary
to [337], included by the time constraints of expiry date and frequency transgression while
not blurring 𝑚𝑖𝑛_𝑠𝑖𝑚 in a timely manner.

𝑠𝑖𝑚(𝑎𝑡, 𝐶𝑖) =

∑︀|𝐶𝑖|
𝑗=1 𝑎𝑙𝑒𝑟𝑡_𝑠𝑖𝑚(𝑎𝑡, 𝐶𝑖[𝑗])

|𝐶𝑖|
∈ [0, 1] (5.2)

The similarity between the new alert 𝑎𝑡 and the 𝑗-th alert 𝑎𝑗 of 𝐶𝑖 can be computed by
Equation 5.3 utilizing attribute-specific comparison functions, denoted as 𝑓𝑘(𝑎

(𝑥)
𝑡 ,𝑎

(𝑦)
𝑗),

which might individually be weighted by 𝑤𝑘 (typically
∑︀𝐾

𝑘=1𝑤𝑘 = 1) for a total amount
of 𝐾 comparison functions and 𝑥, 𝑦 not necessarily the same attributes of 𝑎𝑡 and 𝑎𝑗.

𝑎𝑙𝑒𝑟𝑡_𝑠𝑖𝑚(𝑎𝑡,𝑎𝑗) =

∑︀𝐾
𝑘=1𝑤𝑘 · 𝑓𝑘(𝑎

(𝑥)
𝑡 ,𝑎

(𝑦)
𝑗)∑︀𝐾

𝑘=1𝑤𝑘
∈ [0, 1] (5.3)

For network-related alerts, the attributes {𝑖𝑝𝑠𝑟𝑐, 𝑖𝑝𝑑𝑠𝑡, 𝑝𝑜𝑟𝑡𝑠𝑟𝑐, 𝑝𝑜𝑟𝑡𝑑𝑠𝑡} are the most im-
portant and common ones [337]. However, contrary to GAC with 𝑓𝑘 ∈ {0, 1}, whether
the compared attributes are unequal (0) or equal (1), and 𝑥 == 𝑦 for each 𝑘, we utilize
comparison functions shown in Table 5.3. In addition, with regard to 𝑥 ̸= 𝑦, we check
whether the source IP-address of the new alarm compares to the destination IP-address
of an existing alert which might be an indicator that a host was already compromised
taking into account that the victim communicates with the attacker. The same applies
for the identity check of the source port of 𝑎𝑡 with the destination port of 𝑎𝑗.

Table 5.3: Proposed comparison functions 𝑓𝑘 to compute the similarity between alert 𝑎𝑡
and 𝑎𝑗 utilizing the alert attributes {𝑖𝑝𝑠𝑟𝑐, 𝑖𝑝𝑑𝑠𝑡, 𝑝𝑜𝑟𝑡𝑠𝑟𝑐, 𝑝𝑜𝑟𝑡𝑑𝑠𝑡}.

𝑓𝑘 Computation

𝑓1 ∈ {0, 1} 𝑖𝑝
(𝑎𝑡)
𝑠𝑟𝑐

?
= 𝑖𝑝

(𝑎𝑗)
𝑠𝑟𝑐

𝑓2 ∈ {0, 1} 𝑖𝑝
(𝑎𝑡)
𝑑𝑠𝑡

?
= 𝑖𝑝

(𝑎𝑗)
𝑑𝑠𝑡

𝑓3 ∈ {0, 1} 𝑖𝑝
(𝑎𝑡)
𝑠𝑟𝑐

?
= 𝑖𝑝

(𝑎𝑗)
𝑑𝑠𝑡

𝑓4 ∈ {0, 1} 𝑝𝑜𝑟𝑡
(𝑎𝑡)
𝑑𝑠𝑡

?
= 𝑝𝑜𝑟𝑡

(𝑎𝑗)
𝑑𝑠𝑡

𝑓5 ∈ {0, 1} 𝑝𝑜𝑟𝑡
(𝑎𝑡)
𝑠𝑟𝑐

?
= 𝑝𝑜𝑟𝑡

(𝑎𝑗)
𝑠𝑟𝑐

𝑓6 ∈ {0, 1} 𝑝𝑜𝑟𝑡
(𝑎𝑡)
𝑠𝑟𝑐

?
= 𝑝𝑜𝑟𝑡

(𝑎𝑗)
𝑑𝑠𝑡

For iterating over all existing clusters of the current set 𝐶(𝑡) with each new alert 𝑎𝑡 and
calculating the similarity of it with the subset of alerts in each 𝐶(𝑡)

𝑖 , one might assume high
complexity in terms of time and space. However, the number of comparison functions 𝐾 is
fixed and the number of clusters in the current set |𝐶(𝑡)| can be seen as fixed as well since

139

it only fluctuates while new clusters occur but expired or saturated clusters disappear
over time. Thus, with respect to streaming alerts 𝑎𝑡, the Streaming Alert Correlation /
Clustering module only has linear time and space complexity since only the number of
alerts in an existing cluster can increase until it is expired, which demands space and time
by computing the overall similarity of the new alert with all alerts of each existing cluster.
As already mentioned, an attacker might take advantage of producing as many “decoy”
alerts as possible to keep alive and fill a cluster until 𝑡𝑒𝑥𝑝𝑖𝑟𝑦 is satisfied to stress out the
time and space complexity. However, the attacker might only be able to trigger a limited
amount of decoy alerts since the alerts are generated by the online OD algorithms and
too many “outliers” would represent a concept drift in 𝑋𝑡. Thus, malicious data might be
seen as normal after a certain amount of time and no more alerts that stress SOAAPR
are generated. SOAAPR achieves a decent tradeoff between a “real-time” detection by
ideally analyzing each individual alert generated by online OD in order to immediately
react to an attack (which is impossible in real-world scenarios by the massive amount of
streaming alerts afflicted with FP and FN) and a “near real-time” detection with a certain
delay by the clustering process to obtain a decent amount and human-manageable set of
alerts representing potential attack scenarios.

5.2.4 Signature Generation & Sharing

Inspired by the idea in [54] to derive privacy-preserving signatures and fingerprint-like
characteristics of novel attack patterns, by only utilizing the alert information commonly
available with IP and port information, we extend it in SOAAPR. Clusters containing a
huge number of alerts representing an attack scenario can be significantly reduced to a
fixed-sized characteristic by transforming the communication relation of hosts, involved
in an attack, into a directed graph-based structure to derive so-called motif signatures
initially proposed in [345]. This enables a more fine-grained characterization of attacks
compared to other work discussed in Section 5.1.3, such as [337], which differ between four
types of communication patterns. However, with the ever-increasing complexity of novel
attacks, we deem that (i) not only the communication relation is a mandatory attack
characteristic but mandatory is also (ii) the data’s attributes, features of the data 𝑋𝑡,
which are mainly responsible for shaping an attack and, thus, causing outliers, as well as,
(iii) the temporal pattern between the alerts. Considering those three metrics for finger-
printing clusters by deriving three signatures denoted as 𝑠𝑖𝑔𝑐𝑜𝑚 (i), 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 (ii) and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝
(iii), we can achieve a more comprehensive and even more fine-grained characterization
and comparison of attack scenarios, still satisfying the privacy-preservation benefit.

We see ourselves encouraged in our assumption of introducing the additional signature
𝑠𝑖𝑔𝑎𝑡𝑡𝑟 since certain types of attacks and their affected outliers are predominantly caused
by the same features. As could be shown in [303], some features have been more significant
over multiple attack scenarios, e.g., B.Packet Len Std, Flow Duration or Flow IAT Std
and certain types of attacks are more reflected by dedicated features referring to Table 3
in [303]. For instance, Subflow Fwd Bytes and Total Length Fwd Package are most
influential for Infiltration and Bot attack types or the Bwd Packet Length Std is a typical
feature whose outlierness indicates DoS-like attacks [303, 361].

Likewise, our assumption proposing 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 is strengthened by the statement in [352]
that a series of intrusion actions performed by an attacker is more concentrated in the
temporal domain than random FPs. As similarly stated in [352], 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 will likely not
characterize a real attack with precision, since an attacker might try to manipulate the

140

timing of its attack steps forging the time interval between triggered alerts or 𝑠𝑖𝑔𝑡𝑒𝑚𝑝
might be blurred by FP alerts, it is nevertheless a reasonable approach for capturing the
temporal behavior of attacks. In particular, it is easier for an attacker to manipulate
timing of a multi-stage attack than for a single step (focus of SOAAPR) since some tools,
e.g., Metasploit, are often used, whose execution, resulting in potential alerts, might not
be tampered in a timely way.

Although each signature might not fully characterize an attack on its own, such as
𝑠𝑖𝑔𝑐𝑜𝑚 proposed in [54], the combination of the signature triplet, potentially weighted
as well, better allows to characterize attacks and to find novel patterns that somehow
share similarities with other signatures. Thus, deviations of one of the signatures from
similar attack scenarios can be better compensated by the others. It must be noted that
meaningful signatures can be derived when a cluster contains all relevant instances of an
attack, ideally free from FPs and FNs, which is an especially ambitious intention utilizing
OD. Having the knowledge about the communication relation of hosts, which features are
the most important for a certain attack scenario and the timing behavior of a potential
attack scenario, significantly provides a more intuitive root cause analysis process for a
human expert than analyzing correlated alerts on their own.

Generation and Comparison of 𝑠𝑖𝑔𝑐𝑜𝑚
Since it is described in detail in [54], we only provide the most important steps to
perform signature generation for 𝑠𝑖𝑔𝑐𝑜𝑚 and comparison but strongly recommend the
original work. In order to derive 𝑠𝑖𝑔𝑐𝑜𝑚, we take advantage of the alert attributes
{𝑖𝑝𝑠𝑟𝑐, 𝑖𝑝𝑑𝑠𝑡, 𝑝𝑜𝑟𝑡𝑠𝑟𝑐, 𝑝𝑜𝑟𝑡𝑑𝑠𝑡} representing the communication structure of two hosts com-
municating over a port (𝑖𝑝𝑠𝑟𝑐 : 𝑝𝑜𝑟𝑡𝑠𝑟𝑐 → 𝑖𝑝𝑑𝑠𝑡 : 𝑝𝑜𝑟𝑡𝑑𝑠𝑡). Those attributes are con-
tained in each alert 𝑎𝑗 of the 𝑖-th cluster 𝐶𝑖 as shown in Figure 5.4. To transform
all alerts into a network graph 𝐺𝑐𝑜𝑚(𝐶𝑖), nodes of the graph either represent hosts
via the IP-address {𝑖𝑝𝑠𝑟𝑐, 𝑖𝑝𝑑𝑠𝑡} or ports which are bound to the respective IP-address
{𝑖𝑝𝑠𝑟𝑐 : 𝑝𝑜𝑟𝑡𝑠𝑟𝑐, 𝑖𝑝𝑑𝑠𝑡 : 𝑝𝑜𝑟𝑡𝑑𝑠𝑡}. Edges of the graph are reflected by information on who at-
tacked whom, {(𝑖𝑝𝑠𝑟𝑐, 𝑖𝑝𝑠𝑟𝑐 : 𝑝𝑜𝑟𝑡𝑠𝑟𝑐), (𝑖𝑝𝑠𝑟𝑐 : 𝑝𝑜𝑟𝑡𝑠𝑟𝑐, 𝑖𝑝𝑑𝑠𝑡 : 𝑝𝑜𝑟𝑡𝑑𝑠𝑡), (𝑖𝑝𝑑𝑠𝑡, 𝑖𝑝𝑑𝑠𝑡 : 𝑝𝑜𝑟𝑡𝑑𝑠𝑡)}.

Ci

aj = {ipsrc, ipdst, portsrc, portdst, ...}

IP port port IP

port

port

Gcom(Ci)

sigcom(Ci)
transform

calculate
compare

Figure 5.4: Generation and comparison process of the signature 𝑠𝑖𝑔𝑐𝑜𝑚 with respect to [54].

With this intuitive communication direction, a directed graph structure is obtained.
In order to calculate the signature, all sub-graphs 𝐺*

𝑐𝑜𝑚 ⊆ 𝐺𝑐𝑜𝑚 are enumerated, which
are assigned to motif patterns 𝑚𝑖. The accumulated number of occurrences of every 𝑚𝑖

will yield an absolute signature 𝑀𝐴. Since 𝑀𝐴 depends on the graph size, a comparison
can be achieved by utilizing the so-called Z-Score [345]. Briefly summarized, a random
graph structure with the same size and the same number of edges as 𝐺𝑐𝑜𝑚 is derived and
utilized to generate a “relative” signature denoted as 𝑀𝑍 , which represents 𝑠𝑖𝑔𝑐𝑜𝑚(𝐶𝑖)
with respect to Figure 5.4. In order to compare two such signatures, 𝑀𝑍

1 and 𝑀𝑍
2 , they

141

are interpreted as two vectors of fixed length in a multi-dimensional space. The similarity
between 𝑀𝑍

1 and 𝑀𝑍
2 , independent of their length, can then be derived by calculating the

angle 𝜑 between the two vectors, as shown in Equation 5.4, in which < 𝑀⃗𝑍
1 , 𝑀⃗

𝑍
2 > is the

inner product and ||𝑀⃗𝑍
1/2||2 the Euclidean norms.

𝑠𝑖𝑚(𝑀𝑍
1 ,𝑀

𝑍
2) =

𝑐𝑜𝑠−1(𝜑)

𝜋
; 𝑐𝑜𝑠(𝜑) =

< 𝑀⃗𝑍
1 , 𝑀⃗

𝑍
2 >

||𝑀⃗𝑍
1 ||2 · ||𝑀⃗𝑍

2 ||2
(5.4)

Generation and Comparison of 𝑠𝑖𝑔𝑎𝑡𝑡𝑟
Considering that for different attack scenarios certain features are more distinctive, we
take advantage of a different approach than the graph-based one for 𝑠𝑖𝑔𝑐𝑜𝑚 in order to
calculate and compare signatures 𝑠𝑖𝑔𝑎𝑡𝑡𝑟. In general, we transform feature importance
information into a histogram 𝐻𝑎𝑡𝑡𝑟(𝐶𝑖), describing 𝑠𝑖𝑔𝑎𝑡𝑡𝑟, that characterizes the potential
attack scenario clustered in 𝐶𝑖.

In the exmaple in Figure 5.5, each alert 𝑎𝑗 of the cluster 𝐶𝑖 provides feature importance
score values for the top-𝛾-features of the set ℱ consisting of 𝑑 features (score values of
other features are set to zero) and the corresponding penalized meta-alert outlier score
𝑓
(𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑)
𝑗(𝑚𝑒𝑡𝑎) . Each feature 𝑓𝑖 of ℱ represents a histogram bin (bucket) and the count

(frequency) of this bin is computed by adding up each score per feature 𝑠(𝑖)𝑓 weighted
with the outlier score provided by each alert in the cluster. In the example, this leads
to 𝑏(𝑖)𝑠𝑢𝑚 =

∑︀
𝑗 𝑠

(𝑗)
𝑓𝑖
𝑓
(𝑝𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑)
𝑗(𝑚𝑒𝑡𝑎) . Finally, we compute the relative frequency ℎ of each bin by

ℎ(𝑓𝑖) = 𝑏
(𝑓𝑖)
𝑠𝑢𝑚∑︀𝑑
𝑖 𝑏

(𝑓𝑖)
𝑠𝑢𝑚

.
In order to compare two signatures, one can take advantage of methods computing

the similarity between two statistical distributions which are represented by any two
histograms 𝐻𝑎𝑡𝑡𝑟(𝐶𝑖) and 𝐻𝑎𝑡𝑡𝑟(𝐶𝑗) obtained from clusters 𝐶𝑖 and 𝐶𝑗. Although the two-
sampled Kolmogorov-Smirnov test can be modified to function on discrete data, as it
applies for binned values in the histogram, it is normally used for continuous data [362].
Two of standard choices in the discrete case are the well-known chi-squared test and
the Bhattacharyya distance measure [363]. Here we apply the Bhattacharyya distance
𝐷𝐵(𝐻𝑖, 𝐻𝑗) between the histograms 𝐻𝑖 = {ℎ(𝑏)𝑖 }𝑏=1,...,𝐵 and 𝐻𝑗 = {ℎ(𝑏)𝑗 }𝑏=1,...,𝐵 for 𝐵
equi-width bins 𝑏 with (relative) frequency ℎ which is defined as given in Equation 5.5.
It takes values in the range of (0 ≤ 𝐷𝐵 ≤ ∞). 𝐵𝐶 is the Bhattacharyya Coefficient
(Equation 5.5) for which 0 ≤ 𝐵𝐶 ≤ 1 applies. We obtain identical histograms and thus
identical signatures 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 between two attack scenarios if 𝐷𝐵 == 0 applies. The higher
the 𝐷𝐵, the more different the signatures are.

𝐷𝐵(𝐻𝑖, 𝐻𝑗) = −𝑙𝑛(𝐵𝐶(𝐻𝑖, 𝐻𝑗)); 𝐵𝐶(𝐻𝑖, 𝐻𝑗) =
𝐵∑︁
𝑏=1

√︁
ℎ
(𝑏)
𝑖 ℎ

(𝑏)
𝑗 (5.5)

It is noted that the applied OD algorithms must be capable of providing the top-𝛾-
features. Although only a limited amount of work is able to satisfy this requirement, it is
an important functionality for the design of future anomaly-based IDS [364]. The higher
the value for 𝛾, the more information must be transmitted with each alert increasing the
communication overhead. Therefore, a decent value for 𝛾 could provide a tradeoff between
a meaningful signature and a reasonable communication overhead not stressing resources.
Furthermore, in order to be able to accumulate a knowledge base of signatures 𝑠𝑖𝑔𝑎𝑡𝑡𝑟, they

142

all must have been created by the same feature set ℱ , such that each feature within ℱ
represents the exact same bin in 𝑠𝑖𝑔𝑎𝑡𝑡𝑟. However, in many applications, OD algorithms
are utilized on the same pre-processed data by systems such as Argus or Bro-IDS as
utilized in [335] or CICFlowMeter-V3 as used in [303]. Nevertheless, a knowledge base
should be built up providing signatures for a multitude of commonly applied feature sets
such that the user can choose the set, which suits the application best. To what extent
signatures obtained from a different amount of 𝛾 features but from the same feature set
ℱ can be compared, must be evaluated in future work.

Ci

aj

aj+1

aj+2

aj+3

aj+4

...

0
.3
.8
.4
.4
...

.6
0
0
0
.3
...

.2

.9

.7

.9
0
...

.1

.6
0
.3
.5
...

0
0
0
0
0
...

f1 f2 f3 f4 f5 f6 ...

0
0
.3
0
0
...

outlier score

0.6
0.8
0.7
0.9
0.7
...

γ=3

sigattr(Ci)
transform

Hattr(Ci)

compare

aj

aj+1

aj+2

aj+3

aj+4

...

0
.24
.56
.36
.28
...

.36
0
0
0

.21
...

.12

.72

.49

.81
0
...

.06

.48
0

.27

.35
...

0
0
0
0
0
...

f1 f2 f3 f4 f5 f6 ...

0
0

.21
0
0
...

γ=3

bsum 1.44 0.57 0.21 2.14 1.16 0

h 0.26 0.10 0.04 0.39 0.21 0

calculate

...

Figure 5.5: Generation and comparison process of the signature 𝑠𝑖𝑔𝑎𝑡𝑡𝑟.

Generation and Comparison of 𝑠𝑖𝑔𝑡𝑒𝑚𝑝
For generating a signature that represents the temporal (timing) characteristic of an
attack, called 𝑠𝑖𝑔𝑡𝑒𝑚𝑝, we take advantage of the same procedure as for 𝑠𝑖𝑔𝑎𝑡𝑡𝑟. The two
metrics, the duration of an attack and its number of respective alerts (with respect to
Table 5.2), extracted from a saturated cluster could be utilized to compare a potential
novel attack with a knowledge base consisting of signatures for different attack scenarios
with an averaged duration per attack and number of events. However, averaged values
do not ideally represent the ground truth. Therefore, a more fine-grained way is to
characterize an attack by computing the difference in time, 𝛥𝑡, in between the temporally
ordered alerts (events).

Ci sigtemp(Ci)

transform & calculate

compare

t

Δti Δti+1 Δti+2 ...

Htemp(Ci)

Figure 5.6: Generation and comparison process of the signature 𝑠𝑖𝑔𝑡𝑒𝑚𝑝.

With respect to Figure 5.6, we transform the 𝛥𝑡 information of alerts from cluster 𝐶𝑖
into a histogram with a fixed amount 𝑛_𝑏𝑖𝑛𝑠 of equal-width bins 𝑏, denoted as 𝐻𝑡𝑒𝑚𝑝(𝐶𝑖)

143

which describes the signature 𝑠𝑖𝑔𝑡𝑒𝑚𝑝(𝐶𝑖). The histogram ranges from 0 to a subtle maxi-
mum value, mostly representing attack scenarios best, and the bin-width can be computed
dividing the maximum value by the number of bins. If some outlying 𝛥𝑡s occur, they are
added to the last bin. In order to preserve information about the number of instances,
a frequency histogram is proposed, otherwise, one might calculate a relative frequency
histogram. One might further differentiate between histogram types such as short, mid
or long to adjust the number and width of the bins, depending on the order of magnitude
of 𝛥𝑡s. To compare two signatures (histograms) of the same type, we again leverage the
Bhattacharyya distance measure as discussed with 𝑠𝑖𝑔𝑎𝑡𝑡𝑟.

It is noted that the correctness of 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 critically depends on the correct order of
alerts and assumes no strong variation in delays of alerts or a high number of FPs or
FNs. However, if the notion of time of IDS sensors is not correctly loosely synchronized
or an adversary may tamper with the time, imprecise temporal characteristics of alerts
may cause incorrect or confusing results for 𝑠𝑖𝑔𝑡𝑒𝑚𝑝. We leave the discussion of this
phenomenon as future work.

Handling of the Signatures
Having a certain set of reference scenarios, denoted in this work as Knowledge Base, one
can identify novel attack scenarios in the Runtime phase by comparing the obtained sig-
natures 𝑠𝑖𝑔𝑐𝑜𝑚, 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 with existing ones utilizing the Scenario Comparison
module. Signatures known from misuse-based IDS, anti-virus software or anti-malware
systems are either one- or two-dimensional, as Blacklists or Whitelists are examples of
the former and regular-expression functions is an example for the latter. A more recent
method, multi-dimensional signatures can be seen as ML models that create a multi-
dimensional model of input data applying mathematical techniques and score or classify
observations. However, formats such as STIX are not compatible with those technolo-
gies as each class of threat classification may be founded on completely different trained
models [365]. Thus, similar to the idea of conventional signatures, we transfer the idea
of having such one-dimensional characteristics to anomaly-based ML systems. What is
more, the signatures proposed, 𝑠𝑖𝑔𝑐𝑜𝑚, 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝, must not necessarily match
the exact signatures from the reference scenarios since the comparison measures can help
to identify the similarity of novel patterns to existing ones from the Knowledge Base.
Over time, the set of reference scenarios might grow very strongly. Thus, it might be
time consuming to compare a novel attack pattern composed of the three signatures
with each one in the Knowledge Base. Thus, the Unsupervised Mining module makes it
possible to apply a hierarchical clustering in the Learning phase which clusters similar
unknown attack pattern before presenting them to the Human Analyst. Hierarchical clus-
tering was also proposed by [54] but only for similar 𝑠𝑖𝑔𝑐𝑜𝑚. Having a tree-like structure
within the Knowledge Base, attack scenarios characterized by the 3-tuple of signatures
can be structured into clusters according to their similarities. For each of the hierarchical
clusters, the signatures that represent the most each sub-cluster can be determined to
compare novel attack pattern much faster by only comparing it with the representing
signatures 𝑠𝑖𝑔(𝑅𝑒𝑓)𝑐𝑜𝑚 , 𝑠𝑖𝑔(𝑅𝑒𝑓)𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔

(𝑅𝑒𝑓)
𝑡𝑒𝑚𝑝 . The overall best signature match can be ob-

tained by 𝑚𝑎𝑥(𝑠𝑖𝑔𝑐𝑜𝑚, 𝑠𝑖𝑔
(𝑅𝑒𝑓)
𝑐𝑜𝑚)∧𝑚𝑖𝑛(𝑠𝑖𝑔𝑎𝑡𝑡𝑟, 𝑠𝑖𝑔

(𝑅𝑒𝑓)
𝑎𝑡𝑡𝑟)∧𝑚𝑖𝑛(𝑠𝑖𝑔𝑡𝑒𝑚𝑝, 𝑠𝑖𝑔

(𝑅𝑒𝑓)
𝑡𝑒𝑚𝑝). Since none

of the signatures contain privacy-relevant information, they can be enriched with addi-
tional attack information and, e.g., shared among companies using STIX in an automated
manner [366].

144

5.3 Experimental Evaluation

5.3.1 Methodology & Settings

With respect to Figure 5.1, we split our evaluation of SOAAPR into two parts. Firstly
(i), the Streaming Alert Correlation / Clustering module along with Trigger Signature
Generation and Discard Alerts & Clusters is evaluated. Secondly (ii), the Signature
Generation as well as the Scenario Comparison capability of SOAAPR is evaluated. For
(i), the traffic labeled CSV files only of CICIDS2017 are parsed to derive the ideal number
of instances per attack scenario serving as the ground truth clusters. Then, we iterate
over the data sets and simulate an anomaly-based IDS by generating alerts which are
fed into SOAAPR. Our proposed Streaming Alert Correlation / Clustering is used beside
the competitor GAC to evaluate and compare their clustering capability. Since GAC
does not rely on any intrusion type attribute for clustering, it could be leveraged for
anomaly-based IDS and its outcome can be used to generate motif-signatures 𝑠𝑖𝑔𝑐𝑜𝑚 by
design. Furthermore, its chunk processing could be regarded as a trivial form of online
processing. For those reasons, we see a comparison of SOAAPR with GAC as reasonable.

For (ii), we generate signatures 𝑠𝑖𝑔𝑐𝑜𝑚 as part of the Signature Generation module
leveraging ideally clustered attack scenarios from CICIDS2017 and compare them (Sce-
nario Comparison module) in order to show their applicability for attack characterization
based on OD. In order to derive signatures 𝑠𝑖𝑔𝑎𝑡𝑡𝑟, the supervised RF algorithm is used on
a selection of attack scenarios from CICIDS2017 and CSE-CIC-IDS2018 each extracted
into a separate CSV file. The reason for choosing the supervised RF algorithm instead of
an online unsupervised OD variant is the more reliable feature importance scoring func-
tionality providing better interpretability for 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 evaluation, which can be obtained
by the SHAP method. Another benefit of the supervised approach is that the outlier
percentages do not influence the feature importance scoring functionality. Therefore, we
could extract arbitrary attack scenarios, even those that are not characterized with a low
anomaly percentage. Thus, evaluations of unsupervised online OD methods along with
the Alert Preparation module are part of future work. We then produce clusters from
alerts utilizing the top-𝛾-features and the outlier scores per instance obtained by multiple
RF-instances (single system - multiple algorithms) in order to generate and compare sig-
natures 𝑠𝑖𝑔𝑎𝑡𝑡𝑟. For the third signature 𝑠𝑖𝑔𝑡𝑒𝑚𝑝, we compute the 𝛥𝑡s from each ideal attack
cluster within CICIDS2017 and CSE-CIC-IDS2018 to generate and compare signatures.

Experiments were conducted on a virtualized Ubuntu 20.04.1 LTS equipped with 12 In-
tel(R) Xeon(R) CPU E5-2430 at 2.20 GHz and 32 GB memory running on a Proxmox
server environment. Programs are coded in Python 3.9 using the latest PyCharm 2021.1.3
environment. GAC for graph representation and clustering as well as 𝑠𝑖𝑔𝑐𝑜𝑚 for graph
representation and motif comparison utilizes the igraph1 and networkx 2 libraries. RF is
taken from sklearn3, SHAP from its respective library4 and SOAAPR’s 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 as well as
𝑠𝑖𝑔𝑡𝑒𝑚𝑝 generation rely on histograms generated with the popular numpy5 library. Across
all clustering evaluations, GAC is configured with the default hyperparameters proposed
by [337] with a clique size of 15, a similarity threshold between alerts of 0.25 and a chunk
size of 5000 subsequent alerts since higher numbers of alerts increase the graph size and

1https://igraph.org/python/ (accessed on 25 June 2021)
2https://github.com/networkx (accessed on 25 June 2021)
3https://scikit-learn.org (accessed on 25 June 2021)
4https://pypi.org/project/shap/ (accessed on 25 June 2021)
5https://numpy.org/ (accessed on 25 June 2021)

145

https://igraph.org/python/
https://github.com/networkx
https://scikit-learn.org
https://pypi.org/project/shap/
https://numpy.org/

its computational complexity heavily. For equal comparison with SOAAPR, we did not
take advantage of parallel processing. SOAAPR’s hyperparameters are 𝑚𝑖𝑛_𝑠𝑖𝑚, 𝑡𝑡𝑡𝑙,
𝑚𝑖𝑛_𝑎𝑙𝑒𝑟𝑡𝑠 and the frequency exceeding threshold 𝑘. Although SOAAPR allows six
comparison functions with respect to Table 5.3, to ensure equal conditions in comparing
with GAC, only 𝑓1, 𝑓2, 𝑓4 and 𝑓5 have been used. Unless otherwise stated, SOAAPR’s
streaming clustering parameters are set to 𝑚𝑖𝑛_𝑠𝑖𝑚 = 0.25, 𝑡𝑡𝑡𝑙 = 1𝑑𝑎𝑦, 𝑚𝑖𝑛_𝑎𝑙𝑒𝑟𝑡𝑠 = 8
and 𝑘 = 50. The hyperparameters provided decent results across all data sets and attack
scenarios. The minimum similarity 𝑚𝑖𝑛_𝑠𝑖𝑚 is set equally to GAC and the total time
to live 𝑡𝑡𝑡𝑙 is set to one day since none of the attack scenarios present in CICIDS2017
and CSE-CIC-IDS2018 exceeds this boundary and we are able to capture all alerts. The
minimum number of alerts is set to 8 to capture attack scenarios with even a low number
of associated alerts, e.g., Heartbleed in CICIDS2017. The frequency exceeding threshold
is set very high in order to capture fluctuations of 𝛥𝑡s throughout all attack scenarios
which is also amplified by the poor time stamping quality present in CICIDS2017 and
CSE-CIC-IDS2018.

5.3.2 Data Source

For the evaluation of AC, much of the work - even recent works [367, 343, 368] - applies
the outdated DARPA 2000 having two scenarios LLDOS 1.0 and LLDOS 2.0.2 based on
the output of the (misuse-based) ISS RealSecure IDS due to the lack of labeled alert
data or attack data that can be used for the purpose of attack detection. Haas et al.
use, apart from their synthetically generated alert data set, a real-world data set from
the Internet Storm Center6 operating a platform called DShield for sharing data from
security devices to evaluate their GAC clustering approach. However, this data source
lacks ground truth information such that generated clusters by GAC or our SOAAPR
approach cannot be evaluated for their accuracy. Since we are anyway interested in the
complete processing pipeline starting from the detection of outliers in 𝑋𝑡 by the online OD
algorithms, we set our focus on recent IDS data sets such as CICIDS2017 [303] and CSE-
CIC-IDS20187 [303] provided by the University of New Brunswick on AWS, or UNSW-
NB15 since long-serving and still widely used data sets, such as KDD Cup 998 or NSL-
KDD9, have been criticized by many researchers over the past couple of years [303, 313].
Especially for the evaluation of anomaly-based IDS methods, the latest updated data sets
like CSE-CIC-IDS2018 should be utilized [369].

Although CSE-CIC-IDS2018 is tailored for the evaluation of anomaly detection and
consists of seven attack categories with a total of 14 different types of intrusions, e.g.,
SSH-BruteForce or DDoS-LOIC-UDP, it only provides statistical traffic features obtained
by CICFlowMeter-V3 saved as a CSV file. However, in order to generate meaningful
alerts for SOAAPR, the typical TCP/IP level network traffic header features, IP-address
and port number, are mandatory. Furthermore, in some cases timestamps from data
record 𝑛+ 1 is older than the timestamp from data record 𝑛. Therefore, sorting the data
set according to its timestamp feature is necessary in order to preserve the chronological
sequence of events. UNSW-NB15 provides IP and port feature information and has a huge
variety of attacks and subtypes of attacks, but the corresponding ground truth CSV file

6SANS Technology Institute, Internet Storm Center, https://isc.sans.edu/ (accessed on 25 June
2021)

7License: https://registry.opendata.aws/cse-cic-ids2018/ (accessed on 25 June 2021)
8http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on 25 June 2021)
9https://www.unb.ca/cic/datasets/nsl.html (accessed on 25 June 2021)

146

https://isc.sans.edu/
https://registry.opendata.aws/cse-cic-ids2018/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html

cannot be properly used to map attack scenarios to each anomalous instance due to the
unclear start and ending timestamps of events and cannot assign clear temporal ordered
timestamps to the data set records. Although the ML CSV files from CICIDS2017 also
does not feature IP and port information, the additional available labeled traffic CSV
files do, and these can be used to gather the mandatory information since both CSV files
have the same timestamps and number of records. However, there are two drawbacks with
CICIDS2017. Firstly, each of the 14 attack scenarios, with respect to Table 5.2, only occur
once, which hampers the signature comparison of similar attack scenarios. Secondly, the
units of the timestamp are only provided in minutes. Since CSE-CIC-IDS2018 provides
similar attack scenarios, e.g., two Brute Force - Web attacks, and timestamps are provided
in a more fine-granular fashion, it is at least utilized for measurements where no IP and
port information is required, such as for 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 evaluation. Thus, although
no accurate timestamping is provided, we ambitiously tried to compare attack scenarios
using different data sets of CICIDS2017 and CSE-CIC-IDS2018. In order to encounter the
timestamp challenge in CICIDS2017, synthetic timestamps are inserted for data instances
from an attack scenario assigned the same timestamp in minutes. However, in a real-
world scenario, we might be able to assign more fine-grained units such as milliseconds.
In order to be able to generate meaningful temporal signatures, we introduce smaller
units by assuming equal 𝛥𝑡 of alerts having timestamps from the same minute. We take
into account blurred signatures for 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 on CICIDS2017 but see the potential of this
fingerprinting using the more accurate results of CSE-CIC-IDS2018. Since our aim is to
mine information from the outcome of OD algorithms, for the evaluation of SOAAPR’s
and GAC’s clustering, we excluded the DoS Hulk attack scenario in the CICIDS2017
Wednesday-WorkingHours data set and completely neglected the Friday-WorkingHours-
Afternoon data sets due to the high amount of outlier percentage with respect to Table 5.2.
The streaming clustering of SOAAPR depends on timely sorted alerts, which is why all
alerts in CICIDS2017 have been sorted.

5.3.3 Evaluation Criteria

In terms of evaluation metrics for AC, we rely on four different metrics. Two have been
proposed by Ning et al. [370] called completeness and soundness. The former, also known
as the true detection rate, is denoted as 𝐶𝑂𝑀𝑃 and calculated by the ratio of the number
of correctly correlated alerts (𝐶𝐶𝐴) divided by the number of related alerts 𝑅𝐴, i.e., the
real attack-scenario-related number of instances, which states the ground truth of each
attack scenario (Equation 5.6). The latter, denoted as 𝑆𝑂𝑈𝑁𝐷, is the ratio of 𝐶𝐶𝐴 and
correlated alerts (𝐶𝐴), i.e., all the clustered alerts in 𝐶𝑖 (Equation 5.7). A further metric
- the Jaccard index - will provide the similarity of the ideal cluster (ideal attack scenario)
and 𝐶𝑖 obtained by the AC system. It compares two sets of elements, in this case the
ideal cluster and the obtained cluster, and provides information about which alerts are
shared between the two sets and which are distinct. It is denoted as 𝐽𝐴𝐶 and computed
by Equation 5.8. It takes values in the range of [0, 1] and yields a higher value the more
similar two sets are. Further metrics including the compression rate, which might be
interesting for systems afflicted with a high number of 𝐹𝑃 are available in [35].

𝐶𝑂𝑀𝑃 =
#𝐶𝐶𝐴

#𝑅𝐴
(5.6)

147

𝑆𝑂𝑈𝑁𝐷 =
#𝐶𝐶𝐴

#𝐶𝐴
(5.7)

𝐽𝐴𝐶 =
|𝑅𝐴 ∩ 𝐶𝐴|
|𝑅𝐴 ∪ 𝐶𝐴| (5.8)

Furthermore, we measure the average runtime for GAC and SOAAPR’s streaming clus-
tering as a representative metric for computational performance. Thus we accumulated
the elapsed time for processing each data set until the final clusters are obtained.

In terms of attack characterization, for each signature 𝑠𝑖𝑔𝑐𝑜𝑚, 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 per
attack scenario, we compute the similarity values in between each attack scenario with
respect to the formulas given in Section 5.2.4. Furthermore, we measure the average
runtime to generate each signature in order to compare the computational performance
of 𝑠𝑖𝑔𝑐𝑜𝑚, 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 of varying cluster sizes.

5.4 Discussion of Results

5.4.1 SOAAPR Clustering

Table 5.4 summarizes the clustering results of SOAAPR and GAC for the 11 selected at-
tack scenarios of the CICIDS2017 data sets. It shows how many clusters were generated by
each algorithm and how many clusters are assigned to each attack scenario. Furthermore,
the number of associated alerts contained in the assigned clusters is provided together
with the total number of ideal alerts that represents each attack scenario. With respect
to Equations 5.6, 5.7 and 5.8, metrics are provided for the clustering performance and the
overall elapsed time to cluster the attack scenarios for each data set.

Table 5.4: Clustering performance results of SOAAPR and GAC on 11 attack scenarios
of the CICIDS2017 data sets (No. Clusters - assigned cluster(s) / generated
cluster(s); No. Alerts - assigned alerts / actual number of alerts per attack
scenario; Metrics - 𝐶𝑂𝑀𝑃/𝑆𝑂𝑈𝑁𝐷/𝐽𝐴𝐶; Time denotes the total amount of
processing time for each data set containing the respective attack scenarios).

Attack Scenario SOAAPR GAC
No. Clusters No. Alerts Metrics Time (sec) No. Clusters No. Alerts Metrics Time (sec)

FTP-Patator 1/2 7,938/7,938 1.0/1.0/1.0 105.11 2/31 10,000/7,938 1.0/1.0/0.92 1,424.17SSH-Patator 1/2 5,897/5,897 1.0/1.0/1.0 2/31 8,835/5,897 1.0/1.0/0.88

WA - Brute Force 1/24 1,507/1,507 1.0/1.0/1.0
2.32

1/1 2,180/2,180 1.0/0.69/0.69
266.56WA - XSS 21/24 652/652 1.0/1.0/1.0 1/1 2,180/2,180 1.0/0.30/0.30

WA - Sql Injection 2/24 16/21 0.76/1.0/0.76 1/1 2,180/2,180 1.0/0.01/0.01

DoS GoldenEye 2/42 4,065/10,293 0.39/1.0/0.39

63.62

3/51 11,588/10,293 1.0/1.0/0.96

12,107.17DoS Slowloris 1/42 3,588/5,796 0.62/1.0/0.62 2/51 10,000/5,796 1.0/1.0/0.94
DoS Slowhttptest 1/42 5,501/5,499 1.0/1.0/1.03 2/51 10,000/5,499 1.0/1.0/0.81

Heartbleed 0/42 0/11 0.0/0.0/0.0 0/51 0/11 0.0/0.0/0.0

Infiltration 1/1 36/36 1.0/1.0/1.0 ∼0.0 1/1 36/36 1.0/1.0/1.0 ∼0.0

Bot 2/2 1,926/1,966 0.98/1.0/0.98 2.51 2/2 1,962/1,966 1.0/1.0/1.03 75.09
1 Due to “out of memory” error using 32 GB RAM, the alerts had to be processed in chunks of 5,000 as proposed in [337], 2 Changed hyperparameter set, 3 rounded values

SOAAPR perfectly clusters both brute force scenarios, FTP-Patator and SSH-Patator,
each in a separate cluster while only needing approximately 105 sec. For GAC’s graph-
based clustering, in contrast, a high amount of alerts needed to be processed in chunks

148

since 32 GB RAM on the evaluation machine were not enough. Nevertheless, the pro-
cessing time was significantly higher by a factor of approximately 13. Three clusters have
been generated by GAC which split each attack scenario into two halves. Thus, both
attacks have been assigned to two clusters each. Due to the process of splitting, GAC
even misses some alerts for both scenarios which yielded a 𝐽𝐴𝐶 value lower than 1. For
the sake of visualization, the sunburst diagram in Figure 5.7a is given showing GAC’s
clustering results.

GAC clustered the 3 web attack scenarios into one cluster completely since the alert
attributes are highly similar and it cannot differentiate them in a timely way. In contrast,
SOAAPR did generate 24 clusters and captures the Brute Force scenario into one cluster
completely while splitting the Sql Injection into two clusters and XSS into 21 as depicted
in the sunburst diagram of Figure 5.7b. The splitting of XSS is due to the fact that
the first 𝑚𝑖𝑛_𝑎𝑙𝑒𝑟𝑡𝑠 of the attack scenario are timestamped in the same minute, thus, a
meaningful frequency exceeding factor 𝑘 cannot be built. Furthermore, all attack scenarios
have similar alert attributes such that decreasing 𝑡𝑡𝑡𝑙 would split the scenarios in a better
manner. Setting 𝑡𝑡𝑡𝑙 = 45 min (duration of Brute Force attack scenario) and increasing
𝑚𝑖𝑛_𝑎𝑙𝑒𝑟𝑡𝑠 = 500 resulted in 2 clusters while capturing the Brute Force in one cluster
with 𝐶𝑂𝑀𝑃 = 𝑆𝑂𝑈𝑁𝐷 = 𝐽𝐴𝐶 = 1.0 and XSS into the other with 𝐶𝑂𝑀𝑃 = 1.0,
𝑆𝑂𝑈𝑁𝐷 = 0.97 and 𝐽𝐴𝐶 = 0.97.

With the default hyperparameter setting, SOAAPR generates only one cluster for the
DoS-like attacks and Heartbleed scenario. This is due to the fact that all of those attack
scenarios have similar alert attributes. Slightly increasing the 𝑚𝑖𝑛_𝑠𝑖𝑚 parameter to
0.5 instead of 0.25 generates 3 clusters in which all DoS-attacks are grouped together
in one cluster and the Heartbleed attack is perfectly assigned into another cluster with
𝐶𝑂𝑀𝑃 = 𝑆𝑂𝑈𝑁𝐷 = 𝐽𝐴𝐶 = 1.0. Both hyperparameter settings result in an approxi-
mate processing time of 500 sec. However, Table 5.4 shows the results of a hyperparame-
ter set adapted to capture each DoS-attack. It was already mentioned that in real-world
applications it might be feasible to apply different GAC instances, each parameterized
for mining a dedicated attack scenario. Thus, we decreased 𝑡𝑡𝑡𝑙 to one hour, and set
the 𝑚𝑖𝑛_𝑎𝑙𝑒𝑟𝑡𝑠 to 2,000 (DoS-attacks are typically characterized by a high number of
events) and the frequency exceeding factor 𝑘 to 300, since the 𝛥𝑡s are typically quite low
for DoS-attacks, in order to be sure that each attack scenario is completed in a timely
manner. Since 𝑡𝑡𝑡𝑙 was decreased, SOAAPR’s processing time was significantly reduced
to approximately 60 sec because it can discard clusters after 𝑡𝑡𝑡𝑙 was exceeded, which is -
in contrast to GAC, with over 3 h processing time - an impressive speed-up. GAC again
needed to process the attack scenarios in chunks, which resulted in 5 total clusters. For
better illustration, the clustering results of the DoS-attacks and Heartbleed utilizing GAC
(c) and SOAAPR (b) is depicted as sunburst diagrams in Figure 5.7.

In terms of the Infiltration and Bot attack scenario, both algorithms performed almost
similarly. Especially, with the low amount of alerts for Infiltration, GAC could compete
with our approach. However, with the 1,966 alerts of the Bot attack, GAC’s processing
time is a factor of 30 higher. Just decreasing the frequency exceeding factor 𝑘 for the
Infiltration data set, SOAAPR generates 2 or 3 clusters instead of one, which better
represents the ground truth of 3 individual infiltration attacks instead of the labeled
single one referring to the footnote in Table 5.2.

149

FTP-Patator

SSH-Patator

Cluster 0

Cluster 1

Cluster 2

Cluster 1

1000

1500

2000

2500

3000

3500

4000

4500

5000
values

(a)

Web Attac
k - B

rute F
orce

Web Attack - XSS

Cluster
 0

Cl
us

te
r 1

0
Cl

us
te

r 8
C

lu
st

er
 1

3
C

lu
st

er
 1

6 C
luster 19

Cluster 20
Cluster 6

Cluster 7
Cluster 11

Cluster 12
Cluster 17

Cluster 4

Cluster 5

Cluster 15

Cluster 3

Cluster 9

Cluster 14

Cluster 18

Cluster 2

200

400

600

800

1000

1200

1400

value

(b)

DoS GoldenEye

DoS Slowloris

DoS
 Slow

htt
pte

st

Cluster 3

Cluster 2

Cluster 4

Cluster 0

Cl
us

te
r 1

Cluster 1

Cluster 2

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
values

(c)

DoS GoldenEye

DoS Slowloris

DoS
 Slow

htt
pte

st

Cluster 2

Cluster 3

Cluster 0

Cluster 1
1000

2000

3000

4000

5000

6000

values

(d)

Figure 5.7: Sunburst diagrams for the clustering performance of (a) GAC on FTP and
SSH Brute Force, (b) SOAAPR on the web attacks Brute Force (1 cluster),
XSS (21 clusters) and Sql Injection (2 clusters), (c) GAC and (d) SOAAPR
on the DoS-attacks.

As of now, only ideal alerts (only TPs) have been considered and fed into the AC
methods. However, in real-world applications, AC has to deal with FPs and FNs. In
preliminary measurements, we introduced a certain confidence level that steers the inter-
spersion of FPs and FNs with a certain probability. From the binary classification result
providing the amount of TPs, TNs, FPs, and FNs, we can derive the so-called 𝐹1-score
as the harmonic mean of precision and sensitivity by 𝐹1 = 𝑇𝑃

𝑇𝑃+ 1
2
×(𝐹𝑃+𝐹𝑁)

which is often
used as a metric on imbalanced data [34]. The effects of FPs and FNs on the clustering
result are exemplarily discussed for the Bot attack scenario for which both, SOAAPR
and GAC, achieved good results and the number of alerts is more meaningful compared
to Infiltration. Introducing approximately 190 FPs and FNs yields a 𝐹1 = 0.90 and
SOAAPR, as well as GAC, perfectly capture alerts into two clusters as with only TPs
(Table 5.4) but both generate additional clusters. Those are denoted as ghost-clusters
(SOAAPR - 3, GAC - 2) and are mainly caused by the FPs. The FNs only reduce the
amount of alerts inside the clusters and can be seen as less critical since the consecutive
signature generation will also work if the cluster still contains a majority of representative
alerts characterizing the attack. Injecting a higher number of FPs (approximately 1900)
and FNs (approximately 400), yielding 𝐹1 = 0.58, will again cause the generation of the

150

two Bot-related clusters (with the reduced amount of FN-alerts) but is associated with
a significantly higher number of ghost-clusters (SOAAPR - 40, GAC - 28). However,
SOAAPR can easily be adjusted to deal with those ghost-clusters, which in total have an
average size of 40 alerts by increasing the 𝑚𝑖𝑛_𝑎𝑙𝑒𝑟𝑡𝑠 parameter to 100. Then, SOAAPR
reduces the number of ghost-clusters to 2 while still capturing the 2 Bot-related clus-
ters only taking approximately 4.6 sec. GAC, in contrast, has no possibility of reducing
ghost-clusters and takes approximately 79 sec.

5.4.2 SOAAPR Signaturing

For each attack scenario in either CICIDS2017 (𝑠𝑖𝑔𝑐𝑜𝑚, 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝) or CICIDS2017
and CSE-CIC-IDS2018 (𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝) signatures are derived and the similarity in
between each attack scenario’s signature is computed. As a result, we obtained an upper
triangular matrix of similarity values from which we applied hierarchical/agglomerative
clustering using the average-linkage method yielding a dendrogram for the sake of better
visualization. As of now, we reserve evaluations showing the effects of FPs and FNs on
signature comparison for future work and only consider ideally clustered attack scenarios.

𝑠𝑖𝑔𝑐𝑜𝑚
Table 5.5 provides the 𝑠𝑖𝑔𝑐𝑜𝑚 similarity values between the 11 evaluated CICIDS2017
attack scenarios. It can clearly be seen from the table that attack scenarios that share the
same typical communication relation between attacker and victim have high similarity.
For instance, the brute force FTP-/SSH-Patator attacks have a strong correlation in
terms of 𝑠𝑖𝑔𝑐𝑜𝑚 with a value of 0.9905 in the range of [0, 1] since a single attacker IP
with varying source ports attacks a single victim IP and a dedicated port (either FTP
- 21 or SSH - 22). In contrast, Heartbleed, characterized by a single attacker IP from a
single port attacking a single victim IP on a single port, differs significantly from all other
attack scenarios and only shares a value of approximately 0.3 in similarity with the FTP
and SSH brute force attacks. All three DoS-like attacks share a similar communication
pattern having a similarity value of above 0.97 amongst each other.

Table 5.5: Upper triangular matrix of 𝑠𝑖𝑔𝑐𝑜𝑚 similarities between CICIDS2017 attack sce-
narios (WA - Web Attack).

B
ot

In
fi
lt

ra
ti

on

W
A

–
B

ru
te

F
or

ce

W
A

–
X

S
S

W
A

–
S
ql

In
je

ct
io

n

F
T

P
-P

at
at

or

S
S
H

-P
at

at
or

D
oS

sl
ow

lo
ri

s

D
oS

S
lo

w
-

ht
tp

te
st

D
oS

G
ol

d
en

-
E
ye

H
ea

rt
b
le

ed

Bot - 0.7903 0.7477 0.7742 0.8068 0.6861 0.6955 0.6874 0.6868 0.6595 0.3085
Infiltration - 0.8610 0.8731 0.9120 0.8210 0.8279 0.8220 0.8216 0.8006 0.3517
WA - Brute Force - 0.9734 0.9251 0.9382 0.9477 0.9395 0.9389 0.9115 0.2908
WA - XSS - 0.9448 0.9115 0.9210 0.9128 0.9123 0.8849 0.2870
WA - Sql Injection - 0.8698 0.8787 0.8711 0.8705 0.8446 0.2807
FTP-Patator - 0.9905 0.9987 0.9993 0.9734 0.3049
SSH-Patator - 0.9918 0.9912 0.9639 0.3021
DoS slowloris - 0.9994 0.9721 0.3045
DoS Slowhttptest - 0.9727 0.3047
DoS GoldenEye - 0.3134
Heartbleed -

To guide the reader better, Figure 5.8 visualizes the results of Table 5.5 in a dendrogram.
Attack scenarios sharing high similarity are clustered together, such as in the DoS-attacks

151

or the FTP-/SSH-Patator attack scenarios. The web attacks, Brute Force, XSS and Sql
Injection are extremely similar as well.

Heartbleed
Bot
Infiltration
DoS GoldenEye
SSH-Patator
FTP-Patator
DoS slowloris
DoS Slowhttptest
Web Attack Sql Injection
Web Attack Brute Force
Web Attack XSS

Figure 5.8: Hierarchical clustering of similarities between CICIDS2017 attack scenarios
based on 𝑠𝑖𝑔𝑐𝑜𝑚.

Most of the attack scenarios share a strongly similar communication relation with values
approximately above 0.7 with respect to Table 5.5. In most of the attack scenarios, the
attacker and victim share an oto-relation in terms of IP and an mto-relation (referring
to [337]) in terms of port information. The main difference is the amount of varying source
ports which is higher the more alerts are present. Thus, DoS-like attacks having a larger
amount of varying source ports leads to more nodes within the 𝐺𝑐𝑜𝑚 graph and thus a
slightly less similar communication relation as for instance with web attack scenarios. In
contrast, Bot and Infiltration differ from the rest of the attack scenarios and Heartbleed,
especially, is the only attack scenario that is characterized by a oto communication relation
in terms of IP and port information, thus being the least similar to all others.

One of the intentions of introducing a motif-approach by Haas et al. in [54] was to
provide a most fine-grained attack characterization as possible with GAC only identifying
four pre-defined cluster classes (oto, otm, mto, mtm) [337]. Although containing slightly
more information within the graph-structure by indirectly incorporating the amount of
varying IP or port information in the form of nodes in the graph, as assumed, 𝑠𝑖𝑔𝑐𝑜𝑚 alone
does not characterize individual attack scenarios in a more fine-grained way. Excluding
the privacy-preservation capability of the motif-approach, one might even leverage the
pre-defined cluster classes and count the frequency of unique IP or port data values to
obtain similar information gain as with 𝑠𝑖𝑔𝑐𝑜𝑚, which - especially with a higher number
of clustered alerts - might be far less computationally complex than the graph-based
approach. The higher the number, the longer it takes to generate each attack’s signature.
Whereas Infiltration with 36 alerts takes only about 0.02 sec, Bot with approximately
2,000 alerts takes around 10 sec. FTP-/SSH-Patator brute force clusters with around
14,000 alerts take around 3 min and the three DoS-attacks including Heartbleed, with
respect to Table 5.2, take approximately 10 min to be generated. The processing time for
𝑠𝑖𝑔𝑐𝑜𝑚 shows exponential behavior over the number of alerts.

152

𝑠𝑖𝑔𝑎𝑡𝑡𝑟
In order for the RF classifier to generate feature importance scores, each attack scenario
has been extracted into a separate CSV file only containing benign and no malicious
data. Since DoS-like, Portscan or Brute Force attacks are typically not the scope of
OD algorithms, we limit ourselves to the web attack (Brute Force, XSS, Sql Injection),
Infiltration and Bot scenarios of CICIDS2017 (refer to Table 5.2) and CSE-CIC-IDS2018
(refer to Table 5.6).

Table 5.6: A selection of attack scenarios with respective characteristics of the CSE-CIC-
IDS2018 data set.

Data set Attack Type # Instances Outliers (%) Duration (min)

Thursday-22-02
Brute-Force-Web-0 250 0.023 56.01
Brute-Force-XSS-0 81 0.008 0.90
SQL-Injection-0 31 0.003 13.35

Friday-23-02
Brute-Force-Web-1 363 0.035 48.85
Brute-Force-XSS-1 151 0.014 69.02
SQL-Injection-1 50 0.005 0.97

Wednesday-28-02 Infiltration-1 42,760 6.974 22.25
Infiltration-0 26,111 4.259 6.00

Thursday-01-03 Infiltration-3 54,311 16.403 96.98
Infiltration-2 38,752 11.704 57.98

Friday-02-03 Bot-0 190,240 18.143 473.27
Bot-1 95,951 9.151 89.82

Since founded on the assumption that the feature importance is a representative char-
acteristic for an attack scenario, as discussed by the authors in [303], two exemplary sig-
natures 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 generated by RF’s feature importance scoring applied on both data sources
CICIDS2017 and CSE-CIC-IDS2018 are provided in Figure 5.9. In order to compare at-
tack scenarios from both data sets, the same set of 78 features had to be applied. With
respect to Subfigure 5.9a, the TotLen_Fwd_Pkts and Subflow_Fwd_Byts are the most
important features, which is also stated in [303] for the Infiltration attack scenario. For the
web attack Brute Force scenario, the most important feature is the Init_Fwd_Win_Byts.
Since [303] only provides feature importance for web attacks in general and not individ-
ually as done in this work, the other two highly important features RST_Flag_Cnt and
ECE_Flag_Cnt (Subfigure 5.9b) seem characteristic for this sub-attack category.

Choosing an appropriate 𝛾 is not only crucial for the amount of information an alert
has to carry, but also affects the similarity between the 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 of two attack scenarios.
Therefore, we have computed similarity in the form of the Bhattacharyya distance over
the top-𝛾-features between each two attack scenarios. Figure 5.10 shows the results of this
measurement respectively for the two strongly similar attack scenarios of the CSE-CIC-
IDS2018 data set SQL-Injection-0 and SQL-Injection-1, as well as the highly dissimilar
scenarios of SQL-Injection-0 from CSE-CIC-IDS2018 and Bot from CSECIC2017.

From those measurements we obtain multiple insights on 𝛾’s effects. Firstly, with low
𝛾 values, attack scenarios are less similar in general but dissimilar attack scenarios have
a higher magnitude for the Bhattacharyya distance. For instance, the Bhattacharyya
distance for low 𝛾 in Subfigure 5.10a is approximately 0.5 and for the dissimilar attack
scenarios in Subfigure 5.10b approximately 1.2. Secondly, the more similar two arbi-
trary attack scenarios are, the more sharply the curve will fall to lower similarity values.
Thirdly, all attack scenarios reach a stationary point for the Bhattacharyya distance with

153

D
st

_P
or

t
Pr

ot
oc

ol
Fl

ow
_D

ur
at

io
n

To
t_

Fw
d_

Pk
ts

To
t_

B
w

d_
Pk

ts
To

tL
en

_F
w

d_
Pk

ts
To

tL
en

_B
w

d_
Pk

ts
Fw

d_
Pk

t_
Le

n_
M

ax
Fw

d_
Pk

t_
Le

n_
M

in
Fw

d_
Pk

t_
Le

n_
M

ea
n

Fw
d_

Pk
t_

Le
n_

St
d

B
w

d_
Pk

t_
Le

n_
M

ax
B

w
d_

Pk
t_

Le
n_

M
in

B
w

d_
Pk

t_
Le

n_
M

ea
n

B
w

d_
Pk

t_
Le

n_
St

d
Fl

ow
_B

yt
ss

Fl
ow

_P
kt

ss
Fl

ow
_I

AT
_M

ea
n

Fl
ow

_I
AT

_S
td

Fl
ow

_I
AT

_M
ax

Fl
ow

_I
AT

_M
in

Fw
d_

IA
T_

To
t

Fw
d_

IA
T_

M
ea

n
Fw

d_
IA

T_
St

d
Fw

d_
IA

T_
M

ax
Fw

d_
IA

T_
M

in
B

w
d_

IA
T_

To
t

B
w

d_
IA

T_
M

ea
n

B
w

d_
IA

T_
St

d
B

w
d_

IA
T_

M
ax

B
w

d_
IA

T_
M

in
Fw

d_
PS

H
_F

la
gs

B
w

d_
PS

H
_F

la
gs

Fw
d_

U
R

G
_F

la
gs

B
w

d_
U

R
G

_F
la

gs
Fw

d_
H

ea
de

r_
Le

n
B

w
d_

H
ea

de
r_

Le
n

Fw
d_

Pk
ts

s
B

w
d_

Pk
ts

s
Pk

t_
Le

n_
M

in
Pk

t_
Le

n_
M

ax
Pk

t_
Le

n_
M

ea
n

Pk
t_

Le
n_

St
d

Pk
t_

Le
n_

Va
r

FI
N

_F
la

g_
C

nt
SY

N
_F

la
g_

C
nt

R
ST

_F
la

g_
C

nt
PS

H
_F

la
g_

C
nt

AC
K

_F
la

g_
C

nt
U

R
G

_F
la

g_
C

nt
C

W
E

_F
la

g_
C

ou
nt

E
C

E
_F

la
g_

C
nt

D
ow

nU
p_

R
at

io
Pk

t_
Si

ze
_A

vg
Fw

d_
Se

g_
Si

ze
_A

vg
B

w
d_

Se
g_

Si
ze

_A
vg

Fw
d_

B
yt

sb
_A

vg
Fw

d_
Pk

ts
b_

Av
g

Fw
d_

B
lk

_R
at

e_
Av

g
B

w
d_

B
yt

sb
_A

vg
B

w
d_

Pk
ts

b_
Av

g
B

w
d_

B
lk

_R
at

e_
Av

g
Su

bf
lo

w
_F

w
d_

Pk
ts

Su
bf

lo
w

_F
w

d_
B

yt
s

Su
bf

lo
w

_B
w

d_
Pk

ts
Su

bf
lo

w
_B

w
d_

B
yt

s
In

it_
Fw

d_
W

in
_B

yt
s

In
it_

B
w

d_
W

in
_B

yt
s

Fw
d_

Ac
t_

D
at

a_
Pk

ts
Fw

d_
Se

g_
Si

ze
_M

in
Ac

tiv
e_

M
ea

n
Ac

tiv
e_

St
d

Ac
tiv

e_
M

ax
Ac

tiv
e_

M
in

Id
le

_M
ea

n
Id

le
_S

td
Id

le
_M

ax
Id

le
_M

in

0.00

0.02

0.04

0.06

0.08
Fe

at
ur

e
Im

po
rt

an
ce

 S
co

re

all samples
only anomalies

(a)

D
st

_P
or

t
Pr

ot
oc

ol
Fl

ow
_D

ur
at

io
n

To
t_

Fw
d_

Pk
ts

To
t_

B
w

d_
Pk

ts
To

tL
en

_F
w

d_
Pk

ts
To

tL
en

_B
w

d_
Pk

ts
Fw

d_
Pk

t_
Le

n_
M

ax
Fw

d_
Pk

t_
Le

n_
M

in
Fw

d_
Pk

t_
Le

n_
M

ea
n

Fw
d_

Pk
t_

Le
n_

St
d

B
w

d_
Pk

t_
Le

n_
M

ax
B

w
d_

Pk
t_

Le
n_

M
in

B
w

d_
Pk

t_
Le

n_
M

ea
n

B
w

d_
Pk

t_
Le

n_
St

d
Fl

ow
_B

yt
ss

Fl
ow

_P
kt

ss
Fl

ow
_I

AT
_M

ea
n

Fl
ow

_I
AT

_S
td

Fl
ow

_I
AT

_M
ax

Fl
ow

_I
AT

_M
in

Fw
d_

IA
T_

To
t

Fw
d_

IA
T_

M
ea

n
Fw

d_
IA

T_
St

d
Fw

d_
IA

T_
M

ax
Fw

d_
IA

T_
M

in
B

w
d_

IA
T_

To
t

B
w

d_
IA

T_
M

ea
n

B
w

d_
IA

T_
St

d
B

w
d_

IA
T_

M
ax

B
w

d_
IA

T_
M

in
Fw

d_
PS

H
_F

la
gs

B
w

d_
PS

H
_F

la
gs

Fw
d_

U
R

G
_F

la
gs

B
w

d_
U

R
G

_F
la

gs
Fw

d_
H

ea
de

r_
Le

n
B

w
d_

H
ea

de
r_

Le
n

Fw
d_

Pk
ts

s
B

w
d_

Pk
ts

s
Pk

t_
Le

n_
M

in
Pk

t_
Le

n_
M

ax
Pk

t_
Le

n_
M

ea
n

Pk
t_

Le
n_

St
d

Pk
t_

Le
n_

Va
r

FI
N

_F
la

g_
C

nt
SY

N
_F

la
g_

C
nt

R
ST

_F
la

g_
C

nt
PS

H
_F

la
g_

C
nt

AC
K

_F
la

g_
C

nt
U

R
G

_F
la

g_
C

nt
C

W
E

_F
la

g_
C

ou
nt

E
C

E
_F

la
g_

C
nt

D
ow

nU
p_

R
at

io
Pk

t_
Si

ze
_A

vg
Fw

d_
Se

g_
Si

ze
_A

vg
B

w
d_

Se
g_

Si
ze

_A
vg

Fw
d_

B
yt

sb
_A

vg
Fw

d_
Pk

ts
b_

Av
g

Fw
d_

B
lk

_R
at

e_
Av

g
B

w
d_

B
yt

sb
_A

vg
B

w
d_

Pk
ts

b_
Av

g
B

w
d_

B
lk

_R
at

e_
Av

g
Su

bf
lo

w
_F

w
d_

Pk
ts

Su
bf

lo
w

_F
w

d_
B

yt
s

Su
bf

lo
w

_B
w

d_
Pk

ts
Su

bf
lo

w
_B

w
d_

B
yt

s
In

it_
Fw

d_
W

in
_B

yt
s

In
it_

B
w

d_
W

in
_B

yt
s

Fw
d_

Ac
t_

D
at

a_
Pk

ts
Fw

d_
Se

g_
Si

ze
_M

in
Ac

tiv
e_

M
ea

n
Ac

tiv
e_

St
d

Ac
tiv

e_
M

ax
Ac

tiv
e_

M
in

Id
le

_M
ea

n
Id

le
_S

td
Id

le
_M

ax
Id

le
_M

in

0.00

0.05

0.10

0.15

0.20

Fe
at

ur
e

Im
po

rt
an

ce
 S

co
re

all samples
only anomalies

(b)

Figure 5.9: Two exemplary 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 using the same set of 78 features for the attack sce-
narios (a) Infiltration of CICIDS2017 and (b) Brute-Force-Web-0 in CSE-
CIC-IDS2018 (two colors for feature importance on all samples and only on
anomalous samples - 𝑠𝑖𝑔𝑎𝑡𝑡𝑟).

a certain amount of features whereby increasing 𝛾 does not affect the similarity. In turn,
this also means that a certain amount of information to be transferred with alerts is
enough, and more information does not improve the result. However, this also means
that the higher the 𝛾, the more decisive the magnitude of the stationary point of the
Bhattacharyya distance is in distinguishing between any two attack scenarios and a clear
differentiation deteriorates. The reason behind this is that a mainly limited amount of
features is representative for an attack scenario. Thus, if using more than these, the
importance of the representative features is negatively influenced by the less important
ones, meaning that feature importance of benign data takes over. Therefore, fourthly, a
decent range for 𝛾 considering the feature set used in our measurements is approximately
from 10 to 50, whereas if 𝛾 is set closer to 10, it will benefit highly from similar attacks
such as a XSS attack with another XSS attack, while 𝛾 closer to 50 will benefit attack
scenarios of the same category such as web attacks in general.

Figure 5.11 depicts the hierarchically clustered results of attack scenario similarity
between a selection of CICIDS2017 and CSE-CIC-IDS2018 attacks based on 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 with
𝛾 set to 30. Related attack scenarios such as xss_18_0 and xss_18_1, sql_18_0 and
sql_18_1, brute_force_18_0 and brute_force_18_1, bot_18_0 and bot_18_1 or the
Infiltration attacks from CSE-CIC-IDS2018 are highly similar.

154

0 10 20 30 40 50 60 70 80
Top-γ-Features

0.0

0.2

0.4

0.6
B

h
at

ta
ch

ar
y
ya

D
is

ta
n

ce
sql 18 0 vs. sql 18 1

(a)

0 10 20 30 40 50 60 70 80
Top-γ-Features

0.4

0.6

0.8

1.0

1.2

1.4

B
h

at
ta

ch
ar

y
ya

D
is

ta
n

ce

sql 18 0 vs. bot 17

(b)

Figure 5.10: Dependency of 𝛾 on the Bhattacharyya distance (similarity) of two highly
similar (a) and dissimilar (b) attack scenarios.

xss_18_0
xss_18_1
heartbleed_17
bot_18_0
bot_18_1
sql_17
xss_17
brute_force_17
infiltration_18_0
infiltration_18_1
infiltration_18_2
infiltration_18_3
sql_18_0
sql_18_1
brute_force_18_0
brute_force_18_1
bot_17
infiltration_17

Figure 5.11: Hierarchical clustering of similarities between a selection of CICIDS2017 and
CSE-CIC-IDS2018 attack scenarios based on 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 for 𝛾 = 30.

155

In general, strong similarity between similar CICIDS2017 and CSE-CIC-IDS2018 attack
scenarios such as infiltration_17 and infiltration_18_X is not provided. Taking a look
at the histogram comparison of two dissimilar examples from both data sets, sql_18_0
and sql_17 (Subfigure 5.12a) as well as brute_force_18_1 and brute_force_17 (Sub-
figure 5.12b), reveals, that despite some feature similarity, both are afflicted with a high
number of irrelevant features for the comparison. For instance, the two most important
features of sql_18_0, RST_Flag_Cnt and ECE_Flag_Cnt, are completely irrelevant to
sql_17 despite the rest of the features showing similarity. Equally, with respect to Subfig-
ure 5.12b and the importance of Init_Fwd_Win_Byts and Init_Bwd_Win_Byts for web
attacks [303], both attack scenarios show strong feature importance for only one of those
two features. Furthermore, for each attack, some features are more important for one
attack, while they are completely irrelevant for others, such as Active_Max/Min/Mean
for brute_force_17.

D
st

_P
or

t
Pr

ot
oc

ol
Fl

ow
_D

ur
at

io
n

To
t_

Fw
d_

Pk
ts

To
t_

B
w

d_
Pk

ts
To

tL
en

_F
w

d_
Pk

ts
To

tL
en

_B
w

d_
Pk

ts
Fw

d_
Pk

t_
Le

n_
M

ax
Fw

d_
Pk

t_
Le

n_
M

in
Fw

d_
Pk

t_
Le

n_
M

ea
n

Fw
d_

Pk
t_

Le
n_

St
d

B
w

d_
Pk

t_
Le

n_
M

ax
B

w
d_

Pk
t_

Le
n_

M
in

B
w

d_
Pk

t_
Le

n_
M

ea
n

B
w

d_
Pk

t_
Le

n_
St

d
Fl

ow
_B

yt
ss

Fl
ow

_P
kt

ss
Fl

ow
_I

AT
_M

ea
n

Fl
ow

_I
AT

_S
td

Fl
ow

_I
AT

_M
ax

Fl
ow

_I
AT

_M
in

Fw
d_

IA
T_

To
t

Fw
d_

IA
T_

M
ea

n
Fw

d_
IA

T_
St

d
Fw

d_
IA

T_
M

ax
Fw

d_
IA

T_
M

in
B

w
d_

IA
T_

To
t

B
w

d_
IA

T_
M

ea
n

B
w

d_
IA

T_
St

d
B

w
d_

IA
T_

M
ax

B
w

d_
IA

T_
M

in
Fw

d_
PS

H
_F

la
gs

B
w

d_
PS

H
_F

la
gs

Fw
d_

U
R

G
_F

la
gs

B
w

d_
U

R
G

_F
la

gs
Fw

d_
H

ea
de

r_
Le

n
B

w
d_

H
ea

de
r_

Le
n

Fw
d_

Pk
ts

s
B

w
d_

Pk
ts

s
Pk

t_
Le

n_
M

in
Pk

t_
Le

n_
M

ax
Pk

t_
Le

n_
M

ea
n

Pk
t_

Le
n_

St
d

Pk
t_

Le
n_

Va
r

FI
N

_F
la

g_
C

nt
SY

N
_F

la
g_

C
nt

R
ST

_F
la

g_
C

nt
PS

H
_F

la
g_

C
nt

AC
K

_F
la

g_
C

nt
U

R
G

_F
la

g_
C

nt
C

W
E

_F
la

g_
C

ou
nt

E
C

E
_F

la
g_

C
nt

D
ow

nU
p_

R
at

io
Pk

t_
Si

ze
_A

vg
Fw

d_
Se

g_
Si

ze
_A

vg
B

w
d_

Se
g_

Si
ze

_A
vg

Fw
d_

B
yt

sb
_A

vg
Fw

d_
Pk

ts
b_

Av
g

Fw
d_

B
lk

_R
at

e_
Av

g
B

w
d_

B
yt

sb
_A

vg
B

w
d_

Pk
ts

b_
Av

g
B

w
d_

B
lk

_R
at

e_
Av

g
Su

bf
lo

w
_F

w
d_

Pk
ts

Su
bf

lo
w

_F
w

d_
B

yt
s

Su
bf

lo
w

_B
w

d_
Pk

ts
Su

bf
lo

w
_B

w
d_

B
yt

s
In

it_
Fw

d_
W

in
_B

yt
s

In
it_

B
w

d_
W

in
_B

yt
s

Fw
d_

Ac
t_

D
at

a_
Pk

ts
Fw

d_
Se

g_
Si

ze
_M

in
Ac

tiv
e_

M
ea

n
Ac

tiv
e_

St
d

Ac
tiv

e_
M

ax
Ac

tiv
e_

M
in

Id
le

_M
ea

n
Id

le
_S

td
Id

le
_M

ax
Id

le
_M

in

0

2

4

6

8

10

R
el

at
iv

e
Fr

eq
ue

nc
y

[%
]

(a)

D
st

_P
or

t
Pr

ot
oc

ol
Fl

ow
_D

ur
at

io
n

To
t_

Fw
d_

Pk
ts

To
t_

B
w

d_
Pk

ts
To

tL
en

_F
w

d_
Pk

ts
To

tL
en

_B
w

d_
Pk

ts
Fw

d_
Pk

t_
Le

n_
M

ax
Fw

d_
Pk

t_
Le

n_
M

in
Fw

d_
Pk

t_
Le

n_
M

ea
n

Fw
d_

Pk
t_

Le
n_

St
d

B
w

d_
Pk

t_
Le

n_
M

ax
B

w
d_

Pk
t_

Le
n_

M
in

B
w

d_
Pk

t_
Le

n_
M

ea
n

B
w

d_
Pk

t_
Le

n_
St

d
Fl

ow
_B

yt
ss

Fl
ow

_P
kt

ss
Fl

ow
_I

AT
_M

ea
n

Fl
ow

_I
AT

_S
td

Fl
ow

_I
AT

_M
ax

Fl
ow

_I
AT

_M
in

Fw
d_

IA
T_

To
t

Fw
d_

IA
T_

M
ea

n
Fw

d_
IA

T_
St

d
Fw

d_
IA

T_
M

ax
Fw

d_
IA

T_
M

in
B

w
d_

IA
T_

To
t

B
w

d_
IA

T_
M

ea
n

B
w

d_
IA

T_
St

d
B

w
d_

IA
T_

M
ax

B
w

d_
IA

T_
M

in
Fw

d_
PS

H
_F

la
gs

B
w

d_
PS

H
_F

la
gs

Fw
d_

U
R

G
_F

la
gs

B
w

d_
U

R
G

_F
la

gs
Fw

d_
H

ea
de

r_
Le

n
B

w
d_

H
ea

de
r_

Le
n

Fw
d_

Pk
ts

s
B

w
d_

Pk
ts

s
Pk

t_
Le

n_
M

in
Pk

t_
Le

n_
M

ax
Pk

t_
Le

n_
M

ea
n

Pk
t_

Le
n_

St
d

Pk
t_

Le
n_

Va
r

FI
N

_F
la

g_
C

nt
SY

N
_F

la
g_

C
nt

R
ST

_F
la

g_
C

nt
PS

H
_F

la
g_

C
nt

AC
K

_F
la

g_
C

nt
U

R
G

_F
la

g_
C

nt
C

W
E

_F
la

g_
C

ou
nt

E
C

E
_F

la
g_

C
nt

D
ow

nU
p_

R
at

io
Pk

t_
Si

ze
_A

vg
Fw

d_
Se

g_
Si

ze
_A

vg
B

w
d_

Se
g_

Si
ze

_A
vg

Fw
d_

B
yt

sb
_A

vg
Fw

d_
Pk

ts
b_

Av
g

Fw
d_

B
lk

_R
at

e_
Av

g
B

w
d_

B
yt

sb
_A

vg
B

w
d_

Pk
ts

b_
Av

g
B

w
d_

B
lk

_R
at

e_
Av

g
Su

bf
lo

w
_F

w
d_

Pk
ts

Su
bf

lo
w

_F
w

d_
B

yt
s

Su
bf

lo
w

_B
w

d_
Pk

ts
Su

bf
lo

w
_B

w
d_

B
yt

s
In

it_
Fw

d_
W

in
_B

yt
s

In
it_

B
w

d_
W

in
_B

yt
s

Fw
d_

Ac
t_

D
at

a_
Pk

ts
Fw

d_
Se

g_
Si

ze
_M

in
Ac

tiv
e_

M
ea

n
Ac

tiv
e_

St
d

Ac
tiv

e_
M

ax
Ac

tiv
e_

M
in

Id
le

_M
ea

n
Id

le
_S

td
Id

le
_M

ax
Id

le
_M

in

0

2

4

6

8

10

R
el

at
iv

e
Fr

eq
ue

nc
y

[%
]

(b)

Figure 5.12: Comparison of 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 for (a) SQL-Injection-0 of CSE-CIC-IDS2018 (blue)
with Web Attack - Sql Injection of CICIDS2017 (orange) and (b) Brute-
Force-Web-1 of CSE-CIC-IDS2018 (blue) with Web Attack - Brute Force of
CICIDS2017 (orange) for 𝛾 = 30.

156

The infiltration-attacks between CICIDS2017 and CSE-CIC-IDS2018 can hardly be
compared since the infiltration scenarios in CSE-CIC-IDS2018 include the portscanning
attack steps which are not considered within CICIDS2017. This is also confirmed by
the significantly higher number of alerts associated with the 2018 infiltration scenarios
reasoned by the portscan conducted after the attacker successfully gained access to the
victim machine. Although similar CICIDS2017 and CSE-CIC-IDS2018 attack scenarios
seem to have a weak similarity, the curvature characteristics from the 𝛾-dependency-
curves reveal better insights. Thus, with respect to Figure 5.10, we applied Gaussian
Filtering to the curves in order to smooth them and better visualize their curvature. In
Figure 5.13, a sample selection of smoothed 𝛾-dependency-curves for similar and dissimilar
attack scenarios from CICIDS2017 and CSE-CIC-IDS2018 is given. Taking into account
measurement deviations, curves from similar attack scenarios, sql_18_0 and sql_18_1,
and even sql_18_0/1 and sql_17, show monotonic decreasing behavior, while the curves
of dissimilar attack scenarios, such as all Sql-Injection-ones in Figure 5.13 with bot_17,
contain concave sections. Although not clustered together in the dendrogram, similarity
for similar 2017 and 2018 attack scenarios can be derived from the curvature characteristic.
Nevertheless, there might be various reasons for the poor result, such as poor quality of
the data sets, e.g., by a slight difference in feature generation using an older version of
CICFlowMeter for CICIDS2017 or due to slightly different attacks used. Those could
mimic changes in similar attack campaigns as time passes, since, in real-world scenarios,
adversaries change their strategy as well. However, further evaluation is necessary in
future work.

0 10 20 30 40 50 60 70 80
Top-γ-Features

0.0

0.5

1.0

1.5

B
h

at
ta

ch
ar

y
ya

D
is

ta
n

ce

sql 18 0 vs. sql 18 1

sql 18 0 vs. sql 17

sql 18 0 vs. bot 17

sql 18 1 vs. sql 17

sql 18 1 vs. bot 17

sql 17 vs. bot 17

Figure 5.13: Smoothed 𝛾-dependency-curves using Gaussian Filtering for a selection of
similar and dissimilar attack scenarios.

The results of the average processing times to generate 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 for the evaluated attack
scenarios is provided in Table 5.7. In contrast to the exponentially increasing processing
time of 𝑠𝑖𝑔𝑐𝑜𝑚, the generation time for 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 shows linear behavior with the number of
alerts inside a cluster. The mean time per alert in our evaluation is approximately 7 µsec.

157

Table 5.7: Average processing time to generate 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 for a selection of attack scenarios
of CICIDS2017 and CSE-CIC-IDS2018.

b
ru

te
_

fo
rc

e_
18

_
0

b
ru

te
_

fo
rc

e_
18

_
1

b
ru

te
_

fo
rc

e_
17

sq
l_

18
_

0

sq
l_

18
_

1

sq
l_

17

xs
s_

18
_

0

xs
s_

18
_

1

xs
s_

17

b
ot

_
18

_
0

b
ot

_
18

_
1

b
ot

_
17

in
fi
lt

ra
ti

on
_

18
_

0

in
fi
lt

ra
ti

on
_

18
_

1

in
fi
lt

ra
ti

on
_

18
_

2

in
fi
lt

ra
ti

on
_

18
_

3

in
fi
lt

ra
ti

on
_

17

h
ea

rt
b
le

ed
_

17

No. Alerts 250 363 1507 31 50 21 81 151 652 190240 95951 1966 42760 26111 38752 54311 36 308
Time (msec) 1.23 3.08 6.99 0.34 0.62 0.21 0.62 1.03 3.08 988.69 492.8 9.05 220.39 135.9 199.42 282.69 0.41 3.08

𝑠𝑖𝑔𝑡𝑒𝑚𝑝
In order to find a histogram setting that satisfies all attack scenarios best, we computed
the descriptive statistics maximum, minimum, mean, and median values of 𝛥𝑡s for each
attack scenario in CICIDS2017 and CSE-CIC-IDS2018. Either because the timestamping
in CICIDS2017 is inaccurate, or because of the misleading labeling, whereby multiple
attack scenarios of the same category, happening at different times, are combined together,
e.g., for Infiltration_17 and PortScan_17, we do not take into account the maximum 𝛥𝑡
values to find a decent maximum bin parameter for the 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 histogram. Excluding the
statistical strays in the maximum values for the CICIDS2017 attack scenarios, Bot_17,
DoS_slowloris_17, Infiltration_17 and PortScan_17, a decent maximum bin value for
the histogram is 100 s (mean of residing values). Also Heartbleed_17 is not a very
representative attack scenario since it consists of 11 alarms likely reasoned in an attacker
script that sends 11 Heartbeat messages at an interval of exactly 120 sec to exploit the
vulnerability. In a different scenario, an attacker might modify this frequency resulting
in another 𝛥𝑡 statistic. Referring to minimum, mean and median values a decent fine-
grained value for the bin width is 0.1 sec (median of 𝛥𝑡s’ median).

It is again noted that in real-world applications one might apply different histogram
types as proposed in Section 5.2.4 such as short, mid or long to adjust the number and
width of the bins depending on the order of magnitude of 𝛥𝑡s. Thus, for instance, DoS-
like attacks with lower mean and median 𝛥𝑡 values than other attack types could be
characterized as short attacks in advance with respect to the extremely low 𝛥𝑡 values
before generating signatures with significantly smaller values for the maximum bin value
and bin width.

Figure 5.14 depicts the hierarchically clustered results of attack scenario similarity
between CICIDS2017 and CSE-CIC-IDS2018 attacks based on 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 with the mentioned
setting of maximum bin of 100 sec and a bin width of 0.1 sec. It can clearly be seen
that similar attack scenarios such as DoS-like attacks, infiltration, brute force or web
attacks are clustered together due to their high level of similarity. For instance, DoS-
like attacks like DoS_Hulk_18 and DDOS_HOIC_18 as well as DoS_Hulk_17 and
DDoS_17, which are heavy DoS-attacks, are clustered together. Even the same DoS-
attacks but from different data sets, DoS GoldenEye_17 with DoS-Goldeneye_18 and
the less intensive DoS slowloris_17 and DoS-Slowloris_18, show high similarity.

158

Infiltration 17

Heartbleed 17

Web Attack-Sql Injection 17

Web Attack-XSS 17

Bot 17

Web Attack-Brute Force 17

DoS GoldenEye 17

DoS-Goldeneye 18

PortScan 17

DoS Hulk 17

DDoS 17

SSH-Bruteforce 18

FTP-Bruteforce 18

DoS-SlowHTTPTest 18

DDOS-HOIC 18

DoS-Hulk 18

DoS Slowhttptest 17

Infiltration-2 18

Infiltration-3 18

Infiltration-0 18

Infiltration-1 18

Bot-0 18

Bot-1 18

FTP-Patator 17

DoS-Slowloris 18

DoS slowloris 17

SQL Injection-0 18

SQL Injection-1 18

SSH-Patator 17

Brute Force-XSS-1 18

Brute Force-XSS-0 18

Brute Force-Web-0 18

Brute Force-Web-1 18

DDOS-LOIC-UDP-1 18

Figure 5.14: Hierarchical clustering of similarities between CICIDS2017 and CSE-CIC-
IDS2018 attack scenarios based on 𝑠𝑖𝑔𝑡𝑒𝑚𝑝.

Notably, the same attack scenarios that were used multiple times in CSE-CIC-IDS2018
are in most cases clustered as significantly similar, such as all four Infiltration attacks,
Bot-0_18 and Bot-1_18, and the web attacks SQL_Injection-0_18 and SQL_Injection-
1_18 or Brute_Force-Web-0_18 and Brute_Force-Web-1_18 as well as Brute_Force-
XSS-0_18 and Brute_Force-XSS-1_18.

Figure 5.15 demonstrates the high level of similarity leveraging 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 between the four
timely different and unrelated infiltration attack scenarios taken from CSE-CIC-IDS2018.
For the sake of visualization and with respect to the descriptive statistics maximum,
minimum, mean, and median for those attack scenarios, we set the histogram values to a
maximum bin value of 1 sec and the bin width to 0.01 sec.

Although not clustered in Figure 5.14, similarity can be seen between comparable attack
scenarios taken from different data sets of CICIDS2017 and CSE-CIC-IDS2018 when
adapting the histogram settings. This is shown with the XSS and Brute Force web
attacks in Figure 5.16. The histogram is set to a maximum bin value of 30 sec and a
bin width of 1 sec. However, the less fine-grained binning of the CICIDS2017 attacks can
clearly be seen, which is reasoned in the way timestamps were generated as explained in
Section 5.3.2.

159

0.0 0.2 0.4 0.6 0.8 1.0
∆ t [sec]

0

10

20

R
el

at
iv

e
F

re
q
u

en
cy

[%
]

Infiltration-0 18

Infiltration-1 18

(a)

0.0 0.2 0.4 0.6 0.8 1.0
∆ t [sec]

0

10

20

30

R
el

at
iv

e
F

re
q
u

en
cy

[%
]

Infiltration-0 18

Infiltration-2 18

(b)

0.0 0.2 0.4 0.6 0.8 1.0
∆ t [sec]

0

5

10

15

R
el

at
iv

e
F

re
q
u

en
cy

[%
]

Infiltration-0 18

Infiltration-3 18

(c)

0.0 0.2 0.4 0.6 0.8 1.0
∆ t [sec]

0

10

20

30

R
el

at
iv

e
F

re
q
u

en
cy

[%
]

Infiltration-1 18

Infiltration-2 18

(d)

0.0 0.2 0.4 0.6 0.8 1.0
∆ t [sec]

0

10

20

R
el

at
iv

e
F

re
q
u

en
cy

[%
]

Infiltration-1 18

Infiltration-3 18

(e)

0.0 0.2 0.4 0.6 0.8 1.0
∆ t [sec]

0

10

20

30

R
el

at
iv

e
F

re
q
u

en
cy

[%
]

Infiltration-2 18

Infiltration-3 18

(f)

Figure 5.15: Comparison of 𝛥𝑡 histograms of four distinct Infiltration attack scenarios
(a)-(f) present in CSE-CIC-IDS2018.

0 5 10 15 20 25 30
∆ t [sec]

0

25

50

75

R
el

at
iv

e
F

re
q
u

en
cy

[%
]

Brute Force-XSS-0 18

Web Attack-XSS 17

(a)

0 5 10 15 20 25 30
∆ t [sec]

0

25

50

75

R
el

at
iv

e
F

re
q
u

en
cy

[%
]

Brute Force-XSS-1 18

Web Attack-XSS 17

(b)

0 5 10 15 20 25 30
∆ t [sec]

0

50

100

R
el

at
iv

e
F

re
q
u

en
cy

[%
]

Brute Force-Web-0 18

Web Attack-Brute Force 17

(c)

0 5 10 15 20 25 30
∆ t [sec]

0

50

100

R
el

at
iv

e
F

re
q
u

en
cy

[%
]

Brute Force-Web-1 18

Web Attack-Brute Force 17

(d)

Figure 5.16: Comparison of 𝛥𝑡 histograms of four distinct web attack scenarios - XSS (a)-
(b) and Brute Force (c)-(d) - present in CICIDS2017 and CSE-CIC-IDS2018.

160

In contrast to the average processing times for 𝑠𝑖𝑔𝑎𝑡𝑡𝑟, the processing of 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 is split
into two parts - the generation of 𝛥𝑡s based on timestamps of the timely sorted alerts
of a cluster and the generation of the histogram, the actual 𝑠𝑖𝑔𝑡𝑒𝑚𝑝. The result of the
average processing times for the attack scenarios of CICIDS2017 is provided with the
same histogram setting of a maximum bin value of 100 sec and bin width with 0.1 sec
in Table 5.8 and for CSE-CIC-IDS2018 in Table 5.9. As with 𝑠𝑖𝑔𝑎𝑡𝑡𝑟, the processing
times of 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 shows linear behavior with a mean time per alert for 𝛥𝑡s generation of
approximately 200 µsec and for histogram generation of approximately 4.5 µsec per alert.
The latter depends on the histogram setting and increases to a value of approximately
138 µsec per alert for a maximum bin value of 550 sec and bin width with 0.01 sec.

Table 5.8: Average processing time to generate 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 for a selection of attack scenarios
of CICIDS2017.

b
ru

te
_

fo
rc

e_
17

xs
s_

17

sq
l_

17

in
fi
lt

ra
ti

on
_

17

d
d
os

_
17

d
os

_
hu

lk
_

17

d
os

_
sl

ow
lo

ri
s_

17

d
os

_
sl

ow
ht

tp
te

st
_

17

d
os

_
go

ld
en

ey
e_

17

p
or

t_
sc

an
_

17

ft
p
-p

at
at

or
_

17

ss
h
-p

at
at

or
_

17

b
ot

_
17

h
ea

rt
b
le

ed
_

17

No. Alerts 1,507 652 21 36 128,027 231,073 5,796 5,499 10,293 158,930 7,938 5,897 1,966 11
Generating 𝛥𝑡s (sec) 0.1873 0.0810 0.0030 0.0053 15.6347 28.8301 0.7102 0.6742 1.2875 19.6687 0.9818 0.7314 2.4444 0.0018
Generating Histograms (msec) 0.69 0.58 0.51 0.54 13.78 24.49 1.14 1.10 1.57 17.06 1.38 1.18 0.76 0.57

Table 5.9: Average processing time to generate 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 for a selection of attack scenarios
of CSE-CIC-IDS2018.

b
ru

te
_

fo
rc

e_
18

_
0

b
ru

te
_

fo
rc

e_
18

_
1

sq
l_

18
_

0

sq
l_

18
_

1

xs
s_

18
_

0

xs
s_

18
_

1

b
ot

_
18

_
0

b
ot

_
18

_
1

in
fi
lt

ra
ti

on
_

18
_

0

in
fi
lt

ra
ti

on
_

18
_

1

in
fi
lt

ra
ti

on
_

18
_

2

in
fi
lt

ra
ti

on
_

18
_

3

d
d
os

-h
oi

c_
18

d
os

-h
u
lk

_
18

d
os

-s
lo

w
ht

tp
te

st
_

18

d
os

-s
lo

w
lo

ri
s_

18

d
d
os

-l
oi

c-
u
d
p
_

18

d
os

-g
ol

d
en

ey
e_

18

ft
p
-b

ru
te

fo
rc

e_
18

ss
h
-b

ru
te

fo
rc

e_
18

No. Alerts 363 250 50 31 81 151 190,240 95,951 42,760 26,111 38,752 54,311 686,012 461,912 139,890 10,990 1,730 41,508 193,360 187,589
Generating 𝛥𝑡s (sec) 0.0484 0.0701 0.0088 0.0142 0.0214 0.0400 49.1716 24.7964 10.4209 6.3606 9.4362 13.2450 170.4973 104.9426 23.1637 1.8217 0.3151 6.5640 29.9785 38.7183
Generating Histograms (msec) 0.58 0.61 0.56 0.56 0.57 0.59 21.56 11.06 5.52 3.54 4.91 6.77 75.33 51.48 15.60 1.14 0.76 5.27 21.35 20.94

161

6 A Resource-Preserving
Self-Regulating Uncoupled MAC
Algorithm to be Applied in
Incident Detection

This chapter provides details on the so-called Uncoupled Message Authentication Code
(Uncoupled MAC) algorithm and is organized as follows - Section 6.1 provides an
overview on incident detection mechanisms ranging from adaptive IDSs to the exploitation
of the nature of cryptographic mechanisms in order to detect security-relevant incidents.
Furthermore sampling systems are presented including Uncoupled MAC. Improvements
and extensions of the original Uncoupled MAC algorithm are presented in Section 6.2.
The novel self-regulating sampling approach based on the detection of Uncoupled MAC
violations is described in Section 6.3. In Section 6.4 details on the implementation and
evaluation environment are presented, attack scenarios described and evaluation met-
rics provided. Results of several measurements mainly showing the advantage of the
self-regulation compared to the non-self-regulated version of Uncoupled MAC by also dis-
cussing the trade-off between detection capability and resource utilization are given in
Section 6.5.

6.1 Incident Detection Mechanisms

6.1.1 Adaptive Intrusion Detection Systems

The term adaptive for IDS in the context of this work describes techniques of sampling
and self-regulation. To cope with the increasing amount of traffic within networks while
reducing large memory and CPU processing requirements, sampling turned out to be a
promising scalable data aggregation technology for IDSs since the processing capacity of
such systems are typically much smaller than the amount of data to be inspected. Because
sampled traffic is an incomplete approximation of the actual one, multiple mechanisms
for sampling data exist.

Sampling
In [371] a difference between packet- and flow-based sampling, crucial for the working of
network-based IDS, together with deterministic and non-deterministic methods is made.
Packet-based sampling is simple to implement with low CPU power and memory require-
ments but is inaccurate for inference of flow statistics like size distribution of the original
flows. In contrast, flow-based sampling overcomes the limitations of packet-based sam-
pling but suffers from prohibitive memory and CPU power requirements and is still too
complex to implement [372]. The flow-size based sampling technique in [371] assumes
that network attacks usually use small flows as traffic source. With the proposed selective

162

sampling strategy such flows are sampled with a constant probability. Other related work
evaluated that packet sampling has a negative impact on the efficiency of anomaly-based
IDSs increasing the false positives but performs best when using a random flow sam-
pling strategy. However, it is possible to maintain a high level of security while selectively
inspecting packets with a minimal amount of processing overhead. An analytic and statis-
tical model for the process of network intrusions has been introduced in [373] supporting
the experimental results of [371] demonstrating that it is sufficient to inspect only a small
number of sampled packets. In [374] a packet- and time-driven traffic sampling strategy
for an IDS in a SDN is proposed that fully utilizes the inspection capability of malicious
traffic, while maintaining the total aggregate volume of the sampled traffic below the
inspection processing capacity of the IDS. The packet-driven approach inspects a packet
every 1/𝑥 packets for a sampling rate 𝑥 and the time-driven inspects all the packets within
a time window of sampling rate 𝑥 each sampling interval. The time-driven mechanism has
the advantage of detecting stateful attacks because it captures all the packets for a cer-
tain time duration. However, if packets are mainly sent event-triggered, the time-driven
approach is not feasible since there could be phases of sampling in which no packets are
inspected. This could easily happen in networks with high fluctuations of the bandwidth.
If an intruder is able to compromise the IDS or might know the sampling rate, he could
exploit this knowledge by performing malicious activities outside the sampling interval.
By increasing a sampled injection of malicious packets, he could also extract the sampling
rate information by observing the reaction of the IDS in a trial and error fashion. Thus,
a combination of a packet- and time-driven mechanism could mitigate such problems by
applying a random chosen sampling interval within fixed boundaries.

Self-Regulation
Self-regulating sampling mechanisms have been presented in [375], for instance a method
managing the processor usage in a network device through adaptive sampling in network
security applications. The authors state that a wide range of common network anomalies
only require a single sample in order to provide 100% accuracy of detection but there
are also other network anomalies which cannot be detected with a single sample. An
example is an anomaly which misuses a protocol for purposes which were not meant for
it. This requires more advanced techniques than a simple signature check. Cryptographic
mechanisms could be used to overcome such limitations. In [376] an adaptive packet-level
sampling method on different traffic fluctuations and burst scales has been introduced.
The method can dynamically adjust each packet sampling probability depending on the
magnitude of traffic fluctuation. This approach achieves higher accuracy in contrast to
random sampling methods. Another adaptive sampling method for anomaly detection
algorithms has been presented in [377]. The adaptive sampling described is a promising
general sampling technique that preserves well the traffic feature distributions and at the
same time is able to improve the detection capabilities of the system. A hybrid sampling
algorithm combining both flow statistics and feedback to intelligently choose the packets
to sample is presented in [378] in order to achieve self-regulation. The sampling rate
is determined by the current workload in the cloud, and thus minimizing the effects to
normal workload. By the CIDS framework defined, an off-the-shelf IDS can be utilized
in a cloud environment by reducing and balancing the data collection (packet capturing,
filtering, sampling rate) and computation workload dynamically according to the resource
utilizations in the cloud. Another example of adaptive sampling systems is the work
presented in [379] that aims to effectively reduce the volume of traffic that Peer-to-Peer

163

(P2P) botnet detectors need to process while not degrading their detection accuracy.
The system first identifies a small number of potential P2P in high-speed networks for
botnet detection. In a 2-step approach first a suspicious host identification is performed
by roughly sampling the traffic in order to detect potential P2P bots quickly. Second an
in-depth analysis with more fine-grained detectors achieve an accurate detection on the
identified hosts.

Applying sampling techniques in conjunction with a self-regulating IDS helps to reduce
the measurement overhead for an IDS in terms of CPU, memory or bandwidth enabling
the application of a partial IDS in future connected embedded systems. Similar to the
concept of partial networking, the IDS components regulate their activeness such that in
times of higher detection of malicious actions within the network more packets will be
sampled leading to a higher resource consumption. On the other hand, in times of less or
no detection, the IDS components lower their sampling or might even partially turn off
completely. Furthermore, by using adaptive techniques that regulate, for instance, IDS
relevant parameters or the sampling rate, the security level of a system can be adjusted
by preserving a controllable overhead on resources.

6.1.2 Cryptographic Mechanisms for Incident Detection

In contrast to the classical IDS based on, e.g., statistical techniques, the following mecha-
nisms are based on cryptographic schemes that can be exploited for alert generation and
thus provide incident detection capability. Apart from the functionality of cryptographic
protection, alerts can be raised if characteristics of the mechanisms fail, e.g., drifting
sequence counters, incorrect decryption of messages or mismatching hash digests.

Encryption Schemes
To the best of the authors knowledge no work could be found during the writing of this
article combining encryption schemes with IDS-functionality and sampling. However, one
can distinguish between two types of secure data: full encryption and selective encryption.
Full encryption means that all transmitted data is secured by cryptographic methods.
These include the classic encryption protocols on Ethernet such as MACsec, IPsec, TLS
or SSH. Similar to the sampling for IDSs, selective encryption mechanisms could be found
mainly targeted to secure the data transfer over Ethernet on several communication layers.

MACsec, for instance, provides hop-by-hop security for layer-2 of Ethernet and is com-
patible with most of the Ethernet-based protocols. The data transmission is secured
with GCM-AES. Within the MACsec frame format a Security Tag as an extension of
the EtherType is defined that contains information about the association number within
the channel, a packet number for replay protection and to provide a unique initialization
vector for encryption and authentication algorithms which helps the receiver to identify
the decryption key. The Integrity Check Value (ICV) generated by the GCM-AES follow-
ing the payload guarantees that the packet was created by a node possessing the correct
key. In the case of mismatching ICVs the frame gets dropped. This circumstance, fail-
ures in decryption or mismatching packet numbers could be exploited to trigger alerts.
The same applies to other encryption protocols, for instance when Keyed-Hash Message
Authentication Codes (HMAC) in IPsec do not match. However, since each device on a
transfer route needs an implementation of the MACsec standard including special PHYs
on all physical interfaces, MACsec is not very common and there are not many devices
on the market. All components on a data path which have to be secured need certificates

164

or mechanisms for pre-shared keys. Other protocols, according to [380], such as IPsec or
TLS are very complex, suffer from context specific attacks, do not provide layer-2 security,
or suffer from the lack of interoperability between their different versions.

In the context of selective encryption on the one side, the encryption of certain portions
of a message is understood reducing the overhead spent on the encryption/decryption pro-
cess. On the other side, selective encryption indicates that a sufficient number of messages
is encrypted providing the necessary confidentiality for message transmission. This tech-
nique is mainly applied in resource-aware environments such as WSN or Mobile Ad Hoc
Networks. Two methods are proposed in [381], alongside with a comprehensive literature
survey, for the selection of message encryption. The first approach encrypts all messages
and the second is based on the toss-a-coin approach in which approximately a half of
the data get encrypted. The selective approach, however, leaves nearly a 50% chance for
an adversary open to inject or manipulate packets which get not encrypted. The main
application for selective encryption is in the field of image and video streaming and was
not defined for the utilization on event-triggered messages. Further, the application in
legacy-systems with legacy protocols is difficult since the encryption and decryption pro-
cess retrofitted in these systems adds a significant delay to the original data transmission
which makes it hardly applicable for real-time critical protocols. Beyond that, failing
encryption or decryption could lead to a severe financial damage for instance in industrial
control applications since packets are not guaranteed to be delivered in their deterministic
time window. Since confidentiality in embedded environments is often of a minor priority,
encryption/decryption schemes could be neglected [382]. Hence, authentication processes
might be sufficient for the most of the cases.

Message Authentication Codes
Selective authentication is similar to selective encryption. However, to the best of the
authors knowledge no comparable work could be found proposing selective authentication
for network packet security. Unlike the full authentication, selective authentication only
helps to identify whether or not data is still useful after being modified. A selective
authentication approach presented in [383] is based on semi-fragile watermarks for vector
geographical data.

Apart from the consideration of detection and protection methods separately, the au-
thors of [384] and [385] combine the two classes for network security. In [384] a framework
is proposed in which a multimodal biometrics or HMAC scheme is used for continuous
authentication. Intrusion detection is modeled as sensors to detect the system’s secu-
rity state in order to protect high security mobile ad hoc networks. Intrusion detection
in [384] is modeled as noisy sensors that can detect the system’s security state (safe or
compromised). Apart from Ethernet-based networks the approach of combining intrusion
detection with a protection method is even proposed for the automotive CAN-bus. In [385]
a simple intrusion detection method for detecting malicious frames is presented. The basis
for this approach is that each electronic control unit is legitimately equipped with a hard-
ware security module. By applying a certain type of MAC (HMAC, AES-CMAC, ...) and
a counter within the proposed Domain_Activation and Domain_Violation frames, Denial
of Service, replay and impersonation attacks can be detected and the driver notified about
the risks.

165

Uncoupled MAC
Uncoupled MAC was originally described in [386] for securing network communication
between legacy devices communicating with protocols which do not provide any security
mechanisms. According to [387] many protocols in the TCP/IP stack do not provide
mechanisms to authenticate the source or destination of a network traffic packet enabling
to spoof the source address which is used in many attacks. By introducing dedicated
embedded plug-in devices which are located interconnected to the legacy devices, authen-
ticity and integrity of data communication can be provided by a MAC uncoupled from
the original message.

A
B

DBDA

Network

DC

C

DX
DA -- A
DB -- B
DC -- C
...

D

Figure 6.1: Network scenario of the proposed concept [388].

Thus, for instance with respect to Figure 6.1, if legacy device 𝐴 is sending messages to
𝐵 (𝑚A→B), the embedded plug-in devices 𝐷𝐴 and 𝐷𝐵 are transparently forwarding the
original message but decapsulated from the original message 𝐷𝐴 and 𝐷𝐵 are generating a
MAC (𝑀𝐴𝐶(𝑚A→B)). 𝐷𝐵 is storing its generated 𝑀𝐴𝐶 and waiting to verify it with the
𝑀𝐴𝐶 generated by 𝐷𝐴 sent over a secure communication channel. If the MAC are iden-
tical, data is accepted; otherwise, data is tampered. The overlay communication channel
does not influence or delay the original traffic and, thus, prevents failures for instance
through the MAC generation. Furthermore, in [386], the proposed security concepts (au-
thenticated boot, direct attestation, key establishment) and the internal architecture for
MAC generation and verification have been described for the embedded plug-in devices.

A more comprehensive approach of Uncoupled MAC was described in [388]. By intro-
ducing a further embedded surveillance device 𝐷𝑋 (Figure 6.1) it is possible to securely
bring new embedded plug-in devices into the network within the so called Setup Phase
such that they can participate in the MAC generation and verification process. Within
the Runtime Phase, 𝐷𝑋 is used for aggregating info, warning and error messages pro-
duced by the embedded plug-in devices. A further significant characteristic of Uncoupled
MAC is the separation of the Runtime Phase into a MAC Phase and an Idle Phase with
a random duration such that an adversary is not able to exploit the algorithm. By only
generating and verifying MAC within the MAC Phase, embedded plug-in devices only

166

use a certain amount of bandwidth in order to have a low and deterministic impact on
the original traffic (probe effect). By the predefined boundaries for the random chosen
number of packets 𝑛, defining the MAC Phase and the duration of the Idle Phase 𝛼, a
reasonable degree of security and additional overhead can be adjusted. A combination of
a packet- and time-driven mechanism mitigates the problems of other systems described
in the above sections in which 𝑛 packets are sampled in each time-driven interval 𝛼 by
applying randomly chosen values within fixed boundaries. This combination allows the
protection of event- and time-triggered communication.

Further, in [388] the extension of the MAC packets with a sequence counter and a
timestamp was introduced guaranteeing the freshness and order of packets preventing re-
play attacks. Uncoupled MAC violations against the mentioned extensions are stored as
anomaly logs within each individual embedded plug-in device and sent to the surveillance
device. Besides a theoretical safety and security assessment, the concept of a comple-
mentary applied IDS within the Control & Management module is described. Thus, the
combination of a protection- and detection-based technique was originally considered.

In [382] an assessment simulation model for a simple scenario including Uncoupled
MAC is proposed. With the model, one is able to simulate bandwidth utilization and
Uncoupled MAC overhead as well as detection rates by examining different values for 𝑛
and 𝛼 for a scenario in which an adversary is randomly injecting packets.

Compared to the approaches from the sections above, Uncoupled MAC has the follow-
ing advantages and drawbacks.

Advantages

• Plug-and-play capability for legacy devices in form of embedded plug-in devices
• Integration in networked devices ensured by the concept
• Retrofitted cryptographic protection for protocols without security mechanisms
• No influence on underlying communication (e.g., real-time aspect will be preserved)
• Applicability to event- and time-triggered communication by the combination of a

packet- and time-driven mechanism
• Functioning in communication intense systems by sampling (e.g., in switches or

cloud platforms)
• Adjustable security level and additional overhead by adapting Uncoupled MAC

parameters (e.g., in bandwidth-critical systems)
• Combination of a MAC algorithm with an IDS-functionality mitigates the lack of

data integrity and data origin authenticity as with an IDS alone

Disadvantages

• Overhead on resources such as CPU, memory and bandwidth (but adjustable)
• 100% detection rate cannot be achieved due to sampling

For a holistic security eco-system, a hybrid system existing of the methods shown in
Figure 6.2 is recommended. However, the main focus of this work is towards the resource
conservation and protection methods. The detection by utilizing an IDS has already been
proposed in [388]. More of interest is the interaction of the protection by Uncoupled MAC
together with a self-regulating sampling method and the generation of alerts. On top of
that a typical (more powerful) misuse- or anomaly-based IDS could be employed that is

167

taking the sampled traffic as an input for in-depth intrusion detection. An alert analysis
technique such as proposed in [165], on top of the resulting alerts from the protection
and detection method, could be used to find a consensus and to initiate further reaction
mechanisms, e.g., the reconfiguration or isolation of a network segment through SDN .
The proper consensus finding might be beneficial in safety critical environments since it
can be used to reduce for instance false positives. Uncoupled MAC allows to filter and
sample for a certain protocol on a specific communication flow in parallel for multiple
instances. Through the verification of 𝑛 packets within a MAC Phase, not only packet-
but also flow-based features for a downstream applied IDS can be derived.

Detection
(e.g. IDS)

Resource Conservation
(e.g. sampling)

Protection
(e.g. HMAC)

Bandwidth,
Memory, CPU load

DoS, Injection,
Manipulation

Integrity,
Authentication

Figure 6.2: Combination of methods.

6.2 Uncoupled MAC Algorithm Improvements

In this section improvements compared to the Uncoupled MAC algorithm proposed in
[382, 386, 388] are provided. Some of them are needed to enable an IDS-functionality
of the Uncoupled MAC algorithm and therefore facilitate the interaction with a typical
IDS. Other improvements benefit the algorithm for the conservation of resources, with a
specifiable level of security, or makes it applicable in a broader sphere and more effective.

6.2.1 Master/Slave Negotiation

One change of the algorithm compared to the original design, proposed in [388], is the
negotiation between two communicating Uncoupled MAC partners devices to generate or
verify MAC . Instead of a more complex negotiation between the securely communicating
parties, the Uncoupled MAC partner that originally initiated their communication be-
comes the master and the other one becomes the slave. The direction of the data arriving
first at one partner dictates which partner is set to master.

Rather than negotiating between master and slave which device starts with the gen-
eration/verification also defining the duration of the Idle Phase and how many packets

168

will be examined during the MAC Phase, only the master is specifying this information
and is communicating this to the slave. This significantly increases the performance of
the algorithm since the overhead of the negotiation is prevented but the security aspect
of randomly computing the parameters is still guaranteed.

6.2.2 Integration in Networked Devices

A major improvement compared to the originally intended use of Uncoupled MAC working
on dedicated embedded plug-in devices is the integration in networked devices. In this
mode Uncoupled MAC can also run on one interface such as 𝑒𝑡ℎ0 as shown in Figure 6.3
enabling the application of the algorithm as a piece of software running on end devices
or networking elements such as switches. This enables complete new fields of application
for instance the utilization of Uncoupled MAC on ECUs or domain controllers in the
automotive network domain.

In this mode of operation, a master and slave have to be defined at program start.
The designated master device initiates the secure communication channel needed to pass
status information and generation packets between the Uncoupled MAC partners. Instead
of two hardware interfaces, only one interface is required and the internal ring-buffers for
packet capturing are modified in a way that one captures only incoming traffic, while the
other captures only outgoing traffic (Figure 6.3). The separation is necessary in order
to fulfill the same functionality of the architecture of embedded plug-in devices shown in
[386] and [388] that obviate the bridge interface 𝑏𝑟0.

Figure 6.3: Integration of Uncoupled MAC operation in networked devices.

6.2.3 Synchronization of MAC Phase Start

A bottleneck of the decapsulation of MAC and message as with Uncoupled MAC is the
start of the MAC Phases when making use of the proposed sampling technique (MAC
Phase and Idle Phase). Similar to the so called Two Generals Problem, whose impossibility
proof was first published in [389], the problem exists when two communicating Uncoupled
MAC partners should start their MAC Phase. However, in the case of Uncoupled MAC
different premises can be made by having a secure channel built by a certificate-based key
establishment and an underlying time synchronization. By using a time synchronization
protocol such as the Precision Time Protocol to synchronize the master and slave, it is
possible to facilitate accurate timestamps that can be used to synchronize the start of
the MAC Phase for both participants. This synchronicity is crucial for guaranteeing a
stable operation of the algorithm and minimizes the chance of packets being missed by

169

one partner. Therefore, after the Idle Phase with a random duration 𝛼, a timestamp 𝑡0 is
taken by the master at the beginning of the Runtime Phase, to which an offset value 𝑡𝑜𝑓𝑓
is added. The value 𝑡𝑜𝑓𝑓 is at least a half of the Round Trip Time (RTT) between the
master and slave (1

2
× 𝑅𝑇𝑇) and should be as small as possible, leaving only a minimal

time window for an attacker to take advantage of. The resulting time value 𝑡1 (𝑡0 + 𝑡𝑜𝑓𝑓)
marks the start of the MAC Phase for both participants and is added to the regulation
packet that is sent to the slave, thus allowing both partners to start the MAC Phase
at the same time. The timing diagram in Figure 6.4 depicts the timing synchronization
mechanism.

Figure 6.4: Timing diagram for a synchronized start of a MAC Phase.

6.2.4 Static Communication Mode

Depending on the network to secure, the embedded surveillance device presented in [388]
may be omitted reducing the communication overhead towards each individual Uncoupled
MAC partner. Especially in static networks, in which the number of Uncoupled MAC
entities, communicating end-devices and thus the IP-addresses are defined, the static
communication mode significantly speeds up the performance.

6.2.5 IDMEF Extension

The IDMEF, an XML-based language, was specified as a RFC document to standardize
the interfaces between intrusion detection, response and management components. Over
the last decade several public and proprietary system-level standardization initiatives
arose but they all ended in criticism, yielded weak adoption or have even been withdrawn
as stated in [77] pursuing a standardized format. IDMEF has the advantages that the
messages specified are well structured, the message fields (i.e. tags and attributes) have
rigorous syntactic and semantic definitions and support better message expressivity [77].

A large number of popular IDSs (OSSEC, Barnyard2, Samhain, Surricata, ...) or SIEM
-systems are using IDMEF. To ensure compatibility with those systems, Uncoupled MAC

170

algorithm is extended by an IDMEF module. The proprietary defined info/error/warning
message is replaced with a standardized format allowing a central authority to handle and
manage security exceptions detected by Uncoupled MAC violations. Such violations have
been discussed together with possible attack vectors and errors around the application of
Uncoupled MAC in [388] and are listed in the following.

• HMAC packet inconsistencies (Hash mismatch, HMACs are not received, no HMAC
for original packet, no feedback HMAC packet, ...)

• Sequence counter issues (Expected counter value is not within the tolerance window
or counter value occurs twice, ...)

• Timestamp issues (Uncoupled MAC partners do not share the same time base,
timestamp in HMAC packets exceed tolerance windows, ...)

• Authentication issues (Authenticated boot fails, direct attestation not possible, ver-
ifying certificates fails, ...)

• Connection issues (Direct, secure communication between Uncoupled MAC partners
or surveillance device is terminated unexpectedly, a device does not report its active
state, ...)

The support for IDMEF not only equips Uncoupled MAC with an IDS capability but
also allows the interoperability with other IDSs allowing to find a consensus on alerts
from various incident detection sources on a standardized format. This benefits the usage
of alert analysis techniques not only on the devices themselves but also on a central more
intelligent platform orchestrating different detection and reaction components as shown in
Figure 1.2 for systems that can, according to [73], be arranged distributed or decentralized.
Apart from IDMEF, the more recent IDEA might be the integrated as part of future work
since it is more lightweight compared.

6.3 Self-Regulation Algorithm

An Uncoupled MAC self-regulation algorithm is proposed in order to adjust the sam-
pling parameters, the number of packets during a MAC Phase 𝑛 and the duration of an
Idle Phase 𝛼, on-the-fly. This allows for a given percentage 𝑞0 of packets to be sam-
pled/examined, which can be regarded as the adjustable security level, to increase or
decrease the parameters 𝑛 and 𝛼. This depends on the number of detected incidents 𝑧𝐷
during a MAC Phase caused by Uncoupled MAC violations with respect to Section 6.2.5
and the number of unmeasured packets 𝑝𝑛 during an Idle Phase.

Figure 6.5 shows a schematic control circuit illustrating the self-regulation. The pro-
posed mechanism might not only be applied for Uncoupled MAC but also for an IDS
capable of sampling. This self-regulation approach can be utilized for a reasonable over-
head and in the case of IDSs for a processable amount of data while still adapting to
the systems’ security state. According to the schematic from Figure 6.5, formulas and
algorithms for the Uncoupled MAC parameters 𝑛 and 𝛼 are derived for self-regulation.

6.3.1 Number of Packets 𝑛 per MAC Phase

In Equation 6.1 the number of packets to be examined in the next MAC Phase 𝑛[𝑘+ 1] is
calculated depending on the number of packets of the current MAC Phase 𝑛[𝑘], the scaled
number of packets identified by Uncoupled MAC detection (𝑧𝐷[𝑘]) and an intermediate

171

System Output
zD[k], pn[k]

Reference
Value q0

Control
n[k+1] and α[k+1]

Uncoupled MAC System

-

Disturbance
(e.g. packet injection)

Figure 6.5: Self-regulating sampling approach for Uncoupled MAC.

value 𝑞[𝑘]. This value 𝑞[𝑘] is responsible to keep the percentage of examined packets on
a predefined value of 𝑞0 depending on the number of unmeasured packets during the Idle
Phase 𝑝𝑛[𝑘] (Equation 6.2). The more packets are deemed as faulty by the algorithm, the
higher the number of packets to be controlled in the next phase is set. However, if no
Uncoupled MAC violations occur, the percentage of packets to be examined retains its
value of 𝑞0.

𝑛[𝑘 + 1] = 𝑛[𝑘] + 𝑛𝑠 · 𝑧𝐷[𝑘] + 𝑞[𝑘] (6.1)

𝑞[𝑘] =

(︂
𝑞0 −

𝑛[𝑘]

𝑛[𝑘] + 𝑝𝑛[𝑘]

)︂
· 𝑛[𝑘] (6.2)

Where:

𝑛[𝑘 + 1]: packets to check in the next MAC Phase
𝑛[𝑘]: packets checked in the present phase
𝑛𝑠: scale factor to set the impact of erroneous packets on the next phase
𝑧𝐷[𝑘]: number of erroneous packets detected in the current phase
𝑞[𝑘] : percentage of packets to check in the next phase
𝑞0: desired percentage of packets to check
𝑝𝑛[𝑘]: packets not checked due to the Idle Phase

6.3.2 Waiting Duration 𝛼 in the Idle Phase

In Equation 6.3 the waiting duration 𝛼[𝑘+1] for the next Idle Phase is computed depend-
ing on a random value 𝑋𝑟 within fixed boundaries [𝛼𝑀𝐼𝑁 , 𝛼𝑀𝐴𝑋] and the scaled number
of packets identified by Uncoupled MAC detection (𝑧𝐷[𝑘]) of the current MAC Phase.

𝛼[𝑘 + 1] = 𝑋𝑟 ∈ [𝛼𝑀𝐼𝑁 , 𝛼𝑀𝐴𝑋]− 𝛼𝑠 · 𝑧𝐷[𝑘] (6.3)

Where:

𝛼[𝑘 + 1]: duration of the next Idle Phase
𝑋𝑟: random value in range 𝑋𝑟 = [𝛼𝑀𝐼𝑁 , 𝛼𝑀𝐴𝑋] calculated in each Idle Phase
𝛼𝑠 : scale factor to set the impact of erroneous packets on the next phase
𝑧𝐷[𝑘]: number of erroneous packets detected in the current phase

172

6.3.3 Formula Verification

A simple formula verification implemented in the Python programming language shows
the desired behavior of 𝑛[𝑘+1] and 𝛼[𝑘+1] depending on a predefined percentage of 60%
of packets to be examined (𝑞0 = 0.6). The scaling factors in this example have been chosen
to be 𝑛𝑠 = 0.3 and 𝛼𝑠 = 0.4𝑠. A total number of 1000 phases (MAC Phase + Idle Phase)
have been examined. 𝑋𝑟 is computed in each phase within the range of [2𝑠, 3𝑠]. Further,
for each phase, a random number of unmeasured packets can be determined between the
range [3, 5]. As shown in Figure 6.6, two scenarios for detected packets (security incidents)
by Uncoupled MAC (𝑧𝐷[𝑘]) are considered at 1

3
and 2

3
of the total of 1000 phases. At 1

3
, a

constant number of 4 packets was detected for 100 phases resulting in a clear increase of
𝑛[𝑘+ 1] and a significant drop of 𝛼[𝑘+ 1]. However, after no more packets were detected,
the values for 𝑛 and 𝛼 leveled off such that 60% of packets were examined again. At 2

3
,

a steady increase of 𝑧𝐷[𝑘] shows clearly that more packets can be examined expressed by
a steady increase of 𝑛 and a shorter Idle Phase through a smaller 𝛼 value. Thus, in a
network having an increase on malicious activities more packets can be examined. It must
be noted that Equation 6.1 and 6.3 showing linear behavior regarding the term adjusted
with 𝑧𝐷. However, in some cases, for instance when a faster adaption of 𝑛 and 𝛼 is desired,
it might be necessary to consider non-linear behavior using a non-linear function 𝑓(𝑧𝐷).

0 200 400 600 800 1000
MAC Phase (no.)

0

2

4

6

8

10

12

P
ac

ke
ts

(n
o.

)

n[k]

zD[k]

0

2

4

6

8

10

12

S
im

u
la

te
d

T
im

e
(s

)

α[k]

Figure 6.6: Verification of the self-regulation formulas.

6.3.4 Algorithm Notation

In order to implement Equation 6.1 and 6.2 that dictate the behavior of the self-regulation
system for the number of packets to be examined during a MAC Phase, Algorithm 8
is proposed. In addition to the computation given by the equations above, additional
mechanisms must be added to the algorithm. One mechanism is to prevent 𝑛[𝑘+ 1] from
falling below a threshold value 𝑁𝑀𝐼𝑁 , ensuring that a minimum of packets is checked in
each phase. Complementary to this, an upper threshold 𝑁𝑀𝐴𝑋 must be defined to prevent
𝑛[𝑘 + 1] from reaching a too high value, producing excessive overhead.

For the 𝛼 value described in Equation 6.3, Algorithm 9 is proposed. In addition to the
computation given by Equation 6.3, two thresholds are added. These thresholds prevent
𝛼 from reaching a value less than 𝛼𝑀𝐼𝑁 or greater than 𝛼𝑀𝐴𝑋 . This ensures that 𝛼 is
always a positive integer, not exceeding the specified Idle Phase duration value.

173

Algorithm 8: Calculation of 𝑛 for the next phase 𝑘 + 1.
Input: 𝑧𝐷[𝑘], 𝑛[𝑘], 𝑝𝑛[𝑘]
Output: 𝑛[𝑘 + 1]

Initialization : 𝑞[𝑘]
Constants : 𝑁𝑀𝐼𝑁 , 𝑁𝑀𝐴𝑋 , 𝑞0, 𝑧𝑠

1: 𝑞[𝑘]← 𝑞0 − (𝑛[𝑘]/(𝑛[𝑘] + 𝑝𝑛[𝑘])) · 𝑛[𝑘]
2: if (𝑞[𝑘] < 0) then
3: 𝑞[𝑘]← 0
4: end if
5: 𝑛[𝑘 + 1]← 𝑛[𝑘] + 𝑧𝑠 · 𝑧𝐷[𝑘] + 𝑞[𝑘]
6: if (𝑛[𝑘 + 1] < 𝑁𝑀𝐼𝑁) then
7: 𝑛[𝑘 + 1]← 𝑁𝑀𝐼𝑁

8: else if (𝑛[𝑘 + 1] > 𝑁𝑀𝐴𝑋) then
9: 𝑛[𝑘 + 1]← 𝑁𝑀𝐴𝑋

10: end if
11: return 𝑛[𝑘 + 1]

Algorithm 9: Calculation of 𝛼 for the next phase 𝑘 + 1.
Input: 𝑋𝑟, 𝑧𝐷[𝑘]
Output: 𝛼

Constants : 𝛼𝑠, 𝛼𝑀𝐴𝑋 , 𝛼𝑀𝐼𝑁

1: 𝛼← 𝑋𝑟 − 𝛼𝑠 · 𝑧𝐷[𝑘]
2: if (𝛼 < 𝛼𝑀𝐼𝑁) then
3: 𝛼← 𝛼𝑀𝐼𝑁

4: end if
5: if (𝛼 > 𝛼𝑀𝐴𝑋) then
6: 𝛼← 𝛼𝑀𝐴𝑋

7: end if
8: return 𝛼

6.4 Evaluation

The proposed self-regulation algorithm and the Uncoupled MAC improvements have been
added to the implementations presented in [386] and extended in [388]. The programming
language is native C using the libraries OpenSSL for key establishment and HMAC-SHA-
256 generation/verification in the MAC Phases, PF_RING in combination with libpcap
for packet processing and libprelude for IDMEF support. The evaluation in this article
deals with customized attack scenarios in an environment targeted to exploit the weak-
nesses of Uncoupled MAC’s concept of Idle Phases to show their impact on the detection
capability by also examining the trade-off of preserving resources. It is therefore no aim to
compare the IDS-functionality with other attack detection mechanisms in this work since
Uncoupled MAC is a cryptographic scheme by nature and provides as a side effect sim-
ple IDS-functionality benefiting environments characterized by resource constraints and
static communication. Especially a large network data diversity, not provided with the
evaluation environment, is a mandatory aspect to apply anomaly-based machine learning
mechanisms in order to properly learn the network behavior.

174

6.4.1 Virtualized Environment

A virtualized environment is preferred compared to the Simulation Assessment Model
presented in [382] since the simulation is an idealized model of the algorithm with many
constraints such as the neglection of bidirectional communication. The virtualized envi-
ronment behaves like an authentic evaluation with real (embedded) devices since among
others the hardware and network resources and constraints can be evaluated as well. For
more flexibility in carrying out exhausting measurements evaluating various scenarios for
trend estimation of Uncoupled MAC behavior, the self-regulation algorithm might be
implemented as an extension for the Simulation Assessment Model in future work.

The virtualized evaluation environment is implemented on a virtual Proxmox platform
for scalability and flexibility. All machines as well as the intermediary devices are virtual
entities on the same virtualization host as illustrated in Figure 6.7 including the associated
hardware constraints.

Proxmox virtualization management platform Xeon E5-2430 @2.20 GHz, 12 cores

Legacy Device (1)

Debian 9, 1 x KVM64 CPU, 512 MB RAM

Legacy Device (2)

Debian 9, 1 x KVM64 CPU, 512 MB RAM

Uncoupled MAC
Device (2)

Ubuntu 17.04, 4 x KVM64 CPU, 1 GB RAM

Attacker Device

Kali Linux 2018.01, 1 x KVM64 CPU, 1 GB RAM

Open vSwitch

Uncoupled MAC
Device (1)

Ubuntu 17.04, 4 x KVM64 CPU, 1 GB RAM

Figure 6.7: Structure of the virtual evaluation environment.

In order to evaluate both, the plug-in and integrated mode, two Uncoupled MAC De-
vices and two Legacy Devices are used. Testing in the integrated device mode having only
communication between the Uncoupled MAC Devices each evaluation ends up with the
same results compared to the plug-in mode in which the Uncoupled MAC Devices secure
the Legacy Device communication. To connect the Legacy Devices with the Uncoupled
MAC Devices, a simple virtual Proxmox-internal bridge is sufficient. The Uncoupled
MAC Devices are connected via an Open vSwitch (OVS) to allow port-mirroring and
packet injection by the attacker, which is connected to the same switch.

In the following evaluations for plug-in and integrated mode, the traffic between the
Legacy Device (1) and (2) is secured by the Uncoupled MAC Devices (1) and (2) and
originates from Legacy Device (1). For evaluation purposes, the Internet Control Message
Protocol (ICMP) is used in form of ICMP echo-requests and corresponding replies. An
Attacker Device is impersonating Legacy Device (1) and is injecting packets to test the
Uncoupled MAC detection capability in different scenarios. In addition to this, several
conditions and test parameters are defined:

1. the interval between ICMP echo-requests is set to 500 ms simulating a periodic
communication

2. the standard size for an ICMP echo-request and echo-reply is used (98 bytes total
length, 48 bytes payload)

175

3. a maximum of 32 packets for 𝑛 is checked per MAC Phase
4. a minimum of 8 packets for 𝑛 is checked per MAC Phase
5. a maximum value of 50 (5 s) for 𝛼 is determining the Idle Phase maximum for the

attack scenarios continuous and stochastic, while 𝛼 is set to 42 (4.2 s) as an Idle
Phase maximum value for the single and burst injection attacks; the details on each
attack scenario are described in Section 6.4.2

6. a minimum value of 3 (300 ms) for 𝛼 is determining the Idle Phase minimum for all
attack scenarios

7. Uncoupled MAC Device (1) is set as the master, Uncoupled MAC Device (2) as the
slave

8. the master device is responsible for HMAC verification, the slave device is respon-
sible for HMAC generation

9. the Uncoupled MAC Devices are synchronized via the Precision Time Protocol,
enabling precise start times for the MAC Phases on both devices and accurate
generation packet timestamps

6.4.2 Attack Scenarios

Focus of the following customized attack scenarios is to exploit the Uncoupled MAC al-
gorithm’s Idle Phase times in order to inject spoofed data. In those phases no packet
authenticity and integrity checks are performed. Since any other attack type (modifica-
tion, replay or man-in-the-middle) as discussed in [388] would also be detected due to
Uncoupled MAC violations (Section 6.2.5), only variations of packet injection attacks are
defined to simulate different adversary skill levels. In order to evaluate the reliability of
detection and the benefits of the self-regulated version of Uncoupled MAC compared to
the non-self-regulated one, the following scenarios are specified:

1. Continuous Injection - a single packet is injected in fixed intervals
2. Stochastic Injection - a random number of packets in a specific range is injected at

random intervals with a fixed minimum and maximum time between injections
3. Bandwidth Low Injection - one (single) or multiple (burst) packets are injected after

a bandwidth low is detected indicating an Idle Phase
4. Weak Spot Injection - a single packet is injected immediately after the Regulation

Packet is sent out by the master and detected by the attacker

For single and burst bandwidth low injection an intelligent adversary might monitor
the cycle of MAC Phases and Idle Phases and learns the average bandwidth overhead in
order to inject packets after a bandwidth low is detected indicating an Idle Phase. One
could say that an attacker who would be able to only monitor the actual network traffic
produced by Uncoupled MAC, e.g., by monitoring Uncoupled MAC’s port number, would
be able to inject packets without measuring the bandwidth. He would though be able to
see when no generation and verification packets are exchanged indicating an Idle Phase
(if no heartbeat messages are applied) but could not determine an actual trigger value
because of Uncoupled MAC’s random parameters 𝑛 and 𝛼. Thus, a learning phase by a
bandwidth measurement over multiple phases is necessary in order to gain a dedicated
trigger value for injection. It must be noted that these scenarios are rather theoretical
since in a realistic network environment more than two parties communicate resulting in

176

an even higher bandwidth utilization with fluctuations such that it might not be possible
to determine the actual bandwidth overhead by Uncoupled MAC in order to detect the
Idle Phases through bandwidth lows.

Weak spot injection assumes that an attacker is able to identify the regulation packet
on the network data. However, as stated in [388], Uncoupled MAC communication is
transferred over a secure encrypted channel with applied heartbeat messages. Thus, on the
one side the communication overhead increases but leaves no possibility that an attacker
is able to distinguish a regulation packet from a heartbeat message. Since these features
are complementary depending on the desired security level and possible overhead, the
evaluation deals with a lightweight version not considering applied heartbeat messages.

6.4.3 Attacker Implementation

The attack scenarios are implemented using Python-based scripts. For continuous injec-
tion, the script is used to inject packets at an interval of two seconds between injections.
The stochastic injection sends a random count of attacker packets 𝑎𝑝𝑎𝑐𝑘𝑒𝑡𝑠 = [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥]
at random times 𝛥𝑡𝑟𝑎𝑛𝑑𝑜𝑚 = [𝛥𝑡𝑚𝑖𝑛, 𝛥𝑡𝑚𝑎𝑥]. Both scenarios could also represent a non-
malicious behavior for instance when a network participant acts as a so called “babbling
idiot” in sending out continuous or stochastic packets as a result of a malfunction. The
latency of the attacker script must also be considered in the evaluation of the continuous
and stochastic attacks. If, for example, the script is started during a MAC Phase, the
first injection may take place in the Idle Phase, resulting in a low detection rate for the
first phase. On the other hand, if the script is started in an Idle Phase, a high detection
rate might be achieved for the first phase. This non-deterministic behavior of the attacker
program results from first constructing the attacker packet at the start of the script and
the delay introduced by the sockets.

For the bandwidth low injection, an intelligent attacker program is developed. This
intelligent attacker program first sniffs 120 packets passed between the two Uncoupled
MAC partners in a learning phase. During this phase, bandwidth data are computed and
stored, which is then assessed in the processing phase. This phase yields mean values
for the upper, lower and middle bandwidth. The mean values can then be used in the
attack phase, in which the bandwidth is continuously measured using a sampling rate of
10 ms. Then packets are injected either in single (a single packet) or burst mode (e.g.,
three packets) each time a bandwidth low is reached. The bandwidth low marks the start
of an Idle Phase for the attacker, thus leaving a confined time window for an attack.
An example bandwidth measurement of the attacker in an arbitrary attack phase with
injected packets when a bandwidth low is detected is shown in Figure 6.8.

177

10 20 30 40 50 60 70 80 90 100
Time (s)

0

200

400

600

800

1000

B
an

d
w

id
th

(b
y
te

s/
s)

bandwidth

injected packet

lower bandwidth mean

total bandwidth mean

Figure 6.8: Attacker bandwidth measurement and injected packets in detected bandwidth
lows.

6.4.4 Evaluation Metrics

For the evaluation of IDSs, especially for the problem of statistical classification, differ-
ent characteristic values are used. One of the most important notations is to use the
parameters derived from the Confusion Matrix (referring to Table 2.2 in Section 2.1.4) as
stated among other literature in [390]. This specific table allows the representation of the
performance of an algorithm, typically used for machine learning but in this context used
to build a bridge towards Uncoupled MAC’s incident detection functionality.

From the parameters of Table 2.2, formulas for the computation of many other char-
acteristic values (sensitivity, specificity, accuracy, etc.) can be derived. For Uncoupled
MAC, the following assumptions can be made: Due to the nature of MAC generation and
verification in a MAC Phase, no false positives can be obtained (FP=0) since modified
or injected packets can certainly be detected to be true positives. Unexamined packets
within the Idle Phase will either yield true negatives in the case of non-malicious packets
or false negatives in the other case. The possible conditions for Uncoupled MAC in an
arbitrary phase are shown in the example of Figure 6.9.

t

Malicious Packet

MAC Phase Idle Phase

Normal Packet

TN TNTP TP FNTN TN FP=0

Figure 6.9: Confusion Matrix parameters for some Uncoupled MAC phase 𝑘.

178

The quantity used to measure the efficiency of an algorithm’s self-regulation and non-
self-regulation is the detection rate since it is according to [378] the most important metric
for an IDS. For Uncoupled MAC evaluation it is defined as the percentual value of the
number of injected attacker packets versus the number of these packets detected by the
Uncoupled MAC algorithm. The detection rate (DR) described in percent corresponds to
the true positive rate (TPR) or sensitivity derived from the Confusion Matrix which can
be computed according to Equation 6.4. In the example from Figure 6.9, for some phase
𝑘, 𝑇𝑃 = 𝑧𝐷[𝑘] equals 2 and 𝐹𝑁 = 1 yields a detection rate 𝐷𝑅 = 𝑇𝑃𝑅 = 2

2+1
= 67%.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(6.4)

6.5 Measurement Results

The results from measurements, taken within the evaluation environments while multiple
attack scenarios are executed, are described in the following sections. The values for non-
self-regulation are set such that comparable to self-regulation approximately (𝑞0 × 100)%
of packets are examined by default.

6.5.1 Continuous Injection

A continuous attack is carried out on both the self-regulation and the non-self-regulation
algorithm. In this attack mode, a single attacker packet 𝑧𝐷 is injected into the network
in fixed intervals of two seconds. The scenario has been carried out ten times for each
algorithm over a total of 30 MAC phases. The mean values for the detection rates are
calculated for both the non-self-regulation algorithm and the self-regulation algorithm
with the following set of parameters for self-regulation: 𝑛𝑠 = 1.30, 𝛼𝑠 = 2.0, 𝑞0 = 0.75.

While the non-self-regulation version of Uncoupled MAC performs poorly in this sce-
nario, the self-regulation version produces a significantly higher mean detection rate (Fig-
ure 6.10). By adjusting the Uncoupled MAC parameters 𝑛 and 𝛼, the detection rate
increases over runtime due to the increase of 𝑛 and average decrease of 𝛼 following an
exponential approximation curve for self-regulation. However, both algorithms would
reliably detect an attacker or a malfunctioning device acting as a “babbling idiot”.

3 6 9 12 15 18 21 24 27 30
MAC Phase (no.)

0

20

40

60

80

100

D
et

ec
ti

on
R

at
e

(%
)

self-regulation

non self-regulation

self-regulation mean

non self-regulation mean

Figure 6.10: Detection rate - continuous packet injection.

179

6.5.2 Stochastic Injection

In this attack scenario the attacker sets a minimum and a maximum of packets 𝑧𝑖 to inject.
For this test, the interval 𝑧𝑖 ∈ [1; 4] was chosen. Further, a minimum and maximum for
the time between injections 𝑡𝑖 (in seconds) needs to be fixed, which in this case is set to
the interval 𝑡𝑖 ∈ [0.5; 10]. A number of packets to inject (𝑧𝑖) and a wait time (𝑡𝑖) are
selected randomly from the respective interval. The attack is carried out 10 times over 30
phases with the following parameters chosen for the self-regulation algorithm: 𝑛𝑠 = 0.80,
𝛼𝑠 = 2.0, 𝑞0 = 0.75.

The mean values for the detection rates are calculated for both the non-self-regulation
algorithm and the self-regulation algorithm and illustrated in Figure 6.11. Compared to
the continuous injection, the average detection rate is smaller due to a greater difficulty
to detect random injection. Further, the fluctuation expressed by the curve is greater
because of the mean computation of multiple stochastic measurements. However, again
the self-regulation performs better than non-self-regulation.

3 6 9 12 15 18 21 24 27 30
MAC Phase (no.)

0

20

40

60

80

100

D
et

ec
ti

on
R

at
e

(%
)

self-regulation

non self-regulation

self-regulation mean

non self-regulation mean

Figure 6.11: Detection rate - stochastic attack mode.

6.5.3 Bandwidth Low Injection

A more sophisticated attack scenario compared to the continuous or stochastic injection
is the exploitation of the Idle Phase by measuring the typical MAC Phase and Idle Phase
period and injecting packets when a bandwidth low representing an Idle Phase is detected.
Two subscenarios are performed. One in which only a single packet is injected by an
attacker and a second in which more information is transferred in form of multiple injected
packets.

Single Injection
Figure 6.12 depicts the results of an attack carried out over a time period of 300 seconds
for both variants of the Uncoupled MAC algorithm. The chart shows the duty-cycle
of Uncoupled MAC, alternating between MAC and Idle Phases. The packets that are
detected by Uncoupled MAC are shown in green, the packets that were not detected are

180

shown in red. While the non-self-regulation algorithm does not exceed a detection rate of
20%, the self-regulation algorithm detects about 50% of the attacker packets on average.
When an attacker packet is detected by the self-regulation algorithm, the duration of
the Idle Phase (𝛼) is reduced and the number of packets to be checked is increased (𝑛)
as described in Section 6.3. Due to this behavior, the margin for packet injection is
also reduced, resulting in fewer possibilities for an attack, while the detection rate of
Uncoupled MAC increases. For this scenario the following parameters where chosen for
the self-regulation algorithm: 𝑛𝑠 = 18.0, 𝛼𝑠 = 25.0, 𝑞0 = 0.75. By choosing stricter
parameters, the impact of a single attacker packet on the resulting behavior is greater
than with the scenarios described in Section 6.5.1 and 6.5.2, resulting in a faster reaction
compared to a detected injection in the continuous and stochastic attack scenarios.

Idle

MAC

self-regulation

50 100 150 200 250
Time (s)

Idle

MAC

non self-regulation

Figure 6.12: Packet detection per phase - single attack mode.

Burst Injection
Figure 6.13 depicts the results of an attack carried out over a time period of 300 seconds
for both variants of the Uncoupled MAC algorithm. The chart shows again the duty-cycle
of Uncoupled MAC, alternating between MAC and Idle Phases when three packets are
injected per bandwidth low. The detected packets are shown in green, the undetected
packets in red. Again the margin for the attacker program is reduced by the self-regulation
algorithm. In this scenario the number of attacker packets introduced to the test network
is greater than with the single injection scenario, making the limitation of the attacker
scope more distinct. While 72 packets are injected with the non-self-regulation algorithm
having a detection rate of approximately 47%, only 21 packets are injected for the self-
regulation variant (detection rate of approximately 62%), due to the fact that the self-
regulation variant dynamically adjusts its behavior with respect to the attacker packets
detected. In this scenario, the same parameters as with the single injection were selected
for the self-regulation algorithm, again with the aim to maximize the detection rate after
an attack was registered as fast as possible.

181

Idle

MAC

self-regulation

50 100 150 200 250
Time (s)

Idle

MAC

non self-regulation

Figure 6.13: Packet detection per phase - burst attack mode.

6.5.4 Weak Spot Injection

As described in Section 6.2.3, the ideal offset 𝑡𝑜𝑓𝑓 to start a new MAC Phase initiated by
the master in sending a Regulation Packet to the slave is 1

2
×𝑅𝑇𝑇 . However, in a practical

implementation when referring to Figure 6.4, 𝑡𝑜𝑓𝑓 must include deviations for instance due
to network jitter, processing delays for transmitting and receiving the Regulation Packet
or delays considering the timestamp and 𝑡𝑜𝑓𝑓 generation. Therefore it must be typically
larger than 1

2
× 𝑅𝑇𝑇 . Even if according to the concept the exchanged Uncoupled MAC

information is encrypted and thus an attacker cannot identify the Regulation Packet
directly, in this evaluation he might be able to exploit the small time window after an Idle
Phase ends until a new synchronized MAC Phase starts (weak spot) to inject a malicious
packet.

The injection of a single packet of the intelligent attacker described in Section 6.4.2
is triggered immediately after identifying a Regulation Packet for a total number of 15
phases. Due to the fact that the 𝑡𝑜𝑓𝑓 value is implemented in both algorithms with
and without self-regulation in an identical way, and independent of the calculation of 𝑛
and 𝛼 values, the stated facts concern both algorithms likewise. The detection rate of
Uncoupled MAC for changing integer multiples of the 𝑅𝑇𝑇 is illustrated in Figure 6.14 for
Uncoupled MAC with applied self-regulation. The average 𝑅𝑇𝑇 in this scenario derived
utilizing the ping tool is 0.804 ms. The greater the value for 𝑡𝑜𝑓𝑓 , the less malicious
packets are detected. For a practical implementation of Uncoupled MAC, thus, values
for 𝑡𝑜𝑓𝑓 ∈ [1; 5[×𝑅𝑇𝑇 are recommended for this scenario in order to mitigate weak spot
injection. However, even a large value for 𝑡𝑜𝑓𝑓 of approximately 75 × 𝑅𝑇𝑇 would still
detect attacker packets under the set conditions. The graph states further the estimated
detection rate in network environments in which the Regulation Packet is delayed for
instance due to overloaded network switches up to a maximum of 100 × 𝑅𝑇𝑇 when
applying self-regulated Uncoupled MAC.

182

1 5 10 25 50 75 100
toff (no. of RTT)

0

20

40

60

80

100

D
et

ec
ti

on
R

at
e

(%
)

Figure 6.14: Detection rate - weak spot injection.

6.5.5 Uncoupled MAC Overhead

In this section two of the aforementioned disadvantages of Uncoupled MAC are addressed.
On the one side the additional network utilization is measured including the presence of
an attacker and on the other side the overhead on resources based on a CPU and memory
measurement required to perform the Uncoupled MAC algorithm.

Network Utilization
Uncoupled MAC and especially self-regulation increases the overhead of network utiliza-
tion in presence of an attacker since its parameters are dynamically adjusted due to the
detection of the mechanisms’ violations. In order to show the impact of different attacker
behavior on the network overhead, the continuous injection was modified such that the
interval between each single packet injection is decreased over runtime simulating an in-
creasing attacker load. Figure 6.15 is illustrating this scenario for an Uncoupled MAC
setting of 𝑛𝑠 = 1.30, 𝛼𝑠 = 2.0, 𝑞0 = 0.75, an underlying basic ICMP traffic with a total
packet size of 1008 bytes and an attacker that injects packets after approximately 20 sec-
onds. The range of injection is [2, 0.25] in seconds having a decreasing interval of 0.05. The
attack is carried out 10 times showing the averaged curves in Figure 6.15. Until approxi-
mately 20 seconds no attacker packets are injected resulting in an overhead of 8%. After
approximately 20 seconds the injected attacker packets lead to a steady increase of the
total ICMP bandwidth. However, even if Uncoupled MAC detects the injected attacker
packets and adjust its 𝑛 and 𝛼 values, the overhead stays about the same with a slight
increase to 9%. The reason for this are the random MAC and Idle Phases that interfere
for the averaged 10 attack measurements. In a real network environment the overhead by
Uncoupled MAC including self-regulation would therefore remain nearly constant when
considering the mean bandwidth utilization.

It must be noted that the overhead of Uncoupled MAC, even when an attacker is
present, depends on two factors. One impact is the security configuration of Uncoupled
MAC for instance whether using additional feedback messages or not which would increase
or decrease the overhead. For the network utilization measurement no feedback messages

183

are considered. On the other side the packet size of the underlying protocol to be secured
plays a major role. Independent of this size, the size of Uncoupled MAC generation
packets is fixed, mainly characterized by the 256-bit HMAC. The percentual Uncoupled
MAC overhead would therefore increase for a minor basic packet size.

0 20 40 60 80 100
Time (s)

4000

4050

4100

4150

4200

4250

4300

4350

4400

B
an

d
w

id
th

(b
y
te

s/
s)

ICMP

overhead

0

10

20

30

40

50

O
ve

rh
ea

d
(%

)

Figure 6.15: Bandwidth overhead in presence of an attacker.

CPU and Memory Utilization
IDSs, especially complex machine learning based anomaly detection algorithms, demand
expensive resources [391]. Due to the nature of Uncoupled MAC, a certain resource con-
sumption overhead is present when verifying the integrity and authenticity of a specified
𝑞0 percent of packets. Figure 6.16 shows the CPU (left plot) and memory (right plot)
utilization of the self-regulated Uncoupled MAC process with 𝑞0 = 0.75 carried out on
the Uncoupled MAC Device (1) applying the psrecord and the Massif (Valgrind) tool. In
particular, the memory utilization is split into the heap and stack utilization.

0 3 6 9 12 15 18
Time (s)

0

20

40

60

80

100

C
P

U
U

ti
li
za

ti
on

(%
)

0 3 6 9 12 15 18
Time (s)

0

2

4

6

8

M
em

or
y

U
ti

li
za

ti
on

(k
B

)

heap

stack

Figure 6.16: CPU (left) and memory (right) utilization of the Uncoupled MAC process.

184

The figure covers the Setup Phase with the key agreement, one Idle Phase and one
MAC Phase in generation mode for the Uncoupled MAC master. The Setup Phase in
the current implementation is quite CPU consuming but needs to be done only once for
each Uncoupled MAC connection setup (≈ 0-2 s). This phase also results in fluctations
of the heap and stack memory. After the Setup Phase, a thread is created performing the
HMAC generation and verification which results in a constant heap and stack memory
utilization of approximately 8.45 kB (heap) and 5.14 kB (stack) for all subsequent Idle
and MAC Phases. The Idle Phases do not demand any CPU load since the master’s
process suspends for a random time depending on the value of 𝛼 (≈ 2-10.5 s). In the
experiment after approximately 10.5 seconds the MAC Phase starts showing minor peaks
for each computed HMAC. The CPU overhead produced by Uncoupled MAC even during
MAC Phases is, however, decent with only approximately 10% on average.

185

7 Conclusion

This chapter firstly provides a general conclusion based on the research presented in this
thesis. Furthermore, the chapter revises the main findings with regard to the research
questions and considers the strengths and limitations of this work. Finally, we suggest
and sketch directions for future research.

7.1 Summary of the Work

Chapter 1, the introduction, illuminated the motivation of the present thesis. In recent
times, trends and technologies, such as the Internet of Things, Software-Defined Every-
thing and Artificial Intelligence (AI), have accelerated the increasing interconnection of
networking devices. Future IT systems will be exposed to increasing risks due to newly
emerging technologies and trends with blurred borders (keyword “IoT-ification”) asso-
ciated with novel and highly advanced attack possibilities, e.g., malware driven by AI.
These circumstances have led to a steady blurring of boundaries between diverse appli-
cation domains and are characterized by high-volume, high-speed and high-dimensional
Streaming Data (SD) posing enormous challenges for applied security mechanisms. Cryp-
tography alone can not postulate protection for network communication in the future
therefore advanced and intelligent mechanisms need to be developed for cyber defense.
Incident handling is the process that involves the detection, analysis and response of and
to security-related incidents. However, as provided with the problem statement, Intrusion
Detection System (IDS)s have various limitations, artificial neural networks cannot be ap-
plied, e.g., due to inherent resource constraints and streaming data introduces challenges
for contemporary security mechanisms. The generic framework called Anomaly-based In-
cident Detection and Response System (ANDERS) was introduced on which four major
research questions for the thesis were defined. According to [24], the most dangerous at-
tacks only occur rarely such that Machine Learning (ML) based Outlier Detection (OD)
will seemingly play a crucial role in future network security. Thus, this thesis has aimed
for the following overall research goal and defines four major contributions in Chapter 1.

Research Goal: Improve Outlier Detection for Data Streams to Enhance Computer
Network Security.

Relevant background knowledge and state-of-the-art research on the topics (i) incident
detection, (ii) incident analysis and (iii) incident response was provided for the reader in
Chapter 2. For each of the four contributions, the dedicated chapters make up the main
part of the thesis that covers the aforementioned topics. Thus, Chapter 3 introduced
the Unsupervised Feature Selection for Streaming Outlier Detection (UFSSOD) algo-
rithm, an online capable Feature Selection (FS) algorithm for the purpose of OD, which
improves the input quality of the detection mechanism. An improved OD algorithm was
discussed in Chapter 4 with the Performance Counter-Based iForest (PCB-iForest)
algorithm. Chapter 5 introduced the Streaming Outlier Analysis and Attack Pattern

186

Recognition (SOAAPR) framework that improves the output quality of OD mechanisms
by performing streaming Alert Correlation (AC) and introduces three types of fingerprint-
like signatures for attack scenario representation and comparison. Outlier detection can
be improved by incorporating the feedback of their outcome, which was shown by the
so-called Uncoupled Message Authentication Code (Uncoupled MAC) algorithm, a
self-regulating protection-based cryptographic technique equipped with IDS-functionality.
A short summary of this thesis, the revision of the research questions and a glance at the
future work of ongoing research finalizes the thesis in this conclusion - Chapter 7.

7.2 Revising the Research Questions

In this section, we are providing the answers for the four research questions (RQ) de-
fined in the introduction - Chapter 1. After each answer, the corresponding research
contribution (RC) is provided to reach the thesis’ overall research goal. All four research
contributions have been published or are submitted journal articles.

RQ 1: How can unsupervised feature selection be applied on streaming data for the pur-
pose of outlier detection?
RC 1: Unsupervised Feature Selection for Outlier Detection on Streaming Data to En-
hance Network Security.

We illuminated the necessity of unsupervised FS for OD in SD for domains, e.g., in-
trusion detection, in network security that are ever-increasingly facing high-volume and
high-dimensional data that need to be processed in almost real-time. With the extensive
review on FS approaches for either (i) SD or (ii) OD, we pointed out that, to the best of
our knowledge, the proposed Unsupervised Feature Selection for Streaming Outlier Detec-
tion, called UFSSOD, is the first method of its kind to fill the research gap by providing a
solution bridging (i) and (ii). Two application scenarios of UFSSOD, together with online
capable OD methods, are discussed along with UFSSOD’s operation and functionality.
This also includes its ability to provide the amount of top-performing features by cluster-
ing the score values which is often circumvented in the literature by setting a pre-defined
number. Extensive measurements were conducted on 15 real-world data sets by applying
multiple feature subsets to 6 widely accepted off-the-shelf online OD methods obtained
from UFSSOD and state-of-the-art competitors FSDS as a representative of (i) and IBFS
of (ii). The evaluation examines the alleviation of the negative effect brought by irrelevant
features of the outlier detectors, considering both, the classification and computational
performance. The discussion of the results pointed out the non-applicability of FSDS for
OD because it doesn’t achieve reliable and satisfactory results, independent of its cluster
parameter 𝑘. In comparison to (offline) IBFS, UFSSOD achieves at least comparable
results while operating in an online fashion. It was able to decrease the average runtime
of individual classifiers by approximately 12% and improve the 𝐹1 by 14% on average.
UFSSOD is also evaluated in a true online setting by providing a feature subset in line
with xStream for each sample and to Loda Two Hist. using a windowed approach. In this
setting, applying UFSSOD yields better results than the bare versions of the OD methods
operating on full dimension. For instance, UFSSOD could improve the 𝐹1 up to 45% for
Loda Two Hist. while reducing the average runtime by 22% for individual data sets.

187

RQ 2: How can a flexible framework for unsupervised online outlier detection be designed
to provide an online scoring functionality for feature importance?
RC 2: On the Improvement of the Isolation Forest Algorithm for Outlier Detection with
Streaming Data.

Over the past few years, the continuous increase of high-volume, high-speed and high-
dimensional unlabeled streaming data has pushed the development of anomaly detection
schemes across multiple domains. These require an efficient unsupervised and online
processing ability capable of dealing with challenges such as concept drift. The most
popular state-of-the-art OD methods for streaming data are discussed in this thesis, with
a focus on algorithms based on the widely known Isolation Forest (iForest), and compared
with thoroughly engineered requirements pointing out the lack of a flexible, robust and
future-oriented solution.

Thus, this thesis introduces and discusses a novel framework called PCB-iForest that
“wraps around”, generically, any ensemble-based online OD method. However, due to its
popularity, the main focus lies on the incorporation of iForest-based methods for which we
present two variants. PCB-iForestEIF is (to the best of our knowledge) the first application
of the iForest improvement called Extended Isolation Forest on streaming data. PCB-
iForestIBFS applies a recently proposed feature importance scoring functionality designed
for static data, which is adapted to function in a streaming fashion. We are providing
details of PCB-iForest’s core functionality based on performance counters assigned to each
ensemble component in order to favor or penalize well or poorly performing components.
The latter will be replaced if concept drifts are detected by newly built components based
on samples within a sliding window. Since drift detection is crucial in regularly updating
our model where required, we rely on a recently proposed method denoted as NDKSWIN
but are open to any multi-dimensional data-centric method.

Our extensive evaluation firstly evaluates the drift detection functionality which shows
that NDKSWIN is able to detect concept drifts and, even if afflicted by some additional de-
tections, regularly updates PCB-iForest. Comprehensively comparing both PCB-iForest
methods with state-of-the-art competitors points out the superiority of our method in
most cases. In terms of the Area Under the ROC Curve, we achieve the best results
on four data sets used by online iForest-based competitors. On the multi-disciplinary
ODDS, PCB-iForest clearly outperforms 9 competitors in approximately 50% of the data
sets while achieving comparable results of 80% with respect to the 𝐹1 metric and its
tradeoff with the average runtime. Utilizing the four most efficient competitors and our
PCB-iForest variants on four security-related UNSW-NB15 data sets again proves the su-
periority of our approach by achieving the highest 𝐹1 excluding the poor performance of
all classifiers on one data set while still being comparable to the extremely fast processing
Loda algorithm.

RQ 3: How can the output of online outlier detection mechanisms be exploited to char-
acterize and compare novel attack patterns?
RC 3: Exploiting the Outcome of Outlier Detection for Novel Attack Pattern Recognition
on Streaming Data.

With the advent of anomaly-based IDS to detect malicious activity in streaming network
data, especially online-capable unsupervised OD algorithms, novel techniques for AC
methods are increasingly needed. Those must be capable of mining information from the

188

outcome of OD algorithms without knowledge information such as the intrusion type,
which is typically provided by misuse-based IDS. Alerts are continuously generated from
the high-volume, high-speed and high-dimensional streaming data in the form of an alert
stream, which might be afflicted by a high amount of False Positive (FP) and False
Negative (FN) detections. Human experts can no longer be expected to handle this
massive amount of alerts and certain types of attacks are likely to be overlooked.

Thus, a novel framework called SOAAPR has been introduced that is able to deal with
outcomes from online OD algorithms in multiple configuration settings to improve the
input quality for the streaming alert correlation/clustering module in terms of reducing
FPs and mitigating FNs. For this, alerts are equipped, apart from the typical intrinsic
attributes such as IP, port or timestamp information, with feature importance scores and
the respective outlier scores. The core component of SOAAPR clusters the streaming
alerts according to their attributes’ similarity. The resulting clusters can evolve over time
and, if not discarded in the case of irrelevant clusters, can be saturated, meaning that
these clusters potentially capture attack scenarios. In order to ensure a short response
time for security analysts, the alarms of those clusters are promptly fed into a consecu-
tive module that generates three types of signatures, denoted 𝑠𝑖𝑔𝑐𝑜𝑚, 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝.
These fingerprint-like characteristics represent the attack scenarios in terms of the attack’s
communication behavior, their cause in the data’s features and the temporal sequence of
associated alerts. The signatures can then be used to find similarities between attack
scenarios or look for similar signatures that can be collected in a knowledge base or, e.g.,
shared with other companies or institutes.

The evaluation leveraging of the widely-known CICIDS2017 and CSE-CIC-IDS2018
datasets is split into two parts. First, the streaming clustering module of SOAAPR is
compared against a graph-based competitor, the alert clustering component of GAC [337].
We rely on four different metrics, the completeness, the soundness, the Jaccard index and
the elapsed time for alert processing the data sets as a representative for computational
performance. Since GAC’s complexity increases with the graph size, chunk processing
with 5,000 alerts had to be applied. SOAAPR is configured with hyperparameters that
are, for the sake of equal comparison, similar to GAC and are even set to capture attack
scenarios with a low number of associated alerts. Second, the signaturing functionality
of SOAAPR, generating and comparing 𝑠𝑖𝑔𝑐𝑜𝑚, 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝, is the subject of our
experimental investigations. Thus, we investigate the similarity between attack scenarios’
signatures and their average computing time in our experiments.

The discussion of results for alert clustering reveals that SOAAPR reliably clusters
attack scenarios as well as GAC while being significantly more efficient in terms of pro-
cessing time. In the best case SOAAPR clusters DoS-attack scenarios faster by a factor
of 190 compared to GAC. Although it may be that attack scenarios are split into a couple
of clusters, even in the worst case for the web attacks, SOAAPR reduces the associated
2,180 alerts into only 24 clusters, which is a compression factor of magnitude 91. Ad-
justing SOAAPR’s hyperparameters even aids to notably reduce so-called ghost-clusters,
which are mainly caused by FPs. Given the multitude of different attacks and their char-
acteristics, we propose to leverage multiple SOAAPR instances each parameterized with
hyperparameters specifically for each attack type for real-world application. A holistic
evaluation of the effects of FPs and FNs on the clustering result is part of further work.

The discussion of results with respect to SOAAPR’s signaturing reveals that all three
signature types generally can be used to characterize attacks and find similarities be-
tween attack categories. For 𝑠𝑖𝑔𝑐𝑜𝑚, an attack scenario similarity of up to 95.05% could

189

be obtained. However, its processing time shows exponential behavior over the number of
alerts. In order to compute and compare 𝑠𝑖𝑔𝑎𝑡𝑡𝑟, the supervised Random Forests classifier
has been utilized to generate feature importance scores in the operation modes single
system - multiple algorithms, in which multiple classifiers work in parallel to improve
alert quality. While yielding strong similarity between comparable attack scenarios of the
same data set, similarity could even be shown with 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 between similar scenarios of
different data sets by investigating the curves’ curvature depending on the number of the
top-performing features. The results comparing the timing behavior of a total number of
34 attack scenarios, captured with 𝑠𝑖𝑔𝑡𝑒𝑚𝑝, yields a strong similarity especially between
similar attack scenarios from the same data sets. In contrast to 𝑠𝑖𝑔𝑐𝑜𝑚, the processing
time of 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 is significantly faster and shows linear behavior. Overall, some
congruent attack scenarios from different data sets showed weak similarity for 𝑠𝑖𝑔𝑡𝑒𝑚𝑝,
which is mainly reasoned in the poor quality of the available data sets.

RQ 4: How can a cryptographic scheme be leveraged to function as a detection mechanism
and have its feedback be incorporated in improving performance over runtime as part of
response functionality?
RC 4: A Resource-Preserving Self-Regulating Uncoupled MAC Algorithm to be Applied
in Incident Detection.

In this thesis, Uncoupled MAC has been presented as a protection-based security tech-
nique improved and extended to also work as a detection-based method. By the sampling
approach having MAC Phases and Idle Phases, a certain security level can be adjusted
with a balanced overhead on resource consumption and network utilization. The proposed
self-regulation mode examines a specifiable amount of packets in network environments
with security incidents happening over the average runtime. However, the more mali-
cious activities are detected, the more active Uncoupled MAC becomes, thereby showing
behavior of a partially working IDS component that incorporates feedback. Applying self-
regulation, malicious actions can be detected quite fast and reliably compared to classical
Uncoupled MAC.

Securing layer-2 protocols is either complex to implement or popular IDS solutions do
not cover data link layer detection. Having a layer-2 support and the functionality to
work integrated in devices, Uncoupled MAC enables completely new fields of applications
in a holistic approach. As a combination of a protection and detection-based method it
can be applied as retrofitted security add-on in dedicated embedded plug-in devices or as
a software application running transparently in the background of end-devices or network
elements while utilizing tolerable resource consumption over the average runtime.

7.3 Future Work & Research Perspectives

In the final section of this thesis, an overview of possible directions for future research is
provided as our research efforts are far from being accomplished. This overview is split
into four main parts with respect to the four contributions related to UFSSOD, PCB-
iForest, SOAAPR and Uncoupled MAC.

190

1. UFSSOD - Chapter 3

• Future Work 1.1: As assumed, UFSSOD works better if the outliers in the data
set tend to occur in the same features, which is mostly the case, as stated, in the
network security domain. Even passing the stress test on data sets that do not meet
this presumption, as part of future work, UFSSOD will be thoroughly examined on
more domain-specific data sets, e.g., CSE-CIC-IDS2018.

• Future Work 1.2: Since in the current configuration measurements only relied
on the 𝛾𝑚𝑖𝑛 functionality with respect to Algorithm 3, a part of our future work
will be comparing it with the 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 functionality which tends to result in more
features leading to higher computational costs, but might improve the classification
task even further. Additionally, a more thorough testing of the outlier scaling and
its combination across multiple online detection approaches will be performed.

• Future Work 1.3: Inspired by approaches used in CINFO or ODEFS and the
nature of UFSSOD to provide outlier candidates, in future work we will examine
the possibility of applying supervised FS, similarly to sparse Lasso regression in
CINFO, based on pseudo-labels obtained from UFSSOD’s outlier candidates. Thus,
not only will the pure nature of Loda ’s functioning form the basis for FS but it
may also be improved by shrinking the solution, resulting in a number of features
that are not correlated to the outlier score.

• Future Work 1.4: To even more alleviate the circumstance that FS is performed
independently of the subsequent online OD method, possibly yielding a suboptimal
and biased solution for OD, we might also include outlier candidates from the Un-
supervised Online OD module. Instead of performing iterative validations to reduce
loss in an offline setting having all data objects available, we will research possibil-
ities to do so in a slimmed-down online fashion by exploiting the strength of the
theoretically infinite running time of SD.

2. PCB-iForest - Chapter 4

• Future Work 2.1: PCB-iForest’s current implementation faces two limitations
which will be addressed as part of future work taking advantage of the frameworks’
flexible design to incorporate any ensemble-based OD algorithm and to replace the
drift detection method. Thus, firstly, we will focus on the integration of Loda Two Hist.

into PCB-iForest, since (i) its fast-processing runtime and (ii) its classification re-
sults could be further improved by replacing the pair of alternating windows with
our approach. Therefore the set of histograms will only partially be replaced if a
concept drift is detected and not completely be discarded after each window.

• Future Work 2.2: Secondly, drift detection is a crucial component of our approach
since it must reliably detect concept drifts and should not be prone to a high number
of false detections because this will degrade both the classification and computa-
tional performance. Therefore, our future work will (i) focus on the improvement
of NDKSWIN, since it can be prone to the multiple comparisons problem, and (ii)
evaluate the application of other multi-dimensional data-centric algorithms within
PCB-iForest.

• Future Work 2.3: More research will also be part of PCB-iForestIBFS’s feature
scoring functionality, since, even if able to score and rank the best-performing fea-
tures during runtime, determining the “optimum” number of features that should be
used as a feature subset is still an open issue. Although the subsets with 25%-75% of

191

the whole feature set could achieve promising results, it is highly dependent on the
data source and algorithm type. Thus, a method will be developed that determines
the best feature subset based on the analysis of the feature scores. For this, we can
refer to the methods developed in UFSSOD.

3. SOAAPR - Chapter 5

• Future Work 3.1: With respect to 𝑠𝑖𝑔𝑎𝑡𝑡𝑟, up to now, we relied on the supervised
RF - SHapley Additive exPlanations - feature importance scoring functionality for
better result interpretability. However, in future evaluation, we want to replace RF
with an online unsupervised OD algorithm equipped with this functionality, such
as Loda [119] or PCB-iForest [364].

• Future Work 3.2: A more holistic evaluation including more intensive measure-
ments is also part of future work. This will include experiments of the effects of FPs
and FNs on the clustering result and the evaluation of SOAAPR on other data sets
that provide, for instance, better timestamping for 𝑠𝑖𝑔𝑡𝑒𝑚𝑝 evaluation or contains IP
and port information for 𝑠𝑖𝑔𝑐𝑜𝑚 evaluation. We showed that the ambitious aim to
exploit the outcome of OD algorithms in order to generate attack patterns gener-
ally works. Nevertheless, in further work we also want to investigate the impact of
introducing FPs and FNs on signature comparison.

• Future Work 3.3: Since SOAAPR’s streaming clustering is sensitive to the timing
behavior of an attack and its associated alerts, attack scenarios might be split into
multiple tiny clusters if SOAAPR’s hyperparameters are not properly set. Thus, fur-
ther research will be part of investigating the possibility of combining split clusters
if their overall similarity is high, e.g., by measuring the cluster centroids distances
or leveraging the comparison of signatures 𝑠𝑖𝑔𝑐𝑜𝑚, 𝑠𝑖𝑔𝑎𝑡𝑡𝑟 and 𝑠𝑖𝑔𝑡𝑒𝑚𝑝. Split clusters
with highly similar signatures might likely be assigned to the same attack scenario.
Thus, not only may the clustering result be improved but multi-stage attack de-
tection might also be enabled for which SOAAPR initially was not designed. This
would be similar to the Intrusion Session Rebuilding component of IACF [352] or
the Attack Interconnection phase of GAC .

• Future Work 3.4: An intelligent adversary might inject bogus alerts to camouflage
its actual attack by deceiving SOAAPR’s clustering. Further work should, on one
hand, focus on the solutions’ robustness against attacks. On the other hand, in order
to lower the determinism for an attacker to not exploit SOAAPR’s time boundary, a
certain amount of jitter can be introduced, e.g., by leveraging a similar mechanism
as proposed with Uncoupled MAC.

4. Uncoupled MAC - Chapter 6

• Future Work 4.1: The concept of self-regulation used in Uncoupled MAC could
be extended to other IDS systems performing sampling in future research work and
a more intelligent interaction, for instance, by applying alert analysis techniques
should be established, as proposed with SOAAPR. The basis for this is given by
extending Uncoupled MAC with IDMEF and might easily be changed to IDEA,
which is more lightweight.

• Future Work 4.2: An even more intelligent sampling mechanism based on a com-
bination of statistics, local, global and feedback from an IDS cluster, as proposed
in [378], could be added to the self-regulation in order to further improve the inter-
action of detection and protection approaches with resource conservation.

192

• Future Work 4.3: Especially targeted towards future-orientated IoT-enabled ap-
plications, Uncoupled MAC shall be implemented in an even more lightweight
variant applying for instance the lightweight MAC Chaskey [392] or LMAC [393]
for MAC generation and verification together with, e.g., the MQTT protocol for
lightweight Uncoupled MAC partner communication. By using a more lightweight
MAC function, the additional overhead not only from a CPU but also from a mem-
ory point of view can be reduced. From the bandwidth utilization perspective, using
for instance LMAC, can decrease the load by using the 64-bit digest instead of the
256-bit HMAC mainly determining the generation’s message size.

• Future Work 4.4: Since Uncoupled MAC, as a cryptographic scheme by nature, is
only a possibility for incident detection providing basic IDS-functionality, it might
be of interest to compare it with other attack detection mechanisms by examining
the trade-off between detection capability and resource consumption. Part of further
work is therefore to set up an appropriate evaluation environment, e.g., [394, 395],
with, among others, a larger protocol and network data diversity in order to properly
train the models for anomaly-based ML algorithms, for instance Loda or PCB-
iForest, and integrating known attack scenarios such that misuse-based IDS can
also be compared.

In the introduction, the generic framework denoted ANDERS was proposed, which
consists of components that leverage different capabilities in terms of incident detection,
analysis and response. Thus, it may be able to constitute to a promising solution for
an automated incident handling system in a holistic cyber defense life cycle. This thesis
answered four significant research questions with regard to anomaly-based detection, in
particular ML-based OD. We deem that the implementation of fully operational ANDERS
prototypes integrated into a Software-Defined Networking permeated next-generation in-
frastructure, and in consideration of state-of-the-art solutions such as a misuse-based IDS,
is the natural continuation of this research. Although this thesis has contributed to the
enhancement of computer network security through improved OD for data streams, we
end this dissertation by reminding Eugene Howard Spafford’s famous quote.

The only truly secure system is one that is powered off, cast in a block of concrete and
sealed in a lead-lined room with armed guards - and even then I have my doubts.

193

Bibliography

[1] T. R. Vittor, T. Sukumara, S. D. Sudarsan, and J. Starck, “Cyber security - security
strategy for distribution management system and security architecture considera-
tions,” in 2017 70th Annual Conference for Protective Relay Engineers (CPRE),
pp. 1–6, IEEE, 2017.

[2] G. Press, “60 cybersecurity predictions for 2019,” Forbes
https: // www. forbes. com/ sites/ gilpress/ 2018/ 12/ 03/
60-cybersecurity-predictions-for-2019 (online, accessed 22 July 2019),
2018.

[3] Z. Inayat, A. Gani, N. B. Anuar, S. Anwar, and M. K. Khan, “Cloud-based intrusion
detection and response system: Open research issues, and solutions,” Arab. J. Sci.
Eng., vol. 42, no. 2, pp. 399–423, 2017.

[4] S. Anwar, J. Mohamad Zain, M. F. Zolkipli, Z. Inayat, S. Khan, B. Anthony, and
V. Chang, “From intrusion detection to an intrusion response system: Fundamen-
tals, requirements, and future directions,” Algorithms, vol. 10, no. 2, p. 39, 2017.

[5] A. Shameli-Sendi, M. Cheriet, and A. Hamou-Lhadj, “Taxonomy of intrusion risk
assessment and response system,” Comput. Secur., vol. 45, pp. 1–16, 2014.

[6] M. Heigl, L. Doerr, A. Almaini, D. Fiala, and M. Schram, “Incident reaction based
on intrusion detections’ alert analysis,” in 2018 International Conference on Applied
Electronics (AE), pp. 1–6, IEEE, 2018.

[7] P. Nespoli, D. Papamartzivanos, F. Gomez Marmol, and G. Kambourakis, “Opti-
mal countermeasures selection against cyber attacks: A comprehensive survey on
reaction frameworks,” IEEE Commun. Surv. Tutor., vol. 20, no. 2, pp. 1361–1396,
2018.

[8] I. Studnia, E. Alata, V. Nicomette, M. Kaâniche, and Y. Laarouchi, “A language-
based intrusion detection approach for automotive embedded networks,” Int. J.
Embed. Syst., vol. 10, pp. 1–12, 2018.

[9] B. Arrington, L. Barnett, R. Rufus, and A. Esterline, “Behavioral modeling intrusion
detection system (bmids) using internet of things (iot) behavior-based anomaly
detection via immunity-inspired algorithms,” in 2016 25th International Conference
on Computer Communication and Networks (ICCCN), pp. 1–6, 2016.

[10] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,”
CoRR, vol. abs/1901.03407, 2019.

[11] A. Drewek-Ossowicka, M. Pietrołaj, and J. Rumiński, “A survey of neural net-
works usage for intrusion detection systems,” J. Ambient Intell. Humaniz. Comput.,
vol. 12, no. 1, pp. 497–514, 2021.

[12] H. Liu and B. Lang, “Machine learning and deep learning methods for intrusion
detection systems: A survey,” Appl. Sci. (Basel), vol. 9, no. 20, p. 4396, 2019.

[13] A. Pektaş and T. Acarman, “Deep learning to detect botnet via network flow sum-
maries,” Neural Comput. Appl., vol. 31, no. 11, pp. 8021–8033, 2019.

194

https://www.forbes.com/sites/gilpress/2018/12/03/60-cybersecurity-predictions-for-2019
https://www.forbes.com/sites/gilpress/2018/12/03/60-cybersecurity-predictions-for-2019

[14] S. Potluri and C. Diedrich, “Accelerated deep neural networks for enhanced intru-
sion detection system,” in 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), pp. 1–8, IEEE, 2016.

[15] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu, “HAST-
IDS: Learning hierarchical spatial-temporal features using deep neural networks to
improve intrusion detection,” IEEE Access, vol. 6, pp. 1792–1806, 2018.

[16] E. Min, J. Long, Q. Liu, J. Cui, and W. Chen, “TR-IDS: Anomaly-based intrusion
detection through text-convolutional neural network and random forest,” Secur.
Commun. Netw., vol. 2018, pp. 1–9, 2018.

[17] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predic-
tions,” in Proceedings of the 31st International Conference on Neural Information
Processing Systems, (Red Hook, NY, USA), pp. 4768–4777, Curran Associates Inc.,
2017.

[18] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?: Explaining
the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining - KDD ’16, (New
York, New York, USA), ACM Press, 2016.

[19] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach to network
intrusion detection,” IEEE trans. emerg. top. comput. intell., vol. 2, no. 1, pp. 41–50,
2018.

[20] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang, “Ma-
chine learning and deep learning methods for cybersecurity,” IEEE Access, vol. 6,
pp. 35365–35381, 2018.

[21] I. M. Coelho, V. N. Coelho, E. J. d. S. Luz, L. S. Ochi, F. G. Guimarães, and E. Rios,
“A GPU deep learning metaheuristic based model for time series forecasting,” Appl.
Energy, vol. 201, pp. 412–418, 2017.

[22] B. Subba, S. Biswas, and S. Karmakar, “A neural network based system for intrusion
detection and attack classification,” in 2016 Twenty Second National Conference on
Communication (NCC), pp. 1–6, IEEE, 2016.

[23] K. Zhang, F. Zhao, S. Luo, Y. Xin, H. Zhu, and Y. Chen, “Online intrusion scenario
discovery and prediction based on hierarchical temporal memory (HTM),” Appl.
Sci. (Basel), vol. 10, no. 7, p. 2596, 2020.

[24] H. Zhang, K. Nian, T. F. Coleman, and Y. Li, “Spectral ranking and unsupervised
feature selection for point, collective, and contextual anomaly detection,” Int. J.
Data Sci. Anal., vol. 9, no. 1, pp. 57–75, 2020.

[25] C. Mironeanu, A. Archip, C.-M. Amarandei, and M. Craus, “Experimental cyber
attack detection framework,” Electronics (Basel), vol. 10, no. 14, p. 1682, 2021.

[26] H. Hindy, D. Brosset, E. Bayne, A. K. Seeam, C. Tachtatzis, R. Atkinson, and
X. Bellekens, “A taxonomy of network threats and the effect of current datasets on
intrusion detection systems,” IEEE Access, vol. 8, pp. 104650–104675, 2020.

[27] A. Sadighian, “Intrusion detection from heterogenous sensors,” Ph.D. thesis, Poly-
technique Montreal, 2015.

[28] A. A. Ramaki, A. Rasoolzadegan, and A. G. Bafghi, “A systematic mapping study
on intrusion alert analysis in intrusion detection systems,” ACM Comput. Surv.,
vol. 51, no. 3, pp. 1–41, 2018.

195

[29] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, Network traffic anomaly
detection and prevention: Concepts, techniques, and tools. Cham, Switzerland:
Springer International Publishing, 1 ed., 2017.

[30] A. Mahfouz, A. Abuhussein, D. Venugopal, and S. Shiva, “Ensemble classifiers for
network intrusion detection using a novel network attack dataset,” Future internet,
vol. 12, no. 11, p. 180, 2020.

[31] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time anomaly
detection for streaming data,” Neurocomputing, vol. 262, pp. 134–147, 2017.

[32] N. Reunanen, T. Räty, J. J. Jokinen, T. Hoyt, and D. Culler, “Unsupervised online
detection and prediction of outliers in streams of sensor data,” Int. J. Data Sci.
Anal., vol. 9, no. 3, pp. 285–314, 2020.

[33] J. Ma, Z.-T. Li, and W.-M. Li, “Real-time alert stream clustering and correlation
for discovering attack strategies,” in 2008 Fifth International Conference on Fuzzy
Systems and Knowledge Discovery, pp. 379–384, IEEE, 2008.

[34] M. U. Togbe, M. Barry, A. Boly, Y. Chabchoub, R. Chiky, J. Montiel, and V.-T.
Tran, “Anomaly detection for data streams based on isolation forest using scikit-
multiflow,” in Computational Science and Its Applications – ICCSA 2020, pp. 15–30,
Cham: Springer International Publishing, 2020.

[35] I. Kovačević, S. Groš, and K. Slovenec, “Systematic review and quantitative compar-
ison of cyberattack scenario detection and projection,” Electronics (Basel), vol. 9,
no. 10, p. 1722, 2020.

[36] ISO/IEC 27000:2018, “Information technology – security techniques – information
security management systems – overview and vocabulary,” International Organi-
zation for Standardization, https: // www. iso. org/ standard/ 73906. html (on-
line, accessed 15 June 2019), 2018.

[37] A. F. Murillo Piedrahita, V. Gaur, J. Giraldo, A. A. Cardenas, and S. J. Rueda,
“Leveraging software-defined networking for incident response in industrial control
systems,” IEEE Softw., vol. 35, no. 1, pp. 44–50, 2018.

[38] M. Doering and M. Wagner, “Retrofitting SDN to classical in-vehicle net-
works: SDN4CAN,” Universität Tübingen, http: // hdl. handle. net/ 10900/
78141 , 2017.

[39] K. Halba and C. Mahmoudi, “In-vehicle software defined networking: An enabler
for data interoperability,” in Proceedings of the 2nd International Conference on
Information System and Data Mining, (New York, NY, USA), ACM, 2018.

[40] Z. Khan, M. Chowdhury, M. Islam, C. Huang, and M. Rahman, “In-vehicle false
information attack detection and mitigation framework using machine learning and
software defined networking,” CoRR, vol. abs/1906.10203, 2019.

[41] A. Alioua, S.-M. Senouci, and S. Moussaoui, “DSDiVN: A distributed software-
defined networking architecture for infrastructure-less vehicular networks,” in Inno-
vations for Community Services, pp. 56–67, Cham: Springer International Publish-
ing, 2017.

[42] C. Jiacheng, Z. Haibo, Z. Ning, Y. Peng, G. Lin, and S. Xuemin, “Software defined
internet of vehicles: architecture, challenges and solutions,” J. Commun. Inf. Netw.,
vol. 1, no. 1, pp. 14–26, 2016.

196

https://www.iso.org/standard/73906.html
http://hdl.handle.net/10900/78141
http://hdl.handle.net/10900/78141

[43] W. B. Jaballah, M. Conti, and C. Lal, “A survey on software-defined vanets: Bene-
fits, challenges, and future directions,” CoRR, vol. abs/1904.04577, 2019.

[44] A. Mahmood, W. Zhang, and Q. Sheng, “Software-defined heterogeneous vehicular
networking: The architectural design and open challenges,” Future internet, vol. 11,
no. 3, p. 70, 2019.

[45] T. Häckel, P. Meyer, F. Korf, and T. C. Schmidt, “Software-defined networks sup-
porting time-sensitive in-vehicular communication,” in 89th IEEE Vehicular Tech-
nology Conference, VTC Spring 2019, Kuala Lumpur, Malaysia, April 28 - May 1,
2019, pp. 1–5, IEEE, 2019.

[46] M. O. Kalinin, V. M. Krundyshev, and P. V. Semianov, “Architectures for building
secure vehicular networks based on SDN technology,” Autom. Contr. Comput. Sci.,
vol. 51, no. 8, pp. 907–914, 2017.

[47] R. Shrestha, R. Bajracharya, and S. Y. Nam, “Challenges of future VANET and
cloud-based approaches,” Wirel. Commun. Mob. Comput., vol. 2018, pp. 1–15, 2018.

[48] A. A. Khan, M. Abolhasan, and W. Ni, “5G next generation VANETs using SDN and
fog computing framework,” in 2018 15th IEEE Annual Consumer Communications
& Networking Conference (CCNC), pp. 1–6, IEEE, 2018.

[49] A. Tsuchiya, F. Fraile, I. Koshijima, A. Ortiz, and R. Poler, “Software defined
networking firewall for industry 4.0 manufacturing systems,” J. Ind. Eng. Manag.,
vol. 11, no. 2, p. 318, 2018.

[50] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. Goren, and C. Mahmoudi,
“Fog computing conceptual model,” tech. rep., National Institute of Standards and
Technology, Gaithersburg, MD, 2018.

[51] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth IEEE
International Conference on Data Mining, pp. 413–422, IEEE, 2008.

[52] M. U. Togbe, Y. Chabchoub, A. Boly, M. Barry, R. Chiky, and M. Bahri, “Anomalies
detection using isolation in concept-drifting data streams,” Computers, vol. 10, no. 1,
p. 13, 2021.

[53] CESNET, “IDEA - Intrusion Detection Extensible Alert,” https: // idea. cesnet.
cz/ en/ index (online, accessed 22 July 2019), 2017.

[54] S. Haas, F. Wilkens, and M. Fischer, “Efficient attack correlation and identification
of attack scenarios based on network-motifs,” in 2019 IEEE 38th International Per-
formance Computing and Communications Conference (IPCCC), pp. 1–11, IEEE,
2019.

[55] S. C. Sundaramurthy, L. Zomlot, and X. Ou, “Practical ids alert correlation in the
face of dynamic threats,” in Proceedings of the International Conference on Security
and Management (SAM), p. 1, Citeseer, 2011.

[56] M. Heigl, M. Schramm, and D. Fiala, “A lightweight quantum-safe security concept
for wireless sensor network communication,” in 2019 IEEE International Conference
on Pervasive Computing and Communications Workshops (PerCom Workshops),
pp. 906–911, IEEE, 2019.

[57] E. Çayirci and C. Rong, Security in wireless ad hoc and sensor networks. Chichester,
UK: John Wiley & Sons, Ltd, 2009.

197

https://idea.cesnet.cz/en/index
https://idea.cesnet.cz/en/index

[58] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and D. Wolber, “A
network security monitor,” in Proceedings. 1990 IEEE Computer Society Symposium
on Research in Security and Privacy, pp. 296–304, IEEE, 1990.

[59] F. Sabahi and A. Movaghar, “Intrusion detection: A survey,” in 2008 Third Inter-
national Conference on Systems and Networks Communications, pp. 23–26, IEEE,
2008.

[60] K. A. Al-Utaibi and E.-S. M. El-Alfy, “Intrusion detection taxonomy and data pre-
processing mechanisms,” J. Intell. Fuzzy Syst., vol. 34, no. 3, pp. 1369–1383, 2018.

[61] M. Bijone, “A survey on secure network: Intrusion detection & prevention ap-
proaches,” Am. J. Inf. Syst., vol. 4, no. 3, pp. 69–88, 2016.

[62] E. Hodo, X. J. A. Bellekens, A. W. Hamilton, C. Tachtatzis, and R. C. Atkinson,
“Shallow and deep networks intrusion detection system: A taxonomy and survey,”
CoRR, vol. abs/1701.02145, 2017.

[63] K. Khan, A. Mehmood, S. Khan, M. A. Khan, Z. Iqbal, and W. K. Mashwani, “A
survey on intrusion detection and prevention in wireless ad-hoc networks,” J. Syst.
Arch., vol. 105, no. 101701, p. 101701, 2020.

[64] A. N. Jaber, M. F. Zolkipli, H. A. Shakir, and M. R. Jassim, “Host based intrusion
detection and prevention model against DDoS attack in cloud computing,” in Ad-
vances on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 241–252, Cham:
Springer International Publishing, 2018.

[65] D. Fallstrand and V. Lindstroem, “Applicability analysis of intrusion detection and
prevention in automotive systems,” Master’s thesis, Computer Systems and Net-
works, Chalmers University of Technology Goteborg, 2015.

[66] Z. Inayat, A. Gani, N. B. Anuar, M. K. Khan, and S. Anwar, “Intrusion response
systems: Foundations, design, and challenges,” J. Netw. Comput. Appl., vol. 62,
pp. 53–74, 2016.

[67] M.-Y. Su, “Using clustering to improve the KNN-based classifiers for online anomaly
network traffic identification,” J. Netw. Comput. Appl., vol. 34, no. 2, pp. 722–730,
2011.

[68] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A survey of
intrusion detection in internet of things,” J. Netw. Comput. Appl., vol. 84, pp. 25–37,
2017.

[69] R. A. R. Ashfaq, X.-Z. Wang, J. Z. Huang, H. Abbas, and Y.-L. He, “Fuzziness
based semi-supervised learning approach for intrusion detection system,” Inf. Sci.
(Ny), vol. 378, pp. 484–497, 2017.

[70] A. Taylor, “Anomaly-based detection of malicious activity in in-vehicle networks,”
Ph.D. thesis, University of Ottawa, 2017.

[71] I. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion detection systems in
wireless sensor networks,” IEEE Commun. Surv. Tutor., vol. 16, no. 1, pp. 266–282,
2014.

[72] A. M. Ahmed, “Online network intrusion detection system using temporal logic and
stream data processing,” Ph.D. thesis, University of Liverpool, 2013.

[73] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser, and M. Fischer, “Taxonomy
and survey of collaborative intrusion detection,” ACM Comput. Surv., vol. 47, no. 4,
pp. 1–33, 2015.

198

[74] Z. Zhang, J. Li, C. Manikopoulos, J. Jorgenson, and J. Ucles, “HIDE: a hierarchi-
cal network intrusion detection system using statistical preprocessing and neural
network classification,” In Proc. IEEE Workshop on Information Assurance and
Security, pp. 85–90, 2001.

[75] M. Jahnke, “An open and secure infrastructure for distributed intrusion detection
sensors,” In Proceedings of the NATO Regional Conference on Communication and
Information Systems (RCMCIS’02), Zegrze, Poland, 2002.

[76] H. Debar, D. Curry, and B. Feinstein, “The intrusion detection message exchange
format (idmef),” RFC 4765, RFC Editor, March 2007. http://www.rfc-editor.
org/rfc/rfc4765.txt.

[77] R. Lupu, R. Badea, and I. C. Mihai, “Agent-based IDMEF alerting infrastructure for
distributed intrusion detection and prevention systems: Design and validation,” in
2016 International Conference on Communications (COMM), pp. 281–284, IEEE,
2016.

[78] W. Hu, J. Gao, Y. Wang, O. Wu, and S. Maybank, “Online adaboost-based pa-
rameterized methods for dynamic distributed network intrusion detection,” IEEE
Trans. Cybern., vol. 44, no. 1, pp. 66–82, 2014.

[79] I. H. Sarker, A. S. M. Kayes, S. Badsha, H. Alqahtani, P. Watters, and A. Ng,
“Cybersecurity data science: an overview from machine learning perspective,” J.
Big Data, vol. 7, no. 41, 2020.

[80] F. Iglesias and T. Zseby, “Analysis of network traffic features for anomaly detection,”
Mach. Learn., vol. 101, no. 1-3, pp. 59–84, 2015.

[81] W. Khreich, E. Granger, A. Miri, and R. Sabourin, “Adaptive ROC-based ensembles
of HMMs applied to anomaly detection,” Pattern Recognit., vol. 45, no. 1, pp. 208–
230, 2012.

[82] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised network intrusion detection
systems: Detecting the unknown without knowledge,” Comput. Commun., vol. 35,
no. 7, pp. 772–783, 2012.

[83] J. Zhang, C. Chen, Y. Xiang, and W. Zhou, “Semi-supervised and compound clas-
sification of network traffic,” Int. J. Secur. Netw., vol. 7, no. 4, p. 252, 2012.

[84] J. Zhang and M. Zulkernine, “A hybrid network intrusion detection technique using
random forests,” in First International Conference on Availability, Reliability and
Security (ARES’06), pp. 8 pp.–269, IEEE, 2006.

[85] K. Kuźniar and M. Zaja̧c, “Some methods of pre-processing input data for neural
networks,” Computer Assisted Methods in Engineering and Science, vol. 22, pp. 141–
151, 2015.

[86] S. Ramírez-Gallego, B. Krawczyk, S. García, M. Woźniak, and F. Herrera, “A survey
on data preprocessing for data stream mining: Current status and future directions,”
Neurocomputing, vol. 239, pp. 39–57, 2017.

[87] M.-A. Zöller and M. F. Huber, “Benchmark and survey of automated machine learn-
ing frameworks,” J. Artif. Intell. Res., vol. 70, pp. 409–472, 2021.

[88] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka: Combined
selection and hyperparameter optimization of classification algorithms,” in Proceed-
ings of the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’13, (New York, NY, USA), p. 847–855, Association for
Computing Machinery, 2013.

199

http://www.rfc-editor.org/rfc/rfc4765.txt
http://www.rfc-editor.org/rfc/rfc4765.txt

[89] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the
KDD CUP 99 data set,” in 2009 IEEE Symposium on Computational Intelligence
for Security and Defense Applications, pp. 1–6, IEEE, 2009.

[90] A. Thomas, V. Feuillard, A. Gramfort, and S. Clémençon, “Learning hyperparame-
ters for unsupervised anomaly detection,” in ICML 2016 Anomaly Detection Work-
shop, 2016.

[91] J. Singh Malik, P. Goyal, and M. K. Sharma, “A comprehensive approach towards
data preprocessing techniques, & association rules,” Proceedings of the 4th National
Conference INDIACom, pp. 12–21, 2010.

[92] D. Tomar and S. Agarwal, “A survey on pre-processing and post-processing tech-
niques in data mining,” Int. j. database theory appl., vol. 7, no. 4, pp. 99–128, 2014.

[93] B. KumarSingh, K. Verma, and A. S. Thoke, “Investigations on impact of feature
normalization techniques on classifier’s performance in breast tumor classification,”
Int. J. Comput. Appl., vol. 116, no. 19, pp. 11–15, 2015.

[94] H. Xie, J. Li, and H. Xue, “A survey of dimensionality reduction techniques based
on random projection,” CoRR, vol. abs/1706.04371, 2017.

[95] N. Lim and R. J. Durrant, “Linear dimensionality reduction in linear time: Johnson-
lindenstrauss-type guarantees for random subspace,” arXiv: Machine Learning,
2017.

[96] S. M. Ghaffarian and H. R. Shahriari, “Software vulnerability analysis and discov-
ery using machine-learning and data-mining techniques: A survey,” ACM Comput.
Surv., vol. 50, no. 4, pp. 1–36, 2017.

[97] M. E. Aminanto, R. Choi, H. C. Tanuwidjaja, P. D. Yoo, and K. Kim, “Deep
abstraction and weighted feature selection for WI-fi impersonation detection,” IEEE
trans. inf. forensics secur., vol. 13, no. 3, pp. 621–636, 2018.

[98] P. Moradi and M. Gholampour, “A hybrid particle swarm optimization for feature
subset selection by integrating a novel local search strategy,” Appl. Soft Comput.,
vol. 43, pp. 117–130, 2016.

[99] H. T. Nguyen, S. Petrović, and K. Franke, “A comparison of feature-selection meth-
ods for intrusion detection,” in Lecture Notes in Computer Science, pp. 242–255,
Springer Berlin Heidelberg, 2010.

[100] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu, “Feature
selection: A data perspective,” ACM Comput. Surv., vol. 50, no. 6, pp. 1–45, 2018.

[101] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,” in Proceedings
of the 18th International Conference on Neural Information Processing Systems,
(Cambridge, MA, USA), pp. 507–514, MIT Press, 2005.

[102] R. Wieland, A. Kerkow, L. Früh, H. Kampen, and D. Walther, “Automated feature
selection for a machine learning approach toward modeling a mosquito distribution,”
Ecol. Modell., vol. 352, pp. 108–112, 2017.

[103] M. Luo, F. Nie, X. Chang, Y. Yang, A. G. Hauptmann, and Q. Zheng, “Adaptive
unsupervised feature selection with structure regularization,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 4, pp. 944–956, 2018.

[104] S. Aljawarneh, M. Aldwairi, and M. B. Yassein, “Anomaly-based intrusion detection
system through feature selection analysis and building hybrid efficient model,” J.
Comput. Sci., vol. 25, pp. 152–160, 2018.

200

[105] O. Maimon and L. Rokach, eds., Data mining and knowledge discovery handbook.
Boston, MA: Springer US, 2010.

[106] D. M. Hawkins, Identification of Outliers. Dordrecht: Springer Netherlands, 1980.
[107] R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis.

Philadelphia, PA: Pearson Education, 3 ed., 1992.
[108] V. Barnett and T. Lewis, Outliers in Statistical Data. Chichester, England: John

Wiley & Sons, 3 ed., 1994.
[109] G. Pang, L. Cao, L. Chen, and H. Liu, “Unsupervised feature selection for outlier

detection by modelling hierarchical value-feature couplings,” in 2016 IEEE 16th
International Conference on Data Mining (ICDM), pp. 410–419, IEEE, 2016.

[110] P. Thakkar, J. Vala, and V. Prajapati, “Survey on outlier detection in data stream,”
International Journal of Computer Applications, vol. 136, no. 2, pp. 13–16, 2016.

[111] A. Muallem, S. Shetty, J. W. Pan, J. Zhao, and B. Biswal, “Hoeffding tree algorithms
for anomaly detection in streaming datasets: A survey,” J. Inf. Secur., vol. 08,
no. 04, pp. 339–361, 2017.

[112] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof, “On-line random
forests,” in 2009 IEEE 12th International Conference on Computer Vision Work-
shops, ICCV Workshops, pp. 1393–1400, IEEE, 2009.

[113] L. Liu, M. Hu, C. Kang, and X. Li, “Unsupervised anomaly detection for network
data streams in industrial control systems,” Information (Basel), vol. 11, no. 2,
p. 105, 2020.

[114] H. Yao, X. Fu, Y. Yang, and O. Postolache, “An incremental local outlier detection
method in the data stream,” Appl. Sci. (Basel), vol. 8, no. 8, p. 1248, 2018.

[115] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An ensemble of
autoencoders for online network intrusion detection,” CoRR, vol. abs/1802.09089,
2018.

[116] K. Yu, W. Shi, and N. Santoro, “Designing a streaming algorithm for outlier de-
tection in data mining-an incrementa approach,” Sensors (Basel), vol. 20, no. 5,
p. 1261, 2020.

[117] S. C. Tan, K. M. Ting, and T. F. Liu, “Fast anomaly detection for streaming data,”
in Proceedings of the Twenty-Second international joint conference on Artificial In-
telligence - Volume Volume Two, pp. 1511–1516, AAAI Press, 2011.

[118] S. Sathe and C. C. Aggarwal, “Subspace outlier detection in linear time with ran-
domized hashing,” in 2016 IEEE 16th International Conference on Data Mining
(ICDM), pp. 459–468, IEEE, 2016.

[119] T. Pevný, “Loda: Lightweight on-line detector of anomalies,” Mach. Learn., vol. 102,
no. 2, pp. 275–304, 2016.

[120] E. Manzoor, H. Lamba, and L. Akoglu, “XStream: Outlier detection in feature-
evolving data streams,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, (New York, NY, USA), ACM,
2018.

[121] C. C. Aggarwal and S. Sathe, “Theoretical foundations and algorithms for outlier
ensembles,” SIGKDD Explor., vol. 17, no. 1, pp. 24–47, 2015.

201

[122] Z. Ding and M. Fei, “An anomaly detection approach based on isolation forest
algorithm for streaming data using sliding window,” IFAC proc. vol., vol. 46, no. 20,
pp. 12–17, 2013.

[123] H. Sun, Q. He, K. Liao, T. Sellis, L. Guo, X. Zhang, J. Shen, and F. Chen, “Fast
anomaly detection in multiple multi-dimensional data streams,” in 2019 IEEE In-
ternational Conference on Big Data (Big Data), pp. 1218–1223, IEEE, 2019.

[124] H. Ma, B. Ghojogh, M. N. Samad, D. Zheng, and M. Crowley, “Isolation mon-
drian forest for batch and online anomaly detection,” in 2020 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 3051–3058, IEEE, 2020.

[125] B. Pfahringer, G. Holmes, and R. Kirkby, “New options for hoeffding trees,” in AI
2007: Advances in Artificial Intelligence, pp. 90–99, Springer Berlin Heidelberg,
2007.

[126] L. Sun, S. Versteeg, S. Boztas, and A. Rao, “Detecting anomalous user behavior us-
ing an extended isolation forest algorithm: An enterprise case study,” arXiv preprint
arXiv:1609.06676, vol. abs/1609.06676, 2016.

[127] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.
[128] P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projections,” in Proceed-

ings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining - KDD ’06, (New York, New York, USA), ACM Press, 2006.

[129] G. Wang, J. Hao, J. Ma, and H. Jiang, “A comparative assessment of ensemble
learning for credit scoring,” Expert Syst. Appl., vol. 38, no. 1, pp. 223–230, 2011.

[130] B. D, A. Chakrabarti, and D. Midhunchakkaravarthy, “Smart devices threats, vul-
nerabilities and malware detection approaches: A survey,” Eur. j. eng. res. sci.,
vol. 3, no. 2, p. 7, 2018.

[131] P. Amudha, S. Karthik, and S. Sivakumari, “Classification techniques for intrusion
detection - an overview,” International Journal of Computer Applications, vol. 76,
no. 16, pp. 33–40, 2013.

[132] W. Hu, W. Hu, and S. Maybank, “AdaBoost-based algorithm for network intrusion
detection,” IEEE Trans. Syst. Man Cybern. B Cybern., vol. 38, no. 2, pp. 577–583,
2008.

[133] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining classifiers,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp. 226–239, 1998.

[134] B. Parhami, “Voting algorithms,” IEEE trans. reliab., vol. 43, no. 4, pp. 617–629,
1994.

[135] V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,” Artif.
Intell. Rev., vol. 22, no. 2, pp. 85–126, 2004.

[136] J. Gao, W. Fan, D. Turaga, O. Verscheure, X. Meng, L. Su, and J. Han, “Consensus
extraction from heterogeneous detectors to improve performance over network traffic
anomaly detection,” in 2011 Proceedings IEEE INFOCOM, pp. 181–185, IEEE,
2011.

[137] Y.-D. Lin, Y.-C. Lai, C.-Y. Ho, and W.-H. Tai, “Creditability-based weighted voting
for reducing false positives and negatives in intrusion detection,” Comput. Secur.,
vol. 39, pp. 460–474, 2013.

202

[138] G. Giacinto, F. Roli, and L. Didaci, “Fusion of multiple classifiers for intrusion
detection in computer networks,” Pattern Recognit. Lett., vol. 24, no. 12, pp. 1795–
1803, 2003.

[139] A. A. Aburomman and M. B. I. Reaz, “A survey of intrusion detection systems
based on ensemble and hybrid classifiers,” Comput. Secur., vol. 65, pp. 135–152,
2017.

[140] F. Cheng and X. Qiu, “Network anomaly detection based on frequent sub-graph
mining approach and association analysis,” in 2016 IEEE International Conference
on Network Infrastructure and Digital Content (IC-NIDC), pp. 12–16, IEEE, 2016.

[141] Y. Liu, H. Xu, H. Yi, Z. Lin, J. Kang, W. Xia, Q. Shi, Y. Liao, and Y. Ying, “Network
anomaly detection based on dynamic hierarchical clustering of cross domain data,”
in 2017 IEEE International Conference on Software Quality, Reliability and Security
Companion (QRS-C), pp. 200–204, IEEE, 2017.

[142] X. Zhao, G. Wang, and Z. Li, “Unsupervised network anomaly detection based on
abnormality weights and subspace clustering,” in 2016 Sixth International Confer-
ence on Information Science and Technology (ICIST), pp. 482–486, IEEE, 2016.

[143] Y. Maleh, A. Ezzati, Y. Qasmaoui, and M. Mbida, “A global hybrid intrusion detec-
tion system for wireless sensor networks,” Procedia Comput. Sci., vol. 52, pp. 1047–
1052, 2015.

[144] M. Yassine and A. Ezzati, “Lightweight intrusion detection scheme for wireless sensor
networks,” IAENG International Journal of Computer Science, vol. 42, pp. 347–354,
2015.

[145] C. Guo, Y. Ping, N. Liu, and S.-S. Luo, “A two-level hybrid approach for intrusion
detection,” Neurocomputing, vol. 214, pp. 391–400, 2016.

[146] M. Weber, S. Klug, E. Sax, and B. Zimmer, “Embedded hybrid anomaly detection
for automotive CAN communication,” in 9th European Congress on Embedded Real
Time Software and Systems (ERTS 2018), 2018.

[147] L. A. Maglaras, J. Jiang, and T. J. Cruz, “Combining ensemble methods and so-
cial network metrics for improving accuracy of OCSVM on intrusion detection in
SCADA systems,” J. Inf. Secur. Appl., vol. 30, pp. 15–26, 2016.

[148] G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skorić, “Measuring intrusion detection
capability: An information-theoretic approach,” in Proceedings of the 2006 ACM
Symposium on Information, computer and communications security - ASIACCS
’06, (New York, New York, USA), ACM Press, 2006.

[149] T. Holz, “Security measurements and metrics for networks,” in Dependability Met-
rics, pp. 157–165, Springer Berlin Heidelberg, 2008.

[150] D. Ashok Kumar and S. R. Venugopalan, “A novel algorithm for network anomaly
detection using adaptive machine learning,” in Advances in Intelligent Systems and
Computing, pp. 59–69, Singapore: Springer Singapore, 2018.

[151] S. Ossenbuhl, J. Steinberger, and H. Baier, “Towards automated incident handling:
How to select an appropriate response against a network-based attack?,” in 2015
Ninth International Conference on IT Security Incident Management & IT Foren-
sics, pp. 51–67, IEEE, 2015.

203

[152] N. S. Arunraj, R. Hable, M. Fernandes, K. Leidl, and M. Heigl, “Comparison of
Supervised, Semi-supervised and Unsupervised Learning Methods in Network In-
trusion Detection System (NIDS) Application,” Anwendungen und Konzepte der
Wirtschaftsinformatik (AKWI), vol. 6, pp. 10–19, 2017.

[153] G. Suarez-Tangil, E. Palomar, J. M. de Fuentes, J. Blasco, and A. Ribagorda, “Au-
tomatic rule generation based on genetic programming for event correlation,” in
Advances in Intelligent and Soft Computing, pp. 127–134, Springer Berlin Heidel-
berg, 2009.

[154] K.-T. Cho and K. G. Shin, “Fingerprinting electronic control units for vehicle intru-
sion detection,” in Proceedings of the 25th USENIX Conference on Security Sympo-
sium, (USA), pp. 911–927, USENIX Association, 2016.

[155] J. Steinberger, A. Sperotto, M. Golling, and H. Baier, “How to exchange security
events? overview and evaluation of formats and protocols,” in 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM), pp. 261–269,
IEEE, 2015.

[156] M. Kerrisk, “The linux programming interface,” Muenchen: No StarchPress, 2010.
[157] J. Postel, “Internet protocol,” STD 5, RFC Editor, September 1981. http://www.

rfc-editor.org/rfc/rfc791.txt.
[158] R. Koch, M. Golling, and G. Dreo, “Evaluation of state of the art ids message

exchange protocols,” International Journal of Computer and Systems Engineering,
vol. 7, pp. 1017–1026, 2013.

[159] CESNET, “Warden - a system for efficient sharing information about detected
events (threats),” https: // warden. cesnet. cz/ en/ index (online, accessed 22
July 2019), 2017.

[160] MISP-Project, “MISP - Malware Information Sharing Platform,” https: // www.
misp-project. org/ (online, accessed 05 September 2021), 2021.

[161] A. AlEroud and G. Karabatis, “Beyond data: Contextual information fusion for
cyber security analytics,” in Proceedings of the 31st Annual ACM Symposium on
Applied Computing, (New York, NY, USA), ACM, 2016.

[162] J. Haines, D. Kewley Ryder, L. Tinnel, and S. Taylor, “Validation of sensor alert
correlators,” IEEE Secur. Priv., vol. 1, no. 1, pp. 46–56, 2003.

[163] G. Gu, A. A. Cárdenas, and W. Lee, “Principled reasoning and practical applications
of alert fusion in intrusion detection systems,” in Proceedings of the 2008 ACM
symposium on Information, computer and communications security - ASIACCS ’08,
(New York, New York, USA), ACM Press, 2008.

[164] W. Meng, Y. Wang, W. Li, Z. Liu, J. Li, and C. W. Probst, “Enhancing intelligent
alarm reduction for distributed intrusion detection systems via edge computing,”
in Information Security and Privacy, pp. 759–767, Cham: Springer International
Publishing, 2018.

[165] S. Salah, G. Maciá-Fernández, and J. E. Díaz-Verdejo, “A model-based survey of
alert correlation techniques,” Comput. netw., vol. 57, no. 5, pp. 1289–1317, 2013.

[166] N. Hubballi and V. Suryanarayanan, “False alarm minimization techniques in
signature-based intrusion detection systems: A survey,” Comput. Commun., vol. 49,
pp. 1–17, 2014.

204

http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
https://warden.cesnet.cz/en/index
https://www.misp-project.org/
https://www.misp-project.org/

[167] F. Valeur, G. Vigna, C. Kruegel, and R. A. Kemmerer, “Comprehensive approach
to intrusion detection alert correlation,” IEEE Trans. Dependable Secure Comput.,
vol. 1, no. 3, pp. 146–169, 2004.

[168] A. Siraj, “A unified alert fusion model for intelligent analysis of sensor data in an
intrusion detection environment,” Ph.D. thesis, Mississippi State University, 2006.

[169] H. T. Elshoush and I. M. Osman, “An improved framework for intrusion alert cor-
relation,” Proceedings of the World Congress on Engineering, vol. 1, pp. 1–6, 2012.

[170] P. Ning, Y. Cui, and D. S. Reeves, “Analyzing intensive intrusion alerts via correla-
tion,” in Lecture Notes in Computer Science, pp. 74–94, Springer Berlin Heidelberg,
2002.

[171] F. Maggi and S. Zanero, “On the use of different statistical tests for alert correlation
– short paper,” in Lecture Notes in Computer Science, pp. 167–177, Springer Berlin
Heidelberg, 2007.

[172] M. GhasemiGol, A. Ghaemi-Bafghi, and H. Takabi, “A comprehensive approach for
network attack forecasting,” Comput. Secur., vol. 58, pp. 83–105, 2016.

[173] S. A. Mirheidari, S. Arshad, and R. Jalili, “Alert correlation algorithms: A survey
and taxonomy,” in Cyberspace Safety and Security, pp. 183–197, Cham: Springer
International Publishing, 2013.

[174] H. T. Elshoush and I. M. Osman, “Alert correlation in collaborative intelligent
intrusion detection systems—a survey,” Appl. Soft Comput., vol. 11, no. 7, pp. 4349–
4365, 2011.

[175] A. Valdes and K. Skinner, “Probabilistic alert correlation,” in Lecture Notes in
Computer Science, pp. 54–68, Springer Berlin Heidelberg, 2001.

[176] X. Zhuang, D. Xiao, X. Liu, and Y. Zhang, “Applying data fusion in collabora-
tive alerts correlation,” in 2008 International Symposium on Computer Science and
Computational Technology, pp. 124–127, IEEE, 2008.

[177] W. N. Thurman, M. E. Fisher, et al., “Chickens, eggs, and causality, or which came
first,” American journal of agricultural economics, vol. 70, no. 2, pp. 237–238, 1988.

[178] P. Ning, Y. Cui, D. S. Reeves, and D. Xu, “Towards automating intrusion alert anal-
ysis,” 2003 Workshop on Statistical and Machine Learning Techniques in Computer
Intrusion Detection, pp. 1–19, 2003.

[179] B. Zhu and A. A. Ghorbani, “Alert correlation for extracting attack strategies,” IJ
Network Security, vol. 3, no. 3, pp. 244–258, 2006.

[180] S. Saad and I. Traore, “Extracting attack scenarios using intrusion semantics,” in
Foundations and Practice of Security, pp. 278–292, Springer Berlin Heidelberg, 2013.

[181] J. Maestre Vidal, A. L. Sandoval Orozco, and L. J. García Villalba, “Alert correlation
framework for malware detection by anomaly-based packet payload analysis,” J.
Netw. Comput. Appl., vol. 97, pp. 11–22, 2017.

[182] F. Cuppens and R. Ortalo, “LAMBDA: A language to model a database for de-
tection of attacks,” in Lecture Notes in Computer Science, pp. 197–216, Springer
Berlin Heidelberg, 2000.

[183] S. T. Eckmann, G. Vigna, and R. A. Kemmerer, “STATL: An attack language for
state-based intrusion detection,” J. Comput. Secur., vol. 10, no. 1-2, pp. 71–103,
2002.

205

[184] S. Cheung, U. Lindqvist, and M. W. Fong, “Modeling multistep cyber attacks for
scenario recognition,” in Proceedings DARPA Information Survivability Conference
and Exposition, vol. 1, IEEE Comput. Soc, 2003.

[185] S. H. Ahmadinejad, S. Jalili, and M. Abadi, “A hybrid model for correlating alerts of
known and unknown attack scenarios and updating attack graphs,” Comput. netw.,
vol. 55, no. 9, pp. 2221–2240, 2011.

[186] C. T. Kawakani, S. B. Junior, and R. S. Miani, “Intrusion alert correlation to sup-
port security management,” in Proceedings of the XII Brazilian Symposium on In-
formation Systems on Brazilian Symposium on Information Systems: Information
Systems in the Cloud Computing Era - Volume 1, (Porto Alegre, BRA), pp. 313–320,
Brazilian Computer Society, 2016.

[187] G. Suarez-Tangil, E. Palomar, A. Ribagorda, and I. Sanz, “Providing SIEM systems
with self-adaptation,” Inf. Fusion, vol. 21, pp. 145–158, 2015.

[188] M. Soleimani and A. A. Ghorbani, “Multi-layer episode filtering for the multi-step
attack detection,” Comput. Commun., vol. 35, no. 11, pp. 1368–1379, 2012.

[189] A. Ahmadian Ramaki and A. Rasoolzadegan, “Causal knowledge analysis for detect-
ing and modeling multi-step attacks: Causal knowledge analysis for detecting and
modeling multi-step attacks,” Secur. Commun. Netw., vol. 9, no. 18, pp. 6042–6065,
2016.

[190] X. Sun, J. Dai, P. Liu, A. Singhal, and J. Yen, “Using bayesian networks for prob-
abilistic identification of zero-day attack paths,” IEEE trans. inf. forensics secur.,
vol. 13, no. 10, pp. 2506–2521, 2018.

[191] P. Ning and D. Xu, “Hypothesizing and reasoning about attacks missed by intrusion
detection systems,” ACM Trans. Inf. Syst. Secur., vol. 7, no. 4, pp. 591–627, 2004.

[192] G. Tedesco and U. Aickelin, “Real-time alert correlation with type graphs,” arXiv
preprint arXiv:1004.4089, vol. abs/1004.4089, 2010.

[193] G. P. Spathoulas and S. K. Katsikas, “Enhancing IDS performance through com-
prehensive alert post-processing,” Comput. Secur., vol. 37, pp. 176–196, 2013.

[194] H. Fatma and M. Limam, “A two-stage process based on data mining and optimiza-
tion to identify false positives and false negatives generated by intrusion detection
systems,” in 2015 11th International Conference on Computational Intelligence and
Security (CIS), pp. 308–311, IEEE, 2015.

[195] Q. Hui and W. Kun, “Real-time network attack intention recognition algorithm,”
Int. j. secur. appl., vol. 10, no. 4, pp. 51–62, 2016.

[196] B. D. Bryant and H. Saiedian, “A novel kill-chain framework for remote security log
analysis with SIEM software,” Comput. Secur., vol. 67, pp. 198–210, 2017.

[197] M. Abdlhamed, K. Kifayat, Q. Shi, and W. Hurst, “A system for intrusion prediction
in cloud computing,” in Proceedings of the International Conference on Internet of
things and Cloud Computing, (New York, NY, USA), ACM, 2016.

[198] E. T. Anumol, “Use of machine learning algorithms with SIEM for attack predic-
tion,” in Advances in Intelligent Systems and Computing, pp. 231–235, New Delhi:
Springer India, 2015.

[199] A. A. Ramaki and R. E. Atani, “A survey of IT early warning systems: architectures,
challenges, and solutions: A survey of IT early warning systems: architectures,

206

challenges, and solutions,” Secur. Commun. Netw., vol. 9, no. 17, pp. 4751–4776,
2016.

[200] M. Apel, J. Biskup, U. Flegel, and M. Meier, “Towards early warning systems –
challenges, technologies and architecture,” in Critical Information Infrastructures
Security, pp. 151–164, Springer Berlin Heidelberg, 2010.

[201] A. A. Ramaki, M. Khosravi-Farmad, and A. G. Bafghi, “Real time alert correlation
and prediction using bayesian networks,” in 2015 12th International Iranian Society
of Cryptology Conference on Information Security and Cryptology (ISCISC), pp. 98–
103, IEEE, 2015.

[202] P. Holgado, V. A. Villagra, and L. Vazquez, “Real-time multistep attack prediction
based on hidden markov models,” IEEE Trans. Dependable Secure Comput., vol. 17,
no. 1, pp. 134–147, 2020.

[203] S. N. Narayanan, S. Mittal, and A. Joshi, “Using data analytics to detect anomalous
states in vehicles,” arXiv preprint arXiv:1512.08048, vol. abs/1512.08048, 2015.

[204] A. M. del Rey, “Mathematical modeling of the propagation of malware: a review,”
Secur. Commun. Netw., vol. 8, no. 15, pp. 2561–2579, 2015.

[205] M. Trawicki, “Deterministic seirs epidemic model for modeling vital dynamics, vac-
cinations, and temporary immunity,” Mathematics, vol. 5, no. 1, p. 7, 2017.

[206] E. Magkos, M. Avlonitis, P. Kotzanikolaou, and M. Stefanidakis, “Towards early
warning against internet worms based on critical-sized networks,” Secur. Commun.
Netw., vol. 6, no. 1, pp. 78–88, 2013.

[207] S. Peng, S. Yu, and A. Yang, “Smartphone malware and its propagation modeling:
A survey,” IEEE Commun. Surv. Tutor., vol. 16, no. 2, pp. 925–941, 2014.

[208] S. H. White, A. M. Del Rey, and G. R. Sánchez, “Modeling epidemics using cellular
automata,” Appl. Math. Comput., vol. 186, no. 1, pp. 193–202, 2007.

[209] J. Pan and C. C. Fung, “An agent-based model to simulate coordinated response
to malware outbreak within an organisation,” International Journal of Information
and Computer Security, vol. 5, no. 2, pp. 115–131, 2012.

[210] Y. El Ansari, A. El Myr, and L. Omari, “Deterministic and stochastic study for
an infected computer network model powered by a system of antivirus programs,”
Discrete Dyn. Nat. Soc., vol. 2017, pp. 1–13, 2017.

[211] J. Jiang, S. Wen, B. Liu, S. Yu, Y. Xiang, and W. Zhou, Malicious attack propaga-
tion and source identification. Basel, Switzerland: Springer International Publish-
ing, 1 ed., 2018.

[212] Y. Wang, S. Wen, Y. Xiang, and W. Zhou, “Modeling the propagation of worms
in networks: A survey,” IEEE Commun. Surv. Tutor., vol. 16, no. 2, pp. 942–960,
2014.

[213] L. Xu, “Markovian and stochastic differential equation based approaches to com-
puter virus propagation dynamics and some models for survival distributions,”
Ph.D. thesis, Department of Mathematics and Computer Science, Faculty of New
Jersey Institute of Technology and Rutgers, 2011.

[214] R.-R. Xi, X.-C. Yun, Z.-Y. Hao, and Y.-Z. Zhang, “Quantitative threat situation as-
sessment based on alert verification: Threat situation assessment,” Secur. Commun.
Netw., vol. 9, no. 13, pp. 2135–2142, 2016.

207

[215] G. Apruzzese, M. Marchetti, M. Colajanni, G. G. Zoccoli, and A. Guido, “Iden-
tifying malicious hosts involved in periodic communications,” in 2017 IEEE 16th
International Symposium on Network Computing and Applications (NCA), pp. 1–8,
IEEE, 2017.

[216] P. A. Porras, M. W. Fong, and A. Valdes, “A mission-impact-based approach to
INFOSEC alarm correlation,” in Lecture Notes in Computer Science, pp. 95–114,
Springer Berlin Heidelberg, 2002.

[217] K. Alsubhi, E. Al-Shaer, and R. Boutaba, “Alert prioritization in intrusion detec-
tion systems,” in NOMS 2008 - 2008 IEEE Network Operations and Management
Symposium, pp. 33–40, IEEE, 2008.

[218] S. McElwee, J. Heaton, J. Fraley, and J. Cannady, “Deep learning for prioritizing and
responding to intrusion detection alerts,” in MILCOM 2017 - 2017 IEEE Military
Communications Conference (MILCOM), pp. 1–5, IEEE, 2017.

[219] R. Shittu, A. Healing, R. Ghanea-Hercock, R. Bloomfield, and M. Rajarajan, “In-
trusion alert prioritisation and attack detection using post-correlation analysis,”
Comput. Secur., vol. 50, pp. 1–15, 2015.

[220] R. Kumar and B. B. Gupta, “Stepping stone detection techniques: Classification
and state-of-the-art,” in Proceedings of the International Conference on Recent Cog-
nizance in Wireless Communication & Image Processing, pp. 523–533, New Delhi:
Springer India, 2016.

[221] D. Shah and T. Zaman, “Detecting sources of computer viruses in networks: Theory
and experiment,” in Proceedings of the ACM SIGMETRICS international conference
on Measurement and modeling of computer systems - SIGMETRICS ’10, (New York,
New York, USA), ACM Press, 2010.

[222] V. Fioriti, M. Chinnici, and J. Palomo, “Predicting the sources of an outbreak with
a spectral technique,” Appl. Math. Sci., vol. 8, pp. 6775–6782, 2014.

[223] D. Shah and T. Zaman, “Rumors in a network: Who’s the culprit?,” IEEE Trans.
Inf. Theory, vol. 57, no. 8, pp. 5163–5181, 2011.

[224] D. Shah and T. Zaman, “Rumor centrality: A universal source detector,” in Proceed-
ings of the 12th ACM SIGMETRICS/PERFORMANCE joint international confer-
ence on Measurement and Modeling of Computer Systems - SIGMETRICS ’12,
(New York, New York, USA), ACM Press, 2012.

[225] K. Zhu and L. Ying, “A robust information source estimator with sparse observa-
tions,” Comput. Soc. Netw., vol. 1, no. 1, 2014.

[226] F. Altarelli, A. Braunstein, L. Dall’Asta, A. Lage-Castellanos, and R. Zecchina,
“Bayesian inference of epidemics on networks via belief propagation,” Phys. Rev.
Lett., vol. 112, no. 11, p. 118701, 2014.

[227] P. C. Pinto, P. Thiran, and M. Vetterli, “Locating the source of diffusion in large-
scale networks,” arXiv preprint arXiv:1208.2534, vol. abs/1208.2534, 2012.

[228] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang, “Worm origin identifica-
tion using random moonwalks,” in 2005 IEEE Symposium on Security and Privacy
(S&P’05), pp. 242–256, IEEE, 2005.

[229] K. Julisch, “Clustering intrusion detection alarms to support root cause analysis,”
ACM Trans. Inf. Syst. Secur., vol. 6, no. 4, pp. 443–471, 2003.

208

[230] J. Kim, G. Lee, J.-T. Seo, E.-K. Park, C.-S. Park, and D.-K. Kim, “Y-AOI: Y-
means based attribute oriented induction identifying root cause for IDSs,” in Fuzzy
Systems and Knowledge Discovery, pp. 205–214, Springer Berlin Heidelberg, 2005.

[231] Y. Guan, A. Ghorbani, and N. Belacel, “Y-means: a clustering method for intrusion
detection,” in CCECE 2003 - Canadian Conference on Electrical and Computer En-
gineering. Toward a Caring and Humane Technology (Cat. No.03CH37436), vol. 2,
pp. 1083–1086, IEEE, 2003.

[232] S. O. Al-Mamory and H. Zhang, “Intrusion detection alarms reduction using root
cause analysis and clustering,” Comput. Commun., vol. 32, no. 2, pp. 419–430, 2009.

[233] M. T. Kechadi, J. H. Bellec, and A. Tari, “Behavioural proximity discovery: an
adaptive approach for root cause analysis,” Int. j. bus. intell. data min., vol. 6,
no. 3, p. 259, 2011.

[234] D. Cotroneo, A. Paudice, and A. Pecchia, “Automated root cause identification of
security alerts: Evaluation in a SaaS cloud,” Future Gener. Comput. Syst., vol. 56,
pp. 375–387, 2016.

[235] I. Sanchez-Rola, I. Santos, and D. Balzarotti, “Clock around the clock: Time-based
device fingerprinting,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, (New York, NY, USA), ACM, 2018.

[236] K.-T. Cho and K. G. Shin, “Viden: Attacker identification on in-vehicle networks,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, (New York, NY, USA), ACM, 2017.

[237] R. Shirey, “Internet security glossary,” RFC 2828, RFC Editor, May 2000.
[238] N. Herold, “Incident handling systems with automated intrusion response,” Ph.D.

thesis, Technical University Munich, Germany, https: // dblp. org/ rec/ bib/
phd/ dnb/ Herold17 , 2017.

[239] N. Stakhanova, S. Basu, and J. Wong, “A taxonomy of intrusion response systems,”
Int. j. inf. comput. secur., vol. 1, no. 1/2, p. 169, 2007.

[240] C. Strasburg, N. Stakhanova, S. Basu, and J. S. Wong, “Intrusion response cost
assessment methodology,” in Proceedings of the 4th International Symposium on
Information, Computer, and Communications Security - ASIACCS ’09, (New York,
New York, USA), ACM Press, 2009.

[241] A. Shameli-Sendi and M. Dagenais, “ORCEF: Online response cost evaluation
framework for intrusion response system,” J. Netw. Comput. Appl., vol. 55, pp. 89–
107, 2015.

[242] G. Gonzalez Granadillo, H. Débar, G. Jacob, C. Gaber, and M. Achemlal, “Individ-
ual countermeasure selection based on the return on response investment index,” in
Lecture Notes in Computer Science, pp. 156–170, Springer Berlin Heidelberg, 2012.

[243] A. Fawaz, R. Berthier, and W. H. Sanders, “Cost modeling of response actions for
automated response and recovery in AMI,” in 2012 IEEE Third International Con-
ference on Smart Grid Communications (SmartGridComm), pp. 348–353, IEEE,
2012.

[244] V. Mateos, V. A. Villagrá, F. Romero, and J. Berrocal, “Definition of response met-
rics for an ontology-based automated intrusion response systems,” Comput. Electr.
Eng., vol. 38, no. 5, pp. 1102–1114, 2012.

209

https://dblp.org/rec/bib/phd/dnb/Herold17
https://dblp.org/rec/bib/phd/dnb/Herold17

[245] N. Stakhanova, S. Basu, and J. Wong, “A cost-sensitive model for preemptive intru-
sion response systems,” in 21st International Conference on Advanced Networking
and Applications (AINA ’07), pp. 428–435, IEEE, 2007.

[246] W. Kanoun, N. Cuppens-Boulahia, F. Cuppens, S. Dubus, and A. Martin, “Intelli-
gent response system to mitigate the success likelihood of ongoing attacks,” in IAS
2010 : 6th IEEE International Conference on Information Assurance and Security,
(Atlanta, United States), Aug. 2010.

[247] J. Baayer and B. Regragui, “New cost-sensitive model for intrusion response systems
minimizing false positive,” IJMER - International Journal of Modern Engineering
Research 2, 2012.

[248] Z. Zhang, P.-H. Ho, and L. He, “Measuring IDS-estimated attack impacts for rational
incident response: A decision theoretic approach,” Comput. Secur., vol. 28, no. 7,
pp. 605–614, 2009.

[249] W. T. Yue and M. Çakanyıldırım, “A cost-based analysis of intrusion detection
system configuration under active or passive response,” Decis. Support Syst., vol. 50,
no. 1, pp. 21–31, 2010.

[250] B. A. Fessi, S. Benabdallah, N. Boudriga, and M. Hamdi, “A multi-attribute decision
model for intrusion response system,” Inf. Sci. (Ny), vol. 270, pp. 237–254, 2014.

[251] J. Wang, K. Fan, W. Mo, and D. Xu, “A method for information security risk assess-
ment based on the dynamic bayesian network,” in 2016 International Conference
on Networking and Network Applications (NaNA), pp. 279–283, IEEE, 2016.

[252] D. Schnackenberg, K. Djahandari, and D. Sterne, “Infrastructure for intrusion de-
tection and response,” in Proceedings DARPA Information Survivability Conference
and Exposition. DISCEX’00, vol. 2, pp. 3–11, 2000.

[253] D. Schnackengerg, H. Holliday, R. Smith, K. Djahandari, and D. Sterne, “Coopera-
tive intrusion traceback and response architecture (citra),” in Proceedings DARPA
Information Survivability Conference and Exposition II. DISCEX’01, vol. 1, pp. 56–
68, 2001.

[254] S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley, “RRE: A game-
theoretic intrusion response and recovery engine,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 2, pp. 395–406, 2014.

[255] R. Sharma, H. Kalita, and B. Issac, “Plant based biologically inspired intrusion
response mechanism : An insight into the proposed model PIRIDS,” Journal of
Information Assurance and Security, vol. 11, no. 6, pp. 340–347, 2016.

[256] R. K. Sharma, B. Issac, and H. K. Kalita, “Intrusion detection and response system
inspired by the defense mechanism of plants,” IEEE Access, vol. 7, pp. 52427–52439,
2019.

[257] H. A. Kholidy, A. Erradi, S. Abdelwahed, and F. Baiardi, “A risk mitigation ap-
proach for autonomous cloud intrusion response system,” Computing, vol. 98, no. 11,
pp. 1111–1135, 2016.

[258] N. Herold, M. Wachs, S.-A. Posselt, and G. Carle, “An optimal metric-aware re-
sponse selection strategy for intrusion response systems,” in Foundations and Prac-
tice of Security, pp. 68–84, Cham: Springer International Publishing, 2017.

[259] M. GhasemiGol, H. Takabi, and A. Ghaemi-Bafghi, “A foresight model for intrusion
response management,” Comput. Secur., vol. 62, pp. 73–94, 2016.

210

[260] A. Shameli-Sendi, H. Louafi, W. He, and M. Cheriet, “Dynamic optimal counter-
measure selection for intrusion response system,” IEEE Trans. Dependable Secure
Comput., vol. 15, no. 5, pp. 755–770, 2018.

[261] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network configuration
protocol (netconf),” RFC 6241, RFC Editor, June 2011. http://www.rfc-editor.
org/rfc/rfc6241.txt.

[262] K. Djahandari and D. Schnackenberg, “Intruder detection and isolation protocol
(IDIP) application layer protocol definition,” Active Networks Intrusion Detection
and Response Program Technical Information Report, vol. Prepared Under Contract
N66001-00-C-8602 for SPAWARSYSCEN San Diego, 2002.

[263] G. Klein, H. Rogge, F. Schneider, J. Toelle, M. Jahnke, and S. Karsch, “Response
initiation in distributed intrusion response systems for tactical MANETs,” in 2010
European Conference on Computer Network Defense, pp. 55–62, IEEE, 2010.

[264] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxon-
omy of dependable and secure computing,” IEEE Trans. Dependable Secure Com-
put., vol. 1, no. 1, pp. 11–33, 2004.

[265] A. Carlin, M. Hammoudeh, and O. Aldabbas, “Intrusion detection and countermea-
sure of virtual cloud systems - state of the art and current challenges,” Int. J. Adv.
Comput. Sci. Appl., vol. 6, no. 6, 2015.

[266] T. Xing, Z. Xiong, D. Huang, and D. Medhi, “SDNIPS: Enabling Software-Defined
networking based intrusion prevention system in clouds,” in 10th International Con-
ference on Network and Service Management (CNSM) and Workshop, pp. 308–311,
IEEE, 2014.

[267] S. Shin, L. Xu, S. Hong, and G. Gu, “Enhancing network security through software
defined networking (SDN),” in 2016 25th International Conference on Computer
Communication and Networks (ICCCN), pp. 1–9, IEEE, 2016.

[268] K. Giotis, G. Androulidakis, and V. Maglaris, “Leveraging SDN for efficient anomaly
detection and mitigation on legacy networks,” in 2014 Third European Workshop
on Software Defined Networks, pp. 85–90, IEEE, 2014.

[269] M. B. Lehocine and M. Batouche, “Flexibility of managing VLAN filtering and
segmentation in SDN networks,” in 2017 International Symposium on Networks,
Computers and Communications (ISNCC), pp. 1–6, IEEE, 2017.

[270] B. R. Granby, B. Askwith, and A. K. Marnerides, “SDN-PANDA: Software-defined
network platform for ANomaly detection applications,” in 2015 IEEE 23rd Inter-
national Conference on Network Protocols (ICNP), pp. 463–466, IEEE, 2015.

[271] M. G. Perez, A. H. Celdran, F. Ippoliti, P. G. Giardina, G. Bernini, R. M. Alaez,
E. Chirivella-Perez, F. J. G. Clemente, G. M. Perez, E. Kraja, G. Carrozzo, J. M. A.
Calero, and Q. Wang, “Dynamic reconfiguration in 5G mobile networks to proac-
tively detect and mitigate botnets,” IEEE Internet Comput., vol. 21, no. 5, pp. 28–
36, 2017.

[272] B. Krawczyk and A. Cano, “Online ensemble learning with abstaining classifiers for
drifting and noisy data streams,” Appl. Soft Comput., vol. 68, pp. 677–692, 2018.

[273] A. Zheng, Feature Engineering for Machine Learning. Sebastopol, CA: O’Reilly
Media, 2018.

211

http://www.rfc-editor.org/rfc/rfc6241.txt
http://www.rfc-editor.org/rfc/rfc6241.txt

[274] M. Rahmaninia and P. Moradi, “OSFSMI: Online stream feature selection method
based on mutual information,” Appl. Soft Comput., vol. 68, pp. 733–746, 2018.

[275] N. Almusallam, Z. Tari, J. Chan, and A. AlHarthi, “UFSSF - an efficient unsuper-
vised feature selection for streaming features,” in Advances in Knowledge Discovery
and Data Mining, pp. 495–507, Cham: Springer International Publishing, 2018.

[276] C. Siu and R. Y. D. Xu, “Diverse online feature selection,” CoRR,
vol. abs/1806.04308, 2018.

[277] D. Panday, R. Cordeiro de Amorim, and P. Lane, “Feature weighting as a tool for
unsupervised feature selection,” Inf. Process. Lett., vol. 129, pp. 44–52, 2018.

[278] C. Fahy and S. Yang, “Dynamic feature selection for clustering high dimensional
data streams,” IEEE Access, vol. 7, pp. 127128–127140, 2019.

[279] R. Ma, Y. Wang, and L. Cheng, “Feature selection on data stream via multi-cluster
structure preservation,” in Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, (New York, NY, USA), ACM, 2020.

[280] J. Wang, P. Zhao, S. C. H. Hoi, and R. Jin, “Online feature selection and its appli-
cations,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 3, pp. 698–710, 2014.

[281] M. S. Hammoodi, F. Stahl, and A. Badii, “Real-time feature selection technique
with concept drift detection using adaptive micro-clusters for data stream mining,”
Knowl. Based Syst., vol. 161, pp. 205–239, 2018.

[282] J. P. Barddal, H. Murilo Gomes, F. Enembreck, B. Pfahringer, and A. Bifet, “On
dynamic feature weighting for feature drifting data streams,” in Machine Learning
and Knowledge Discovery in Databases, pp. 129–144, Cham: Springer International
Publishing, 2016.

[283] S. Solorio-Fernández, J. A. Carrasco-Ochoa, and J. F. Martínez-Trinidad, “A review
of unsupervised feature selection methods,” Artif. Intell. Rev., vol. 53, no. 2, pp. 907–
948, 2020.

[284] W. Shao, L. He, C.-T. Lu, X. Wei, and P. S. Yu, “Online unsupervised multi-view
feature selection,” in 2016 IEEE 16th International Conference on Data Mining
(ICDM), pp. 1203–1208, IEEE, 2016.

[285] H. Huang, S. Yoo, and S. P. Kasiviswanathan, “Unsupervised feature selection on
data streams,” in Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management - CIKM ’15, (New York, New York, USA),
ACM Press, 2015.

[286] E. Liberty, “Simple and deterministic matrix sketching,” in Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining,
(New York, NY, USA), ACM, 2013.

[287] T. A. Alamiedy, M. Anbar, A. K. Al-Ani, B. N. Al-Tamimi, and N. Faleh, “Re-
view on feature selection algorithms for anomaly-based intrusion detection system,”
in Advances in Intelligent Systems and Computing, pp. 605–619, Cham: Springer
International Publishing, 2019.

[288] J. S. Park, K. M. Shazzad, and D. S. Kim, “Toward modeling lightweight intrusion
detection system through correlation-based hybrid feature selection,” in Information
Security and Cryptology, pp. 279–289, Springer Berlin Heidelberg, 2005.

212

[289] O. Y. Al-Jarrah, A. Siddiqui, M. Elsalamouny, P. D. Yoo, S. Muhaidat, and K. Kim,
“Machine-learning-based feature selection techniques for large-scale network intru-
sion detection,” in 2014 IEEE 34th International Conference on Distributed Com-
puting Systems Workshops, pp. 177–181, IEEE, 2014.

[290] S. Chen, Z. Huang, Z. Zuo, and X. Guo, “A feature selection method for anomaly
detection based on improved genetic algorithm,” in Proceedings of the 2016 4th
International Conference on Mechanical Materials and Manufacturing Engineering,
(Paris, France), Atlantis Press, 2016.

[291] F. Gottwalt, E. Chang, and T. Dillon, “CorrCorr: A feature selection method for
multivariate correlation network anomaly detection techniques,” Comput. Secur.,
vol. 83, pp. 234–245, 2019.

[292] J. Ren, J. Guo, W. Qian, H. Yuan, X. Hao, and H. Jingjing, “Building an effective
intrusion detection system by using hybrid data optimization based on machine
learning algorithms,” Secur. Commun. Netw., vol. 2019, pp. 1–11, 2019.

[293] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, “IoT malicious traffic
identification using wrapper-based feature selection mechanisms,” Comput. Secur.,
vol. 94, no. 101863, p. 101863, 2020.

[294] Y. Zhou, G. Cheng, S. Jiang, and M. Dai, “Building an efficient intrusion detection
system based on feature selection and ensemble classifier,” Comput. netw., vol. 174,
no. 107247, p. 107247, 2020.

[295] A. Nazir and R. A. Khan, “A novel combinatorial optimization based feature selec-
tion method for network intrusion detection,” Comput. Secur., vol. 102, no. 102164,
p. 102164, 2021.

[296] T. Naidoo, J. R. Tapamo, and A. McDonald, “Feature selection for anomaly–based
network intrusion detection using cluster validity indices,” SATNAC: Africa – The
Future Communications Galaxy, pp. 6–9, Sep 2015.

[297] N. N. R. R. Suri, M. N. Murty, and G. Athithan, “Unsupervised feature selection
for outlier detection in categorical data using mutual information,” in 2012 12th
International Conference on Hybrid Intelligent Systems (HIS), pp. 253–258, IEEE,
2012.

[298] G. Pang, L. Cao, and L. Chen, “Outlier detection in complex categorical data by
modelling the feature value couplings,” in Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, pp. 1902–1908, AAAI Press,
2016.

[299] G. Pang, L. Cao, L. Chen, D. Lian, and H. Liu, “Sparse modeling-based sequential
ensemble learning for effective outlier detection in high-dimensional numeric data,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (1), 2018.

[300] M. Prasad, S. Tripathi, and K. Dahal, “Unsupervised feature selection and cluster
center initialization based arbitrary shaped clusters for intrusion detection,” Com-
puters & Security, vol. 99, p. 102062, 2020.

[301] L. Cheng, Y. Wang, X. Liu, and B. Li, “Outlier detection ensemble with embedded
feature selection,” Proc. Conf. AAAI Artif. Intell., vol. 34, no. 04, pp. 3503–3512,
2020.

[302] Q. Yang, J. Singh, and J. Lee, “Isolation-based feature selection for unsupervised
outlier detection,” Proc. Annu. Conf. Progn. Health Manag. Soc., vol. 11, no. 1,
2019.

213

[303] I. Sharafaldin., A. Habibi Lashkari., and A. A. Ghorbani., “Toward generating a new
intrusion detection dataset and intrusion traffic characterization,” in Proceedings of
the 4th International Conference on Information Systems Security and Privacy -
ICISSP,, pp. 108–116, INSTICC, SciTePress, 2018.

[304] H.-P. Kriegel, P. Kroger, E. Schubert, and A. Zimek, “Interpreting and unifying
outlier scores,” in Proceedings of the 2011 SIAM International Conference on Data
Mining, (Philadelphia, PA), pp. 13–24, Society for Industrial and Applied Mathe-
matics, 2011.

[305] B. P. Welford, “Note on a method for calculating corrected sums of squares and
products,” Technometrics, vol. 4, no. 3, pp. 419–420, 1962.

[306] S. Inka, “Adaptive real-time anomaly detection for multi-dimensional streaming
data,” Master’s thesis, Aalto University (Aalto 8370), 2017.

[307] H. Wang and M. Song, “Ckmeans.1d.Dp: Optimal k-means clustering in one dimen-
sion by dynamic programming,” R J., vol. 3, no. 2, pp. 29–33, 2011.

[308] M. Song and H. Zhong, “Efficient weighted univariate clustering maps outstanding
dysregulated genomic zones in human cancers,” Bioinformatics, vol. 36, no. 20,
pp. 5027–5036, 2020.

[309] S. F. Yilmaz and S. S. Kozat, “Pysad: A streaming anomaly detection framework
in python,” 2020.

[310] Y. Zhao, Z. Nasrullah, and Z. Li, “Pyod: A python toolbox for scalable outlier
detection,” J. Mach. Learn. Res., vol. 20, pp. 96:1–96:7, 2019.

[311] S. Rayana, “ODDS library,” Stony Brook University, Department of Computer Sci-
ences, 2016.

[312] Q. Zhou and D. Pezaros, “Evaluation of machine learning classifiers for zero-
day intrusion detection - an analysis on CIC-AWS-2018 dataset,” CoRR,
vol. abs/1905.03685, 2019. Withdrawn.

[313] A. Kenyon, L. Deka, and D. Elizondo, “Are public intrusion datasets fit for purpose
characterising the state of the art in intrusion event datasets,” Comput. Secur.,
vol. 99, no. 102022, p. 102022, 2020.

[314] A. Kumar, M. Shridhar, S. Swaminathan, and T. J. Lim, “Machine learning-
based early detection of iot botnets using network-edge traffic,” CoRR,
vol. abs/2010.11453, 2020.

[315] C. C. Aggarwal, Outlier Analysis. Cham: Springer International Publishing, 2017.
[316] Y. Ben-Haim and E. Tom-Tov, “A streaming parallel decision tree algorithm,” Jour-

nal of Machine Learning Research, vol. 11, no. 2, 2010.
[317] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we need hun-

dreds of classifiers to solve real world classification problems?,” J. Mach. Learn.
Res., vol. 15, no. 1, pp. 3133–3181, 2014.

[318] S. Hariri, M. C. Kind, and R. J. Brunner, “Extended isolation forest,” IEEE Trans.
Knowl. Data Eng., vol. 33, no. 4, pp. 1479–1489, 2021.

[319] G. Staerman, P. Mozharovskyi, S. Clémençon, and F. d’Alché Buc, “Functional
isolation forest,” in Asian Conference on Machine Learning, pp. 332–347, PMLR,
2019.

214

[320] A. Bifet and R. Gavaldà, “Adaptive learning from evolving data streams,” in Ad-
vances in Intelligent Data Analysis VIII, pp. 249–260, Springer Berlin Heidelberg,
2009.

[321] C. Raab, M. Heusinger, and F.-M. Schleif, “Reactive soft prototype computing for
concept drift streams,” Neurocomputing, vol. 416, pp. 340–351, 2020.

[322] I. Goodfellow, P. McDaniel, and N. Papernot, “Making machine learning robust
against adversarial inputs,” Commun. ACM, vol. 61, no. 7, pp. 56–66, 2018.

[323] M. Kianpour and S.-F. Wen, “Timing attacks on machine learning: State of the art,”
in Advances in Intelligent Systems and Computing, pp. 111–125, Cham: Springer
International Publishing, 2020.

[324] L. Liao and B. Luo, “Entropy isolation forest based on dimension entropy for
anomaly detection,” in Communications in Computer and Information Science,
pp. 365–376, Singapore: Springer Singapore, 2019.

[325] X. Zhang, W. Dou, Q. He, R. Zhou, C. Leckie, R. Kotagiri, and Z. Salcic, “LSHiFor-
est: A generic framework for fast tree isolation based ensemble anomaly analysis,”
in 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pp. 983–
994, IEEE, 2017.

[326] D. Xu, Y. Wang, Y. Meng, and Z. Zhang, “An improved data anomaly detection
method based on isolation forest,” in 2017 10th International Symposium on Com-
putational Intelligence and Design (ISCID), pp. 287–291, IEEE, 2017.

[327] D. Cortes, “Distance approximation using isolation forests,” CoRR,
vol. abs/1910.12362, 2019.

[328] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift detection,”
in Advances in Artificial Intelligence – SBIA 2004, pp. 286–295, Springer Berlin
Heidelberg, 2004.

[329] A. Bifet and R. Gavaldà, “Learning from time-changing data with adaptive window-
ing,” in Proceedings of the 2007 SIAM International Conference on Data Mining,
pp. 443–448, Philadelphia, PA: Society for Industrial and Applied Mathematics,
2007.

[330] T. Dasu, S. Krishnan, D. Lin, S. Venkatasubramanian, and K. Yi, “Change (detec-
tion) you can believe in: Finding distributional shifts in data streams,” in Advances
in Intelligent Data Analysis VIII, pp. 21–34, Springer Berlin Heidelberg, 2009.

[331] L. I. Kuncheva, “Change detection in streaming multivariate data using likelihood
detectors,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 5, pp. 1175–1180, 2013.

[332] D. Renuka Devi and S. Sasikala, “Online feature selection (OFS) with accelerated
bat algorithm (ABA) and ensemble incremental deep multiple layer perceptron (EI-
DMLP) for big data streams,” J. Big Data, vol. 6, no. 1, 2019.

[333] J. López Lobo, “Synthetic datasets for concept drift detection purposes,” Harvard
Dataverse, 2020.

[334] D. Dua and C. Graff, “UCI machine learning repository,” University of California,
Irvine, School of Information and Computer Sciences, 2017.

[335] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set),” in 2015 Military
Communications and Information Systems Conference (MilCIS), pp. 1–6, IEEE,
2015.

215

[336] A. Thakkar and R. Lohiya, “A review of the advancement in intrusion detection
datasets,” Procedia Comput. Sci., vol. 167, pp. 636–645, 2020.

[337] S. Haas and M. Fischer, “On the alert correlation process for the detection of multi-
step attacks and a graph-based realization,” ACM SIGAPP Appl. Comput. Rev.,
vol. 19, no. 1, pp. 5–19, 2019.

[338] E. Shao, “Encoding IP address as a feature for network intrusion detection,” Purdue
University Graduate School, Dec. 2019.

[339] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, “A review
on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-
based approaches,” IEEE Trans. Syst. Man Cybern. C Appl. Rev., vol. 42, no. 4,
pp. 463–484, 2012.

[340] C. K. I. Williams, “The effect of class imbalance on precision-recall curves,” Neural
Comput., vol. 33, no. 4, pp. 853–857, 2021.

[341] D. Bolzoni, S. Etalle, and P. H. Hartel, “Panacea: Automating attack classifica-
tion for anomaly-based network intrusion detection systems,” in Lecture Notes in
Computer Science, pp. 1–20, Springer Berlin Heidelberg, 2009.

[342] Q. S. Qassim, A. M. Zin, and M. J. A. Aziz, “Anomaly-based network IDS false
alarm filter using cluster-based alarm classification approach,” Int. J. Secur. Netw.,
vol. 12, no. 1, p. 13, 2017.

[343] J. Shin, S.-H. Choi, P. Liu, and Y.-H. Choi, “Unsupervised multi-stage attack de-
tection framework without details on single-stage attacks,” Future Gener. Comput.
Syst., vol. 100, pp. 811–825, 2019.

[344] K. L. K. Sudheera, D. M. Divakaran, R. P. Singh, and M. Gurusamy, “ADEPT:
Detection and identification of correlated attack stages in IoT networks,” IEEE
Internet Things J., vol. 8, no. 8, pp. 6591–6607, 2021.

[345] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network
motifs: simple building blocks of complex networks,” Science, vol. 298, no. 5594,
pp. 824–827, 2002.

[346] L. Wang, A. Liu, and S. Jajodia, “Using attack graphs for correlating, hypothesizing,
and predicting intrusion alerts,” Comput. Commun., vol. 29, no. 15, pp. 2917–2933,
2006.

[347] C. C. Aggarwal, P. S. Yu, J. Han, and J. Wang, “A framework for clustering evolving
data streams,” in Proceedings 2003 VLDB Conference, pp. 81–92, Elsevier, 2003.

[348] R. Sadoddin and A. A. Ghorbani, “Real-time alert correlation using stream data
mining techniques,” in Proceedings of the 20th national conference on Innovative
applications of artificial intelligence - Volume 3, pp. 1731–1737, AAAI Press, 2008.

[349] H. Ren, N. Stakhanova, and A. A. Ghorbani, “An online adaptive approach to alert
correlation,” in Detection of Intrusions and Malware, and Vulnerability Assessment,
pp. 153–172, Springer Berlin Heidelberg, 2010.

[350] A. A. Ramaki, M. Amini, and R. Ebrahimi Atani, “RTECA: Real time episode
correlation algorithm for multi-step attack scenarios detection,” Comput. Secur.,
vol. 49, pp. 206–219, 2015.

[351] F. Faraji Daneshgar and M. Abbaspour, “Extracting fuzzy attack patterns using an
online fuzzy adaptive alert correlation framework: Fuzzy adaptive alert correlation,”
Secur. Commun. Netw., vol. 9, no. 14, pp. 2245–2260, 2016.

216

[352] K. Zhang, F. Zhao, S. Luo, Y. Xin, and H. Zhu, “An intrusion action-based IDS alert
correlation analysis and prediction framework,” IEEE Access, vol. 7, pp. 150540–
150551, 2019.

[353] Z. Zohrevand and U. Glässer, “Should I raise the red flag? A comprehen-
sive survey of anomaly scoring methods toward mitigating false alarms,” CoRR,
vol. abs/1904.06646, 2019.

[354] D. Ourston, S. Matzner, W. Stump, and B. Hopkins, “Applications of hidden markov
models to detecting multi-stage network attacks,” in Proceedings of the 36th Annual
Hawaii International Conference on System Sciences, pp. 10 pp.–, IEEE, 2003.

[355] H. Zhang, X. Jin, Y. Li, Z. Jiang, Y. Liang, Z. Jin, and Q. Wen, “A multi-step
attack detection model based on alerts of smart grid monitoring system,” IEEE
Access, vol. 8, pp. 1031–1047, 2020.

[356] K. Xylogiannopoulos, P. Karampelas, and R. Alhajj, “Early DDoS detection based
on data mining techniques,” in Information Security Theory and Practice. Securing
the Internet of Things, pp. 190–199, Springer Berlin Heidelberg, 2014.

[357] A. Prakash, M. Satish, T. S. S. Bhargav, and N. Bhalaji, “Detection and mitigation
of denial of service attacks using stratified architecture,” Procedia Comput. Sci.,
vol. 87, pp. 275–280, 2016.

[358] J. Galeano-Brajones, J. Carmona-Murillo, J. F. Valenzuela-Valdés, and F. Luna-
Valero, “Detection and mitigation of DoS and DDoS attacks in IoT-based stateful
SDN : An experimental approach,” Sensors (Basel), vol. 20, no. 3, p. 816, 2020.

[359] M. Heigl, L. Doerr, N. Tiefnig, D. Fiala, and M. Schramm, “A resource-preserving
self-regulating uncoupled MAC algorithm to be applied in incident detection,” Com-
put. Secur., vol. 85, pp. 270–287, 2019.

[360] A. Zubaroğlu and V. Atalay, “Data stream clustering: a review,” Artif. Intell. Rev.,
vol. 54, no. 2, pp. 1201–1236, 2021.

[361] Kurniabudi, D. Stiawan, Darmawijoyo, M. Y. Bin Idris, A. M. Bamhdi, and R. Bu-
diarto, “CICIDS-2017 dataset feature analysis with information gain for anomaly
detection,” IEEE Access, vol. 8, pp. 132911–132921, 2020.

[362] M. Jeng, “Error in statistical tests of error in statistical tests,” BMC Med. Res.
Methodol., vol. 6, no. 1, p. 45, 2006.

[363] A. Bhattacharyya, “On a measure of divergence between two statistical populations
defined by their probability distributions,” Bull. Calcutta Math. Soc., vol. 35, pp. 99–
109, 1943.

[364] M. Heigl, K. A. Anand, A. Urmann, D. Fiala, M. Schramm, and R. Hable, “On the
improvement of the isolation forest algorithm for outlier detection with streaming
data,” Electronics (Basel), vol. 10, no. 13, p. 1534, 2021.

[365] G. Ollmann, “Why stix/taxii/cybox sharing is incompatible with
ai threat detection systems,” https: // www. linkedin. com/ pulse/
why-stixtaxiicybox-sharing-incompatible-ai-threat-systems-ollmann
(online, accessed 19 July 2019), 2017.

[366] F. Sadique, S. Cheung, I. Vakilinia, S. Badsha, and S. Sengupta, “Automated
structured threat information expression (STIX) document generation with pri-
vacy preservation,” in 2018 9th IEEE Annual Ubiquitous Computing, Electronics &
Mobile Communication Conference (UEMCON), pp. 847–853, IEEE, 2018.

217

https://www.linkedin.com/pulse/why-stixtaxiicybox-sharing-incompatible-ai-threat-systems-ollmann
https://www.linkedin.com/pulse/why-stixtaxiicybox-sharing-incompatible-ai-threat-systems-ollmann

[367] Q. Wang, J. Jiang, Z. Shi, W. Wang, B. Lv, B. Qi, and Q. Yin, “A novel multi-source
fusion model for known and unknown attack scenarios,” in 2018 17th IEEE Interna-
tional Conference On Trust, Security And Privacy In Computing And Communica-
tions/ 12th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), pp. 727–736, IEEE, 2018.

[368] X. Wang, L. Yu, H. He, and X. Gong, “MAAC: novel alert correlation method to
detect multi-step attack,” CoRR, vol. abs/2011.07793, 2020.

[369] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad, “Net-
work intrusion detection system: A systematic study of machine learning and deep
learning approaches,” Transactions on Emerging Telecommunications Technologies,
vol. 32, no. 1, p. e4150, 2021.

[370] P. Ning, Y. Cui, D. S. Reeves, and D. Xu, “Techniques and tools for analyzing
intrusion alerts,” ACM Trans. Inf. Syst. Secur., vol. 7, no. 2, pp. 274–318, 2004.

[371] G. Androulidakis and S. Papavassiliou, “Improving network anomaly detection via
selective flow-based sampling,” IET Commun., vol. 2, no. 3, p. 399, 2008.

[372] J. Mai, A. Sridharan, C.-N. Chuah, H. Zang, and T. Ye, “Impact of packet sampling
on portscan detection,” IEEE j. sel. areas commun., vol. 24, no. 12, pp. 2285–2298,
2006.

[373] E. G. Bakhoum, “Intrusion detection model based on selective packet sampling,”
EURASIP J. Multimed. Inf. Secur., vol. 2011, no. 1, 2011.

[374] T. Ha, S. Kim, N. An, J. Narantuya, C. Jeong, J. Kim, and H. Lim, “Suspicious traf-
fic sampling for intrusion detection in software-defined networks,” Comput. netw.,
vol. 109, pp. 172–182, 2016.

[375] R. E. Jurga and M. M. Hulboj, “Technical report - packet sampling for network
monitoring,” CERN openlab report, https: // openlab. cern/ (online, accessed
05 September 2021), 2007.

[376] L.-B. Xu, G.-X. Wu, and J.-F. Li, “Packet-level adaptive sampling on multi-
fluctuation scale traffic,” in Proceedings. 2005 International Conference on Com-
munications, Circuits and Systems, 2005, vol. 1, pp. 604–608, IEEE, 2005.

[377] K. Bartos, M. Rehak, and V. Krmicek, “Optimizing flow sampling for network
anomaly detection,” in 2011 7th International Wireless Communications and Mobile
Computing Conference, pp. 1304–1309, IEEE, 2011.

[378] Q. Xia, T. Chen, and W. Xu, “CIDS: Adapting legacy intrusion detection systems
to the cloud with hybrid sampling,” in 2016 IEEE International Conference on
Computer and Information Technology (CIT), pp. 508–515, IEEE, 2016.

[379] J. He, Y. Yang, X. Wang, and Z. Tan, “Adaptive traffic sampling for P2P bot-
net detection: Adaptive traffic sampling for P2P botnet detection,” Int. J. Netw.
Manage., vol. 27, no. 5, p. e1992, 2017.

[380] B. S. Shankar and A. T. Murthy, “The detailed study and verities of macsec in
wired ethernet,” in International Journal of Emerging Trends in Engineering and
Development, vol. 4, pp. 508–512, June 2015.

[381] A. Kushwaha, H. R. Sharma, and A. Ambhaikar, “A novel selective encryption
method for securing text over mobile ad hoc network,” Procedia Comput. Sci.,
vol. 79, pp. 16–23, 2016.

218

https://openlab.cern/

[382] L. Doerr, D. Fiala, M. Heigl, and M. Schramm, “Assessment simulation model for
uncoupled message authentication,” in 2017 International Conference on Applied
Electronics (AE), pp. 1–4, IEEE, 2017.

[383] N. Ren, Q.-S. Wang, and C.-Q. Zhu, “Selective authentication algorithm based on
semi-fragile watermarking for vector geographical data,” in 2014 22nd International
Conference on Geoinformatics, pp. 1–6, IEEE, 2014.

[384] J. Liu, F. R. Yu, C.-H. Lung, and H. Tang, “Optimal combined intrusion detec-
tion and biometric-based continuous authentication in high security mobile ad hoc
networks,” IEEE Trans. Wirel. Commun., vol. 8, no. 2, pp. 806–815, 2009.

[385] A. Boudguiga, W. Klaudel, A. Boulanger, and P. Chiron, “A simple intrusion detec-
tion method for controller area network,” in 2016 IEEE International Conference
on Communications (ICC), pp. 1–7, IEEE, 2016.

[386] M. Heigl, M. Schramm, L. Doerr, and A. Grzemba, “Embedded plug-in devices to
secure industrial network communications,” in 2016 International Conference on
Applied Electronics (AE), pp. 85–88, IEEE, 2016.

[387] A. Bremler-Barr and H. Levy, “Spoofing prevention method,” in Proceedings IEEE
24th Annual Joint Conference of the IEEE Computer and Communications Soci-
eties, vol. 1, pp. 536–547, IEEE, 2005.

[388] M. Heigl, M. Aman, A. Fuchs, and A. Grzemba, “Securing industrial legacy sys-
tem communication through interconnected embedded plug-in devices,” in Applied
Research Conference (ARC), pp. 501–508, 2016.

[389] E. A. Akkoyunlu, K. Ekanadham, and R. V. Huber, “Some constraints and tradeoffs
in the design of network communications,” in Proceedings of the fifth symposium on
Operating systems principles - SOSP ’75, (New York, New York, USA), ACM Press,
1975.

[390] G. Kumar, “Evaluation metrics for intrusion detection systems - a study,” Inter-
national Journal of Computer Science and Mobile Applications (IJCSMA), vol. 2,
no. 11, pp. 11 – 17, 2014.

[391] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez,
“Anomaly-based network intrusion detection: Techniques, systems and challenges,”
Comput. Secur., vol. 28, no. 1-2, pp. 18–28, 2009.

[392] N. Mouha, B. Mennink, A. Van Herrewege, D. Watanabe, B. Preneel, and I. Ver-
bauwhede, “Chaskey: An efficient MAC algorithm for 32-bit microcontrollers,” in
Selected Areas in Cryptography – SAC 2014, pp. 306–323, Cham: Springer Interna-
tional Publishing, 2014.

[393] A. R. Chowdhury and S. DasBit, “LMAC: A lightweight message authentication
code for wireless sensor network,” in 2015 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6, IEEE, 2015.

[394] M. Rezvani, “Assessment methodology for anomaly-based intrusion detection in
cloud computing,” Journal of AI and Data Mining, vol. 6, no. 2, pp. 387–397, 2018.

[395] V. Zieglmeier, S. Kacianka, T. Hutzelmann, and A. Pretschner, “A real-time re-
mote IDS testbed for connected vehicles,” in Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC 2019, Limassol, Cyprus, April 8-12, 2019
(C. Hung and G. A. Papadopoulos, eds.), pp. 1898–1905, ACM, 2019.

219

Appendices

I

A Author’s Publications

Journal Articles

Nari S. Arunraj, Robert Hable, Michael Fernandes, Karl Leidl, and Michael Heigl, Com-
parison of Supervised, Semi-supervised and Unsupervised Learning Methods in Network
Intrusion Detection System (NIDS) Application, Anwendungen und Konzepte der Wirt-
schaftsinformatik (AKWI), [S.l.], n. 6, pp. 10-19, ISSN 2296-4592, November 2017. https:
//ojs-hslu.ch/ojs302/index.php/AKWI/article/view/89.

Martin Schramm, Reiner Dojen, and Michael Heigl, A Vendor-Neutral Unified Core for
Cryptographic Operations in GF(p) and GF(2m) Based on Montgomery Arithmetic, Se-
curity and Communication Networks, vol. 2018, Article ID 4983404, June 2018, doi:
10.1155/2018/4983404.

Michael Heigl, Laurin Doerr, Nicolas Tiefnig, Dalibor Fiala, and Martin Schramm, A
resource-preserving self-regulating Uncoupled MAC algorithm to be applied in incident de-
tection, Computers & Security, vol. 85, pp. 270-287, ISSN 0167-4048, May 2019, doi:
10.1016/j.cose.2019.05.010.

Michael Heigl, Kumar Anand, Andreas Urmann, Dalibor Fiala, Martin
Schramm, and Robert Hable, On the Improvement of the Isolation Forest Algorithm for
Outlier Detection with Streaming Data, Electronics (Basel), 10(13), 1534, June 2021,
doi:10.3390/electronics10131534

Michael Heigl, Enrico Weigelt, Andreas Urmann, Dalibor Fiala, and
Martin Schramm, Exploiting the Outcome of Outlier Detection for Novel Attack Pat-
tern Recognition on Streaming Data, Electronics (Basel), 10(17), 2160, September 2021,
doi:10.3390/electronics10172160

Michael Heigl, Enrico Weigelt, Dalibor Fiala, and Martin Schramm, Unsupervised Fea-
ture Selection for Outlier Detection on Streaming Data to Enhance Network Security,
Computers & Security, revised version submitted 02 September 2021

II

https://ojs-hslu.ch/ojs302/index.php/AKWI/article/view/89
https://ojs-hslu.ch/ojs302/index.php/AKWI/article/view/89

Conference Papers

Michael Heigl, Martin Aman, Andreas Fuchs, Andreas Grzemba, Securing Industrial
Legacy System Communication Through Interconnected Embedded Plug-In Devices, Ap-
plied Research Conference, pp. 501-508, ISBN 978-3-86460-494-2, Pro BUSINESS GmbH,
Augsburg, Germany, June 2016

Michael Heigl, Martin Schramm, Laurin Doerr, Andreas Grzemba, Embedded Plug-In
Devices to Secure Industrial Network Communications, 2016 International Conference on
Applied Electronics (AE), pp. 85-88, Pilsen, Sept. 2016, doi: 10.1109/AE.2016.7577247

Martin Schramm, Reiner Dojen, Michael Heigl, Experimental Assessment of FIRO- and
GARO-based Noise Sources for Digital TRNG Designs on FPGAs, 2017 International
Conference on Applied Electronics (AE), pp. 221-226, Pilsen, Sept. 2017, doi:10.23919/
AE.2017.8053618

Laurin Doerr, Michael Heigl, Dalibor Fiala, Martin Schramm, Assessment Simulation
Model for Uncoupled Message Authentication, 2017 International Conference on Applied
Electronics (AE), pp. 45-48, Pilsen, Sept. 2017, doi: 10.23919/AE.2017.8053580

Michael Heigl, Laurin Doerr, Amar Almaini, Dalibor Fiala, Martin Schramm, Incident
Reaction Based on Intrusion Detections’ Alert Analysis, 2018 International Conference on
Applied Electronics (AE), pp. 45-50, Pilsen, Sept. 2018, doi:10.23919/AE.2018.8501419

Michael Heigl, Martin Schramm, Dalibor Fiala, A Lightweight Quantum-Safe Security
Concept for Wireless Sensor Network Communication, 2019 IEEE International Confer-
ence on Pervasive Computing and Communications Workshops (PerCom Workshops),
pp. 906-911, Kyoto, Japan, March 2019, doi:10.1109/PERCOMW.2019.8730749

Michael Heigl, Laurin Doerr, Martin Schramm, Dalibor Fiala, On the Energy Consump-
tion of Quantum-Resistant Cryptographic Implementations Suitable for Wireless Sensor
Networks, Proceedings of the 16th International Joint Conference on e-Business and
Telecommunications - Volume 2: SECRYPT, pp. 72-83, Prague, Czech Republic, July
2019, doi:10.5220/0007835600720083

Laurin Doerr, Michael Heigl, Dalibor Fiala, Martin Schramm, Comparison of Energy-
Efficient Key Management Protocols for Wireless Sensor Networks, In Proceedings of
the 2019 International Electronics Communication Conference (IECC ’19). Association
for Computing Machinery, New York, NY, USA, 21–26, Okinawa, Japan, July 2019,
doi:10.1145/3343147.3343156

III

Talks

Karl Leidl, Martin Aman, Michael Heigl, Andreas Grzemba, Intrusion Detection Sen-
soren für industrielle Netzwerke, CYBICS - Cyber Security for Industrial Control Sys-
tems, Würzburg, Germany, June 2016

Laurin Doerr, Michael Heigl, Andreas Grzemba, Christian Boiger, IT-Security-Architektur
für Next-Generation Kommunikationssysteme im Automobil, VDI/VW-Gemeinschafts-
tagung: Fahrerassistenzsysteme und automatisiertes Fahren, Wolfsburg, Germany, Novem-
ber 2016

Michael Heigl, Karl Leidl, An Approach to an Embedded Anomaly-Based IDS on the
Example of SOME/IP, 3rd Vector Testing Symposium, Stuttgart, Germany, Mai 2017

Michael Heigl, Distributed Embedded Incident Detection and Response Mechanisms, Pro-
tectIT Security Convention 2017 (ProSecCon’17), Technische Hochschule Deggendorf,
Deggendorf, Germany, July 2017

Michael Heigl, Decentralized Anomaly Detection, Tag der Forschung 2018, Technische
Hochschule Deggendorf, Deggendorf, Germany, March 2018

IV

B Contents of the Enclosed SD-Card

The enclosed SD-card contains the LATEX source
files and the final PDF versions of this thesis as well
as the four publications with regard to the four ma-
jor contributions. Furthermore, the SD-card con-
tains the programming source code of all contribu-
tions together with the resulting data. To overcome
closed source as well as system dependency issues,
all programs, data and results are also available
upon request from the authors. The structure of
the enclosed SD-card is given beside.

SD-Card of the Thesis

Manuscripts (LATEX)

01_Thesis

02_UFSSOD

03_PCB-iForest

04_SOAAPR

05_Uncoupled_MAC

06_Figure_Sources

Chapter_3_UFSSOD

Source_Code

Results

Chapter_4_PCB-iForest

Source_Code

Results

Chapter_5_SOAAPR

Source_Code

Results

Chapter_6_Uncoupled_MAC

Source_Code

Results

V

	Contents
	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	List of Equations
	Introduction
	Motivation
	Problem Statement
	Non-Applicability of Artificial Neural Networks
	Limitations of Intrusion Detection Systems
	Limitations of Alert Correlation
	Challenges of Streaming Data

	Research Objectives
	Thesis Statement and Contributions
	Organization of the Thesis

	Background
	Incident Detection
	Taxonomy of IDSs
	Aspects of Machine Learning
	Outlier Detection
	IDS Evaluation Metrics

	Incident Analysis
	Pre-Processing
	Processing
	Post-Processing

	Incident Response
	Taxonomy of Intrusion Response Systems
	Intrusion Response Representation
	Possible Response Measures

	Unsupervised Feature Selection for Outlier Detection on Streaming Data to Enhance Network Security
	Requirements Engineering and Comparison with Related Work
	Requirements with Respect to Feature Selection for Outlier Detection on Streaming Data
	Feature Selection for Streaming Data
	Feature Selection for Outlier Detection

	Unsupervised Feature Selection for Streaming Outlier Detection
	Operation Principle
	Operation Modes
	Model for Scoring and Clustering Features

	Evaluation
	Test Environment
	Data Source
	Evaluation Methodology

	Discussion of Results
	Comparison of FSDS, IBFS and UFSSOD with the Best 25% Features
	Comparison of IBFS and UFSSOD with Different Feature Sets
	Application of UFSSOD, xStream and Loda Two Hist. in a Streaming Setting

	On the Improvement of the Isolation Forest Algorithm for Outlier Detection with Streaming Data
	Related Work in Online Outlier Detection
	Requirement Specification & Validation
	Generic PCB-iForest Framework
	Drift Detection Method
	Performance Counter-Based Scoring
	Base Learner

	Experimental Evaluation
	Methodology & Settings
	Data Sources
	Evaluation Criteria

	Discussion of Results
	NDKSWIN Drift Detection
	Competitors-Based HSFS
	Multi-Disciplinary ODDS
	Security-Related UNSW-NB15

	Exploiting the Outcome of Outlier Detection for Novel Attack Pattern Recognition on Streaming Data
	Related Work for Streaming Alert Correlation and Outlier Detection
	Alert Correlation for Outlier Detection
	Streaming Alert Correlation
	Delimitation from SOAAPR

	Streaming Outlier Analysis and Attack Pattern Recognition
	Operation Principle
	Alert Generation & Preparation
	Streaming Alert Correlation & Clustering
	Signature Generation & Sharing

	Experimental Evaluation
	Methodology & Settings
	Data Source
	Evaluation Criteria

	Discussion of Results
	SOAAPR Clustering
	SOAAPR Signaturing

	A Resource-Preserving Self-Regulating Uncoupled MAC Algorithm to be Applied in Incident Detection
	Incident Detection Mechanisms
	Adaptive Intrusion Detection Systems
	Cryptographic Mechanisms for Incident Detection

	Uncoupled MAC Algorithm Improvements
	Master/Slave Negotiation
	Integration in Networked Devices
	Synchronization of MAC Phase Start
	Static Communication Mode
	IDMEF Extension

	Self-Regulation Algorithm
	Number of Packets n per MAC Phase
	Waiting Duration alpha in the Idle Phase
	Formula Verification
	Algorithm Notation

	Evaluation
	Virtualized Environment
	Attack Scenarios
	Attacker Implementation
	Evaluation Metrics

	Measurement Results
	Continuous Injection
	Stochastic Injection
	Bandwidth Low Injection
	Weak Spot Injection
	Uncoupled MAC Overhead

	Conclusion
	Summary of the Work
	Revising the Research Questions
	Future Work & Research Perspectives

	Bibliography
	Appendices
	Appendix Author's Publications
	Appendix Contents of the Enclosed SD-Card

