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Abstrakt

Tato disertaéni prace je zaméfena na studium Fucikova spektra pro diskrétni operatory. Vzhle-
dem k tomu, Ze obecné vysetfeni Fucikova spektra diskrétnich operdtoru je v dnesni dobé stéle
tézce uchopitelnou vyzvou, studium v této praci je zamérené na konkrétni operator — Dirichletiv
diskrétni operator.

Tento operator odpovidd diferen¢ni rovnici druhého fadu s Dirichletovymi okrajovymi pod-
minkami. V disertac¢ni praci je dopodrobna vysetfena odpovidajici semilinedrni 1loha, zaveden
pojem spojitého rozsiteni diskrétniho reseni tlohy a hlavné je zde uveden kompletni implicitni popis
Fucikova spektra Dirichletova diskrétniho operatoru. Na zavér prace jsou popsany t¥i typy odhadta
pro Fucikovy vétve, které umoznuji lokalizovat Fucikovy vétve i pro velky rozmér odpovidajici
matice.

Cely text disertaéni prace se opird o dva autoréiny ¢lanky (v piiloze prace) — [25], [31]. Samotny
text disertacni prace je koncipovan jako shrnuti klicovych vysledkt odkézanych ¢lanka a obsahuje
podrobné vysvétleni jednotlivych nové zavedenych konceptu pro praci s Fu¢ikovym spektrem pro
vybrany diskrétni operator.

Kli¢ova slova: Fucikovo spektrum, diferencni operdtor, Dirichletiv diskrétni operator, Cheby-
sheviv polynom druhého druhu, asymetrické nelinearity

iii






Abstract

This dissertation thesis is devoted to the study of Fucik spectrum for discrete operators. Consid-
ering the fact, that the problem of exploring Fucik spectrum for general discrete operators is still
a significant challenge, in this thesis we focus on analyses in regards of a particular operator —
Dirichlet discrete operator.

This operator corresponds to the second order difference equation with Dirichlet boundary
conditions. In the thesis, we explore corresponding semi-linear problem, we define a continuous
extension of a discrete solution and finally, we provide a complete implicit description of the
Fucik spectrum of Dirichlet discrete operator. Last but not least, three bounds for Fucik curves
are described. This allows for a localization of Fucik curves even for large size of a corresponding
matrix.

The whole text of the thesis is based on two articles of the author [25], [3I]. The main goal
is to summarise key results introduced in cited articles and to explain in detail new concepts of
working with Fucik spectrum for the chosen discrete operator.

Key words: Fucik spectrum, difference operator, Dirichlet discrete operator, Chebyshev poly-
nomial of the second kind, asymmetric nonlinearities






Zusammenfassung

Diese Dissertation widmet sich dem Studium des Fu¢ik Spektrum fiir diskrete Operatoren. An-
gesichts der Tatsache, dass das Problem der Untersuchung des Fuc¢ik Spektrums fiir allgemeine
diskrete Operatoren immer noch eine grofle Herausforderung darstellt, konzentrieren wir uns in
dieser Arbeit auf Analysen in Bezug auf einen bestimmten Operator — den diskreten Dirichlet-
Operator.

Dieser Operator entspricht der Differenzengleichung zweiter Ordnung mit Dirichlet-Randbe-
dingungen. In der Dissertation untersuchen wir ein entsprechendes semilineares Problem, definieren
eine kontinuierliche Erweiterung einer diskreten Losung und liefern schliellich eine vollstdndige
implizite Beschreibung des Fuc¢ik Spektrums des diskreten Dirichlet-Operatoren. Néchst werden
drei Bounds von Fucik Kurven beschrieben. Diese Bounds ermdéglichen eine Lokalisierung von
Fucik Kurven auch bei groflen Dimensionen einer entsprechenden Matrix.

Der gesamte Text der Dissertation basiert auf zwei Artikeln der Autorin: [25], [3I]. Das
Hauptziel besteht darin, wichtige Ergebnisse aus zitierten Artikeln zu veranschaulichen und neue
Konzepte der Arbeit mit Fucik spectrum fiir den gewéhlten diskreten Operator im Detail zu
erkléren.

Schliisselworter: Fucik Spektrum, Differenzenoperator, diskrete Dirichlet-Operator, Tsche-
byschow-Polynome zweiter Art, asymmetrische Nichtlinearitdten.

vii






Acknowledgements

I would like to express my sincere gratitude to my supervisor, doc. Ing. Gabriela Holubovéa, Ph.D.,
and to the supervisor specialist, Ing. Petr Necesal, Ph.D.

This work was supported by the Grant Agency of the Czech Republic, grants no. 13-00863S and
18-03253S.

ix






Contents

[L.1 Main definitions — Problems (P1)), (P2), (P3), (P4) and matrix A® . .. ... ...
[.2" Typical challenges while investigating the Fuéik spectrum for matriced . . . . . . .

[2_Linear problems (P1) and (P2))

2.1 The continuous extension and its first non-negative zero| . . . . . . . . . . . . . . .
2.2 Chebyshev polynomials of the second kind| . . . . . . ... .. ... ... ... ...
2.2.1 Relationship to the linear initial value problem (PI)[ . . . . . ... .. ...
2.2.2  Properties of the Chebyshev polynomials ot the second kind|. . . . . . . ..
[2.3  Properties of function W2 . . . . . . ...

[2.3.1  Relationship to the linear initial value problem (P1)| . . . . . ... ... ..
P4 Lincar boundary value problem (P2 . . . . - . . . .« o e

[3  Semi-linear initial value problem (P3) — Part ]|
3.1 Positive and negative semi-waves| . . . . . .. ... L0
3.2 Relationship between function W} and solution of a semi-linear problem (P3))| . . .
3.3 Sequences (px) and (Fg)| . . . . . . .
|4 Semi-linear initial value problem (P3) — Part II]

4.1 Length of a semi-wave| . . . . . . . ... .. L
4.2 The distance po gl . . . . . . . ..o

4.3 Bxamples| . . ...

[> Investigation of Fuéik spectrum of matrix A° — Semi-linear BVP (P4))

[5.T Description of Fudik spectrum — Theory from Part Il . . . . . .. ... ... ....
9.2 Description of Fucik spectrum — T'heory from Part II}. . . . . ... ... ... ...
b.3  Comparison of descriptions ot Fucik spectrum|. . . . . . . .. ... ... ... ...
5.4 Basic bounds of Fucik curves and their consequence| . . . . . . .. ... ...

|Appendix — Figures|

|Appendix — Published research articles of the author|

[Co-author statement|

Xi

—_
— O N -

—_

14
21
21
21
23
24
26

28
28
29
31

35
36
37
40

44
44
46
47
50
54
61
62

67

69






Chapter 1

Introduction

Svatopluk Fucik and other mathematicians studied solvability of a problem
—u"(z) = f(z, u(x)),
on some interval with various boundary conditions. Solvability of such problem with
f(,8) ~ As for s = +o0

is dependent on the fact whether A is (or is not) an eigenvalue of the corresponding operator.
Main results are due to S. Fué¢ik [I1] and E.N. Dancer [5] who considered a different asymptotic
behaviour of f, in particular

f(,8) ~ ps for s » o0, f(:,s) ~vs for s - —oc0.

Solvability of the problem can be answered using information about all pairs (i, ) € R? such that
the following problem (together with corresponding boundary conditions)

—u"(x) — put(z) +vu (x) =0

has a non-trivial solution. Traditionally, a set of all such pairs is called the Fué¢ik spectrum. For
more information, see [§].

Fuéik spectrum for discrete operators was investigated by R. Svarc (see e.g. [38], [40]). In
[40], R. Svarc considered two particular square matrices of size 4 and gave a description of their
Fuéik spectra. These matrices were chosen in such a way that their Fu¢ik spectra (even for small
matrices of size four) exhibit rather strange behaviour.

Authors G. Holubova and P. Necesal [I7] discussed similarities of structures in Fucik spectra for
continuous and discrete operators. They also suggested an algorithm for numerical reconstruction
of the Fucik spectrum for reasonably small matrices. They focused on the case of all general
real square matrices of size 2 and shown all feasible structures in their Fucik spectrum. They
also suggested that there are more than 300 qualitatively different patterns of the Fucik spectrum
even for matrices of size 3. This illustrates that the problem of finding Fucik spectra for general
matrices is a significant challenge that has not been solved yet.

Various physical phenomena are represented by continuous initial or boundary value problems.
Moreover, the theory of Fué¢ik spectrum for these problems is applied in practice for analyses of
(mechanical) systems with pronounced asymmetry / asymmetric structure. One of the typical
examples are suspension bridges — explored in [22] [9] [I5] and the book [I3] with a focus on models
with asymmetric nonlinearities. Also, asymmetric nonlinearities appear in the study of competing
systems of species with large interactions in biology (see [4, [6l 27]) and the Fucik spectrum of the
Dirichlet Laplacian (the Laplace operator u — —Aw with zero Dirichlet boundary conditions) is
needed (see [6] for details).
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Hence we contemplate that the exploration of discrete problems might be useful for practical
applications. Sometimes, even though the problem is naturally discrete, researchers tend to make
a simplification and look at this as a continuous problem (such examples can be found e.g. in the
area of mathematical finance). On the other hand, sometimes, due to complexity of the physical
phenomena, researchers tend to use a discretization of the studied continuous problem. This
way, one might obtain superior analytical results or a more suitable numerical solution. Thus,
we conclude that discrete problems might be relevant for both continuous and discreet natural
phenomena. We note that sometimes the discrete problem can be solved in a simpler way, but
quite often the discrete structure of such problems can lead to specific difficulties which pose
further challenges.

We are going to make a brief comparison of the Fuéik spectrum for continuous and discrete
operators. We will illustrate that discrete domain brings extra challenges in finding the Fucik spec-
trum and we will solve several challenges for a particular problem within this thesis and in the
referenced articles of the author.

Let us also mention some other articles where the structure of Fucik spectrum is studied —
1, 2, 13, [7, [0, (16, 19, 20, 21, 23, 28 30, 34 35, 36].

In the following paragraph, we will recall a well known result for the Fucik spectrum of the
continuous second order boundary value problem.

The Fucik spectrum 3 for the continuous second order boundary value problem with Dirichlet
boundary conditions, i.e.

{ () + aut(z) — fu=(x) =0, =z € (0,1), @
u(0) = u(l) =0,
is defined as the set

3= {(a, B) € R?: the problem has a nontrivial solution u} .

The description of the set 3 is well known. In fact, as shown in [I1], [12], the Fuéik spectrum 3
consists of two lines C§ : (o — 7%)(B8 — 72) = 0 and countably many curves C# given by (j € N)

s Jm T e Ut DT T Jr G4 m
P Ve VB T Ve B NCERE]

On the other hand, investigating the Fucik spectrum for the corresponding discrete problem is
a much more elaborate process to which we will devote remaining parts of the thesis.

1, Cs;: =1

1.1 Main definitions — Problems (P1]), (P2), (P3)), (P4) and
matrix AP

In this section, we will introduce main problems of our interest and several concepts associated
with the studied problems.

Studied problems:

i. linear initial value problem

A%u(k — 1) + (k) =0, keZ,
(P1)
U(O) = OQ, u(l) = Cl,
ii. linear boundary value problem
A%u(k —1) + (k) =0, keT,
(P2)
u(0) =u(n+1) =0,
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iii. semi-linear initial value problem

{ A%u(k —1) +aut (k) — pu= (k) =0, keZ,

(P3)
u(0) =0, u(l) = Cy,
iv. semi-linear boundary value problem
Au(k—1)+aut(k)—Bu(k)=0, k€T,
(k=1) (k) (k) P4
u(0) =u(n+1) =0,

where n e Nyn > 2, T ={1,...,n}, T={0,....n+1}, u: T — R, ut,u" stand for the
positive and negative parts of u, i.e. u™ (k) := max{+u(k),0}, v (k) := max{—u(k),0} and
a,B,A € R. In case of problem , Co,C1 € R are constants such that CZ + C # 0. In
case of problem (P3), C; € R\ {0}. The second order forward difference operator is given by
A%u(k —1) == u(k — 1) — 2u(k) + u(k + 1).

In case of problem (P3)), we consider (a, ) € D = ((0,4) x (0,400)) U ((0,+00) x (0,4)) for
Part I (Chapter [3) and (o, 8) € D = (0,4) x (0, 400) for Part II (Chapter [4).

1. Sign property of a vector

Let us define a sign property of a vector u = [u1, ua, ..., u,|’ of size n as

signu = [sign(uy), sign(uz), .. . ,sign(u, )]’

and simplify the notation. For z € R

1 for z > 0, + for z >0,
instead of sign(z) =4¢ —1 forz <0, we denote sign(x) — forz <0,
0 for x =0, 0 forz=0.

2. Positive and negative part of a vector

For vector u of size n, n € N, u = [u(1),...,u(n)]T, we define its positive part ut :=
[

[ut(1),...,ut(n)]T, and its negative part u= := [u~(1),...,u"(n)]T (see Figure[L.1).
u2 u2 u2 u2
u=ut u | u- A -
ut =0 ut
ul IT_ u1 ul = ul
u =0
u u

Figure 1.1: Illustration of positive u* (red) and negative u~ (blue) part of vector u = [uy, ua]”.
In this particular case, we assume n = 2.

3. The Fucik spectrum of a matrix

The Fucik spectrum of a real square matrix B of size n x n, n € N, n > 2, is the set:

¥ (B) = {(a, 8) € R?: the problem Bu = au’ — fu~ has a non-trivial solution u} .
(1.2)

The pair (a, 8) € £(B) is called the Fuéik eigenpair and the non-trivial solution u is called
the Fucik eigenvector for the matrix B.
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4. The Dirichlet matrix
Matrix AP is called the Dirichlet matrix and will be used throughout the thesis:
2 -1
-1 2 -1
AD: '.. '.- '.. . (13)
-1 2 -1
-1 2

5. Fuéik curves

For Fuéik spectrum Y (AP), where Dirichlet matrix AP is of size n x n (we are going to see
the relationship between matrix AP and semi-linear boundary value problem further in
the text), we define Fucik curves C;, C;, I =0,...,n — 1 as (the term of generalized zero is
defined in Definition [5)

Cf :={(a,8) € R?: the problem (P4) has a non-trivial solution u
with exactly I generalized zeros on T and u(1) > 0},

C; :={(o,B) € R?: the problem ([P4) has a non-trivial solution u
with exactly [ generalized zeros on T and u(1) < 0},

which we jointly denote by the following simplified notation:

Cti=Cr UG

1.2 Typical challenges while investigating the Fucik spec-
trum for matrices

Having in mind that investigating the Fucik spetrum for general matrices is at this time unsolved
as far as we know, we specify a particular matrix which comes from the discretization of the
continuous problem (which has also practical applications, see [25] and [31]). We consider
the following discrete problem with Dirichlet boundary conditions (P4))

A%u(k —1) + aut (k) — fu=(k) =0, keT,
{ u(0) =u(n+1) =0,

where n € N, n > 2 and «, 8 € R.
Equivalently, the problem (P4)) can be rephrased using a matrix notation

APu =aqut — fu,

where matrix AP is the Dirichlet matrix and u = [u(1),...,u(n)]T,ut = [u*(1),...,ut(n)]7,
u =[u (1),...,u"(n)]".

In particular, studying the set of all pairs (a,3) € R? such that the problem has a
non-trivial solution u, is equivalent to the investigation of the set X (AP)

by (AD) = {(a, ) € R? : the problem APu = au™ — fu™ has a non-trivial solution u} ,

and similarly to the general notation within this thesis, ¥(AP) is called the Fucik spectrum of
matrix AP. To find the set ¥ (AP) will be the main purpose of our investigation.

Let us point out that Fuéik spectrum is symmetric with respect to the line a = , i.e. («, ) €
Y(AP) with Fulik eigenvector v if and only if (8,«) € 3(AP) with Fudik eigenvector —v (see
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Figure 1.2: Inadmissible areas (defined in [I8]) for the Fuéik spectrum X (AP) (left, n = 5) and
the particular Fuéik curves Ci (black curves) of the Fu¢ik spectrum ¥ (AP) (right, n = 5).

Figures and . Before diving into particular challenges, let us recall some known results
about X(AP) (for more details, see [25] and [31]). The eigenvalues of AP are of the form
4+ 1)m .
X = gginz U DT —0,....n—1
¥ sin” 5 RS J N O
and )\? € (0,4). Note that the eigenvalues )\? of matrix AP belong to the Fuéik spectrum in the
sense (A%, A7) € X(AP), i.e. (A3, \}) is the Fucik eigenpair for matrix AP. For the Fucik spectrum

of AP we have
n—1

o (A% = e,

where Cf and C] are Fucik curves (see Section [L.1] - point [)).

In [I8], authors were exploring inadmissible areas of Fuéik spectrum (i.e. Fuék spectrum has
empty intersection with these areas in («, §) plane — see [I8] for proper definition of an inadmissible
area). Since A} is a principal eigenvalue of AP it implies that

{(a,8) eR*: (= AJ) (B—A}) <0} NX(AP) =9,

i.e. both shifted quadrants are inadmissible areas for the Fu¢ik spectrum 3 (AP). For illustration,
see Figure where we can see inadmissible areas for the Fu¢ik spectrum X (AP). Thus, it is
enough to investigate the Fucik spectrum ¥ (AP) only on the set D = ((0,4) x (0, +00))U((0, +00) x
(0,4)).

Also, it is enough to investigate only all Fuéik curves C; (I =1,...,n — 1), since

G ={(a,f)eD: (B,a) €Ci}.

Authors Ma, Xu and Gao introduced the matching-extension method for solutions of the
Fucik spectrum problem for matrix AP in [26]. P. Stehlik studied the qualitative properties of the
first non-trivial Fu¢ik curve of the matrix AP in [37]. Although this topic was studied by several
authors, corresponding analytic description was not introduced prior to author’s articles [25] and
[31] (as far as we know).

Before looking into individual results, we contemplate what possible challenges can appear
while investigating the Fuéik spectrum for matrix AP, using illustrative examples. In Example
we will investigate the Fu¢ik spectrum of matrix AP of size n = 2.
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Example 1. Let n = 2, thus let us deal with the Dirichlet matrix in the form
2 -1
D _
A” = [ 2 ] |
Eigenvalues and corresponding eigenvectors are of the form
M =1, vo= (1,17, XN=3 v;=][1,-1T.

All possible sign properties for Fucik eigenvectors are

[+v +]Ta [+7 _]Tv [+’ O]Tv [_7 +]T’ [_v _]Ta [_7 0]T7 [07 +]T7 [07 _]T’ [Oa O]T'

Similar to the case of eigenvalue problems, the sign properties [+, +]7 and [—, —]7 lead to the
Fuéik eigenvectors where we have opposite signs of the entries. The same works for couples [+, —]T
and [—, +]7, for [+, 0] and [—, 0] and for [0, +]7 and [0, —]7. Thus, it is enough to consider only
[+v +]T7 [+a _}Tv H’a O]Ta [07 +]T and [Oa O]T'

1.
2.

Case [0,0]7: Such case cannot happen since the Fuéik eigenvector cannot be trivial.

Case [0,+]7: The first entry of the Fuéik eigenvector is zero, thus the solution of problem
(P4) is zero in two consequential points (due to the zero boundary conditions). The difference
equation in (P4)) can be written as

u(k +1) = 2u(k) —u(k — 1) — aut (k) + pu~ (k),

thus if the solution u is zero in two consequential points, it has to be zero everywhere. That
is a contradiction with the sign property [0, +]7.

. Case [+,0]T: There is the same issue as in the previous case.

Case [+, +]T: In this case the Fu¢ik eigenvector does not change sign thus it is equivalent
to the eigenvalue problem for AJ. We have (a,3) € Z(AP) : « = A\) = 1, 8 € R with
Fuéik eigenvector [1,1]7 and (o, 8) € X(AP) : B = A3 =1, a € R with Fuéik eigenvector
[~1,—1]T. The Fuéik curves C# are trivial ones

Co={(a,B): a=X}, BeR}, C,

{(a,ﬁ): B=Ap, aeR}.

. Case [+, —]T: From the sign property of vector u = [u1,uz]? we have u* = [u;,0]7 and

u™ = [0, —uz]T, where
ug; > 0 and uy < 0. (1.4)

We can rewrite the problem APu = au™ — fu~ as

R R R A ”

Matrix equation in ([1.5]) is equivalent to

[zjla 2‘_15”5; } _ [ 8] - det[ e, ] —o. (L.6)
The determinant in is zero if
2-a)2-p)—1=0. (1.7)

This leads to

T
1 1
—0 u= |- 1 .
P 2—a {2—04’ }
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Let us go back to the sign property in (1.4). It is satisfied when

1
— >0 & a>2.
2—«

If we would consider sign property signu = [—, +]7 we would get the same result, thus the
Fucik curves Cy are

CICI{(a,ﬂ): B:2fﬁ, a>2}.

While going through all possible sign properties for the Fucik eigenvectors we were able to find
complete description of the Fuéik spectrum of matrix AP of size n = 2 as

S(AP) = CctuCE,

where C} and Cf are given as above. See Figure [I.3] for illustration of this example.

1
B \ B B
] D
1 1 4+ Y(A
¢ \ ¢ ¢i ¢ \ei ™)
\
. 34
~
2+ 2+ 2+ }
-1 ==<f.. Co
NB=2-— L “NB=—9_ 1
\\ﬁ_2 2—« \\/3_2 22—«
\ \ Il Il Il Il
+—t t +—+ t t t + t
|2 4 @ 2 4 « -1 2 3 4 «
1 1 -1+

Figure 1.3: Graph of the function 8 = 2 — 52— (left), Fuéik curves C; (black) as part of the graph

2—«

of the function 8 =2 — ;1 (middle) and the Fu¢ik spectrum $(AP) of matrix AP for n = 2.

«

In the following example we will consider n = 6, to illustrate a dimension complexity of the
problem.

Example 2. In this example we will consider matrix AP of size n = 6. We will show all the
possible sign properties for the Fuc¢ik eigenvectors. It is enough to investigate sign properties with
positive first entries (since the Fuéik spectrum is symmetric with respect to the line & = § and
the Fucik eigenvectors have opposite signs). Also, for the sake of simplicity, we can investigate
sign properties sign(u(k)) = 0 and sign(u(k)) = 1 (for some k € {1,2,...,n}) together. After this
simplification, we need to investigate 27! different sign properties.

All sign properties which we need to investigate are written in Table Each column has 6
entries and represents one sign property for vector. Those sign properties which are in blue color
are sign properties which at least one of the Fuéik eigenvectors has (in this thesis it will be shown
how to select the right ones).

To illustrate a curse of dimensionality of the studied problems, let us compare two cases of
matrix AP dimension: n; = 2 and ny = 6. Within Example [1| we have shown that we need to
investigate only 2 cases or more generally 2”1 ~! cases. However, in this example we are solving
2n2—1 = 25 — 32 different sign properties, each leads towards investigation of a different eigenvalue
/ eigenvector problem.

In particular, let us take one of the sign properties: [+, +,+, —, +, —]7. For this sign property
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o 4+ o+ o+ o+
T e S e S
+ + + + + + + + - -
e+ = = = +
+ + - - + + - - 4+ 4+
+ -+ -+ -+ -+ -
+ 4+ + + + + + + 4+ o+
+ + + + + + + + - -
e T S
e e e
+ -+ -+ - + - + -

+ o+ o+ 4+ 4
+ + + + + +
+ + - -

+ -+ -+ -
+ + + + + +
+ o+ - = - =
+ -+ - -

Table 1.1:  Considered sign properties for n = 6. The blue sign properties are sign properties

satisfied by some Fucik eigenvectors.

we need to solve

2 -1 0 0 0 O Uy
-1 2 -1 0 0 0 U
o -1 2 -1 0 O us
o 0 -1 2 -1 0 Uy
o o0 0 -1 2 -1 Us
o o 0 0 -1 2 ug |
This leads to the determinant equation
2 -1 0 0 0 0 ]
-1 2 -1 0 0 O
D _ 0o -1 2 -1 0 O
det(A°—A) = det 0 0 -1 2 -1 o0
o o 0 -1 2 -1
o o o0 0 -1 2 |
ie.
2—a -1 0 0
-1 2—-a -1 0
0 -1 2—-a -1
det 0 -1 2-8
0 0 0 -1
0 0 0 0

Since we are dealing with tridiagonal matrix, we can
determinant equation is a polynomial equation

Ul 0
ug 0

o us o 0

- 0 6 —Uy
Uus 0
0 —Ug
a 0 0 0 0 O
0 o 0O 0 0 O
0 0 o O O O

|0 0 0 B 0 0 =0, (18)
0 0 0 0 o O
00 0 0 0 B

0 0

0 0

0 0

1 0 =0.

2 —« -1

-1 2-8

easily calculate its determinant and the

atp? — 4048 + 4ot — 8a3 5% + 29038 — 2603 + 220282 — 70028 + 530? — 24052

+6503 — 38a + 882 — 188 + 7 = 0.

By comparing this with (for n = 2), we can see that the dimension of the problem brings
a lot of difficulties. We can find two values of 3 (dependent of the value of « as it was done in
Example|l)) for which we can derive that neither one of them has a corresponding eigenvector with
the sign property [+, +,+, —, +, —]7. That means that there does not exist Fuéik eigenvector for

matrix AP of size n = 6 with such sign property.

Since this problem depends highly on the dimension of the matrix AP (we are dealing with
2n~1 different eigenvalue / eigenvector problems based on the number of possible sign properties),



1.2 TYPICAL CHALLENGES WHILE INVESTIGATING THE FUCIK SPECTRUM FOR MATRICES

our computational possibilities might be limiting for practical applications using the illustrated
approach EL

Let us summarize some of the challenges which appear in the investigation of the Fucik spec-
trum L (AP) of matrix AP of size n:

o Number of possible sign properties is 2"~! (after the simplification which was done in Ex-

ample .
o Only some of them are sign properties satisfied by Fucik eigenvectors of Y(AP).

e We note that for a general matrix, one might struggle with computation of the matrix
determinant. Whereas for the Dirichlet matrix, det(A® — A) (see (1.8 in Example [2)) can
be calculated recurrently (due to having a tridiagonal symmetric matrix).

o For each sign property we need to verify which parts (if any) of the solution (curve) of
det(AP — A) = 0 are actually in the Fulik spectrum X (AP).

On Figure we can see the Fuéik spectrum Y (AP) of size n = 9. In this thesis, we will
introduce how to deal with the curse of dimensionality and other challenges mentioned above.

Figure 1.4:  The Fucik spectrum X (AP) of the Dirichlet matrix AP of size n = 9 and its
Fucik curves Cf, 1 =0,1,...,8.

1E.g. in a relatively reasonable time we might be able to find (numerically) Fuéik spectrum up to n = 16.



1.3 STRUCTURE OF THE THESIS

s
/ 5 «

Figure 1.5: The Fulik spectrum X (AP) of the Dirichlet matrix AP of size n = 6.

1.3 Structure of the thesis

First of all, we would like to note that this thesis is mainly based on research articles of the author:
[25] and [3I]. The aim of the thesis is not to provide in-depth technical details for all newly
introduced concepts in [25] and [31], but rather to provide a comprehensive overview, illustrate
the concepts on particular examples and to explain connections between individual concepts.

We note that in order to provide such comprehensive text, we also extend the results in
aforementioned articles by supporting lemmas / theorems, new illustrations / examples and other
new results. However, for most of the proofs of original theorems and lemmas we refer the reader
to the articles which are attached to the thesis. If there is no citation (excluding citation to
[25] and [31] — articles of the author) in the definitions, lemmas and theorems, then the results
presented there are original and (as far as we know) not published anywhere else. We note that
results in Section [5.5| are completely new and not published anywhere yet. The thesis is organized
as follows.

Chapter [I] provides an introduction to the problems and showcases possible issues which may
appear while investigating discrete Fucik spectrum. In the following chapters, we are going to
investigate in detail four problems, introduced in Section [I.1

i. linear initial value problem ;
ii. linear boundary value problem ;
iii. semi-linear initial value problem ;
iv. semi-linear boundary value problem .

Chapter [2|is devoted to the study of linear problems and . We are going to define one
of the most important tool-kits in this thesis — the continuous extension of respective solutions.
Exploring such continuous extension will allow us to explore nodal properties of the solution.
A generalization of this result will be very valuable in the analysis of semi-linear problems. Let us
note that even though we are spending a substantial part of this thesis (and likewise a substantial

10
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part of research articles [25] and [31]) studying simple linear problems and (P2), the results
in this chapter are new and (as far as we know) not published anywhere. We need to construct a
robust theory for the linear case in order to explore semi-linear case.

In Chapters |3| and 4] we are solving and investigating semi-linear initial value problem .
Generalizing the theory from the linear case (such as continuous extension) will allow us to “an-
chor” positive and negative semi-waves. This will lead to the detailed investigation of zeros of
a continuous extension of the solution. Chapter [3|leverages the main results from [25] and Chap-
ter [4] references results from [31].

Finally, Chapter [5|is devoted to the investigation of the Fu¢ik spectrum of matrix AP (i.e. the
corresponding semi-linear boundary value problem ) — which is our main goal in this thesis
(and in the research articles [25] and [31]). Several descriptions of the Fu¢ik spectrum (analytical
and implicit) are introduced. As far as we know, this is the first time anyone was able to find an
analytical (and implicit) description of Fuéik spectrum of matrix (excluding trivial cases) for any
dimension n. In Chapter [5 we also introduce bounds of the Fuéik spectrum. Such bounds can be
used for efficient numerical estimations as illustrated therein.

Last but not least, we provide published articles [25] and [31]. Introduction sections in both
articles describe historical references related to the Fu¢ik spectrum and also our motivation for
studying this topic in detail (including more details about practical applications).

1.4 Abstracts of published research articles of the author

Research articles in impacted journals:

Abstract of [25]:

I. Looseova (Sobotkova), P. Necesal, The Fuéik spectrum of the discrete Dirichlet operator, Linear
Algebra Appl. 553 (2018) 58-103

In this paper, we deal with the discrete Dirichlet operator of the second order and we investigate
its Fucik spectrum, which consists of a finite number of algebraic curves. For each non-trivial
Fuc¢ik curve, we are able to detect a finite number of its points, which are given explicitely.
We provide the exact implicit description of all non-trivial Fu¢ik curves in terms of Chebyshev
polynomials of the second kind. Moreover, for each non-trivial Fu¢ik curve, we give several
different implicit descriptions, which differ in the level of depth of used nested functions. Our
approach is based on the Mobius transformation and on the appropriate continuous extension
of solutions of the discrete problem. Let us note that all presented descriptions of Fucik curves
have the form of necessary and sufficient conditions. Finally, our approach can be also directly
used in the case of difference operators of the second order with other local boundary conditions.

This article was published in Linear Algebra and Its Applications (Elsevier). For 2020, it has
impact factor 1.401, cite score 2.1 and it belongs to Q1 in “Algebra and Number Theory” and
“Discrete Mathematics and Combinatorics” fields of Mathematics.

11
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Abstract of [31]:

P. Necesal, 1. Sobotkova, Localization of Fu¢ik curves for the second order discrete Dirichlet op-
erator, Bulletin des Sciences Mathématiques 171 (2021) 103014

In this paper, we deal with the second order difference equation with asymmetric nonlinearities on
the integer lattice and we investigate the distribution of zeros of continuous extensions of positive
semi-waves. The distance between two consecutive zeros of two different positive semi-waves
depends not only on the parameters of the problem but also on the position of one of these zeros
with respect to the integer lattice. We provide an explicit formula for this distance, which allows
us to obtain a new simple implicit description of all non-trivial Fu¢ik curves for the discrete
Dirichlet operator. Moreover, for fixed parameters of the problem, we show that this distance
is bounded and attains its global extrema that are explicitly described in terms of Chebyshev
polynomials of the second kind. Finally, for each non-trivial Fu¢ik curve, we provide suitable
bounds by two curves with a simple description similar to the description of the first non-trivial
Fucik curve.

This article was published in Bulletin des Sciences Mathématiques (Elsevier). For 2020, it has
impact factor 1.118, cite score 1.6 and it belongs to Q1 in “Mathematics (miscellaneous)” field.

Other activities:

Abstract of [24] in Proceedings:

I. Looseova (Sobotkova), Conjecture on Fuéik curve asymptotes for a particular discrete operator,
in: S. Pinelas, T. Caraballo, P. Kloeden, J. R. Graef (eds.), Differential and Difference Equations
with Applications, Springer International Publishing, Cham, 2018

In this paper we study properties of the Neumann discrete problem. We investigate so called polar
Pareto spectrum of a specific matrix which represents the Neumann discrete operator. There is a
known relation between polar Pareto spectrum of any discrete operator and its Fucik spectrum.
We also state a conjecture about asymptotes of Fucik curves with respect to the matrix and we
illustrate a variety of polar Pareto eigenvectors corresponding to a fixed polar Pareto eigenvalue.

Conferences:

1.

Equadiff 13, Praha, 26.-30.8.2013, The asymptotes of Fucik curves for asymmetric difference
operator

. XXIX Seminar in Differential Equations, Moninec, 14.-18.4.2014, Properties of the Fucik spec-

trum for difference operator

. Setkani studentt matematické analyzy a diferencidlnich rovnic, Praha 2016, The Fucik spec-

trum of the Neumann discrete operator

. XXX Seminar in Differential Equations, Ostrov u Tisé, 30. 5. — 3. 6. 2016, The Fucik spec-

trum of the second order discrete operators

. International Conference on Differential & Difference Equations and Applications 2017,

Amadora, Portugal, 5. 6. — 9. 6. 2017, The Fuéik spectrum of the discrete Dirichlet
operator
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Chapter 2

Linear problems (P1) and (P2)

Let us consider the linear initial value problem (P1))

A2u(k — 1)+ (k) =0, keZ,
u(0) = Co, u(1) = Cy,

where A € R and Cy, C; € R are constants such that CZ + C% # 0.

This problem is the easiest one to solve (considering all problems , , and )
Yet, a complete understanding of how one can get the solution and what are the properties of such
a solution, leads to valuable knowledge and tools for further study of more difficult problems such
as linear boundary value problem , semi-linear initial value problem and even semi-linear
boundary value problem .

Y = wx

Figure 2.1: The graph of wy as a function of .

The following lemma is used to find a solution of linear initial value problem (P1|) which will
be also utilized later on for more complex problems.

Lemma 3. ([25], Lemma 1, p. 66)
For given A € R and Cy,Cy € R, the linear initial value problem (P1|) has a unique solution of
the form

u(k) = CoF*(1 — k) + CLF* k), keZ,

where the function F* : R — R is defined as

sinh(wxt)/ sinh wy for A <0,
t for A=0, arcosh % for A <0,
FA(t) = sin(wyt)/ sinwy for A€ (0,4), wy:=< arccos 252 for A € (0,4),
—t cos(mt) for A =4, arcosh 252 for A > 4.

— cos(t) sinh(wyt)/sinhwy  for A > 4,

13



2.1 THE CONTINUOUS EXTENSION AND ITS FIRST NON-NEGATIVE ZERO

2.1 The continuous extension and its first non-negative zero
For the solution u of the discrete problem (P1)), let us define its continuous extension u¢ on R as
ut(t) := CoFM1 —t) + C1FMt), teR.

The continuous extension u¢ builds on Lemma [3] but this time we extend the variable to the whole
real axis. Continuous extension is the main tool which we will use while investigating properties
of solution w of initial value problem . On Figures (2.2} and we can see continuous
extensions u° of solutions w of initial value problem (P1]) for four different values of A (solution
has a different form based on the value of A — see Lemma [3|in which we distinguish between A < 0,
A=0,A€(0,4), A\=4 and XA > 4). And on the Figure we can see which role the length /-

has with regards to the continuous extension u° of a solution u for special case when X € (0,4).

/E;TM\
5 6 k

Figure 2.2: Continuous extension u° of solution u of the initial value problem (P1)) for A € (0,4),
A = 1.3 and the first non-negative zero t; of u®; ¢ = g—; (defined in Definition .

y = u(k)
\/\‘\ _
g g k
wx

Figure 2.3: Continuous extension u¢ of solution u of the initial value problem (P1)) for A € (0,4),
A = 1.3 and meaning of value u% as the length of continuous extension’s “half-wave”.

(h:%[l) y:uc(k)
//\Cl ———————————— /\ 3/\\ /“\
- N T a7 1 2\/ | \j/ 6\ k

Co

Figure 2.4: Continuous extension u° of solution u of the initial value problem (P1f) for A € (0,4),
A = 3.9 and the first non-negative zero ¢; of u°.

One of the properties which we are interested in is first non-negative zero of the continuous
extension u¢ of solution u of the initial value problem (P1f). First of all, we define the bi-infinite
sequence (g )rez of ratios of values of u in two consecutive integers:

14



2.1 THE CONTINUOUS EXTENSION AND ITS FIRST NON-NEGATIVE ZERO

(VIR

i N= u (k)
1 3 9 13
N I L e s | 2/

,,,,,,,, o 2 3\4.1/51716 k

ol
QE <

-1

-

Figure 2.5: Continuous extension u¢ of solution u of the initial value problem (P1]) for A > 4,

A = 4.2 and the determining zero point £ of u¢ (the concept of determining zero point ¢ is explained
in Remark @

Figure 2.6: Continuous extension u¢ of solution u of the initial value problem (P1]) for A < 0,
A = —0.2 and the determining zero point ¢ of u® (the concept of determining zero point ¢ is
explained in Remark @

Definition 4. ([25], p. 67)
Let us define the sequence (gx)rez as a mapping from Z to R* := R U {oco} (the one-point
compactification of R) as

u(k)

—_ ke Z.
u(k —1)’ <

qk =
The sequence (g ) is defined correctly since value of u in two consecutive integers cannot be
zero. If u(0) = Cy =0, then ¢; = g—; = % = oo independent of the sign of Cy. Sequence (gx) will
be very important in the investigation of initial value problems and the properties of the solution.
In the following text, we are not going to focus on the values of u themselves but on these ratios
(gx). Using such approach will allow us to study the problem in detail, find zeros of solution u
and describe any term of such sequence (gx) (all will be explained later in the text).
Let us also define a generalized zero of the solution of the discrete problem (for the original
definition of a generalized zero see [14]).

Definition 5. Solution u of the discrete problem (P1]) has a generalized zero at k € Z if
u(k)=0 or wu(k)u(k—1)<O0.

From the definition of (gi) we have that u has a generalized zero at k € Z if and only if ¢ <0
and gy # 00.

Remark 6. We can distinguish between three different cases dependent on the value of A and
find the number of generalized zeros — see Lemma [7} For A < 0, if there exists a generalized zero
(conditions when such generalized zero exists are in the lemma), we denote the corresponding zero
point of the continuous extension as the determining zero ¢. Similarly, in the case of A\ > 4, there
also might exist a determining zero ¢ (see lemma for details). In general, we can say that the
determining zero point # is a zero point of u¢ (and it does not have to always exist). For A < 0,
the solution has at most one zero point (compare to other cases), thus the continuous extension
changes sign at most once (at the determining zero) — see Figure For A > 4, the continuous

15



2.1 THE CONTINUOUS EXTENSION AND ITS FIRST NON-NEGATIVE ZERO

extension has infinitely many zero points, but one of them stands out — the determining zero point
(if it exists). Such solution changes sign at every integer; except for two integers which are defined
as ki = |t] and ky = [f], thus we have sign(u(k;)) = sign(u(ks)) (for illustration see Figure .
For X € (0,4), the determining zero always exists and it is the same as the first non-negative zero
of a continuous extension u¢ (we will explain this in the text following Definition .

Lemma 7. The number of generalized zeros of solution u of linear initial value problem (P1)) is:

1. For A <0, the solution u of (P1|) has no generalized zero if g1 = g—; € [e7¥*, ¥} and has
exactly one generalized zero for q1 ¢ [e”“*,e¥*].

2. For A > 4, the solution u of (P1) has infinitely many generalized zeros. For continuous
extension u®, we distinguish between zero points t* = % +k, k € Z and between determining
zero point t which exists if ¢ = % ¢ [—er, —e WA,

3. For X € (0,4), the solution u of (P1l) has infinitely many generalized zeros. In this case,
0 < wy <7 and the continuous extension u® s i—’;—periodic Sfunction.

Proof.  (a) For A = 0, we have wy = 0 and u®(t) = Cy + t(Cy — Cp). Thus u° is a linear function
and has no generalized zero if C; = Cy (i.e. ¢ = 1), and one generalized zero if ¢; # 1.

(b) For A < 0 the situation is as following. The continuous extension u° can be written as

ws(t) = (%—M) (cosh(wyt) + sinh(wst))

2sinh wy

+ (% + w) (cosh(wxt) — sinh(wxt))

2sinh wy

= Cpcosh(wpt) — %‘g;a sinh(wyt).

Such function has no zero points if and only if

Co coshwy — C1

. 2.1
sinh wy (2.1)

|Co Z’

For Cy > 0 the inequality in is satisfied if
Cy < Cp(coshwy +sinhwy) = Chey A Cp(coshwy —sinhwy) = Che™> < O,
ie. e7r < g <e¥r. For Cy < 0 we will get the same condition.
(c¢) For A =4, we have wy = 0 and
u®(t) = —Cocos (m(1 —t))(1 —t) — Cy cos(mt)t = cos(mt)(Co + t(—Cy — Cp)).

Such function has zero points if cos(wt) = 0 or if Cp+t(—C1 —Cp) = 0. First condition gives
us infinitely many zero points t* = % + k, k € Z. Second condition leads to an existence of
determining zero point #. Determining zero point ¢ does not exist if Cy = —C}.

(d) For A > 4, the continuous extension u¢ can be written in the form

—Cycoshwy — Cy
sinh wy

u®(t) = cos(mt) (C’O cosh(wxt) + sinh(wﬂ)) .

Such function has infinitely many zero points if cos(nt) = 0. Determining zero point does

not exist if

—Cpcoshwy — Cy
sinh wy

|Col Z'

Such inequality is satisfied if —e§ < ¢1 < A—e*‘*’*. See Figure for zero points t* =
% + k, k € Z and for determining zero point t.

16
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Figure 2.7: The graph of T as a function of ¢, case A € (0,4).

(e) For X\ € (0,4), the continuous extension u can be written as

Cocoswy — C4

u®(t) = Cpcos(wyt) — sin(wyt),

sinwy
which is a sum of two Z—:—periodic functions and has infinitely many zeros.
We note that @ — @ prove assertion |1} in the lemma, - @ are connected to assertion
and finally @ is a proof of assertion |2} of the lemma.
O

Furthermore, we define function 7* which gives us an answer to our question about the first
non-negative zero of continuous extension u° of solution u to . See Figures . E 2.8| and [2.9 -
for graphs of T*. In [25], function T* is defined only for A € (0 ,4) (see [25], Definition 2, p. 68)
but we can define function 7* for A € R and use such definition for finding the first non-negative
zero of continuous extension u¢ (and the determining zero ).

Definition 8. For )\ € R, let us define the function 77 : R* — R, R* := RU {0}, as

R* \ [e™%>, e¥*] for A <0,
Dom(T?) := R* for A € (0,4),
R*\ [—e¥*, —e ] for A >4,
TMoo) = 0,
L arcoth (%) for A <0,
N sinh wy
1
S for A =0,
A - 1 coswy—q
Tq) = o arccot (ﬁ) for A € (0,4),
1 _
Trg for A = 4,
L arcoth (COShhM) for A > 4.
wx sSinhn wy

In this thesis, we are going to use that inverse cotangent (arccotangent) has the usual principal
values, thus it is defined for all real numbers and its range is interval (0, ).

Let us explain the role the function T has for the continuous extension u¢ of solution u of
the initial value problem . We denote ¢; the first non-negative zero of u¢ (if it exits). We
will show the relationship between ¢; and ¢ (the determining zero) for different values of \. Let
us note that u¢(f) = 0 and £ = T*(q;) = TA(%) (if it exists) (details in the text below).
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2.1 THE CONTINUOUS EXTENSION AND ITS FIRST NON-NEGATIVE ZERO

Figure 2.8: The graph of T* as a function of ¢, case A < 0 (A = —1, left) and A > 4 (\ = 4.3,
right).

Sh A=0001
A=17
y=T*(q) ASS6
1 X = 3.999
,,,,,,,,,,,,,,, 1
‘ 2
1 0 q

Figure 2.9: Graphs of T for A € {0.001,1.7,3.6,3.999}.

Firstly, let us summarise. Let u be a solution of (P1]) and u€ its continuous extension. Then
we have:

1.

For A < 0 the continuous extension u¢ has exactly one zero T*(q;) if g1 € Dom(7*) and no
zero if ¢; ¢ Dom(TH).

. For A > 4 the continuous extension u° has infinitely many zeros k+%, k € Z. The determining

zero T*(qy) exists if and only if ¢; € Dom(T?).

. For X € (0,4) the continuous extension u¢ has infinitely many zeros and the first non-negative

zero is T*(qy).

Let A = 0. In this case we will distinguish between Cy = 0 and Cy # 0.

(a) If Cy = 0, then u¢(t) = Cit and t; = 0, ¢ = 0o. And so0, t = T*(q1) = T*(00) =0 = t;.

(b) If Cy # 0, we have Cy(1 —£) + C1f = 0. From Lemma [7| we have that f exists exactly one

Let A € (0,4). In this case, 0 < wy < 7, the continuous extension u° is

for g1 € R*\ {1} and does not exist otherwise. Thus for C; # C we have

1 1

1*%_1—%

= = T/\(CI1)~

Because of the fact, that £ can be negative, we have t; # # in general and the first non-
negative zero point ¢; does not have to exist.

2m

-periodic function
WX

and all zeros of u® are ty, =t + (k— 1), k € Z.

(a) If Cy = 0, then u(t) = C1 522D and gy = oo, t; = 0. And we have T*(c0) = 0.

sin wy
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2.1 THE CONTINUOUS EXTENSION AND ITS FIRST NON-NEGATIVE ZERO

(b) If Cy # 0, then for ¢;, we have that

. . T
sin(wy(1 —#1)) + @1 sin(wat1) =0, 0<t < .
A
which gives us
—si S(wat1)+cos wy si t .
Q= sin wx COS(L;?H%Z))\:I))S wasin(waty) _ oo wy — sinwy - cot(wxty),
= Loarccot (w)
1 wx sin wy :

Therefore, t; = £ = T (q1) = T* (g—;) See Figures and where we can see the first

non-negative zero of u¢ for two different values of A € (0,4).
Let A < 0. In this case, the situation is similar to A = 0. Zero point ¢ of u¢ exists (exactly one
and can be negative) if ¢; = g—é ¢ [e7¥*,e¥*] and does not exist otherwise. Therefore, existence

of ¢; is not guaranteed. The derivation of zero point f is similar to the case A € (0,4). See Figure
m where zero ¢ exists.
Let A = 4. From Lemma [7| we have that the solution u of (P1) has infinitely many generalized

zeros. For continuous extension u®, we distinguish between zero points t* = % +k, k€ Z and

between determining zero point ¢ which exists if ¢, = % € R*\ {-1}. This determining zero

point £ is given as £ = T*(q1), which we can verify by calculation:
(a) For Cy =0, we have —C cos(nt1)t; = 0, therefore t; = 0 and ¢ = oo.
(b) For Cy # 0, we have
cos(m(1 — 1)) — cos(nt) 1

tA: = = ~ = - T)\ .
cos(m(1 — 1)) — qy cos(nt)  —cos(nt) — qycos(mt) 1+ aq (@)

Let A > 4. From Lemma m we have that the solution u of has infinitely many generalized
zeros. In this case, for continuous extension u¢, we distinguish between zero points t* = %—i—k, ke
7 and between determining zero point ¢ which exists if ¢; = g—; ¢ [—e“>, —e ¥ and can be
negative. As in the case A = 4, this determining zero point ¢ is given as { = T*(q1), which we
can verify by calculation similar to derivation in the case A € (0,4). See Figure where point
t exists and see the difference between zero points t* = % + k, k € Z and the determining zero
point t.

We are also going to define function @™, which is an inverse function to 7 (in [31], p. 17, we
defined function @Q* for A € (0,4)).

Definition 9. For A € R, let us define the function @Q* : R — R*, R* := RU {co}, as

|:0, 7T) fOI‘ )\ € (074)’
Dom(Q*) := A
R for A € R\ (0,4),
Q}\(O) = 0o,
_simh(a(1=1) o\ o,
sinh(wyt)
1 .
1=t for A =0,
t
Ay s -1)
Y- (oD for X € (0,4),
1-t for \ = 4,
t
simh(@ (A —6) ¢ oy
sinh(wyt)
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2.1 THE CONTINUOUS EXTENSION AND ITS FIRST NON-NEGATIVE ZERO

As it was illustrated above, it makes sense to talk about first non-negative zero point t; of
u® mainly in the case A € (0,4). In the following text, we will limit ourselves only to the case
A€ (0,4).

Figure 2.10: The bi-infinite sequence (g)rez of ratios of values of u as the solution of the initial
value problem (PI)) and its relation to the first non-negative zero point ¢; using function 7 (case
A€ (0,4)).

Let us note that for A € (0,4), T is a strictly increasing function on R and maps R* onto

[0, w%) We can calculate few values (see Figure of function T

A —_ 1 coswy | _— 1 —
T*0) = ;arccot (Sinwk) = 5y arccot(cotwy) =1,
2 wy 2 wy
A _ 1 coswa+1) _ 1 2 cos” =5 1 2cos” S
T ( 1) T wa arccot ( sin wy ) N arccot (sin(w;Jr“’z*) T owa arccot QSinWT’\ osz’\
— Lwy _ 1
- wy 2 2
A 1 coswy—1 1 —2sin® 92 1 wx
TA(1) = -Larccot (=22=1) = L arecot ( 5—wy o5 ) = = arccot (— tan %)
W sin wy wx QSIHTCOST WX 2
- L wyx om)) =1 ™
=, arccot (C0t< 2 T 2))_ 3 T 2won
A2—=)A 1 coswx—ﬂ 1 COS W) —COS W
— — 4 2 — 1 A A j— ™
T™(%~) = arccot <7sinm ) == arccot( s ) = 5o~

(2.2)
If we take into account that the difference equation in (P1]) is autonomous, we realize that the
first non-negative zero t; can be calculated as (for A € (0,4))

t1:j+T)\(Q1+j)a j:|—t0~|7"'707"'7|_tljv

where t( is the previous zero of continuous extension u° of solution u. For illustration, see Figure
where is [tg] = —1, |t1] = 4. For such example, there are 6 possible ways how to get 1
using sequence (qx)kez. We have

t1=—14+T*qo), t1 =Tq1), t1 =1+T*(qa),
tr =24 Tgs), tr =3+ T*(qa), t1 =4+ T*(gs).

Finally, in the following lemma, we will introduce a useful formula for 7* (which will be used
in Chapter [f]in the part where we introduce bounds of Fu¢ik curves which are referred to as the
“delta bounds” in this thesis).
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2.2 CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

Lemma 10. ([25], Lemma 3, p. 69)
Let A € (0,4). For ¢ =00 and ¢ <0, we have

@)+ T (1) = 1.

2.2 Chebyshev polynomials of the second kind

In this section, we will give more detailed information about Chebyshev polynomials of the second
kind (for more details see [29]), which we will use in Section

Definition 11. Chebyshev polynomials Uy of the second kind of degree k € Z at the point z € R
are defined by the recurrence formula

Uk+1($) = 2$Uk(l') — Uk,1(CL‘)

with initial conditions Up(z) = 1, Uy (z) = 2.

2.2.1 Relationship to the linear initial value problem (P1)
For all A € R and k € Z, let us denote
Vi) =U (352). (2.3)
For all A € R, polynomials Vk’\ satisfy the three terms recurrence formula
VAL 2=V +V, =0, keZ, (2.4)

with initial conditions VOA =1, V) = 2 — \. Initial value problem (PI]) has solution in the
recurrence form
uk—1)—=(2=MNu(k)+u(k+1)=0

with initial conditions u(0) = Cp and u(1) = C;. Therefore, V;* is the solution of the initial value
problem (P1)) with Cop =V =1 and C; = V) =2 — \.
Moreover, for all A € R and k € Z we have

FAk) = Vit
where function F' is used in Lemma [3| Such property allows us to get the solution u of (P1)) as
u(k) = —CoViy + CLVR 4.

For illustration, see Figure where first few Chebyshev polynomials V;* (for k =0,...,4) are
shown. We chose Cp and C; in such a way, that it corresponds with solution u from Figure [2.2}
Then, these values can be displayed as points of Chebyshev polynomials Vk’\ for fixed value A = 1.3.

2.2.2 Properties of the Chebyshev polynomials of the second kind

Let us list several useful properties of Chebyshev polynomials of the second kind Uy and polyno-
mials Vlj‘.

1. Zeros of Uy, are

mn
T =008 T e R
and thus zeros of V! are
mn mn
A=2-2cos —— =4sin® ——— =1k
s 1 sin CESA m=1,...,
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2.2 CHEBYSHEV POLYNOMIALS OF THE SECOND KIND
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Figure 2.11: Chebyshev polynomials Vk’\ for k=0,1,...,4, A = 1.3. Marked points on the dashed
line A = 1.3 are values of solution u of initial value problem with Cy =1,C; =2—-A=0.7
displayed on the Figure Chebyshev polynomial V;' is black, V;{* is light green, V3 is dark
blue, V3>‘ is light blue and V} is dark green.

2. We have that V*, = -V} , for all k € Z. For A € (0,4) and all k € Z, we have
B sin ((—=k + 1w —sin((k — 1w —sin (((k—2) 4+ 1w
VA= (2a) = Sk D) sin(( = D) | sin(((k =2 D) _
sin wy sin wy sin wy
For |A| > 4, the derivation is very similar.
3. We have

VA =240N VA =1, VA =0, V=1 VP =2-)
V= A3+ 6A2 —10A+4, V3 =2 —8A3 421\ — 20\ +5,. ..

4. We have V) = det(B?), where B* is a square matrix of size k defined as

2\ 1
12— 1
B =

For Chebyshev polynomials of the second kind Uy, exits an inequality (also known as Turén
inequality) — see [39] :

UZ(z) — Up—1(2)Ugy1(z) >0 for —1 <z <1

For Chebyshev polynomials V;}, the Turdn inequality has a special form of identity (in [25], we
have proved this lemma using properties of functions Vk)‘).

Lemma 12. ([25], Lemma 4, p. 69)
For all A € R and k € Z, we have the following identity
(V) =V Vi =1.
Let us note a few other interesting properties of Chebyshev polynomials (for reference, see
Bj]éhebyshev polynomials of the first kind T} are given by

T (cos(6)) = cos(kb).

Both Chebyshev polynomials form a sequence of orthogonal polynomials. Polynomials T} are

orthogonal with respect to the weight function ﬁ on the interval [—1,1] and polynomials Uy

are orthogonal with respect to the weight function v/1 — 22 on the interval [—1,1].
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2.3 PROPERTIES OF FUNCTION W}

The Chebyshev polynomials have a lot of applications, but one stands out — numerical analy-
sis. Functions can be expanded to a series of Chebyshev polynomials. The effectiveness of such
expansion (partial sums of a Chebyshev expansion) can be found studied e.g. here [41].

Quoting [32] for a historical remark on orthogonal polynomials:

“Chebyshev was probably the first mathematician to recognise the general concept of orthogonal
polynomials. A few particular orthogonal polynomials were known before his work. Legendre and
Laplace had encountered the Legendre polynomials in their work on celestial mechanics in the
late eighteenth century. Laplace had found and studied the Hermite polynomials in the course of
his discoveries in probability theory during the early nineteenth century. Other isolated instances
of orthogonal polynomials occurring in the work of various mathematicians are mentioned later.
It was Chebyshev who saw the possibility of a general theory and its applications. His work
arose out of the theory of least squares approximation and probability; he applied his results to
interpolation, approximate quadrature and other areas. He discovered the discrete analogue of
the Jacobi polynomials but their importance was not recognized until this century. They were
rediscovered by Hahn and named after him upon their rediscovery. Geronimus has pointed out
that in his first paper on orthogonal polynomials, Chebyshev already had the Christoffel-Darboux
formula.”

2.3 Properties of function W}

The reason we have devoted previous pages to the introduction of Chebyshev polynomials of the
second kind follows in this section. It is convenient to use them for the definition of function W,g‘
This function determines the value of k-th element g defined in Definition [] by the value of go
(this property comes from Lemma .

Definition 13. ([25], Definition 5, p. 70)
For all A € R and k € Z, let us define the function W,g‘ : R* — R* in the following way

VA=A
quf—‘];_)\l for ¢ € R,
TVE—17 VEk—2
Wi (q) = .
VV’% for g = oo.
E—1
Let us recall that a Mobius transformation is given by (a,b,c,d € C, ad — be # 0)
a-z+b
. Cr—>C*: _—
f — Z o

The function W)} is the restriction of a Mébius transformation on R*. Indeed, we have that (using

Lemma
(VA2 =VV3E, =140, keZ

For V) | =0, we have that V) , # 0 and V! # 0, thus

A
k

RS
W) =4 Vi

q for g e R,

0 for ¢ = oc.

The following equality for function W}} allows us to generate functions W} (for k € Z) easily
— using recurrence.

Lemma 14. For all A € R and k € Z, we have

]‘ *
Wi (q) :2%*—””((1), q €R*.
k
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2.3 PROPERTIES OF FUNCTION W}

Proof. Proving this is a part of the proof of ([25], Lemma 6, p. 70). O

Using Lemma for k € N, the value of function W}* at ¢ can be written in a form which
reminds a finite continued fraction (yet, it is not a finite continued fraction, since terms 2 — A and
A — 2 are not generally positive integers). For ¢ # oo, we have

Wig) = 2-A+4
W;‘(q) = 2—>\+ﬁ
Wi(a) = 2= A+ 301 —

1
2—A4—
+_q

And finally, each ratio of bi-infinite sequence (qx)rez can be calculated from ratio g using the
function WkA Thus, Lemma (15| allows us to calculate any ratio g if we know gq.

Lemma 15. ([23]], Lemma 6, p. 70)
For all A € R and k € Z, we have

qx = WI;\(QO)' (2.5)

2.3.1 Relationship to the linear initial value problem (P1)

Let u be the solution of the initial value problem (P1)) and (gx) the bi-infinite sequence of ratios
of value u in two consecutive integers as it was defined in Definition [

Remark 16. ([25], Remark 10, p. 73)

Let us assume that we have some element of bi-infinite sequence (gx) (for example ¢; = C1/c,
given by the initial conditions). If we want to get any other element of such sequence or the first
non-negative zero t; of u®, we can use the following formulas.

1. For A € R and 4, j, k € Z such that i + j = k, we have that
ak = W\ (i) (2.6)

This can be used for calculation of any term of sequence (gx)rez from the initial condition.
Let our initial condition be Cy = 0, C; € R\ {0}. Then we have ¢; = % = % = 00. And
for any k € Z, we have g, = W, (q1) = W _,(c0).

2. For X\ € (0,4), we have for the first non-negative zero ¢; of u° that

ti=7+TWMa)),  j=T[tl,...,0,...,[ta]. (2.7)

In the last part of this section, let us consider the following linear problem which we explored
in detail in ([25], p. 74) (detailed inspection of this problem will help us to understand better the
semi-linear initial value problem, which we will explore in Chapter |3)):

{ A?u(k —1) +ay - u(k) =0, k€N, (2.8)

w(0) =0, wu(l)=0CY,

where Cy € R, Cy # 0 and the sequence (ag)gen is given by

(ak)keN = ()\1,...,)\1,)\2,...,Ag,...,)\m,...,)\m,...),
S—— ——— S———
k1—times ko—times k,,—times

where (k;);ecn is a sequence of natural numbers, A\; € R, j € N.
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2.3 PROPERTIES OF FUNCTION W}

Let us look more closely on the linear initial value problem (2.8). Let us denote uy := u(k), k €
N U {0}. Such problem can be written in the form of infinite matrix equation

2—a1 -1 01 0
-1 2 —as -1 U2 0

-1 2—(13 —1 ’ us = 0 ’

which has a solution
ug =0, uy = Cq, ug = (2 — al)Cl, us = —Cq + (2 — ag)UQ, Uy = —Ug + (2 — ag)u?,, .
written in the recurrence form

Up = Oa
uy = Cq,
U, = —Up_2 + (2 — ag—1)Ug—1, k € N\ {1}

We have that

q1 = % = 00,
Qk+1 = k’,\l(ql) for 1 <k <k,
Ak+k1+1 = VV;?‘2 (Qky41) for 1 <k < ko,

Am
Qk+kpm_1+4ki+1 = Wk: (kavl—1+“‘+k1+1) for 1<k <kp, m=>3,

Thus, for all m € N, we obtain g, ... 4koth;+1 = (W,;\;Zl o---0 W,;\; o W,jl‘) (q1)-

Example 17. Let us consider linear initial value problem (2.8)) with (ag)rez = (—1,-1,2,2,2,3,...),
Cy =1. Then \y = =1, k1 =2, \g =2, ks =3, A3 =3, k3 > 1, .... Solution u has values
w(0) =0, u(l) =1, u(2) =3, u(3) =8, u(4) = -3, u(5) = -8, u(6) =3, u(7) =5,.... We have

u(1)

q = % =00 = %0)

@ =W ') =3 :%, k1 =2,
g =Wy'(0) =5 =23 k=2
g =Wi(g) =-3 Z%, kg = 3,
s =Wils) =35 = %, ky =3,
6 =Wilg) =-% :%, ke =3,
¢ =Wies) =3 = %7 k3 > 1,

Or, we can write g7 = (W7 o W2 o W5 ') (00).
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2.4 LINEAR BOUNDARY VALUE PROBLEM ([P2))

2.4 Linear boundary value problem (P2

In this section, we will briefly inspect linear boundary value problem with Dirichlet boundary

conditions
{ A%u(k — 1) + du(k) =0, k€T,

u(0) =u(n+1) =0,

wheren e Nyn>2, T=1{1,...,n}, T:{O,...,n+1},u:’]AI“%Rand)\GR.
Problem (P2 can be rephrased using a matrix notation as

APu = )u

where matrix AP is the Dirichlet matrix (1.3))

2 -1
-1 2 -1
AD = . .
-1 2 -1
-1 2
and u = [u(1),...,u(n)]T. Thus, to find all values A € R for which the linear boundary value

problem (P2) has a non-trivial solution is the same as to find all eigenvalues and corresponding
eigenvectors of matrix AP.

Problem (P2)) is closely related to Chebyshev polynomials of the second kind (see Section.
We can write

2 —
det(A® — \I) = U, (;) =V

Thus, eigenvalues of AP are zero points of polynomial V, (see Section [2.2.2)) and are of the form
=0,...,n—1,

A7 €(0,4) and \§ < A} < --- < A)_;. And eigenvectors are of the form

2 (k(G+ D)
uj(k) = n+lsm< 1 >7 ke{l,2,...,n},

where j represents the eigenvalue of the corresponding eigenvector and k € {1,2,...,n} the entry
of the vector. See Figure where some (not all of them) non-trivial solutions of the problem
(P2) are shown for n = 13.
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Figure 2.12: Some of the non-trivial solutions of the problem (P2)) for n = 13 and (from top to
bottom) A} = 0.436337, A} = 0.75302, A} = 1.13223, A2 = 1.55496, A2 = 2, A} = 2.44504. Orange
dots represent positive points, blue dots represent negative points and black dots represent zero
points.
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Chapter 3

Semi-linear initial value problem
P3) — Part I

In this chapter, we deal with the semi-linear initial value problem
A%u(k —1) + aut (k) — pu= (k) =0, keZ,
{ u(0) = 0,u(l) = Cy,
where u* (k) = max{+u(k),0}, C; € R, C; # 0 and («,8) € D,
D :=((0,4) x (0,+00)) U ((0,400) x (0,4)).

Remark 18. ([25], p. 76)
Let u be a solution of semi-linear initial value problem (P3). Then w is also the solution of initial
problem (2.8)) if we take (ax)gen in the following form

a for u(k) >0,
ap —
B for u(k) < 0.

3.1 Positive and negative semi-waves

In this section, we are going to describe a continuous extension of a solution u of semi-linear initial
value problem (P3)) by defining a continuous extension ug ; of u on the interval [i — 1, j + 1], where
1 € Z is a generalized zero (similarly as we have defined a generalized zero in Definition [5| for

problem (P1]), we can define it for different problems such as (P3)) and j € Z : j > i is such that
for all k =14,...,J, u(k) is non-negative (or non-positive) and

u(Hu(j+1) <0 or wu(j)=0.

See Figure [3.1|and Figure (left). This means that ¢ and (j+ 1) are two consecutive generalized
zeros of u if u(j) # 0. In the case of u(j) =0, 7 and j are two consecutive generalized zeros of w.
On such interval, we construct a continuous extension in the same way as we have done it
for the linear case (see Section [2.1)). We define the continuous extension ug ; of u (see Figure
(right)) on the interval [i — 1,7 + 1] as (see ([25], p. 77))
" w(i— 1)F(1— (t—i+1)) +u(i)F(t—i+1) foru(i—1) <0,
C t —
u(@ — DFP(1—(t—i+ 1)) +u(@)FP(t—i+1) foru(i—1) >0,

where functions F'* and F” are given by F* (see Lemma [3) for A = a and A = j3, respectively.
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3.2 RELATIONSHIP BETWEEN FUNCTION W,j AND SOLUTION OF A SEMI-LINEAR PROBLEM (|P3))

Figure 3.1: Generalized zeros at point ¢ in four possible cases: 1) u(i)
w(i) =0,u(i —1) <0, 3) u(i — Du(i) < 0,u(i —1) >0, 4) u(@i — Du(z) < 0,u(i — 1) < 0.

Ui j

Figure 3.2: Consecutive generalized zeros ¢, j + 1 and the continuous extension uf . of u.

J

Positive semi-wave is a continuous extension uf ; of u such that u(k) is non-negative for all
:

k=i,...,j. Negative semi-wave is continuous extension u ; of u such that u(k) is non-positive for
,
all k =1,...,j. See Figure where positive semi-waves are in orange color and negative semi-

waves are in blue color. We say that positive and negative semi-waves are “anchored” together.

3.2 Relationship between function W} and solution of a semi-
linear problem (P3)

Now that we have defined what is the continuous extension of a solution of the problem (P3]), we
can use the theory from the linear case here.

Assuming that we would know where all generalized zeros (or anchorings of all positive /
negative semi-waves) are (for solution u), we would quickly find all ratios (g )gez using function
Wk)‘, where A = « for positive semi-wave and A = 3 for negative semi-wave. Let us demonstrate
such construction on the following example.

Example 19. Let us take the semi-linear initial value problem with a = 0.8, § = 3.94,
C1 = 1. Let us assume that we know that solution u has the following sign properties:
w(0) =0, u(l)=1>0, u(2) >0, u3) >0, u4) <0, u(5) >0, u(6) >0, u(7) >0, u(8) <0,
u(9) <0, u(10) >0, w(11) >0, w(12) >0, u(13) <0, ...

Since all values u(k), k € Z, can be calculated directly from the difference equation, we can show

the solution w on Figure Our goal is to calculate values of sequence (gx)rez (let us recall

definition of sequence (qx): qr = uz‘k(ﬁ)l)) using functions W2, W,f .

Firstly, let us construct continuous extension of the solution w. Since we know the sign

. . s . c c c
properties of solution u, we know that we have positive semi-waves ug 5, ug 7, u§g 9, -..And
negative semi-waves ug 4, ug g, ... See Figure for such construction.

Finally, let us demonstrate that we have several ways how to calculate values of sequence
(qk)kez. Since qq is defined by the initial conditions, we have

= Q.

o=

q1 =
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3.2 RELATIONSHIP BETWEEN FUNCTION W}' AND SOLUTION OF A SEMI-LINEAR PROBLEM ([P3)

| |
I I
4 9 10 11 12 13 k
° ® °

Figure 3.3: Solution u of semi-linear initial value problem fora =0.8, 5 =394, C; = 1.

[+
U10,12

Us 7

Figure 3.4: Continuous extension of solution u from Figure [3.3]

We are going to use ¢ in the calculations of all other terms of sequence (g). Values u(1) and
u(2) which define gy are part of the positive semi-wave ug 5, thus for the calculation of g» we use
W (thus A = «). Starting at ¢1, we need to make “one jump” in the sequence ¢; (on the positive
semi-wave) in order to get go, thus k = 1 and we have

=

¢ = w3 = B =u(2) = W(q1) = W(oe) = 1.2.

Since g3 and g4 are also “part” of positive semi-wave ug 5, we can calculate them in a similar way.
Value g3 is “one jump” away from g2 (thus & = 1) on the positive semi-wave and “two jumps”
away from ¢; (thus k£ = 2) on the positive semi-wave. And in the same way, value g4 is “three
jumps” away from the g; (on the positive semi-wave), thus k = 3.

B = % =W(g2) = W§(q1) = W5 (o0) = 0.367
qa = % =W (gz) = Ws(q2) = Wi'(q1) = Wi(o0) = —1.527

Value g5 is calculated a little differently, because it is part of the negative semi-wave ug 4 (value
u(5) is not part of the positive semi-wave ug 3). In order to get value g5, we need to make “one

jump” on the negative-semi wave from gy, thus g5 = Wlﬁ (q4). If we want to start with the value
q3, we need to make firstly “one jump” on the positive semi-wave to the value ¢4 and then “one
jump” on the negative semi-wave, thus g5 = Wlﬂ (W (g3)). If we want to start with the value
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3.3 SEQUENCES (pi) AND (V)

q1 = 0o, we can easily calculate the number of particular “jumps”:
a5 = S =W lar) = W (W (gs)) = WY (W5 (a2)) = WY (W ()
= WP (W§(c0)) = —1.282

Values ge, g7, g3 are part of positive semi-wave ug 7, thus we calculate them as:

g = WPW(Wg(0))) =1.98
¢ = WEWE(WE(c0))) = 0.695
s = WEWE(WE(0))) = —0.239
Values qg, g19 are parts of negative semi-wave ug o:
g = WI(WgW(Ws(c0)))) = 2.247
qo = Wy (W (Wi (Ws(00)))) = —2.382
And finally, we have:
i = WWE (W W (Ws(0))))) = 1.62
G = W (W5 (W5 (W] (W5 (0))))) = 0.583

@z = W (W (W Wi (Wg(0))))) = —0.516

3.3 Sequences (pi) and (V)

In Example we have shown how to use functions W and W,f in calculations of sequence
(qx)kez of the semi-linear problem . The assumption we have used there was that we knew
sign properties of the solution u. Without it, we wouldn’t know when to “switch” between positive
and negative semi-waves. Thus our main goal in this section is to find out how to calculate these
sign properties.

In the following definition, we define (recurrently given) sequences (pg)rez, (Pr)rez, (Vk)kez,
(Wi )kez and (W, )kez. In the text following this definition, we will explain for the simplest case
0 < a, B < 4 what these sequences represent.

Definition 20. (]|25], Definition 17, p. 82)
For all j € Z, let us denote
e for j odd,
bj =

Ié] for j even.

On the domain D = ((0,4) x (0,400)) U ((0,+00) x (0,4)), let us define sequences of functions
(pi) and (¢¥;), which are given recurrently for ¢ € N in the following way

190(0175) = 00,

[T¢i (Pi—1(e, B)) + ﬁJ for ¢; < 4,
LT¢7:+1 (191'_1(0(,5)) + T¢i+1 (2 — ¢1) + lJ fOI‘ ¢z Z 4,

pi(a, B) :=

9, B) == Wi g (Dica (e, B)).

Moreover, for all £ € N, let us define function P, : D — N and composite functions Wy : R* —
R* as

k
Py(a,B) = Zpi(aﬁ% Wy = Wzik(a,,@) o0---0 W;f;(a,ﬁ) o lel(aﬁ),
i=1
- Pht1 ¢ [
Wi = W60 °  °Wis.a ° Wilism:
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3.3 SEQUENCES (pi) AND ()

We are going to illustrate what sequences in Definiton [20] mean for special case 0 < «, 5 < 4
and Cj > 0. Let u be a solution of the semi-linear initial value problem . Since we are looking
for description of the sign properties of the solution u, we are interested in all positive generalized
zeros of w.

For our restriction (0 < «, 8 < 4), first few terms in the sequences (p;);ez and (¥;);ez defined
in Definition [20] are:

mef) = |z, G f) = W (),
pa(asf) = TP )+ Z |, afanB) = Wi Wi(a8)),
psleB) = |T°(0a(a,8) + =, Ia(B) = W2 s (02 B)),
pala,f) = |TPWsB) + Z |, Dale,B) = Wy Wale B)),

Y - u8,4 Ug,? U§,12 - u§3,14

1 21 /8 12 — k
so|to t1{$1 Sa| b2 S3it3 (7RI

e T A

Figure 3.5: Positive and negative semi-waves of a solution of the semi-linear initial value problem
" f0r0<a,ﬁ<4and01>0(O:So=t0<t1<$1<52<t2<33<t3<t4<84).

In this part of the text, for simplification, we are going to write p; instead of pi(a, 8) and
similarly for other terms of all sequences defined in Definition [20] For easier understanding of the
following text, see Figure [3.5]

(a)

First positive semi-wave: The first positive semi-wave of u (we have Cy > 0) is ug p, » thus py
represents the length which we need to add to ¢ = 0 in order to find interval where positive
semi-wave is anchored with negative semi-wave.

Positive semi-wave uf , is defined on [—1,p1 + 1] and has two zeros to = 0 and ¢1 = .
For zero t; we have (remember, that function T%(gp,+1) returns position of zero of positive

semi-wave calculated from p;, since g, 41 = U1 is the ratio % — see Example to

compare how we calculated ratios (gx))
tr=p1+T%(gp,+1) = p1 +T%(V1).

The first positive generalized zero of u is z1 = p; + 1 if ¢y <0 or z; = p; = t; if ¥ = 0.

First negative semi-wave: The next semi-wave of u is negative. It has two zeros s; and sg
and is defined on [[s1] — 1, |s2] 4+ 1]. Its first zero s; can be calculated as

51 = |t1] +717 (th1]+1) =p1+T° (¥1).

And its second zero sy is
— s
S2 =81+ 2

since we are just adding length of negative wave ﬁ to the first zero s;. For so we have
[s2] = p1 + p2
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3.3 SEQUENCES (pi) AND (V)

which implies
Qpoipir1 = W (p1+ 1) = WP (91) = W) (W (0)) = V2

and
so=p1 +p2+ T (0s).

The second positive generalized zero of u is zo = p1 + po + 1 if ¥o <0 or 20 = p1 + p2 = s9

if 192 = Q.

(¢) Second positive semi-wave: The next semi-wave of u is the positive semi-wave ufm Lta]"
which has two zeros t3 and t3 and is defined on [[t2] —1, [£3] +1]. We have that t3 —ty = 7~
and

ty = |s2] +T° (QLSQJH) =p1+p2+T(Y2),
93 = Gpytpatpr+1 = Wi (Wi, (W (0))),
ts = [ts] + T (quey)41) = P1 + p2 + p3s + T (93).

The third positive generalized zero of u is z3 = p1+po+p3+1if d3 < 0or z3 = p1+pa+ps = t3
if 193 = Q.

Example 21. Let us go back to our problem from Example thus let us take the semi-linear
initial value problem with a = 0.8, 8 = 3.94, C; = 1. In the Example sign properties
were known, but this time, we are going to calculate them.

Sequences (pg)kez and (9x)kez from Definition 20| are (the reader is advised to compare these
values with Example [19)

pr= 3, 9, = —1.527,
= 1 Oy = —1.282,
p3= 3, 93 = —0.239,
pa= 2 9, = —2.382,
ps= 3,

¥5 = —0.516,

From sequence (pg) we have all positive and negative semi-waves. From p; = 3, we have that the
first positive semi-wave is
ug,pl = u8,3'
First negative semi-wave is
u;1+17P1+P2 = UZA.
Second positive semi-wave is
[+

[+ J—
Upy+pa+1,p1+patps — W57

Second negative semi-wave is

uc _ uc
p1+p2+p3+1,p1+p2+pz+pd — 789"

Third positive semi-wave is

us =us
p1+p2+ps+patl,pi+p2+ps+patps — 10,12°

The following lemma uses sequences from Definition [20] and shows how to calculate all gener-
alized zeros of solution u of a semi-linear initial value problem (P3)) in a general case.
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3.3 SEQUENCES (pi) AND ()

Lemma 22. ([25], Lemma 19, p. 82)
Let (o, B) € D and let u be a solution of the initial value problem (P3| with C1 > 0. All generalized
zeros of u form a sequence (zm)mez, where

{ Pz(aaﬁ)+1 Zfﬂl(aaﬂ)#
Z; = .

Pi(aaﬂ) Zfﬁi(aaﬁ)
Moreover, the solution u consists of infinitely many positive and negative semi-waves.

For 0 < a <4 and 3> 0, all zero points of all positive semi-waves form a sequence (tm),, 7,
where

Z—i:*Pi(ﬁaa)a i €N,

00,
00,

t_i=—P(B,a) = T*(9:(B,), to=0, t;=P(a,p)+T*Wi(a,p)), i€N

The m-th semi-wave, m € Z \ {0}, is positive one if and only if m > 0 is odd or m < 0 is even
and it has exactly two zero points t,,—1 and t,, for 0 < a <4 and > 0.

Fora >0 and 0 < 8 <4, all zero points of all negative semi-waves form a sequence (s,)
where

meZ’

s_i=—P(f,a) —=T9(9;(B,a)), s0=0, s =P(a,p)+T°Wi(a,8)), ieN.

The m-th semi-wave, m € Z \ {0}, is negative one if and only if m > 0 is even or m < 0 is odd
and it has exactly two zero points S;m—1 and Sy, for a >0 and 0 < 3 < 4.

The main goal of this thesis (and articles [25], [31]) is to study Fudik spectrum of matrix AP —
thus values (a, 3) € R? such that the semi-linear boundary value problem has a non-trivial
solution. Understanding how all generalized zeros of such solution can be retrieved (see Lemma
22)), is crucial to an implicit description of Fuéik curves C¢, k = 1,...,n — 1. In Section [5.1] we
will use sequences from Definition [20] in Theorem
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Chapter 4

Semi-linear initial value problem

(P3) — Part II

In this chapter, we are going to investigate problem from a different angle. A continuous
extension of solution u of will be constructed in a manner considering positive semi-waves
only. We will calculate the distance between every two consecutive zeros of two different (consec-
utive) positive semi-waves. This will allow us not only to study nodal properties of solution u of
in more detail, it will also allow us to find different implicit description of all Fuc¢ik curves
Ci, k=1,...,n—1 (which can be found in Chapter [3).

Let us recall problem :

A%u(k — 1) + aut (k) — pu=(k) =0, keZ,
{ u(0) = 0,u(1) = €1,

where u® (k) = max{#u(k),0}, C; € R, C; # 0.

)

| | | | | | | | | | | |
T T T T T T T T T T T T

1 2 3\4 5 6 7 8 /9 10 11 12\ 13 14 15 16 17/ 18 19 20

Figure 4.1: Continuous extension of only positive semi-waves for solution u of problem (P3)) for
a=0.8, =033and C; =1>0.

Continuous extension — positive semi-waves only — can be seen on the Figure If we would
have 0 < a < 4 only, then the length of all positive semi-waves is the same and is equal to i This
way, localization of intervals where positive semi-waves are anchored can be rephrased to — “what is
the distance between every two consecutive zeros of two different consecutive positive semi-waves.”
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4.1 LENGTH OF A SEMI-WAVE

y A
_—. s kg /_\
|\§/\\‘ ~ I é.+1 p —.’_2 :
> pa,,B(S) ‘\/B B
b [ J

Figure 4.2: The distance p, g — the distance between two consecutive zeros (last and first) of two
different positive semi-waves (orange color). Continuous extension for § < 4 (a = 3.5, 8 = 0.53).

We denote such distance as p, s (we will define such function later in the text in Definition [28]) —
see Figure @ for better understanding of the distance p, g. Let us define half-strip D as

D :=(0,4) x (0, +00).

In the following text, without any loss of generality, we are going to assume that («, 8) € D (it is
enough to investigate («, 8) € D due to the symmetry of the Fu¢ik spectrum). We note that it is
easier to deal with zeros of positive semi-waves when a € (0,4).

4.1 Length of a semi-wave

Let us define map «g : (0, +00) — Ny, where Ny := NU {0}, as (see [31], p. 9)

K 1= {ﬁJ_l for 0 < <4,

0 for 5 > 4.
Such map divides half-strip D into “rectangles” by kg =k, k € Ny (see Figure [4.3)), thus we have

D = ((0,4) x (&,+00] ) U ((0,4) x (&3,&]) U+ U ((0,4) X (&ppas 1] ) U -,

where &, is given by the formula:

& = 4sin? %, ke N\ {1}.

In the Table we can see approximate numerical values of .

&2 &3 &4 &s &6 &7 &s &o 10
2 1 0.586 0.382 0.268 0.198 0.152 0.121 0.098

Table 4.1: Approximate numerical values of &, k = 2,3, ..., 10.

Values &, play important role in Chebyshev polynomials V;* of the second kind (for definition of
ij\7 see (2.3)) in Section[2.2). By comparison of definition of & and zeros of Chebyshev polynomials
Vk)‘ (refer to Section [2.2.2)), we can see that the first positive zero of V,g‘ is €x41 and similarly, the
first positive zero of Vi | is {g42. This is illustrated on Figure

Function k) allows us to determine the length of a semi-wave (as continuous extension) —
see the following lemma which describes semi-wave u; ;. The semi-wave is defined on an interval
[i — 1,7+ 1]. Knowing i and using the ratio ¢; = uz‘i(i)l), we can (using the value k) determine j
(for illustration, see Figure [4.5)).
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4.2 THE DISTANCE p, 3
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Figure 4.3: The graph of the piecewise constant function 8 +— kg.
/

y A

T+ k+2

k+1

—1

Figure 4.4: Graphs of functions § — V,f (black curve) and 8 — VkB 1 (grey curve).

Lemma 23. ([31], Lemma 10, p. 24)
Let (o, B) € D and u be the solution of the initial value problem (P3|). Moreover, let i,j € Z be
such that i < j and

u(@i—1) <0, u(k)>0 fork=14,...,45, u(j+1)<0, (4.1)

or
u(@i—1)>0, wu(k)<0 fork=14,...,45, u(j+1)>0. (4.2)

Then we have
. { i+ Ky Jor W2 1 (@) <0,
J =

it+rx+1 for W2 i (4) >0,

where we denoted q; 1= uzi.(i)l) <0 and A=« if (4.1)) holds or A = 3 if (4.2)) holds. Moreover, we

have u(k) # 0 for k € Z such that i < k < j, and u(j) = 0 if and only if W2, , (¢;) = 0.

4.2 The distance p, g

Function kg plays important role when finding the distance p,,g. We will use it as an order k (kg
is a piece-wise linear function) for Chebyshev polynomials V;*. In the following definition, we will
define three functions 1, g, 7a,3 and pq,g. These functions (for fixed «, 3) represent important
values for distance pa, s — see Theorem [46]

Definition 24. ([3I], Definition 1, p. 10)
For 0 < a < 4 and 3 > 0, let us define

ve o -1 1% v/
Mo =T [ 20— | rag =T (2R =T )
V;{ B Vli B VI‘L B + 1

Using 74,3, we can formulate an implicit description of the first non-trivial Fucik curve Ci —

see ([31], p. 6).
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4.2 THE DISTANCE pq 3

q <0
7 i+l€5 =7 °
? ' ' ' = '
i1—1 ® o P j+1 k
Ui We (@) <0
q; <0 ] ®
7 1+ kg J
i—1 . . ¢ IR
us .
° 2% o W£6+1(q7') =0
O ¢ <0 _ o
7 i—l—/ig i
i1 . ' ' ¢ i+l k
C
o 1 o Wi 1(a) >0

Figure 4.5: The length of the interval [i — 1, 4+ 1] for a negative semi-wave ug ; of the solution
u of (P3) for fixed («, 3) € D according to the sign of W£B+1(qi): j=i+rs+1and u(j) <0
(bottom), j =i+ kg + 1 and u(j) = 0 (middle) and j =i + kg and u(j) < 0 (top).

Let us have two consecutive continuous positive semi-waves u§ and u§ of u with zeros: the
second zero of u§ is t1 € (i — 1,4] and the first zero of u§ is t3 € [§,j + 1). In the following lemma,
we show how to reconstruct the zero to according to values of ¢1, @ and 8. For this reconstruction,
we use 7,3 to distinguish between two disjoint cases

Jj=1+Kg and j=1+krg+ 1

Lemma 25. ([31], Lemma 14, p. 30)

Let u be the solution of the initial value problem for0<a <4 and 8> 0 and let u§ and u$
be two consecutive continuous positive semi-waves of u. Moreover, let t1 be the second zero of u$§
and let to be the first zero of u§. If we denote

S = |—t1—| —tl,

then we have

, t1+s+rg+ T (Wfﬁ_H (Q*(1 — s))) for s > 14,
2 =
ti+s+rg+1+T¢ <W§B+2 (Qo‘(l—s))) for s <14 p.

Remark 26. In Lemma 25 we have denoted

s = |—t1-| — tl.
Such length represents the distance between ¢; and the nearest larger integer. Thus, we can
reformulate this as the following. Let us have a positive semi-wave which has its second zero in
the interval [¢ — 1,4]. Then, we denote s the length between that zero and the nearest larger

integer. Such length can be retrieved from the ratio ¢; as ¢; = Q*(1 — s), i.e. s =1—T%(g;). See
Figure [I.10] for visual idea of how to retrieve s.
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4.2 THE DISTANCE p, 3

y A

1+ 7_04,,37:\
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Figure 4.6: Function N, g for a > 8 (a = 3.2, 8 = 1.2).

Definition 27. ([3I], Definition 17, p. 32)
For 0 < a < 4 and 3 > 0, let us define
Z\:laﬁ(s) +1 for s €0,7q,4],
Dom(Ng ) := [0,1 + 74 4], Nap(s) =1 Myp(s) for s € (Ta,8,1),
J\?a’g(s —1) forse 1,1+ 744
where B
Map(s) = T°(W[ 0 (@Q*(1=9). s€ a1,
Mag(s) = T (W2 5@ (1-5), s€0,7]

On Figure [£.6] we can see function Ny g in the case of a > 3, on Figure 6.1 we can see function
N, in the case of @ < /8 and finally on Figure we can see three different shapes of graph
of function N, s when the values « are fixed and values of § are changed (the reader is asked to
notice convexity versus concavity in all of these cases).

In [31], we have investigated function N, g in a lot of detail. In ([3I], Lemma 20, p. 34) we
have proved that function N, g is a continuous involution, i.e.

Vs € 10,14 Ta,8] 1 Nag(Nas(s)) =s.

Moreover, we have N, 5(0) = 1+ 74,3 and N, g(7a,3) = 1 (proved in the same lemma). Next, we

have proved (in [3I], Lemma 21, p. 35) that points 7, and pq,g are fixed points of M, 5 and
M, g, respectively. And that

Nos(a,8) =Nap+ 1, Nap(tia,s) = fas-

But mainly, all of this leads towards definition of function p, g — the distance between two
consecutive zeros (second and first) of two different consecutive positive semi-waves.
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4.3 EXAMPLES

YA
Kg + Q[La_ﬂ

kg + 14743 ¢

kg + 1+ 2148

Figure 4.7: The graph of the function p, g for o > § (a = 3.9, § = 3.1).

Definition 28. ([31], Definition 19, p. 33)
Let 0 < a <4 and 8 > 0. Let us define

Pap(8) =8+ kg +Nap(s), 0<s<14745.

See Figures [4.7] and [6.6] to see examples of graphs of function p, g for different o and 3. The
property of function p, g (what it measures) can be rephrased as the following. For zeros ¢; and
ty in Lemma we have that

ty =t1+ pap([t1] —11) (4.4)

(we have denoted s = [t1] —t1). Since this equality holds for all possible two consecutive positive
semi-waves (0 < « < 4), we can show how to find a sequence of these zeroes (of positive semi-
waves) in Example

4.3 Examples

Let us denote (t7)rken a sequence of positive zeros of all positive semi-waves (as continuous ex-
tension) for a solution u of with the property, that u(1) > 0 (thus the first semi-wave is
positive). Similarly, let us denote (t;)rxen a sequence of positive zeros of all positive semi-waves
(as continuous extension) for a solution u of with the property, that u(1) < 0 (thus the first
semi-wave is negative).

Example 29. Let us take the semi-linear initial value problem with a = 2.462, f = 1.37,
C1 =1 > 0. Its solution u is displayed on the Figure We are going to show how to calculate
positive zeros of positive semi-waves using distances p, 3.

Firstly, zero t} is calculated simply as

=1 = 1742,

(03

The length s can be calculated either as s = [t]] — ¢} =2 — 1.742 = 0.258 or as (see Remark
1—-T%q) =1—T%(—0.462) = 0.258. For s we have s € [0, 74 5] (7o, = 0.521). Thus the second
positive zero t3 (which can be obtained using function p, g) is

£ = 4 pas([H] — ) = 4.180.
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4.3 EXAMPLES
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Figure 4.8: Solution u from Example [29] continuous extension of positive semi-waves and zeros
(t)ken-

Another zero t3 is
t =1t + — =5.931

[

Next, we have [t4] — ¢4 = 0.069 and zero ¢}, is
ty = t3 + pa,p([tz] —t3) = 841

Zero tf is
™ .
ty =ty + — =10.152.
(03
For t§ we have [tf] — t; = 0.848 (notice that ([t5] —tf) € [7w.p, 1] and there is a different number
of negative values between ¢} and t§ with comparison to previous cases — there will be one less
negative point than in the previous case)

te =t + pap([ts] — t5) = 12.737.

And finally, zero ¢7 is
£o= £+ — = 14.48.

[e3

Example 30. Let us take the semi-linear initial value problem with a = 1.2, f = 6.959,
C1 = —1 < 0. Its solution u is displayed on Figure As in the previous example, we are going
to show how to calculate positive zeros of positive semi-waves using distances pq g.

The first zero ¢] is the first zero of the first positive semi-wave. It can be retrieved using
function p, g. The length s is in this case equal to s = 0 (if we would extended the solution to
negative values of k, the previous positive semi-wave would end at the point k& = 0). Thus, we
have

t1 = pa,p(0) = 1.146.

For the next value of a sequence (t;,) we have

T
to = t; + — = 3.856.
g =1+ o

[e3

For t3, the value s is equal to s = [t5] — ¢; = 0.144. Since 74,3 = 0.1461, we have ([t3] — t3) €
[0,Ta,3] (Which means that there will be more negative points between two positive semi-waves
than in the other case) and

5= 65+ pas([t3] — 13) = 5.045.
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4.3 EXAMPLES

Figure 4.9: Solution u from Example [30} continuous extension of positive semi-waves and zeros
(i )ken

Value ¢} is
0
t, =ts3+ — = 7.755.
4 =13+ e
And finally, for t; we have [t;] — ¢; = 0.245, thus ([t;] — 1) € [Ta.8, 1] (which means that there
will be one less negative point between two positive semi-waves than in the previous case) and

5 = 1 + pap([ti] — £7) = 8.29.

Example 31. This example shows how differently the solution can behave when changing a few
parameters.

1. Let us assume 0 < 8 < 4 and anchoring of two consecutive positive semi-waves. The length
Pa,p depends not only on s and N, g, but also on kg, since kg is not equal to zero in general
(for 8 < 2). On Figures and we illustrated examples of two such anchorings. In
these two cases, we have selected solution in a way that the value s is the same in both
cases. They differ by value of 8 (8 = 0.53 vs. 8 = 0.39). This itself is enough for the length
between positive semi-waves to differ by one — notice that the second positive semi-wave
starts in the interval [kg, kg + 1] for Figure and starts in the interval [kg + 1, kg + 2]

for Figure [{.11]

2. On the other hand, in Figures and we have fixed o and 3 on the same values
(o =2.1, 8 = 4.1) but we have changed the value s so that for these two solutions the second
positive semi-wave starts in the different interval. In Figure we can see the determining
zero  (see Section for more details about determining zero of a continuous extension) of
negative semi-wave which is in the interval [0, 1].
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4.3 EXAMPLES
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Figure 4.10: Continuous extension for 5 < 4 (o = 3.5, 8 = 0.53) — the distance p, g which depends
on s, kg and N, g. The second positive semi-wave starts in the interval (g, k5 + 1].
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Figure 4.11: Continuous extension for 8 < 4 (o = 3.5, 8 = 0.39) — the distance p, g which depends
on s, kg and N, g. The second positive semi-wave starts in the interval (k5 + 1, kg + 2].

=y

Figure 4.12: Continuous extension for 5 > 4 (o = 2.1, § = 4.1) — the distance p,, g which depends
on s and N, g (kg = 0 for § > 2). There is just one negative value between two consecutive

positive semi-waves.
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Figure 4.13: Continuous extension for 5 > 4 (o = 2.1, § = 4.1) — the distance p,, g which depends
on s and N, g (kg = 0 for B > 2). There are two negative values between two consecutive positive

semi-waves.
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Chapter 5

Investigation of Fucik spectrum of
matrix AP — Semi-linear BVP (P4

This chapter is devoted to the investigation of semi-linear boundary value problem
A%u(k —1) + aut (k) — fu=(k) =0, keT,
u(0) =u(n+1) =0,

where n € N, n > 2, u* (k) = max{£u(k),0} and a, 8 € R.
Equivalently, the problem (P4)) can be rephrased using a matrix notation

APu=qau’ —Bu,

where matrix AP is the Dirichlet matrix defined in (L.3). Thus, our main goal is to investigate
Fucik spectrum X (AP). Some known results were already discussed in Section

In this chapter, we will focus on the description of Fuéik spectrum ¥ (AP) using our two
approaches described in Chapters |3| (Part I) and {4 (Part II).

5.1 Description of Fucik spectrum — Theory from Part I

In Chapter|3] we have studied semi-linear initial value problem in detail. Obtained sequences
of functions (pr)rez, (Pr)kez, (Vx)rez, Wi )kez and WV;)kez from Definition allow us to
give the description of Fuik spectrum X (AP) — see Theorem (remember that it is enough to
investigate Fu¢ik curves C;, k=1,...,n — 1).

Theorem 32. ([25], Theorem 22, p. 87)
Fork=1,...,n—1, we have that

Ci = {(a, ) € (0,4) x (0,+00) : Piy1(a, B) + T*(Ups1(c, 8)) =n+1} U
{(,8) € (0,400) x (0,4) : Prsa(a, ) + T%(Dsa(ev, ) = n+ 1}
Moreover, if we denote
ri={(,B)€D: Per1(a,8) =n—+1}, k=1,...,n—1,

then we have that

Cr={(a,) € Y : Wi i(00) =00}

An example of sets 2} for n = 4 can be seen on Figure Also, see Figure for the
complete Fuéik spectrum of matrix AP for n =4 and n = 7 (including Fuéik curves C;).
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5.1 DESCRIPTION OF FUCIK SPECTRUM — THEORY FROM PART I

g 9 QO 9 9
4
0 4 o o 4 o

Figure 5.1: The sets Qj as grey regions for n = 4 (left) and the Fucik curves C;, as black curves
(right) due to Theorem

Remark 33. Theorem basically says that (a, ) belongs to the Fucik curve Cj if the cor-
responding solution wu satisfies the following. It needs to start with a positive semi-wave (i.e.
u(1) > 0), it needs to have k generalized zeros on T (that is why we are using function Py1) and
the ratio g,41 needs to be zero.

i Ea ; ; Ea Ea
Wa - o Wa - i Wa - i Wa -
Yy . |
z / :Z : Z. 2,
~_ iy N A N\ 22 T~
o~ & ~ ~ hd
0 \0/ Z9 ' T Z_3 \0/ Z_1 n k
to ! Vo t3; ta=t_3 t o vty to.

Figure 5.2: The non-trivial solution u of for (a, B) € C§ (parameters from Theorem [34] are:
n=16,i =4, j =3, k = 6) with six generalized zeros of u on T (21 < 29 < 23 < 24 = Z_3 <
Z_o9 < Z_1) and six zeros of positive semi-waves strictly between 0 and n+ 1 (¢; < to < t3 < t4 =
573 < 572 < t~,1).

We can also provide a different description when we will “glue” together solutions from both
end points — from k£ = 0 to the right and from k& = n + 1 to the left. Thus, we consider solutions
of two initial value problems starting at k¥ = 0 and at k¥ = n+ 1 and we require that their selected
zero points of positive (or negative) semi-waves coincide (see Figure and note that ty =7_3).

Theorem 34. ([25], Theorem 26, p. 91)

Let k,n € N be such that k <n —1, n > 2. Moreover, let i,7 € N be such that 1+ j =k + 1.

1. If k is odd then
Cr = {(a,B) € (0,4) x (0,400) : Pi(
{(a,8) € (0,+00) x (0,4) : P

=
+
2o
=
£
_|_
N
=
&

a,B)) +T*W;(B,a)) =n+1} U
(o, B)) + TP (9;(8, ) =n+1}.
2. If k is even then
Ci = {(a,B) € (0,4) x (0,+00) : F4(
{(045) € (0,400) x (0,4) : Py(

=

o, B)) + T (e, B)) =n+1} U
,B) + Pj(a, B) + TP (9(e, B)) + TP (9;(ev, B)) =n + 1}



5.2 DESCRIPTION OF FUCIK SPECTRUM — THEORY FROM PART II

Y(AP) n=4 Y(AP) n=7
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Figure 5.3: Fucik spectrum X (AP) for n = 4 (left) and n = 7 (right).

See Figure for example of solutions u for (a, 3) € C¢ for X(AP) of n = 9. In this figure,
each of the smaller figures has a bit different set of («, 5) € C& — we are “moving” alongside the
Fucik curve C¢ and we can see how the corresponding solutions change (they even change the sign
property of the solutions).

5.2 Description of Fucik spectrum — Theory from Part II

Chapter [] was devoted to the investigation of zeros of all positive semi-waves. We have been
dealing with p, s which is a function that measures the length between two consecutive zeros of
every two different consecutive positive semi-waves.

Theorem 35. ([31l], Theorem 5, p. 14)
In the domain D = (0,4) x (0,+00), we have the following description of Fulik curves Ci, | =
1,....,n—1,

C5; 1ND = {(a,p)eD: ti(a,p) +tj(a,f) =n+1},
C3;ND = {(a,8) €D t;+1(a,6)+t;(a,ﬁ):n+1},
C;;ND = {(a,B)eD: tj,(a,B)+tj(a,8) =n+1},
where

. wl’ £ = { ti—l +P:,ﬁ (511 —5-1) f07"J: even,

o i+ o for j odd,
£ 1= ap(0), Q:{?1+L S e

ti_1+ Pa,p ([tjfﬂ - tjq) for j odd.

Remark 36. In Examples [{.8 and [1.9) we have explored in detail semi-linear initial value problem
for two cases — one for the solution that starts with a positive semi-wave and has first positive
zero denoted as t] (Example and the second for the solution that starts with a negative semi-
wave and has first positive zero denoted as t] (Example . Notice, that in Theorem we are
defining sequences (¢},) and (¢;) exactly in the same way as we did in those two examples. The
way that Fucik spectrum is retrieved is based on an idea of “anchoring the solution from both
ends” — thus for the Fucik curves with solutions with 2j generalized zeros on T, we need only (at
maximum) (j + 1)th terms of sequences (t;,) and (¢,).
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5.3 Comparison of descriptions of Fucik spectrum

Natural question at this point is why to have more descriptions of Fuéik spectrum Y (AP) using
different functions (function sequences (pg), (¥)) versus distance po g) and which description is
better. In all approaches, the description is implicit and recurrent but the second approach (using
function p,, ) is more suitable for numerical calculations because it is easier to implement.

Example 37. In this example, we are going to showcase both different approaches of description
of Fulik spectrum Y(AP). In order to use the same level of nested functions, we are going to
compare Theorems and In both cases, we are going to take the Fucik curve C3. Solution
for one («, ) € C3 is shown in Figure For simplicity, we are going to assume 0 < «, 8 < 4 in
both cases. We will take the description of the Fu¢ik curve C3 and specify it in extended (detailed)
form for the purpose of showcasing how to work with defined functions and how complicated the
description is — thus numerical implementation is needed.

1. Using Theorem (34| we have that (a, 8) € C3 has to satisfy
Py(a, ) + Pa(B, ) + T (F2(cv, B)) + T (92(B,0)) = n + 1. (5.1)
Sequences (Py) and (9) are recurrent. Equality in is
(e, B) + pa(a, B) + p1(B, a) + p2(B, o) + T (V2(a, B)) + T*(V2(8, o)) = n + 1.
We know p1(a, 8) = {lJ and p1 (8, a) = LT—BJ We have

191(0576) = Wpoi(a“@)(oo),
V(B a) = Wfl(ﬁ’a)(oo)'
Next:
P lTﬂ(ﬁl(a’ﬂ))erlﬁJ - {Tﬂ(Wﬁ(a,m(m))ﬂLﬁJ,
pa(fr0) = [T )+ | = [TV 00 + )
And finally:
Ua(a, B) = Wzi(a,g)(l%(a,ﬂ))
- wh e |
\‘TB(WSI(QYL?)(OO))+&J( p1(0z,ﬁ)(oo))
V2(B, ) = Wz?;(ﬁ,a)(l%(ﬁ,a))
_ o ,
) W{Ta (Wz?l(ﬁ,a)(oo))JrﬁJ (Wpl(ﬁ,a)(oo))

That means that we are looking for (a, 8) € ((0,4) x (0,4)) such that the following equation
is satisfied:

,_
€
Q

i

“p

MJﬂTﬁ(WﬂWJ(oo))%Jw;;h Ta(wf[ J(OO))Jr“jL

+7 | WP B ] J <W[‘W J(oo)>

o | we J we J<oo>

=n+1.
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Figure 5.4: Solution u for a« = 2.7, 8 = 0.4, (, 8) € C3 of L(AP) for n = 12.

2. On the other hand, using Theorem [35| we are solving

ty(r, B) +t5(e, B) =n + 1. (5.2)

Since t] (o, B) = pa,3(0) we have

(0, 8) = (0, B) + = = pas(0) + —

feY Wa

Term pq,p(0) can be written as

VP
0 1 1 TOL V’fﬁ""l ™ TO( \‘ﬁJ
Pap(0)=rg+14+Tas=krg+1+ Viﬁ’i = \}%J + Ve

Similarly, since t](a, 8) = wl’ term t3(c, ) is

(e 8) = 110 8) + pas (080 — 10 ) = =+ s (| 2] - ).

For term pq g ([i—‘ — i) we have

Function N, g is a piecewise function which we can write as the following. Since wi—‘ —

e/
We

)€

[0,1), we will assume only two distinct cases (first and second term in the definition of NV, g):
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5.3 COMPARISON OF DESCRIPTIONS OF FUCIK SPECTRUM

That means that we are looking for (a, 8) € ((0,4) % (0,4)) such that the following is satisfied
(we are going to write equation in ([5.2)) also piecewise):

vP

el (o (il 2) o (2 o

wg L%J —1

Let us note, that calculating Fu¢ik curves is actually a little easier using function p, g (using
numerical implementation). The reason is that all functions p, g, Na g, Ta,g, kg are not recurrent.

Example 38. In this example, we are going to briefly discuss computational complexity of nu-
merical localization of Fucik curves.

1. In the approach described in Chapter || (mainly in Example , we are solving 2”1 sub-
problems (2"~! comes from the number of all possible sign properties of vectors). For every
candidate for sign property of the Fuc¢ik eigenvector, we calculate the following:

We calculate det(AP — A), where matrix A has values o and 3 on the diagonal and their
position depends on the chosen sign property. Then we find zeros of such determinant (for
example in 3). This gives us candidates for Fu¢ik eigenpairs. Then for each of this candidate,
we need to calculate the eigenvector. When we have candidates for Fucik eigenvectors, we
have to check whether the sign property is satisfied or not.

That means that we are solving our problem in an exponential time.

2. Now, let us describe how we can numerically show Fuéik spectrum of AP using the knowledge
from Theorems 32} 4] and 5] We need to fix Fuéik curve C¢ (I € {0,1,...,n—1}). Since all
descriptions are implicit (recurrent and non-trivial), firstly we need to find implicit function
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which describes such Fuéik curve (using recurrence in descriptions). After that, we are
looking for zero contour of that implicit function (if there is a problem of looking for zero
contour of implicit function, we can always fix a € R and calculate 8 from that implicit
function; or the other way around).

That means that were able to convert our problem to the problem of finding a zero contour
of an implicit function (in contrast to the exponential time in the original algorithm).

Let us note that even though our descriptions of the Fucik spectrum are for a particular
matrix AP (Dirichlet matrix), theory in this thesis (and both research articles [25] and [31])
can be extended. The theory was constructed for a difference equation in . In order to
describe the Fucik spectrum for a problem with the same difference equation but with different
boundary conditions, one would use the same theory only changing aspects related to the boundary
conditions. Thus, our results can be generalized also for different boundary conditions (one would
need to explore the inadmissible areas for such matrices, since our theory does not include cases
(o >4 and f>4) and (e <0 or 5 <0)).

In the next three sections, we will introduce three possible ways how to localize Fucik curves
of ¥ (AP) in such a way, that the description of these bounds is simpler than the description of the
Fucik curves themselves — mainly, the description of bounds will not be recurrent and it will not
become more complicated when dimension n increases.

5.4 Basic bounds of Fucik curves and their consequence

First bounds we are going to discuss are referred to as the “basic bounds”. Probably the simplest
way how to get bounds of Fucik curves is to use properties of kg and x,. The following theorem
gives us the basic bounds for the Fué¢ik curves of X(AP).

Theorem 39. ([31], Theorem 13, p. 28)
In the domain D, we have the following bounds for Fucik curves Cf C ©7, l=1,...,n — 1, where

51 ={(,B)€D: 0<n+1—jka+1)—jlkg+1)<2j—1},
3 ={(a,B)€D: 0<n+1-(j+1)(ka+1)—jlrs+1) <25},
03 ={(,8)eD: 0<n+1-j(ka+1)—(+1)(ks+1) <2j5}.

These basic bounds can be used for the first localization of Fucik curves. Thus when we
calculate points of the Fucik spectrum numerically, they can give us estimates of areas where to
look. This way, the numerical method can output better results in a shorter time. For illustration
of basic bounds see Figure [5.5

Region D = ((0,4) x (0,+00)) U ((0,+00) x (0,4)) can be split into subregions by rs and kq
(for illustration, see Figure . Basic bounds in Theorem |39| are sets of these subregions where
Fucik curves are localized.

Let us have a fixed Fucik curve. Such Fucik curve belongs to some basic bound, thus we have
a set of subregions where to (numerically) look for values (a, ) belonging to the Fuéik curve
(see again Figure . Even numerically faster (yet not exact) way is to look for the lowest such
subregion (a maximal kg for which the basic bound is still satisfied). We are going to denote such
value as K5** (since it is a maximal rg for which the basic bound is still satisfied). While knowing
kg, we can numerically look for points from Fucik curves in the upper part of D —ie. in the
region o € (0,+00), B > & (and (a, B) € D), where k = s + 2. E.g., for s = 0 we are

max max.

assuming 8 > &, for kg =1 we are assuming B > &5 and so on. Let us derive these values Rg

1. Let us assume bound ©3;_; from Theorem For a fixed Fulik curve (thus n,j fixed), kg
needs to satisfy

2—4j+.n—]/<;a <hp < 1—2]+.n—]/<;a.

J J
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n=11
4 4
a=4
& T & T
&3t - & b
Gt ol C3
0 &&Es &2 4 « 0 &1 &3 &2 4 «

Figure 5.5: The set ©% (grey region) as the basic bound for the third non-trivial Fucik curve
C; C ©3 (black curve) for n = 10 (left) and for n = 11 (right).

Maximal kg is attained when

1-2j4+n—7JKa
Rp = ] )

thus (taking ko, = 0 in order to maximize the fraction)

1-25
O3, 1 KE* = {] —i—nJ :

J

2. Let us assume bound ©3; from Theorem For a fixed Fudik curve (thus n,j fixed), kg
needs to satisfy
—4j4n— Ko — JKa
- <k

5 < —2j+1n — Ko — JRa

J J
Using the same logic as in the first case, we have

-2 +nJ
; .

o |

3. Finally, let us assume bound ©3; from Theorem For a fixed Fuéik curve (thus n, j fixed),
kg needs to satisfy
_4j+nfj/<ca < kp < —23+nf]/<oa'
1+ 1+

Using the same logic as previously, we have
- max _2.7 +n
®2j . "i,@ = \‘WJ .
In Table[5.1] we can see values of k%= for different Fucéik curves (first column), fixed j (second

column) and fixed n (headers of all other columns). For example, for n = 3, there exist Fucik curves
1, C3 and C; and we have:

o The “lowest subregion” where C} is located is kg = 2, thus we are looking for values of
(ar, B) € C% in the region 8 > &4, a € (0,+00) (and («, ) € D);

o The “lowest subregion” where C3 is located is kg = 1, thus we are looking for values of
(o, B) € C5 in the region 8 > &3, a € (0, +00) (and (o, 8) € D);
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B
4
D
3
Kﬁ:O kg 0 KB:O
Ko = 2 Ko =1 Ko =0
2
kg =1 kg =1
ko =1 Ko =0
1
Kg =2 Kg =2
Ka =1 Ko =0
1 2 3 4 «

Figure 5.6: Region D = ((0,4) x (0,+00)) U ((0,+00) x (0,4)) (grey) split into regions by rg
and k.. We did not include boundaries in the figure — for example, region kg = 2, ko = 1 is

(€3,82] X (&4,83]-

o The “lowest subregion” where C; is located is kg = 0, thus we are looking for values of
(a, B) € C5 in the region 8 > &, a € (0,+00) (and (a, 8) € D).
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Fuéik curve

Value of k5 for a particular Fucik curve Cj for fixed n
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Il
©
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n=11

n=12
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3
Ci
Ci
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C O~ R oS

O OO KFNNULODI

S OO HEFNNWO N3

OO OO HFHFDNWWO3

SO OO M EFENWWKR WO

10

Ne)

O OO OO KFH NN WK K

11
10

ot

OO OO NN DN R

S
I
_
w

n=14

n=15

n=16

n=17

n=18

n=19

n=20

S
]
—

© © 00 W0 JO OO UTLULUUE R WWwWwNNN -~

NeJ

10
10
10
11

S
— N

OO OO OO KFH NN WK O

13
12

=}

OO O OO O R K NN WWOOL o

14
13

(=)

OO O OO OO KRR EFNDNWWWOLED

15
14

EN |

OO OO OO HFF F FHFNNNWWEREHID

16
15

EN|

O OO OO OO OHKFHFMFEMFEINNDNDWHR BRI

17
16

oo

O OO OO OOOHRFRFFRFINDNDDN WK BB I

18
17

oo

OO OO OO OO R FHFRFFFNNNWWHER R UG

19
18

©

O OO OO OO OO HHF HKHMFEINDNDDN WW W OLut o o

20
19

Ne)

OO OO O OO0 R KRR FHFEFINNNDWWWOOULOULOLo ©

20

O OO O OO OO OOFMFMFH HMFHFFNNDNDNWWKR OLOULOD ©

Table 5.1: The value of K™ (thus the lowest part of D split into subregions by xz based on basic
bounds in Theorem .
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5.5 Delta bounds of Fucik curves

Second bounds we are going to discuss are referred to as the “delta bounds”. In this part we will
restrict ourselves only to 0 < o < 4 and 0 < 5 < 4 and denote

D074 = (0,4) X (0,4)

Let us investigate in detail the “gaps” between positive and negative semi-waves — the difference
between zero points of two consecutive positive and negative semi-waves. Knowing minimal and
maximal such difference allows us to find regions (bounds) for Fuéik curves. In the following
definition, we define function d,, g which represents such difference (the length of such “gap” is
then equal to the absolute value of function d,,5) — see Figure

Definition 40. For 0 < a, 8 < 4, let us define

da,5(q) :=T%(q) = T?(q), ¢<0.

01 T%(q
Cyloo Pasll T

Figure 5.7: The distance between zero point of positive semi-wave (black) and zero point of
negative semi-wave (grey) — the distance |4 g| for @ = 1.9, 8 = 3.9.

Since function 4, s is a difference of functions 7% and T7, firstly we will investigate function
T* for A € (0,4) in detail. We will assume only ¢ < 0 because otherwise there would not be an
anchoring of two consecutive semi-waves. In this section, for the purpose of easy reading, we are
going to work with a function 7" defined as

T(q,\) :=T*(q), A€ (0,4), ¢<0. (5.3)
Lemma 41. Let A € (0,4), ¢ < 0. Then we have (for function T defined in (5.3)))

9T'(g,\)
94 >0
and 5
<0 orq < —1,
LT(Q’ N 0 forqg=-1
a)\ - q - )

>0 forqe(-1,0).

Proof. In the first part of this proof, we will focus only on the derivative of function T" with respect

to g, i.e.
9T (g, \) sin wy

dq (g2 — 2qcoswy + Dwy

Functions wy > 0, sinwy > 0 are both positive. Quadratic term is also positive, since its discrim-
inant is negative
D=4cos?wy —4=(2-N?—4=X\—4) <0.
This leads towards 9T (0. \
(q7 ) > 0.
dq
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In the rest of this proof, we will derive a sign of derivative of function 7" with respect to A.
Such derivative can be written in the form

LT(Q’)\) _ 9 (1 arccot (COSWA — q>) 8w,\' (5.4)

AN Owy \wy sin wy oA\
Last term in ([5.4)) is positive since for A € (0,4) we have

0 1
S S

0N A —4)

Next, we have

0 ( 1 (coswA - q>)
— | — arccot [ —————
OJwx \wx Sin wy

1 -1 —sin? wy — (coswy — q) coswy CosSwy — ¢
=— ) — — arccot [ ————
Wy coswy—¢q SIN“ Wy SIN W)

14+ —
sin wy
1 — sin® wy, gcoswy — 1 coswy —q
= —5 5 — w)y — arccot | ———
ws \sin®wy + (coswy — ¢)?  sin®wy sinwy

1 WG COSW)y — Wy CoOswy — ¢
— — 5 —arccot | ————— .
w3 \sin®wy + (coswy — q) sinwy

The derivative in (5.4) can be written as

9T (g, \) 1 1
—— = s F(w), ) —/—,
oA el end) o4
where
WA(Q COS Wy — Wy COsSW) — ¢
Flwy, q) = —arccot [ ST € (0,7), ¢ <0. 5.5
(@x:q) sin? wy, + (coswy — ¢)2 areco ( sinwy ) wy € (0,m), 4 (5:5)

Thus, the sign of % depends on the sign of function F' defined in (5.5)) (other terms in ([5.4)
are positive). Firstly, the right-hand limit of F' near zero is

lim F(wx,q) =0.

wx —0t+
The derivative of F' with respect to wy can be simplified as

OF (wx,q)  q(g® — 1)(wxsinwy)

Ow, (1+¢® —2gcoswy)?’

thus the term (¢®—1) is responsible for the sign of such derivative. For the simplest case of ¢ = —1,
the derivative of F' with respect to wy is zero, thus function F' is constant. Since the right-hand

limit near zero is zero, then
F(wx,—1) =0, wy € (0,m).

For ¢ € (—1,0), the derivative of F' with respect to wy is positive, thus function F is increasing.
And having in mind the right-hand limit near zero, we have

F(OJ)\,(]) > 07 wx € (Oaﬂ-)v qc (—1,0)

Similarly, we have
F(WX7Q)<05 LU)\E(O,TF), q<_1
T(q, A
Knowing the signs of function F' leads directly to the signs of % O
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In the proof of the following theorem we will find stationary points of function é,, g with respect
to ¢ and we will prove when these points are global minima and global maxima of function d,,g.

Theorem 42. Let 0 < o, 8 < 4. Function 04,5 has one global minimum and one global mazimum

(for ¢ < 0):
Sap(a?")  for a> B,
ané{}‘saﬁ(q): 0 for a =0,
Sap(as”)  fora < B,
where

aiy =0\ ()2 =1,

Also,

JoB .—

a,pB

0a,8(qs"")  fora> B,
max ba,8(q) =4 0 Jor a =B,
(5a)5(q?”8) for a < B,

W SINWg COS Wy — Wg Sin W, COS Wg

(5.6)

We SINwg — wg Sinwy

max 0q,5(¢) = —mind, s(q).

q<0

q<0

Proof. Let 0 < o, f < 4. Function 0, g can be written as

1 _ 1 B
ba,8(q) = — T arctan | 2% 793 ) _ = (T _ gpean | 22879 )
W \2 S Wa wp \ 2 sinwg
For a = 3, we have
da,5(q) = 0.

In the rest of the proof, we will assume a # 3. Regarding the boundary points, we have

0 (0) =0, Tim_8as(q) = 0.

The first derivative of 04,5 (with respect to ¢) is
85a,5(Q)

Sin weg,

sinwg

dq (14 g% — 2q cos Wy, )wq

Zero points of such derivative have to satisfy

(1+¢% —2gcoswg)wg’

(Wa SiNWs — W5 SIN W4 )q* — 2(We SiN W5 COS W, — W SIN Wy COSWg)G + Wa SiN W — wWa Sinw, = 0.

Since « # 3, we have

2 _ oWa SN Ws COSW, — wpsinwa cosws

g —

Using definition of J*# in (5.6)), we can write

qg+1=0.

We SInwg — wg sinwg

@ —2J%Pq+1=0,

which is a quadratic equation in ¢ with a discriminant

D = 4(J%F)2 — 4 = 4((J*F)? — 1)

4 sinw, sinwg ((wi + w%) Sinwg sinwg + 2wawgs (oS Wy COSwg — 1))

(5.7)

(wp sinwy, — wq sinwg)?

The discriminant in (5.7 is positive when function g is negative, where function ¢ is defined as
(since a, § € (0,4), we have wqa,wg € (0,7) and we can denote a := wq, b 1= wp)

g(a,b) == (a® + b*) sinasinb + 2ab(cos acosb — 1),
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For the investigation of stationary points, we will take function g in [0, 7] x [0,7]. Function g
has stationary points for a = b, where g(a,a) = 0. There are no other stationary points. For the
boundary, we have ¢(0,.) =0, g(.,0) =0, g(m,.) <0 and g(.,7) < 0. That means that function g
in is negative, thus the discriminant in is positive.

Thus such quadratic equation has two zero points qff — they are defined in ([5.6).
Using Vieta’s formula ¢$?¢5"? = 1, we have
a,
4y = .
q?,ﬁ

1
Since J*# < 0, we also have qf’ﬁ < 0. Thus qg’ﬁ =—5 < 0. Moreover, q?’ﬁ < —1 and
7

a5 e (—1,0). Using properties of function T* in Lemma we can derive

e D @, [} 1 1
T°(g5") = T7(g5") =T (qa,ﬁ) -7 (qa,ﬂ)
1 1

= 1-T%q") = (1= TP(¢")) = = (T*(¢") — TP (g7"))

bai(a5™”)

%)

= —dap(q”

DN =

0 ¢

Figure 5.8: Function T* as a function of ¢ for fixed A € {1.2,2.5,3.5,3.9,3.98} — the darker shade
of grey, the larger parameter .

N =

0 4 A

Figure 5.9: Function T? as a function of X for fixed ¢ € {—5.5, 2.5, —1.2, =1, —0.8, —0.5, —0.2} —
the darker shade of grey, the larger parameter gq.

Since function &, s is a difference of T and T#, we will investigate function 7% = T*(q),
A € (0,4) in detail in order to clarify, that points qff are points of global extrema for function
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dq,p and also to distinguish for which parameters o and 3 the points are points of global maximum
/ minimum.
Let us look at the limits on the boundary of our set (for ¢):

lim T*(q) = T*(0) =1, lim T*(q) = T*(cc) = 0.

q—0— q——00

Function T* is increasing with respect to ¢, since its first derivative is positive — see Lemma
On Figure we can see function T as a function of ¢ for several fixed values of \.

Function T is (with respect to \) decreasing when ¢ < —1, constant for ¢ = —1, T(—1,\) = 1/2
and increasing for ¢ € (—1,0) — see Lemma On Figure we have illustrated function 7% as
a function of A for several fixed values of q.

5 Yy
, 0 < B y=T"(q) 1
Y = 6a,5(q) e - max dq,5(q) 1
| a,3 E R 92
/\ a5 | 2
-7 mind, g(q) :
<0 -3 -2 -1 (N

Figure 5.10: Maximum and minimum for 6, 5 (on the left) and functions 7%, 7" (on the right)
fora < B (e =1.9, §=3.9).

Y
Yy a>f y=T%4q) 1
, TR bas) o LS 1
¢ -l | 2
\J g5 |0 q
S | min 6, 5(q) w
— b min dq, 5 ‘
Y 8(a) <0 ~ 5 - v

Figure 5.11: Maximum and minimum for 6, 5 (on the left) and functions 7%, 7" (on the right)
fora> g («=3.9, §=1.9).

From we know that T*(—1) = 1/2, thus this value does not depend of the value of .

Since function d, s is a difference of T® and 77, the location of its minimum and maximum
will depend on the inequality between « and .

Let us assume a < . Such case is illustrated on Figure We have two stationary points
of 04, (points qf’ﬁ and ¢5°”) with the property q‘f"ﬁ <-1< qg’ﬁ < 0. Limits of function .4
are dq,3(0) =0, qEIEloo da,8(q) =0. Value of 643 for ¢ = —1is do5(—1) = 0—0 = 0. From

the investigation of monotonicity of function T with respect to ¢ and with respect to ), we can
conclude, that
T°(q) > T"(q) for all ¢ € (—o0, —1).

That means that there has to be a local maximum for ¢ = qf’B and (5a)5(q?’5) > 0. On the other
hand,
T%(q) < T?(q) for all ¢ € (—1,0),

thus there has to be a local minimum at qg’ﬁ and 5(175((]2“’&) < 0. The absence of other stationary
points leads to that both local extrema are global extrema.
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For o > 3, the situation is very similar, we have migl 80.8(q) = 60,5(¢7") and max 00.5(q) = 64.5(¢5")
< q

— see illustration on Figure [5.10]
Since 64 5(¢5") = —00.5(¢5), we have

max da,4(¢) = — min da,5(q)-

Definition 43. For 0 < a, 8 < 4, let us define

BB = —|da,5(q"),
X = +|0a,s(e0")],

where ¢ is defined in (5.6).

Remark 44. In Deﬁnition we have denoted 655 and §5% the minimum and maximum length
that we need to add in the intervals of anchoring in order to get upper and lower bounds.
We have used the “symmetry” of global extrema of function d, g derived in Theorem ie.
max 0y, 5(¢) = —minda g(q).

g<0 g<0

In the following theorem, we derive bounds for Fucik curves C’li, l=1,...,n—1 using extrema
points from the Theorem [42| (and values 5‘(‘)‘}% and 53%) — for illustration of such bounds, see Figure
0. 12

Figure 5.12: Delta bounds for X(AP) for n =5 (left) and n = 6 (right).

Theorem 45. In the domain Dy 4 = (0,4) % (0,4), we have the following “delta bounds” for Fuéik
curves Cf, 1 =1,...,n—1,

(C3,_1NDo4) C =03,
(CSJ N DO,4) C \I/j+17j =: \Ifgj,
(C3j N Doa) CWjjp1 =t Wy,
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5.5 DELTA BOUNDS OF FUCIK CURVES

Jj €N, where for k,s € N, sets ¥y, 5 are given by
Vs = {(,8) € Dos: Frs(a,B) <n+1<Grsla,p)}
and

m s min 4 ™ max
Fy s(a, p) := k—a —|—s@ +(k+s—1)0a5 Grs(a,B):= k@ +s@ + (k+s—1)d5%.

n—+1
o
14 k
-2+ ' v e Pl i
10a,8(qa)l; 1110a,8(as)l  10a,8(a8)l:: 1 l0a,8(q10)l  [0a,8(q13)]!
i< i< | e »—< »—<
4+ A S N S o
—— L—i -~

Figure 5.13: Solution w € Cf, n = 13, a = 0.8, § = 3.9369177). Positive semi-waves are in dark

us

grey color (their length is equal to 7-), negative semi-waves are in light grey color (their length

is equal to J—B) This solution consists of 5 anchorings (it has 5 generalized zeros on T) and the

“gaps” between zero points of positive and negative semi-waves are given by functions |dq,(¢:)|,
where i € (4,5,8,10,13).

Proof. Fuéik curves C; consist of points («, 5) such that their corresponding Fuéik eigenvectors
have certain sign properties. For Fuéik curve C/, I = 1,...,n — 1, we have u(1) > 0 and the
solution w has [ generalized zeros on T. Since we are assuming (a, 5) € Dg4 = (0,4) x (0,4),
the length of all semi-waves can be expressed as - for positive semi-waves and ﬁ for negative
semi-waves. In the linear case (a = ), if we sum appropriate number of lengths of positive and
negative semi-waves, such number has to be equal to the length of the solution plus the boundary
points, i.e. n+1. In our case (o # 3 in general), we have to “correct” this length by the differences
between every anchoring of two consecutive semi-waves. For a fixed anchoring, such difference is
given by the function d, g (either +d4 5 or —da5.) If we estimate this difference by 3%, we have
an upper bound of the length n + 1. And if we estimate this difference by 52“, we have a lower
bound of the length n + 1. O

See Figure for a particular solution u for which (o, 8) € C (n = 13). We can construct
both boundaries of delta bounds for this fixed solution. The upper boundary is given as (n+1 = 14)

3 43— 456 =n 1
oo Pay T P00

and the lower boundary in given as

37 437 458 =n+ 1.
We wp ’

See Figures [6.4] and [6.5] for detailed illustration how delta bounds for each Fuéik curve may
look like — shown for X (AP), n = 6.
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5.6 RHO BOUNDS OF FUCIK CURVES

5.6 Rho bounds of Fué¢ik curves

Finally, third bounds we are going to discuss are referred here as “rho bounds” (originally intro-
duced as “improved bounds” in [31], see Figure for illustration). The main idea is based on
using extrema of function p, g. In [3I], Section 6, we have explored properties of function p, g in
detail. We were able to find its minimum and maximum - see Figures [£.7] and

3 A

7Y

Figure 5.14: Rho bounds Y3 (I =1,...,n — 1) for the Fu¢ik spectrum X (AP) for n = 4 (left) and
n =7 (right).

Theorem 46. ([31], Theorem 31, p. 47)
Let 0 < o« < 4 and B > 0. Then the function p,,g attains its global extrema at na.g and fia.g-
More precisely, we have that

Pa,p(Ba,g) = 2Ha,p + Kp fora < g,

€0, 1470 5] Pa,g(Na,p) =2Nap+rs+1 fora>p,

min = pe.a(s) = {

max  pos(s) =

s€[0,147q,5]

Pa.s(Nag) =2Nap+rg+1 fora<p,
P (Ha,8) = 2la,p + g for a > .

In order to have an easily readable text, we denote maximum and minimum of function p, g
as follows:

Definition 47. ([31], Definition 2, p. 11)
For 0 < a < 4 and 8 > 0, let us define

min ,__ Zﬂa,ﬂ + Iiﬁ « S ﬂ’
Pag Map+rs+1l a>p0,

max ,__

pa,ﬂ T

277(1,64’/‘?64’1 a < ﬂa
20,3 + KB a> .
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5.7 COMPARISON BETWEEN DELTA AND RHO BOUNDS

min max

Finally, rho bounds are such bounds, that we take pp5 and pi?% instead of function p, g in
the description of Fu¢ik spectrum Y(AP) in Theorem

Theorem 48. ([31], Theorem 8, p. 11)
In the domain D = (0,4) x (0,400), we have the following “rho bounds” for Fucik curves Cf,
l=1,...,n—1,

(C§j71 n D) C ijj = T;jfh

(C3;ND) C Yj1y = T3,
(€;ND) CYjj1 =73,
j € N, where for k,s € N, sets Ty, s are given by

Too={(0B)eD: % < L(nt1-kzZ) < ).

5.7 Comparison between delta and rho bounds

In this section, we want to show that delta bounds from Theorem [45| and rho bounds from Theo-
rem (48| are distinct from each other and also, we want to show when which bounds are better to

use. From the construction of delta and rho bounds, we can decide which bounds are better in
which cases. For illustration of delta and rho bounds of X(AP) for n = 5, see Figure

1. In delta bounds, firstly, we are assuming that all semi-waves are anchored in zero points,
thus the total length is equal to the sum of - and ﬁ (the correct amount of such lengths).

Then, we add negative value 52% or positive value 6,75 — that represents the “correction” of

anchorings. It is possible to construct delta bounds only in Dy 4.

2. In rho bounds, we have fixed positive semi-waves (and their length 7~) and we are taking
maximal value of distance function p,, s and minimal value of p, g in order to substitute for
negative semi-waves. We have constructed rho bounds in D.

Firstly, since rho bounds are constructed even for § > 4, they are better when we need estimate
for such §. In general, it is better to estimate the whole negative semi-wave in total (rho bounds).
Thus, in most of the cases, rho bounds give us better estimates. It is evident in the case of bounds
of higher order Fuéik curves (we are making a lot of anchorings, thus we are estimating many
times) — see Figure On the other hand, when we are estimating lower order Fucik curves
with first and last semi-wave negative (C;), delta bounds give us often better results — see Figure
Starting with negative semi-wave means that the first semi-wave is calculated exactly in case
of delta bounds, but is estimated in case of rho bounds. And when we are starting (and ending)
with positive semi-wave, rho bounds are usually better — see Figure We can compare delta
and rho bounds for C; and C; in Figure

In the following example, we are going to select three points from Dy 4 = (0,4) x (0,4) close
to each other and show which point belongs to which bound.

Example 49. Let n = 5. We are going to take Fucik curve C; and find description of delta and
rho bounds using Theorems [45] and [48]
For delta bounds ¥;, of C; we have

Uy = {(a,ﬁ) €Dps: — 42— 425 <pt1<— 42 +25§ag} . (5.9)
Wy wg ’ Wy wg ’

And for rho bounds Y3 of C; we have
- min 1 7T max
TQ{(OK,ﬂ)GD:PQ,gSQQLJrl) Spmﬁ}- (5.10)
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5.7 COMPARISON BETWEEN DELTA AND RHO BOUNDS

Figure 5.15:  Solution u of (P4) for @ = 0.8366, 8 = 0.8. Since (a, 8) € C;, solution u has two
anchorings — two generalized zeros on T; and it starts with a negative semi-wave.

We have chosen three points X; = (0.6, 3.8), X2 = (0.73,3.8) and X3 = (0.92,3.8) and we are
going to calculate if these points belong to delta and rho bounds of C;. In Table A9 we can see
that point X5 is in both delta bounds ¥; and rho bounds Y5. On the other hand, X; is only in
delta bounds ¥; and X3 is only in rho bounds Y5.

(5.9]) for w3 X; e U, ‘ (5.10]) for Y3 X; ey

X1 =(0.60,3.8) | 5.915 < 6 < 6.655 YES 1.056 < 1.025 < 1.506 NO
X2 =1(0.73,3.8) | 5.528 < 6 < 6.26 YES 1.056 < 1.221 < 1.501 YES
X3 =1(0.92,3.8) | 5.116 < 6 < 5.835 NO 1.057 <1.430 < 1.494 YES

Table 5.2: Delta bounds ¥3, rho bounds Y5 and a decision whether points X;, X5 and X3 belong
to either U5 or T5.

Moreover, if we fix 8 = 3.8, then using either Theorem [32] or Theorem [35] we can calculate
approximate value of « in a way, that (a,8) € C;. Such value is a = 0.8366. See Figure
for corresponding solution u. And see Figure to see a detail of Fucik curve C; within both
bounds.

Remark 50. One of the possible ways how to make rho bounds better, is to deal with first and
last semi-wave differently. Instead of using pi; and p’&“}; as estimates of the the distance p,. g, we
calculate these lengths (for the first and last semi-wave) precisely using boundary conditions. For
example, when starting with negative semi-wave, we calculate t] precisely, i.e. we use t] = pq 5(0)
instead of pfi*% or pli'%.

Remark 51. Diagram of Fucik spectrum is symmetric along the line o = 3. Thus, we can also
“mirror” all bounds. This leads to better results but it is more complicated to calculate as a final

bounds for all Fuéik curves of X(AP).
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5 A 5 A

-

> -
o o

Figure 5.16: Delta bound ¥%, (green — its boundary) and rho bound Y%, (red — its boundary) for
C3, (left) and delta bound U3, (green — its boundary) and rho bound T3, (red — its boundary) for
C3y (right) of X(AP) for n = 42.

5 A 5 A

=Y
=Y

Figure 5.17: Delta bound ¥; (green — its boundary) and rho bound Y3 (red — its boundary) for
C5 (black) of 3(AP) for n = 5.
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5 A 5 A

=y
=y

Figure 5.18: Delta bound ¥} (green — its boundary) and rho bound T3 (red — its boundary) for
C3 (black) of (AP) for n = 5.

5 A 5 A

)
=y

Figure 5.19: Delta bound ¥} (green — its boundary) and rho bound Y} (red — its boundary) for
C; (left) and delta bound ¥} (green — its boundary) and rho bound Y (red — its boundary) for
C; (right) of (AP) for n =9.
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5 A 5 A

Figure 5.20: Delta bounds ¥ (left) and rho bounds Y7 (right) (I =1,...,n—1) for the Fuéik spec-
trum X (AP), n = 5.
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Chapter 6

Conclusion

In this thesis, we provided a complementary text that would be recommended to be read alongside
research articles of the author: [25] and [31]. The main purpose of this thesis was to give the reader
a more comprehensive understanding and background on the Fucik spectrum for discrete operators.

We studied Fuéik spectrum of matrix AP, i.e. Fuéik spectrum for the semi-linear boundary
value problem . In order to do that, we explored a linear initial value problem , found
its solution (Lemma [3)) and defined a continuous extension of the solution.

We also investigated how to retrieve the first non-negative zero of such continuous extension
(for A € (0,4) it is determined by function 7 defined in Definition |8) and explored in detail
sequence (qx)rez of ratios of values of the solution u in two consecutive integers using Chebyshev
polynomials of the second kind. We used function W,;\ (Definition to find any term of sequence
(¢r)kez (Lemma [I5] and Remark [16)).

This led to a generalized approach suitable for a semi-linear initial value problem . Another
generalization described in the thesis relates to the concept of positive and negative semi-waves
introduced in Section Therein, we showed a relationship between function W,;\ and a solution
of a semi-linear problem —i.e. functions W and Wlf allow us to get any term of (gx)krez
even for semi-linear problem where the role of a continuous extension have positive and negative
semi-waves which are “anchored” together.

We introduced sequences of recurrently defined functions (pi)kez and (9x)rez in Definition
These sequences allowed us to calculate generalized zeros of solution v — Lemma Using such
calculation together with the boundary conditions leads to an implicit and recurrent description
of the Fu¢ik spectrum of matrix AP — see Theorem |32/ and Theorem [34| (these theorems differ by
the logic of “anchoring” the solutions).

Moreover, we extended our theory of semi-linear initial value problem to the study of the
distance function p,,g — the distance between two consecutive zeros of two different consecutive
positive semi-waves. For the definition of function p, g (defined in Definition we have explored
what is the role of piece-wise linear function kg and how it can be used in order to measure the
distance function po g. This lead to a new (and different) description of the Fucik spectrum of
matrix AP in Theorem B8

Finally, we also investigated in detail three different bounds of Fué¢ik curves — basic, delta and
rho bounds which are practical applications of the previously introduced theory. Basic bounds
were provided in Theorem delta bounds in Theorem and rho bounds in Theorem
respectively. Any of these bounds can be used for a numerical localization of Fucik curves even
for high dimension matrices AP, since these bounds will not become more complicated when n is
increased.

Even though our descriptions of the Fuéik spectrum are for a particular matrix AP (Dirichlet
matrix), theory in this thesis (and both research articles [25] and [3I]) can be extended. The
theory was constructed for a difference equation in . In order to describe the Fucik spectrum
for a problem with the same difference equation but with a different boundary conditions, one
would use the same theory only changing aspects related to the boundary conditions. Thus, our
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6 CONCLUSION

results can be generalized also for different boundary conditions.

We note the newly introduced theory was well received by the academic community — both
research articles were published in impacted journals ranked within the first quartile in their
respective fields. The main aim of the thesis was to provide a comprehensive overview of the
theory, illustrative examples and to make the discrete Fucik spectrum analysis more accessible to
a general mathematical audience. Last but not least, we contemplated on further applications of
the newly introduced theory — either to generalise results to other boundary conditions or to apply
the results on a practical problem (e.g. involving high dimension AP matrices). These aspects,
among others, are out of scope of the thesis and are left for future research activities.
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, A
14748 ,
14 Nap
1 -
Ha,pB |
Ta, |
Mo, B | O ~---9
\\ |
\‘k\\
RN >
0 N, T, Ha,B 1 IT+napl+7as s
Figure 6.1: Function N, g for « < 8 (o = 1.2, § = 3.2).
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Figure 6.2: Three different shapes of graph of function N, g when the values « are fixed and
values of 8 are changed.
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a=25p3=274 a=23,8=297
u
X
a=21,8=325 a=20,8=341
u
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u

a=1.75,8 = 3.98 a=1.74,5 = 4.01
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a=16,3=454 a=14,8=590

a=128=0997 a=11,5=18.1

Figure 6.3: Corresponding solutions u for (a,3) € C# for X(AP) of n = 9. Notice, that these
solutions have different sign properties — for a > 2 we have u(2) < 0, for & = 2 we have u(2) =0
and for o < 2 we have u(2) > 0. Also, compare the continuous extensions for o = 1.75 versus
a = 1.74 (for the first one § < 4 and for the second one § > 4).
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Figure 6.4: Delta bounds for Fu¢ik curves of X(AP) for n = 6. Bound W% as a delta bound for
Ct (top, left); bound ¥} as a delta bound for C; (top, right); bound ¥3 as a delta bound for C;
(middle, left); bound ¥% as a delta bound for C# (middle, right); bound ¥} as a delta bound for
C; (bottom, left) and bound ¥; as a delta bound for C; (bottom, right).
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Figure 6.5: Complete illustration of delta bounds for Fuc¢ik curves of 3(AP) for n = 6 (right).
Bound ¥% as a delta bound for C¢ (left).
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Figure 6.6: The graph of the function p, g for o < § (a = 2.6, 5 = 3.8).
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1. Introduction

In this paper, we deal with the following discrete problem with Dirichlet boundary
conditions

A%u(k — 1)+ aut (k) — Bu=(k) =0, keT,
{ (1)
u(0) =u(n+1) =0,

where u : T — R, T:={0,1,...,n,n+1}, T:={1,...,n}, n e N, u* and u~ stand for
the positive and the negative parts of u, respectively, i.e.

utu™ T — R, u® (k) := max{=u(k),0},
a, 3 € R and the second order forward difference A?u(k — 1) is given by
Au(k — 1) := u(k — 1) — 2u(k) +u(k + 1).

The purpose of this paper is to study the set of all pairs («, 3) € R? such that the problem
(1) has a non-trivial solution u, which is equivalent to investigate the set

S (AP) :={(o, 8) € R?: the problem A’u=aut - fu-

has a non-trivial solution u},

where u, u™ and u™ are column vectors with n elements u(k), u* (k) and u~ (k), respec-
tively, i.e.

and AP is the n-by-n Dirichlet matrix

2 -1

-1 2 -1
AP .=
-1 2 -1

The set X (AP) is called the Fuéik spectrum of the matrix AP and its structure has been
studied in [5], [6] and [8]. Let us note that all eigenvalues of AP are real eigenvalues and
thus, each eigenvalue X\ of AP determines a pair (A, \), which belongs to ¥(AP). Indeed,
for « = B = A, the problem APu = au™ — fu~ is reduced to the linear eigenvalue
problem APu = \u.

Before we recall some known results concerning the set X (AP), let us introduce the
following notation. Let us denote by C; (Cj) the set of all pairs (a, 8) € X (AP) such
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the non-trivial solution u of (1) for («, ) € C
o B 2 (AP) forn =5
=
4
0 1 5 e ¢
S s
wg
2
the non-trivial solution w of (1) for (a, 3) € C ‘
= L= ¢ i
T ‘ ‘ ‘ —
\ E 0 2 4 o
of 14 \.\/ B bS] ¢ e
«—» >
E .

Fig. 1. Due to results in [5], it is possible to obtain the numerical approximation of those parts of non-trivial
Fuéik curves C; of (AD), which are located in the square (0,4) x (0,4) (right) and also corresponding
non-trivial solutions u of (1) for different pairs (a, 8) € = (A®) N (0,4) x (0,4) (left).

that the corresponding non-trivial solution u of (1) changes its sign k& times on T and the
value u(1) is a positive (negative) one. The sets Cj and C; are lines, which are parallel
to B and « axes, respectively, since corresponding non-trivial solutions u do not change
sign on T. We call both curves C; and C; as trivial Fucik curves.

Firstly, C. Margulies and W. Margulies studied the solvability of mildly nonlinear
matrix equations with a general n-by-n self-adjoint matrix and recognized the importance
of the corresponding Fucéik spectrum as a resonance set. Using their general results
published in [6] in 1999, we conclude that the Fucik spectrum 3(AP) is a closed subset
of R?, which does not contain an open set and is made of finitely many algebraic curves.
Moreover, in the case of the 2-by-2 Dirichlet matrix, the structure of the Fucik spectrum
Y (AP) is trivial one and is mentioned in [6] as an example.

Secondly, R. Ma, Y. Xu and Ch. Gao published their paper [5] in 2010, where the
matching-extension method is introduced to obtain an expression of ¥ (AP) similar to
the well-known description of the Fuc¢ik spectrum in the case of the continuous Dirichlet
problem (see [1] or [2])

{ " (t) +avt(t)— Bv(t) =0, te(0,n),
v(0) = v(m) = 0.

Theorem 3.1. in [5] provides an important description of parts of all non-trivial
Fucik curves Cj, which are located in the square (0,4) x (0,4) (see Fig. 1, right). Namely,
for the first non-trivial Fucik curve Ci, we have that (a,3) € Ci N (0,4) x (0,4) if and
only if a, 3 € (2 —2cos 7, 4) are such that
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i ] o ([ 1 -5)) = (2] 9o o (2] ),

(2)

where
stE=n+l, [%]§s<[£}+l. (3)
In the previous assertion, we denoted w, := arccos 277"‘ and wg := arccos # and []

means the integer part function. The corresponding non-trivial solution u of (1) changes
its sign exactly ones in T, thus, it consists of one positive and one negative semi-waves
(see Fig. 1, left). The positive (negative) semi-wave has its continuous extension with the
frequency w, (wg) and the distance of two consecutive zeros of its continuous extension
is exactly - (ﬁ) The equality in (3) can be rephrased as

T T
— 4+ —+d =n+1,
Wo W8

where 61 = s — - € (—1,1) is the difference of zeros of the continuous extensions of
negative and positive semi-waves. For the higher non-trivial Fuéik curves, we have the
following description

2j-1
T o
C3jq1: jwa+jwﬁ+;5z—n+1, (4)

and

23 2j
s T s T
Ci:: (j+1)—+j— 5 = 1, Co. v i 4 (i41)— 5 — 1, (5
50 G+ )wa +]wﬁ+;_1 i =n+ 2 Jwa+(,7+ )wﬁﬂL;_1 i =n+1, (5)

where §; € (—1,1) depends on « and § and is given implicitly by a transcendent equation
similar to (2). Thus, (4) and (5) represent the particular Fucik curves Cj as level sets
F¢(a, ) =n+ 1, where F} are given implicitly.

Thirdly, P. Stehlik published his paper [8] in 2013, where he studied the qualitative
properties of the first non-trivial Fucik curve Ci. He proved that the first non-trivial
Fucik curve is decomposable in the following way (see Fig. 2)

C; =*cyufctuBcrucs,

where two continuous curves AC# and °C# and the set PCf of finite number of points are
given explicitly as
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Ciforn=7

Acf

Cci

Fig. 2. The first non-trivial Fuéik curve C# and its decomposition C* = *C* UPC* UBC: UCC? due to results
in [8] (black points represents the set 7C*).

ACs 4sin? — p S IS te(1,2
t=19(pB): a=4sn 2nti—p) B = —ma €(1,2) ¢,
PCT = {(Oé,/B) a:4sin2m, B:4Si112%, sz,...,n—l},
. (n—1)w
s
€Cs = {(a,ﬁ): a:2—1r;min£, B:4sin221t, te(n—l,n)}.
t

(6)

The set BC# is the part of C#, which belongs to the square (0,2) x (0,2) and has empty

intersection with the set ?C#. Moreover, in [8] is proved the following necessary condition:
if (v, B) € BCt then

w2 ol]) 2] of2])

where |-| and [-] denote floor and ceiling functions, respectively. Finally, the last part
of [8] is devoted to the elementariness of BCf. A conjecture is stated that BC# has no
elementary parametrization and also possible ways how to prove it are discussed.

In this paper, we prove the following main results.
1. Theorem 22 provides the complete description of the Fuéik spectrum X (AP), the

particular Fuc¢ik curves are described as level sets Fj(a,3) = n + 1, where the
functions Fj; are given explicitly. In addition, Theorem 22 contains the description
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of all Fuc¢ik curves as algebraic curves in terms of Chebyshev polynomials of the
second kind in prescribed regions (see Figs. 15, 16 and Example 24).

2. In Theorem 26, we have another description of all Fu¢ik curves as level curves
F¢i(a,8) = n+ 1, where functions F}; are given explicitly and differ in the level
of depth of used nested functions. Moreover, using this description, we proved The-
orem 27 containing the representation of all Fuc¢ik curves as algebraic curves in
prescribed regions, which are different from regions given by Theorem 22 (see Figs. 18
to 24 and Example 29).

3. In Corollary 25, we provide finite number of points (¢;, §;), which belong to particular
Fudik curves and contain all points of °C given by (6).

4. In Corollary 30, we give the implicit description of the first non-trivial Fucik curve C;
in terms of Chebyshev polynomials of the second kind. More precisely, we show that
the first non-trivial Fucik curve C; consist of parts of algebraic curves in prescribed
rectangles. As a consequence of Corollary 30, it is straightforward to verify that the
part BC# of the first non-trivial Fuéik curve C} has an elementary parametrization
for n =4,5,6,7 (note that BC# is the empty set for n = 1,2, 3).

We show that the first non-trivial Fucik curve C7 of the Fuéik spectrum consists of parts
of algebraic curves (see Corollary 30)

Uni (332) Ui (52) = Unica (52) Ui (52) =0, i=1.n—1, (1)

where Uy, = Ug(x) are the Chebyshev polynomials of the second kind of degree k. Let us
note that for &« = 5 = A, each equation in (7) simplifies in polynomial equation

U, (52) -
which has roots made of eigenvalues \J < A} < --- < A _, of AP since U, (%) =
det (AP — AI). The Fuéik spectrum X (AP) consists of particular Fucik curves Ci, k =
0,...,n — 1, which emanate from points (A}, \?) on the diagonal @ = 8 (see Fig. 3).

We have the following description of the Fucik curves Cj. For k odd, the Fucik curve C}
coincides with the curve C;, and consists of parts of algebraic curves (see Theorem 22)

o) o] o] ) s [o o
where [Wj\} is 2 X 2 matrix given by

Ui (33%) —Uj-1 (%3?)
Uj-1 (35*) —Uj-2 (35%)

w‘

[WJA} -

], jEZ, NER,

and pi,...,pr+1 are integers, which depend on « and [, and are given by explicit
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Fig. 3. The Fucik spectrum X (AD) of the Dirichlet matrix AP of order n = 9, the particular Fué¢ik curves C
are described as level sets F} (o, 8) = n + 1 due to Theorem 22.

analytic formulas (see Definition 17). Moreover, algebraic curves (8) are of the form

det (AP — A) = 0, where A is the diagonal matrix

A =diag(a,...,a,08,...,08,...,a,...,«, B,...,0).
—_——— —— —_—— ——

p1—times po—times pr—times ppri1-—times

Integers pi, ..., pr+1 determine, which components of the corresponding non-trivial so-
lution u of the problem APu = au™ — fu~ are non-negative and which are non-positive,

ie.

p1—times p2—times pr—times Pk41—times
wt = (00,0, 0..00)
e T R OO O S R

u = (0,...,0, 4 ey 0,000, )
N——— N — N N —
p1—times ps—times pr—times pryi1—times

Let us note that for £ = 1, algebraic curves (8) can be rewritten in the form of (7). For
k even, the Fucik curve Cj, consists of parts of algebraic curves

o] [ e s [] <o

and finally, the Fucik curve C; consists of parts of algebraic curves
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[ o] o] ol - o] - o] o

This paper is organized in the following way. Firstly, we review some standard facts
on linear initial value problem (9) and discuss properties of its solution in Section 2.
We look more closely at continuous extension and zero points of such extension. We
introduce Mébius transformation W)} (see Definition 5) which allows us to get ratio of
any consecutive elements of the solution. At the end of this section, we discuss the case
of linear problem (24) and the developed theory will be useful in the following parts of
this paper. In Section 3, we investigate in detail continuous extension of a solution of
semi-linear initial value problem (29). We introduce several sequences of functions which
allow us to locate all generalized zeros of the solution of the problem (29). Finally, in
Section 4, our main results are stated and proved. We give several descriptions of the
Fucéik spectrum of the Dirichlet matrix in the form of necessary and sufficient conditions.

2. The continuous extension of a solution of the linear problem

In this section, we look more closely at the linear initial value problem

{ A%u(k — 1)+ (k) =0, keZ,
u(0) = Co, u(l) = Cy,

where A and Cp, C; € R are constants such that C3 + C? # 0.
The characteristic equation for the difference equation in (9) has the form
P+A=2r+1=0
with the roots

22 4 (B2 =1 for A—2|>2,
T2 =
222 iy /1— (352) for A —2| <2
Let us point out that r7e = 1. For A\ =0 (A =4), we get 1 =13 =1 (r; = ro = —1).
For |A — 2| < 2, roots m and 7y are complex conjugate such that |rq| = |rq| = 1. For
A <0 (X > 4), both roots 1 and ry are real and positive (negative). For given A € R

and Cy, Cy € R, the initial value problem (9) has a unique solution of the form

Co(1— k) + C1(k) for A =0,
a(k) = 4 ~Co(l=R)(=1)' ™" = CL(k)(=1)*  for A =4,
k _ . .k E .k
Cot 2= 4 ¢y L2 for X € R\ {0,4}.

ryT —T2 Ty — T2
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0 g A

Fig. 4. The graph of wy as a function of A.

In the following lemma, we provide a different formula for the discrete solution u of the
initial value problem (9), which allows us to extent this discrete solution u to the whole
real line.

Lemma 1. For given A € R and Cy,Cy € R, the initial value problem (9) has a unique
solution of the form

u(k) = CoF*(1 — k) + C1Fk), keZ, (10)

where the function F* : R — R is defined as

sinh(wyt)/ sinhwy for A <0,
t for A=0,
FA(t) := sin(wyt)/ sin wy for X € (0,4),
—t cos(mt) for A =4,
— cos(wt) sinh(wyt)/sinhwy  for A > 4,

arcosh @ for A <0,
wy 1= { arccos 252 for A € (0,4),

arcosh % for A > 4.

Proof. It is straightforward to verify that (10) holds for A = 0 and for A = 4 where we
used the fact that (—1)¥ = cos(kn) for k € Z. Now, let us assume \ < 0. If we take into
account that ry7y = 1, we conclude that 717§ — rorf = —(r’f_l — 7']5_1). Since

Inry =Iln (Costh +1/cosh? wy — 1> = In(coshw) + sinh wy)

e fem W e¥r —eT¥
= l =
n ( 2 + 2 > WA,

we obtain that
,’,.’16 _ ,r.éf — ,r_llf _ ,rl—k _ ek In _e—kln'rl _ ekwA _e—kw/\ _ QSlnh(UJ)\k‘)

Thus, we finally get
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Y| @ ty =T (q1) y=u(t)
o ©
° ° . . °
I S 1 2 3 ; Py 5 6 7 Py 9 10
@ L1 ° . ® t
<t L ————————/
wx

Fig. 5. The continuous extension u° of the solution u of the discrete problem (9) and the first non-negative
zero t1 of u®.

k_ .k
ri—r
17

+C

T =72 =72

7“17“’2C — Tgrf

u(k) = Co = CoF*(1 — k) + C1F k).

Cases A € (0,4) and A > 4 are very similar to the case A < 0. We have

iwy for A € (0,4),
Inry =
—wy +mi for A >4,
and
ok 2isin(wyk) for A € (0,4),
—2sinh(wyk) cos(mk) for A > 4,

and thus (10) holds. O

See Fig. 4 for the graph of function A\ — wy and note its point of discontinuity of the
first kind at A = 4.

For the solution u of the discrete problem (9), let us define its continuous extension
on R (see Fig. 5) as

ut(t) ;= CoFM1 —t) + C1F Mt), teR.

Moreover, for the non-trivial solution u of the discrete problem (9) (let us remind that
we have C2 + C? # 0), we define the bi-infinite sequence (qi)rez of ratios of values of u
in two consecutive integers in the following way
u(k)
= ez 11

= 1) (11)
Let us note that the sequence (g) is a mapping from Z to R* := RU{occ} (the one-point
compactification of R). We say that the solution u of the discrete problem (9) has a
generalized zero at k € 7 if

u(k) =0 or wu(k)u(k—1)<0.

Let us point out that u has a generalized zero at k € Z if and only if ¢ < 0 and ¢ # oc.
For A <0, the solution u of (9) has no generalized zero if ¢; = g—é € [e7**,e¥*] and has
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Fig. 6. The graph of T as a function of q.

exactly one generalized zero for ¢; ¢ [e”“*,e“*]. For A > 0, the solution u of (9) has
infinitely many generalized zeros. Let us consider A € (0,4). In this case, 0 < wy < 7
and the continuous extension u¢ of the solution u of the initial value problem (9) is
Z—Z—periodic function. Let us denote the first non-negative zero of u® by t; (see Fig. 5).

Then all zeros of u® are ty, = t1 + (k— 1), k € Z. If Cy = 0 then u®(t) = C4 sin(wxt)

™
W sin wy

and ¢ = oo, t; = 0. If Cy # 0 then for ¢1, we have that

0
sin(wx(1 —t1)) + g1 sin(wxt1) =0, 0<t; < —,
wa
which gives us
COSwy —
g1 = cosw) — sinwy - cot(wxtq), t; = — arccot M
Wi S1I W )

Let us point out that function arccotangent has the usual principal values, thus it is
defined for all real numbers and its range is interval (0, 7). In the following definition,
we introduce the function 7% such that t; = T*(q1).

Definition 2. For \ € (0,4), let us define the function 7* : R* — R as

1 —
Dom (TA) =R", T*(00) := 0, T*(q) :== — arccot M for g € R.
Wi S111 W)

Let us note that T is a strictly increasing function on R and maps R* onto [0, :7)

and it is straightforward to verify that (see Fig. 6)

o) =1 TN-D=3 TO=3+35 T(HF) =%

Moreover, if we take into account that the difference equation in (9) is autonomous, we
realize that

t1:j+T>\(q1+j)7 j:’»tOW7“'707“'7|\t1J'

Finally, in the following lemma, let us introduce a useful formula for 7.
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Lemma 3. For ¢ = co and ¢ < 0, we have
T (q) + T* (%) —1. (12)

Proof. For ¢ = oo, (12) is trivially satisfied since T*(c0) = 0 and T*(0) = 1. For q < 0,
let us prove (12) in the following way. Let us denote the inverse function of T by Q*:

_sin(wa(1—¢))
sin(wyt)

QN [o,ﬁ) SR, QM0 =00,  QME) = for 0 <t < =
Thus, we obtain that Q*(1 —t) = 1/Q*(¢) for all t € [0,1] and using t = T*(¢q) and

q = Q*(t) we obtain

L= TMq) =1 —t = TNQM1 — 1)) = T (Qf(t)> -7 (1), o

Now, for all A € R and k € Z, let us denote

Vi = Uy (33%)

where U = Uy (x) are the Chebyshev polynomials of the second kind of degree k. For
all A € R, polynomials V,j‘ satisfy the three terms recurrence formula

VA -2V +VA, =0, keZ, (13)

and moreover, we have that Vj\k = _Vk/\—2 for all £ € Z. Since F A(k:) = Vk);1 for all
A € R and k € Z, the solution u of (9) can be written as

u(k) = —CoVir 5 + C1V 4. (14)

In the following lemma, we introduce an identity for Chebyshev polynomials of the second
kind (also known as the special form of Turdn inequality).

Lemma 4. For all A € R and k € Z, we have the following identity
(VkA)Q — Vi Vit =1 (15)
Proof. For k = 0, the equality (15) is trivially satisfied since we have that
vAN=0, Vi=1 VP =2-X\

For k € Z, using (13), we obtain that
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2 2
(ka+1) - Vk)\+2Vk)\ = (ka+1) - ((2 - A)Vk)\ﬂ - Vk/\) Vk:/\
2
=V (Vi — 2= 0V0) + (V)
2
= =V Vil + (V)
But it implies that the equality
2 2
(Vk)\+1) - Vk)\+2vk)\ = (Vk)\) - Vk)\+1 Vk)l1
holds for all k € Z, which leads to (15) using induction. O

Let us introduce the function W,i‘ which determines the value of k-th element gy
defined by (11) by the value of ¢q.

Definition 5. For all A € R and k € Z, let us define the function W,g‘ : R* = R* in the
following way

X V)\ _ V}\
a f k_Al for g € R,
A q-Vit, = Vil,
Wii(q) = A
Vk f —
3 or ¢ = 0.
Vi

Let us recall that a Mobius transformation is given by (a, b, ¢, d € C, ad — bc # 0)

a-z+b
c-z+d

f:C"—=C": 2z

Thus, using (15), we conclude that W} is the restriction of a Mébius transformation
on R*.

Lemma 6. For all A € R and k € Z, we have
a = W (qo)- (16)

Proof. Firstly, we claim that

1
W,?Jrl(q):?—)\—W)\—(q), QGR*,I{PEZ,AER (17)
k

Indeed, using (13), we obtain the following relation

1 _ q- VkA_1 - VkA—Q _ q ((2 - /\) : VkA - VkA—i-l) - ((2 - /\) : VkA—l - VkA)
Wk)\(Q) q- sz)\ - VkA—l q- Vk/\ - Vk:’\—1
=2-A- Wk/:\+1(Q)
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for all ¢ € R such that W}}(g) # 0. On the other hand, for all ¢ € R such that W}(q) = 0,
we get ¢ - V) — V) | = 0, which implies that W,j+1(q) = 00. In the case of ¢ = oo, we
have

1 - VkA—l . (2 - )\) ’ Vk/\ B Vk)\—i—l
Wi(eo) W v

=2-A- Wk/:\+1(oo)7

provided W (oc0) # 0. If W (c0) = 0 then we have that V;* = 0, which implies that
W, (00) = o0.

Now, for k = 0, the equality in (16) holds since W is the identity on R*. For k € Z,
the difference equation in (9) can be written in the form

uk+1) 0 u(k—1)
u(k) =2 u(k)

provided u(k) # 0, which means g # 0, gx+1 # oo and that

1
Gop1 =2—A— —. (18)
qk
If u(k) = 0 then ¢ = 0 and gr+1 = oo. Thus, the equality (18) holds for all k € Z
and for any sequence (qi) defined by (11). Finally, if we assume that (16) holds for fixed
k =j € Z, using (17) and (18), we obtain

1 1
qu:2—)\—q—j:2—A—W:Wjﬂ(qo)
J

and

1 1
G TR TN T T 2 - A= Wi q)

= W]’/\fl(QO)‘ O

Every Mobius transformation can be associated with its Mobius matrix. In our case it
is useful to simplify proofs of certain identities (see Lemma 9).

Definition 7. For all A € R and k € Z, we associate a corresponding 2 x 2 Mébius matrix
{W,ﬁ‘] with the Mobius transformation W (q) (see [7], page 156):

A

A A
Vk:—l _Vk—2

] -

Moreover, let us define the homogeneous coordinates of ¢ € R and of oo as 2 x 1 matrices

e HECEH
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Thus, for all ¢ € R, we have

V)\ _ V)\ VA _ V)\
Rl = 05N | R =),
Vi, = Vit qViiiy — Viiy
VA 175
[W,;\} co] = | F and E_— W (o)
|: :| Vk;/\_l Vk)\_l
Remark 8.
1. Using (15), we conclude that det [Wl;\} = 1. Moreover, for the inverse matrix, we
obtain
-1 VA, VA VA —VA
[Wk/z\} o = on N = [Wﬁ\k} (19)
Vi, Vi Vi Vi,

2. The composition of Md&bius transformations corresponds to the multiplication of
Mo6bius matrices (see [7], page 157)

Wz owd] = [we] - ], (20)
In the following lemma, let us introduce some useful properties of W,;\

Lemma 9. For all k,l € Z and q € R*, we have that

WA WR () = Wi(q), (21)

W2,(W(9) = ¢, (22)
1

w2 = . 23

Proof. Firstly, we prove that W o W} = Wl§\+l' Using (20), we obtain

o] = ]

VW
Vi Vi

A

A A
kal _ka2

VA =V VA (VA - VL V)
L VkA—l‘/EA - VkA—QVEil _(Vk)\—lvlil - VkA—zvz/lz)

IBY2) A
_ Vk+l _Vk:-l-l—l
- A A
_Vk+l—1 _Vk+l—2

= _le—i—l] ’
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where we used the fact that V,j‘Vl)‘ — Vk/\flVl); 1= VkAH, which follows from
l
VOV =) V2 = VR A VR e VR VR
§=0

Secondly, the equality (22) follows directly from (21) for I = —k (recall that W (q) = q).
Finally, using (19), we get

A _ _Vk)\72 VkA—l qu | |92 V,j;l —q Vk’\,g
W [q] - A A ' - A A ’
__Vk:—l Vi 1 [92] _Q2Vk — Vi
[W’\] [1] Vk)\ _VkAfl q2 Q2Vk/\ - Q1Vk>\fl
k|l |la] — A A ' - A A ’
_Vk:—l _Vk:—2_ | 91 | _Q2Vk_1 - Q1Vk_2_

which justifies (23). O

Remark 10. Let us assume that we have some element of bi-infinite sequence (gx) (for

example ¢1 = g—(l) is given by the initial conditions). If we want to get any other element

of such sequence or the first non-negative zero t; of u°, we can use the following formulas.
1. For A € R and i, j, k € Z such that ¢ + j = k, we have that
_ A _ A
g =Wi(g:)) and  [qx] = [Wj] < ai]-
2. For A € (0,4), we have for the first non-negative zero t; of u¢ that
t1:j+T>\(Wj>\(q1))7 j: (t0—|7a077|_t1J

The following lemma provides us with the necessary and sufficient condition for WkA to
be a linear function.

Lemma 11. For k € N, k > 2, we have
A . . . 7 k
Wi(q) =q if and only if  3Jje{l,...;k—1}: — =—.
WA J

Proof. Let us recall that all zeros of the Chebyshev polynomial of the second kind
Ug—1 = Uk_1(x) of degree (k — 1), k € N, k > 2, are given by

a:j:cos'ﬂ, 7=1,...,k—1.
k
Now, we have that W,i‘(q) = ¢ if and only if Vk’\_1 = Up_1 (%) = 0, which is true if
and only if A =2 — 2z, for some j € {1,...,k — 1}. Moreover, for A = 2 — 2z, we have
2-) j

_ s 2 g7 _ -\ _ Jm : T _ k
that 0 < A = 4sin ﬁ<4andw>\—arccosT—7,Wh1chleadstoK—T O
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In the last part of this section, let us consider the following linear problem

{Azu(k—1)+ak-u(k) =0, keN,
(24)

u(0) =0, wu(l)=Ch,
where C7 € R, C7 # 0 and the sequence (ag)xen is given by

(ak)kEN:()‘17"-7)\17)‘27~--7)‘%a"-7)\m7‘-'7/\m,-")7

-~ ~~

kq1—times ko—times k,,—times

where (k;);en is a sequence of natural numbers, A; € R, j € N. For a solution u of (24),
let us define the sequence (gx)ken by (11). We have that

Q

1

q1 =3 — 0

Qk+1 =W (q1) for 1 <k < kq,

Qk+k1+1 = W;;\Z(le+1) for 1 < k < ks,

Qo1 tootbitl = Wi (s ethrp1)  for 1<k <k, m >3,

Thus, for all m € N, we obtain gk, +...4ky+k,+1 = (W,i‘;” 0--+0 W,j; o W,j‘ll) (q1), which
implies that

[t thaiain] = (WO |- 22| [0 ] - ], (25)

Let us note that if A\; = A € R for all j € N then (25) simplifies to

[ka+~~+k2+k1+1] = |:Wl§\m+"'+k2+kl:| ’ [Ch]-

Lemma 12. Let AP be nxn Dirichlet matriz, n € N. Let m € N and let ki, ks, ..., ky €N,

m
be such that > k; = n. Moreover, let A be n x n diagonal matriz
j=1

A:diag()\l,...,)\1,)\2,...,)\2,...,)\m,...,)\m), Al,AQ,...,AmER.
——

k1 —times ko —times ko —times

Then
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Proof. According to (21), it is enough to show by induction that if
A = diag (a1, az2,...,an_1,a,), aeR, i=1,....,n,
then
an—1 a a 1
o= [1 o] o] oo ] 2] e

where M, is n x n matrix M,, := AP — A. It is straightforward to verify that the equality
(27) holds for n =1 and n = 2. Indeed, we have that

[ o] ][y | =2 —annn,

(1 o] [wee] [ ] H (2= a1)(2—ay) — 1 = det M.

Now, let us assume that (27) holds for n and n — 1, n € N, n > 2. Let us denote

B =

ot ] =] o) e

and expand the determinant det M,, 1 along the last row of M, 11

det Mn+1 = (2 — an+1) det Mn — det Mn—l

:(2—an+1)[1 0]-[Wf"]-B- é _[1 0}.3. (1]
= (2= an41) ((2—an)bi,n —b21) — b1 (28)

Since

] ] = [ e et e,

we obtain using (28) that

[1 0} : [me} : [Wf"} B é = (2= ant1)(2—an) — Db11 — (2 — any1)b2

= det Mn+1 y

which implies that (27) holds for n+1. O
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Remark 13. Let u be the solution of the initial value problem (24). Then using (25) and
(26) we deduce that

u(n+1) = u(ky, + -+ k1 + 1) =det (A" — A) .

Moreover, if \; = A € R for j =1,...,m then (cf. (14))
A A 1 D
uln +1) =V} = [1 o} : [Wn} : [0] — det (AP — AT) .

3. The localization of generalized zeros of a solution of the semi-linear problem

In this section, we deal with the semi-linear initial value problem

A%u(k —1) + aut (k) — Bu=(k) =0, keZ,
{ u(0) =0, wu(l)=Ch,

where u* (k) = max{+u(k),0}, C; € R, C; # 0 and (o, 8) € D,
D :=((0,4) x (0,400)) U ((0,+00) x (0,4)).

Let u be a solution of (29). Then w is also the solution of (24) if we take (ag)gen in the
following form

a for u(k) >0,
ap —

B for u(k) < 0.

Let i € Z be a generalized zero of a solution u of the initial value problem (29). Moreover,
let j € Z : j > i, such that for all k =4, ...,7, u(k) is non-negative (or non-positive) and
(see Fig. 7)

u(j)u(j+1) <0 or wu(j)=0.

This means that ¢ and (j + 1) are two consecutive generalized zeros of u if u(j) # 0.
In the case of u(j) = 0, i and j are two consecutive generalized zeros of u. Since for all

C [+
U i—1 Uz Ujtr,

Fig. 7. Anchoring of two positive semi-waves by one negative semi-wave u;j of length 3 for 0 < o, 8 < 4.
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Fig. 8. Positive and negative semi-waves of a solution of the initial value problem (29) for 0 < «, 8 < 4 and
Cy; > 0.

k=1,...,7, u(k) is non-negative (or non-positive) then u solves the difference equation
in (9) with A =« (or A = ) if u(i — 1) is negative (or u(i — 1) is positive). Also, let us
note that u(i — 1)u(j + 1) is strictly positive. Now, we define the continuous extension

C

ug ; of u on the interval [i — 1,75 + 1] as

¢ (t) _{U(i_1)Fa(1_(t_i—i_l))"’_“(i)Fa(t—i—i-l) for u(i — 1) <0,
(i = 1) FA(L = (t—i+1)) +u(@) FO(t —i+1) foru(i—1) >0,

where functions F'® and F® are given by F* (defined in Lemma 1) for A = a and \ = §3,
respectively. By the length of the continuous extension ug ; of u we mean the length of
the interval [i — 1, j + 1], which reads j —i + 2.

Finally, we say that the continuous extension u; ; of u is a positive (negative) semi-wave
of w if u(k) is non-negative (or non-positive) for all k = i,...,j (see Fig. 7). See also
Fig. 8 for two positive semi-waves u§ 5 and u$ ;; on intervals [—1,6] and [6, 12], and two
negative semi-waves u§ ¢ and ug, 13 on intervals [5,7] and [11, 14].

Now, let us restrict ourselves to the case 0 < o, 5 < 4.

Lemma 14. Let 0 < o, 8 < 4 and let u be a solution of the initial value problem (29).
Moreover, let uf ; be a negative semi-wave of u defined on [i — 1,5+ 1]. Then

j=i+ {Tﬁ(qulJ —1,
wp

u(9)
u(i—1) "

The length of the negative semi-wave ug ; is given by LTB (g:) + = J—l—l.

where q; = ws

Proof. The continuous extension ug ; has exactly two zeros s; and sz (see Fig. 7):

) T
slzz—l—i—Tﬁ(qi), S9 =81+ —,
wg

where ¢; = u"(“;(i)l) < 0. Since j = |s2], we get

j=lsr ] =li-1+ @ ] =i+ [T+ 2| -1 o

ws
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Now, let 0 < a,8 < 4 and C7; > 0 and let u be a solution w of initial value problem
(29) (see Fig. 8). We show how to describe all positive generalized zeros of u. For this

purpose, let us define recurrently two sequences of functions (pj)j ey and (ﬁj)j oy defined
n (0,4) x (0,4) in the following way

e 8) = ||, I1(a, B) : pl(am(oo),

pa(e B) = TP ) + 2|0 Va(a,B) = Wi 5 (B1(a B)),

pale B) i= oo B) + 2|, Vala,B) == Wity (Wa(e,B)),  (30)
pale B) = |TP(Ws(en ) + 25| Vala,B) i= Wi 5 (0s(, B)),

Since C; > 0, we have the positive semi -wave ug , of u, which is defined on [~1,p; + 1]
and has two zeros tg = 0 and t; = 2. Moreover, we have p; = |t1] <t; < p1 + 1 and
V1 = gp,+1 < 0if u(p1) >0o0r ¥y = (Jp1+1 oo if u(p1) = 0. Thus, we obtain

tr =t + T (qu,)41) = p1 + T (gp,41) = p1 + T(91)

and the first positive generalized zero of w is 21 = p1 + 1 if ¢ < 0 or z; = p; = t; if
Y1 = oo. The next semi-wave of u is the negative semi-wave u? s1ToLsa)? which has two
zeros s1 and sg and is defined on [[s1] — 1, | s2] + 1]. Moreover, we have

S1 = LtlJ + TB (th1J+1) =p1+ TB (’191) and So =81+ —

"JB

and thus, we obtain [sy3] = le + ﬁJ = Lpi + TP (9,) + ﬁJ = p1 + po. This implies
that

Apo+pi1+1 = WB (pl + 1) WpBQ (191) = Wpi (W;z?; (OO)) =12
and that

= [s2] + 77 (qsz)5+1) =P1 + P2 + T (Gpatpr+1) = p1 + D2+ T7 (¥2) .

The second positive generalized zero of u is zo = p1+po+1if ¥ <0 or 29 = p1+ps = s
if ¥ = 0o. The next semi-wave of u is the positive semi-wave “?tﬂ L5 ] which has two
zeros ty and t3 and is defined on [[to] — 1, [t3] 4 1]. We have that t3 —t; = ™~ and

ty = |s2) + T (qlsyj41) = 1+ D2+ T (V2),
U3 = Aps+patp1+1 = W;g, (Wpﬁz (W;; (OO)))v

ty = [t3] + T (qty)4+1) = P1 +p2 + p3 + T(93).
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The third positive generalized zero of u is 23 = p1 +p2 + p3s + 1 if ¥3 < 0 or 23 =
p1+p2+ps=1t3ifJz =00

Lemma 15. Let 0 < o, B < 4 and let u be a solution of (29) with C1; > 0. For k>0, u =
u(k) consists of infinitely many positive and negative semi-waves. The m-th semi-wave,
m € N, is positive (negative) one with zero points ty,—1 and ty, (Sm—1 and Sm) if m is
odd (even), where

to :0’ tm :ij(avﬁ)+Ta(79m(avﬁ))7 Sm :ij(avﬁ)—{_Tﬂ(ﬂm(a:B))'

Moreover, all positive generalized zeros of u form a sequence (zpy,)men such that

Zmzzpj(a7ﬁ)+1 Zfﬂm(aaﬁ)7éooa Zmzzpj(OZ?ﬁ) zfﬂm(a,ﬁ):oo
i=1 j=1

Proof. We proceed via an induction. Thus, let uf toa T L] be a positive semi-wave of u,
m € N is odd, which has two zero points ¢,,_1 and t,, such that

m—1 m
tme1= > 0 +T%WUmo1),  tm= Y pj+T%W0m)
7j=1 =1

The next semi-wave of u is the negative semi-wave uf o Lsmaa | which has two zeros s,,
and s,,+1 and is defined on [[s,, ] — 1, | $m+1] + 1]. Moreover, we have

Sm = L J“‘Tﬁ QLth-H ij —i—Tﬁ and Sm4+1 = Sm + &
and thus, we obtain |s,,4+1] = Lsm—f—J—ﬁJ = Lpl"f‘"'—i—pm—f—Tﬁ (ﬁm)—"_J_ﬁJ = p +

4+ pm + Pma+1. This implies that

Ipmsrdpmttpiel = Wh  (pm 4 pr+1) =W. () =D

and that
m+1 m+1

Smi1 = [Smy1| +T7 (qum+1J+1) = Z pj+ 17 (qpm+1+---+p1+1) = Z P +T7 (Opmi) .
=1 '

The next positive generalized zero of u is 241 = p1 + -+ pmy1 + 1 if U1 <0 or
Zmy1 =P1 -+ F Dmg1 = Smy1 if Uy = 00
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For positive generalized zeros of u, we obtain
m
zm:“m-‘ = [Smwzng"f—l 1f19m75007
j=1
m
zm:tm:sm:ij if 9, =00. O
j=1

Now, let us turn our attention to the case of 0 < o < 4 and § > 4.

Lemma 16. Let 0 < o < 4 < § and let u be a solution of the initial value problem (29).
Moreover, let uf ; be a negative semi-wave of u defined on [i — 1,7+ 1]. Then

j=i+T%(q) +T*2-p)], (31)

where q; = ué(z)l)'

T2 - B)] + 2.

The length of the negative semi-wave u$ ; is given by |T*(g;) +

7j

Proof. Recall that

1
Giv1=2-p——.
qi

Now, let us distinguish the following four disjoint cases:
1. If ¢; = 0 then ¢;41 = o0 and ¢;42 =2 - — qiil =2 — 3 < 0. Thus, in this case, we
have that j =i+ 1 (see Fig. 9, left).
2. If ¢; < 0 and ¢;41 = 0 then ;12 = 00, u(j + 1) > 0 and thus, we get j =i+ 1 (see
Fig. 9, right).
3. If ¢; <0 and g;4+1 < 0 then j =i (see Fig. 10, left).
4. If ¢; < 0 and g;41 > 0 then ¢;4o =2 -0 — ﬁ < 0 and thus, j =i+ 1 (see Fig. 10,
right).

Now, observe that ¢; .1 = 0 if and only if 2 — 3 = i’ i.c., if and only if T%(2 — B) =
e (%) =1-—T%(g;). Thus, for ¢; < 0, we have that

1. ¢i+1 = 0 if and only if T*(q)+T“(2—-p8) =1,
2. ¢i+1 <O0ifand only if 0 < T%(¢;) + T*(2 — B) < 1,
3. ¢i+1 >0ifand only if 1 < T%(q;) +T(2— ) < 2.

Which implies that for g; < 0, we obtain

J=i+|T%(q) +T*2-p)]. (32)
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qi qi+1 qi+2 qi qi+1  Git2
ul Do, Ujyq, Uiy ug; | ug,

Fig. 9. Different anchoring of two positive semi-waves with one negative semi-wave u‘z’J for0<a<4<8:
qi = 0, git1 = 00, git2 < 0 (left) and ¢; < 0, gi+1 = 0, gi42 = oo (right).

qi qi+1 qi qi+1 qi+2
\ v /\ /\\/]/

c c c
U, i1 Ug 5 Uiyl U, i1 Ui Uji1,.

Fig. 10. Different anchoring of two positive semi-waves with one negative semi-wave u;j for0<a<4<p:
q; <0, ¢gi+1 < 0 (left) and ¢; < 0, gix+1 > 0, gi+2 < 0 (right).

In the case of ¢; = 0, we have |T%(¢;) +T*(2—-0)| = [1+T“(2—-3)] = 1, since
2 — 8 < 0. Thus, (32) holds also in this case. O

For 0 < a < 4 < B and €7 > 0, we have to extend the definition of por, k£ € N. If
Yor_1 < 0 then we have one positive semi-wave u_cji and one negative semi-wave u; j such
that (see Fig. 9, right, and Fig. 10)

¢ = Vak—1.
We define po, to be equal to j —i+ 1 (see (31))
pzk(a,ﬁ) = LTa(ﬁgk_l(Oé, ﬁ)) + Ta(2 — B)J + 1. (33)

If ¥or_1 = oo then we have one positive semi-wave uf}i and one negative semi-wave ug’ j
such that (see Fig. 9, left)

qit1 = V2r—1 = 00, g =0.
In such a case, we define poj to be equal to j — i (see (31))

par(a, B) = [T%(q:) + T*(2 = )] = [T%(0) + T"(00) + T*(2 - B)
= |T*(W2k-1(c, B)) + T*(2 = B)] + 1,
since T7%(0) = 1 and 7T*(o0) = 0. Thus, in this case, we define poi, as in (33).

For 0 < a <4 < f and C; < 0, we have to extend the definition of par11, kK € NU{0},
in a similar way as in the case of C; > 0 (cf. (33)):
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paryi(a, B) = [T (War(e, ) + T*(2 = B) + 1]. (34)

In the following definition, we collect all partial definitions (30), (33) and (34) and we
extend them also to the case of 0 < § <4 < a.

Definition 17. For all j € Z, let us denote

;=

{a for j odd,

B for j even.

On the domain D = ((0,4) x (0,+00)) U ((0,400) x (0,4)), let us define sequences of
functions (p;) and (¥;), which are given recurrently for ¢ € N in the following way

LT@‘ (9i-1(c, ) + = J for ¢; < 4,

wd)i

LT¢i+1 (’191'_1(0(, ﬁ)) + T¢i+1 (2 — CbZ) + 1J fOI‘ sz Z 4,

i, B) =W o (Di1(a, B)).

Moreover, for all k£ € N, let us define function P, : D — N and composite functions
W R — R* as

Py(a,8) =Y pi(a,B),  Wii= W po oW oW o,
=1
- Ph41 1) ¢
Wi =W 6. o W80 ° Woi(s.a):

Remark 18. Using notation in Definition 17, we end up with the following relations
U(a, B) = Wi(o0), k(B a) = Wy (o0).

Lemma 19. Let (o, B) € D and let u be a solution of the initial value problem (29) with
Cy > 0. All generalized zeros of u form a sequence (zm)mez, where

1€ N.

{ Bi(a, ) +1 if di(e, B) # o0,
Z*i:_Pi(ﬁva)v 2 =

Pi(avﬁ) Zfﬁl(avﬁ)zoo)

Moreover, the solution u consists of infinitely many positive and negative semi-waves.
For 0 < a <4 and B > 0, all zero points of all positive semi-waves form a sequence
(tm) ez, where

tfi:_Pi(ﬁaa)_Ta(ﬁi(Baa)% tQZO, ti:Pi(aaﬁ)—i—Ta(ﬁi(awB))v i €N,
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Fig. 11. Positive and negative semi-waves of a solution of the initial value problem (29) for 0 < a, 8 < 4 and
Cl>0(0:Sg:to<t1<81<82<t2<83<t3<t4<84).

The m-th semi-wave, m € Z \ {0}, is positive one if and only if m > 0 is odd or m <0
is even and it has exactly two zero points t,, 1 and t,, for 0 < a <4 and g > 0.
For a >0 and 0 < B < 4, all zero points of all negative semi-waves form a sequence

(Sm) ez, where
s = —Py(B,0) =T°(0:(8, ), s0=0,  si=P(a,B)+T7(0i(e, B)), i€N

The m-th semi-wave, m € Z\ {0}, is negative one if and only if m > 0 is even or m < 0
is odd and it has exactly two zero points Sp,—1 and sy, for a >0 and 0 < 8 < 4.

Proof. If u is a solution of (29) with u(1) = Cy > 0 then v(k) := —u(—k), k > 0, solves
the initial value problem

A%y(k — 1)+ pvT (k) —av=(k) =0, keEN,
{ v(0) =0, o(l)=Ch.

For 0 < o < 4 and 8 > 0, negative zeros t_; of positive semi-waves of u are determined
by positive zeros §; of negative semi-waves of v, thus

t_;, = —58;, S; :Pi(,@,Oé)+Ta(19i(B,&)), 1 € N.
Moreover, in this case, we have that

Pi(a,p)+1 if ¥i(e, B) # o0,
Pi(a, B) if 9;(e, B) = o0
2o = [toi] = [-Pi(B,0) = T*(0:(8, )] = —Pi(B, ).

zi = [ti] = [Pi(a, B) + T*(Vi(a, B))] = {

i

For a > 0 and 0 < 8 < 4, negative zeros s_; of negative semi-waves of u are determined
by positive zeros #; of positive semi-waves of v, thus

S—i :_fia EZ:PZ(ﬁ,OZ)‘i‘T'B(’&Z(ﬁ,O&)), i € N.

Finally, in this case, we obtain
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Fig. 12. Positive and negative semi-waves of a solution of the initial value problem (29) for 0 < «, 8 < 4 and
Cy < 0.

P(a,8)+1 if 9;(a, B) # 0,
zi = [si] = [Pi(a, f) + TP (9i(c, B))] = { .

Pi(a, ) if ¥;(av, B)
z_i = [s_i] = [-Pi(B,a) = TP (0;(8,a))] = —P(B,). O

Remark 20. If u is a solution of (29) with u(1) = C; < 0 (see Fig. 12) then v(k) := —u(k)
solves the initial value problem

A%2p(k — 1)+ poT(k) —av= (k) =0, keZ,
{ v(0) =0, wv(1)=-C1>0.

For « > 0 and 0 < 8 < 4, zeros t; of positive semi-waves of v are zeros s; of negative
semi-waves of u

S—izf—i = _Pz(a7ﬁ)_Tﬁ(,l91(avﬁ))7 Sozfo :Oa
For 0 < a < 4 and 8 > 0, zeros §; of negative semi-waves of v are zeros t; of positive
semi-waves of u
t—i :g—i :_PZ(av/B)_TQ(ﬁl(O{JB))a t0:§0 207
tz:§Z:P1(ﬂ,0é)+Ta(l91(B,O()), i €N,
Example 21. In this example, we show how to obtain all pairs («, 8) € (0,4) x (0,4) such

that the corresponding solution of the initial value problem (29) satisfies the following
sign conditions (see Fig. 11)

u(k)

These sign conditions mean that py(a, 8) = 4, p2(«, 8) = 3, ps(a, ) = 5. For 0 < a,
B < 4, we have that

for k=1,2,3,4 and k = 8,9,10, 11,12, (35)

>0
<0 for k =15,6,7 and k = 13. (36)
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Fig. 13. Set of all pairs (e, 8) € (0,4) x (0,4) for which the corresponding solution u of the initial value
problem (29) satisfies sign conditions (35) and (36) (left) and those pairs («, 8) from this set for which
u(12) = 0 (black curve, right).

and
Wl (OO) = V_4a7 WZ (OO) = 4a 35 3a 2ﬁ7
; VevE — Ve
since
. - V4a _V3a
[Wl} B _W4] v v |
_ Vﬁ _Vﬁ Ve _yo
CRR e il
L ‘/*25 _Vlﬁ ‘/Sa _V'za
_ _‘/404‘/35 o Vg"“/"f ‘/"204‘/25 o Véoevé@
_‘/404‘/25 o ‘/i%avlﬁ ‘/204‘/15 o ‘/3(1‘/2/3 )

Thus, for 0 < «, 5 < 4, the sign conditions (35) and (36) read (see Fig. 13, left)

| — o B VLY = o @ V4QV43B*V3QV§>J -
\fuf"J =4 A \f”ﬁ +T (Vf)J =3 A \f"‘" +T (vazﬁ_vgavlﬁ =9

Moreover, the second zero t3 of the second positive semi-wave ug ;5 has the following

form

ts = p1(a, B) + p2(a, B) + ps(a, B) + T (W5(0))
VeVRVY — (VeVe + Vv vy + vpve vy

:12+T“<

since
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V5a - V4a

wa] = [we ][] we = e ) Do)

In addition, the condition u(12) = 0 gives us that t3 = 12, which means that W3 (c0) = oo
or that (see the black curve in Fig. 13, right)

VEVRVY — VvV + vevevE =o.
4. The Fucik spectrum of the Dirichlet matrix

In this section, we provide the description of the Fué¢ik spectrum ¥ (AP) of the Dirichlet
matrix AP, i.e. we describe the set of all pairs (c, 8) € R? such that the problem

APu=out - pu, (37)
has a non-trivial solution u = [u(1),...,u(n)]*, n € N, n > 2. The eigenvalues of AP are
of the form

4+ 1)m
A2 = 4sin? U —0,...,n—1.
7 =4sin 2t D)’ N )

Thus, all pairs (A3, \}), j =0,...,n — 1, belong to the Fucik spectrum ¥ (AP) since for
a = 8 = ), the problem (37) is linear one APu = Au. Now, we apply general results in
[4] in the case of the Dirichlet matrix AP. Due to the symmetry of the matrix AP, the
inadmissible set IT (AP) for the Fucik spectrum X(AP) (i.e. II (A?)NX (AP) = ) has the

following form (see Corollary 4.7 in [4])

where Sy := (—00,A]) X (=00, A), S; := (AP_1,A2) x (N2_;,A\?) for i = 1,...,n — 1,
Sy = (A2 _;, 400) x (A2 _,,4+00). Moreover, A is a principal eigenvalue of AP, which

implies that
{(@B) €R: (a—X) (3 33) <0} NS (A?) =,

i.e. both shifted quadrants are inadmissible sets for the Fu¢ik spectrum X (AP) (see
Fig. 14). Thus, it is enough to investigate the Fucik spectrum 3 (AP) only on the set
D = ((0,4) x (0,400)) U ((0,400) x (0,4)).

Recall that a solution u of (1) has a generalized zero at k € T if u(k) = 0 or u(k —
1)u(k) < 0. Since the boundary value problem (1) is equivalent to the Fuc¢ik spectrum
problem (37), we conclude that
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1 : \\ C;
A?, Sl : Ca — ot

; - 1
016 XM X X A 4 a 0 4 a
So Co

Fig. 14. Inadmissible areas for the Fuéik spectrum ¥ (AP) (left, n = 5) and the particular Fuéik curves Cj
(black curves) of the Fuéik spectrum ¥ (AP) (right, n = 5).

5 (AP) = O (CLUCy),

where

Ct := {(a,8) € R? : the problem (1) has a non-trivial solution u

with exactly k generalized zeros on T and u(1) = 0}.

The Fucik curves C§ are trivial ones

CE;:{(a, :a—)\} C(}:{(a,ﬁ):ﬁ:)\g},

since the corresponding non-trivial solutions u(k) = C'sin nkfl, C # 0, do not change

sign in T. According to Remark 20, we deduce that

Crp = {(O‘7B> €D: (ﬁaa) € Cl;}>
and thus, it is enough to focus only on Fucik curves C;, for k = 1,...,n—1. The following
theorem provides us with the first two possibilities how to describe these curves C;. (see
Figs. 15 and 16).
Theorem 22. Fork=1,....,n—1,n € N, n > 2, we have that
Ci = {(a,8) €(0,4) x (0,400) : Prr1(e, B) + T*(Up41(a, B)) =n+1} U (38)

{(0,8) € (0.400) x (0.4) : Pipa (o, 8) + T (hsr(e, ) = +1}.

Moreover, if we denote
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n=>5

0 1 2 3 4

Fig. 15. The set ] as the grey region for n = 5 (left) and the first non-trivial Fu¢ik curve C] as the black
curve (right) due to Theorem 22.

»i=1{(a,B)€D: Pgii1(a,B) =n+1}, k

1,....,n—1,
then we have that

Ct = {(0,8) € 2+ Wiy (00) = oo} (39)

Proof. Let (o, ) € D and let u be a non-trivial solution of the initial value problem
(29) with Cy; > 0. Using Lemma 19, we conclude that u has k generalized zeros z; for
i =1,...,k. Moreover, for 0 < o < 4 and 8 > 0, we have that tx11 = Pry1(, 58) +
T*(VYk+1(c, B)) is the smallest zero of a positive semi-wave, which is greater than k-th
generalized zero zj. Thus, the solution u has exactly k generalized zeros on T and u(n +
1) =0 if and only if tx11 =n+ 1, i.e.

Pryi(a, B) + T*(WVpq1(, B)) = n+ 1. (40)

The equation (40) is satisfied if and only if Pyyi(c, ) =n+ 1 and T(9x41(e, 8)) = 0,
which implies that Wy (o0) = dpy1(a, 8) = oo. On the other hand, for a > 0 and
0 < B < 4, we have that spy1 = Piy1(a,8) + T?(0xs1(a, B)) is the smallest zero of a
negative semi-wave, which is greater than k-th generalized zero zp. Thus, the solution
u has exactly k generalized zeros on T and u(n + 1) = 0 if and only if sp41 = n + 1,
ie.

Piri(e, B) + T7 (41 (a, B)) = n+ 1. (41)

The equation (41) is satisfied if and only if Pyy1(a, 8) =n+ 1 and T?(9p41(, B)) = 0,
which implies that Wy, (00) = Jx11(a, 8) = c0. O
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Fig. 16. The sets ), as grey regions for n = 9 (left) and the Fuc¢ik curves Cj, as black curves (right) due to

Theorem 22.

Remark 23.

. The description (38) is suitable for the numerical approximation of C; (see Fig. 16,
right). For fixed 5 > 4, we determine numerically « € (0,4) such that (40) is satisfied.
Then for fixed 5 € (0,4), we determine o > 0 such that (41) is satisfied.

. The condition Wy ;(00) = oo in the description (39) can be equivalently written as

det (A — A) =0, (42)
where
p1(a, B) times  P2(a, B)-times pr(a, B)-times (pk+1(a7ﬁl— 1)-times
A =diag(@ o, B, By By ao o, BBy 8)
for k odd and
A:diag(g,a, ...... 0, 8,8, ... By BBy By ayon. Q)

p1(a, ,g)rftimes p2(a, B)—times pr(a, B)—times (pr+1(a, B) — 1)—times

for k even. Indeed, for k odd, the condition W), ,(c0) = oo reads

1
B a B a _
[O 1} ) [ka+1(a,,@)] ’ [W’Pk(&’ﬂ)] [sz(a,ﬁ)] ) [Wpl(aﬁ)] Mol — 0,

[1 0} ‘ [wam,ﬁ)—l] ' [Wﬁ(a,m] [Wi(a,m] ' [Wzi(a,m] ' (1) =0,
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which is exactly (42) due to Lemma 12. See Figs. 15 and 16 for the sets Q; which
contain particular Fuéik curves C; according to the description (39).

Example 24. In this example, we focus on the first non-trivial Fuc¢ik curve Cj. Using
Theorem 22, we conclude that (see Fig. 15, left)

Q1 ={(a,8) € D: pi(a,B) +pae, f) =n+ 1},

where
L}LJ for 0 < a <4, 8> 0,
pl(avﬁ):
TP(2—a)+1] fora>4,0<p<4,
{T (Wa(aﬂ)( )>+éJ for0<f <4, a>0,
pQ(QaB):

{T (Wa(am( ))+Ta(2—6)+1J for B>4,0< o < 4

Let us note that for « > 4 and 0 < 8 < 4, pi(a, ) = 1 and thus, the condition
p1(e, B) + pa2(a, B) = n + 1 simplifies into

1+ LTB(Q—Q)—FﬁJ =n+1
Moreover, for the first non-trivial Fu¢ik curve Cj, we obtain that (see Fig. 15, right)

= {(@p) € (0 4) x (0,+00) = p1(a, B) + p2(a, B) + T*(W5(0)) =n+ 1} U
{(,8) € (0,400) x (0,4) : pi(e, B) + palv, B) + T (W5 (o)) = n + 1}
= {(,p) € Ii W;(00) = oo}

Finally, since W3 = Wp (@.8) © Wi (a,p)> the condition W5 (00) = oo can be reformulated
as (see Remark 23)

N R L R LT [(1)] =0,

Vo

-V pa(a,8)—2

@t Vartap -1~ Virap)—1 = 0.

In the following corollary we introduce analytical description of some points belonging
to the particular Fucik curves C;.
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le—— = -~ T e ~— T -~ T
Y
211/ \ 23 / Z4 Z o
0 N7 2 N~ o 5_s Ne~ 5, n ;
to ty to t3 ty = E,g f,Q 571 t~0

Fig. 17. The non-trivial solution u of (1) for (o, 8) € Cg (n =16, i =4, j = 3, k = 6) with six generalized
zeros of w on T (21 < zo < 23 < 24 = 2.3< Z_o9 < Z_ 1) and six zeros of positive semi-waves strictly
between 0 and n + 1 (t; < ta <t3 <tyg =t 3 <t_o <t_1).

Corollary 25. Let k,n € N be such that k < n —1, n > 3. Moreover, let k1,ks € N,
ki,ko > 2 and denote

&ky := 4 sin? 71 ko := 4sin? 2%

1. If k is odd and ’“Qikl + %kg =n+1 then (&, &) € C;, = Cy.
2. If k is even and (% + 1) ki + gkg =n+1 then (&,,&k,) €C;,.
3. If k is even and %k‘l + (% +1) ks =n+1 then (&, &k,) € Cj

Proof. For ao = &, and 8 = &,, we have 0 < o, 8 < 4 and using Lemma 11, we obtain

i a _ T _ B —
E = kl? Wk;l (q) =4q, @ - k27 sz (Q) =q.

Moreover, for i = 1,...,k + 1, we have that

191'(0[75)2007 pl(avﬂ) =

ko for i even.

{ ki for i odd,

Indeed, T%(c0) = T#(0c0) = 0 and W& (00) = WlfQ(oo) = 00. Thus, we obtain that

k+1 (k‘l + kz) for k odd
2 )
Piii(a, B) = E:m :{k
2

(k1 + ko) + k1 for k even.
The statement now follows from Theorem 22. O

The next theorem provides a different description of Fucik curves Cj; than Theorem 22.
We reconstruct the non-trivial solution of (1) from both end points of T: from ¢ = 0 to
the right and from ¢ = n + 1 to the left. Thus, we consider solutions of two initial value
problems at t = 0 and at t = n + 1 and we require that their selected zero points of
positive (or negative) semi-waves coincide (see Fig. 17 and note that t, = £_3).

Theorem 26. Let k,n € N be such that k <n —1, n > 2. Moreover, let 1,7 € N be such
thati+j=Fk+1
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1. If k is odd then

C; = {(a,ﬁ) € (0,4) x (0,400) : Pi(a, B) + P;(8, )
(

{(a,ﬁ) € (0,400) x (0,4) : Pi(a, B) + P;

2. If k is even then

Ci. = {(a, B) € (0,4) x (0,+00) : Pi(a, B) + Pj(

{(a, B) € (0, +00) x (0,4) : Pi(e, B) + Pj(v, B)
+ TP (9;(e, B)) + TP (9;(cv, B)) =+ 1}.

Proof. Let (o, 8) € D, let u be the solution of the initial value problem (29) with C; > 0
and let v be the solution of the following initial value problem

{ A%v(k—1)+av (k) —Bv= (k) =0, keZ,
vin+1)=0, wv(n)==Cy,

where Cy # 0.
Firstly, let us consider 0 < o« < 4 and 8 > 0. According to Lemma 19, we conclude
that

ti = Pi(a, B) + T(Vi(c, B)) (43)

is the zero point of a positive semi-wave of u such that u has exactly (i — 1) generalized

Zeros

00,
00,

{Pm(a,ﬁ) +1 if I (e, B) #
Zm =
Pm(aaﬁ) lfﬁm(Oé?ﬁ)

which are strictly between 0 and z; = [t;]: 0 < 21 < -+ < z;_1 < t; < z;. Moreover,

f_j == (44)

{n—i—l—Pj(B,a)—To‘(ﬂj(B,oz)) for Cy > 0,
n+1— Pj(a,B) —T*(0(e,B)) for Cy <0,

is the zero point of a positive semi-wave of v such that v has exactly j generalized zeros

Zm=n+1—-P,(a,B), m=1,...,7,
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which are between f_j and n: f_j < Z; < -+ < Z; < n Now, a task of finding
all (o, ) € (0,4) x (0,+00) such that («,3) € C}, is equivalent to finding all («, 3) €
(0,4) x (0,+00) such that t; = t_; with C2 > 0 (Cy < 0) for k odd (even), which leads
to

Pi(o, B) + T(Y(a, B)) =n+1— P;j(B,a) — T(9;(5, ) for k odd,
Pi(a, 8) + T*(Vi(e, B)) = n+1— Pj(a, B) = T%(V;(e, 8))  for k even.

Secondly, in the case of & > 0 and 0 < 8 < 4, we proceed in a similar way. The only
difference is that we deal with negative semi-waves instead of positive ones and in (43)
and (44), we use 7% instead of T%. O

The next theorem is associated with the previous Theorem 26 and contains new sets

Q:j", which play similar role as sets €2}, in Theorem 22.

Theorem 27. Let k,n € N be such that k < n — 1, n > 2. Moreover, let i,j7 € N be such
that i+ 7 =k + 1 and let us denote

+?n .
2V

- {{(O&,B) €D: Pi(avﬂ) +Pj(6aa) :n} fOT’k’ 0dd7
{(, ) € D: Pi(cr,B) + Pj(a, ) =n} for k even.

1. If k is odd then

czz{w) €y Wi(o0) = Wftoo)} U
{(a.8) € Q7 s Wi (o) = 00 = Wj(o0) } (45)

2. If k is even then

+n + 1
CI.;:{(O‘HB)EQZ':J' : Wl(oo)zm} -
j

{(a, B) € QP Wi (00) = 00 = Wf(oo)} . (46)

J

Proof. Let (o, 3) € C;, and let u be the corresponding non-trivial solution of (1). More-
over, let us consider that 0 < a < 4, > 0. According to Theorem 26, we have that

Pi(a, B) + Pj(8,a) + T (i(a, B)) + T*(9;(8, @) = n+ 1. (47)
There are exactly two possibilities how to satisfy (47):

Pi(e, B) + Pi(B,a) =n+1  and  T%((a, B)) +T°(9;(8, ) = 0, (48)
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Fig. 18. The set Q;Tf as the grey region for n = 6 (left) and the first non-trivial Fuéik curve C] as the black
curve (right) due to Theorems 26 and 27.

PiaB)+ P(Bia)=n and  T9(0i(a,8) + T°(9;(B,a)) =1 (49)

The second equation in (48) gives us T%(9;(c, §)) = 0 and T“(9;(8,«)) = 0, which
implies that

Yi(a, B) = W/ (00) = 00 and  9;(8,a) = W;(00) = oo.

Using Lemma 3, we obtain from the second equation in (49) that

1
W%@@br&WW@wzr(gﬁay
FAVE)
and thus, according to Remark 18, we get
WH(00) = Os(, ) = — = — L 5
ST 05(Ba) - W (o)

See Fig. 18 for the first non-trivial Fucik curve C; for n = 6 and the corresponding set
QI? according to Theorem 27. Fig. 19 contains the second non-trivial Fu¢ik curve C; for
n = 9 and also the corresponding set Q;’f Let us point out that we have two different
sets (2" available for the third non-trivial Fuéik curve C3, namely Q) and €375 (see
Figs. 20 and 22). Moreover, see Figs. 20, 22, 23 and 24 to compare all different sets Q:Jn
in the case of n = 9.

In the following remark, we reveal the algebraic structure of particular Fucéik curves
due to Theorem 27 in a similar way as in Remark 23 (compare also with preliminary
results for general matrices in [3]).
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Fig. 19. The set Q3] as the grey region for n = 9 (left) and the second non-trivial Fuéik curve C3 as the

black curve (right)ydue to Theorems 26 and 27.

Remark 28. The condition W, (

p1(a, B)—times P2 (ay 5})\7t1mes pi(a, Bl)\ftlmes

. —~
A:dlag(a,a, ...... LA, 8,08, .. ... B, B8, , B,
a’a7

9

p2(B, )-times  py(B, @) times

for k =i+ j — 1 odd and both 4, j even, and

p1(a, B)—times p2(a, f)-times

3 /_/—
A =diag (a0, ... ,a, B, 5,

p;(a, B)—times

p; (B, a)—times p2(B, a)—times  p1(B, a)-times

a B

00) = W__%OO) in (45) reads det (A? — A) = 0, where

(50)

for Kk =i+ j — 1 odd and both 4, j odd. Indeed, for k odd and i, j even, the condition

1

= W) can be written as

Wi (o0)

B B a
(Wi ©© Winiasy © Winam) (00)

1
(e a 8
<ij(5,a) oo sz(ﬂya) © Wp1(ﬁ,a)> (o0)

9

5 8 o
(Wpi(a,m o oW (ap) ° Wpl(&ﬁ)) (c0)

95
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) 1 2 3 4

Fig. 20. The sets Q;? as grey regions for n = 9 (left) and the Fucik curves Cj, as black curves (right) due to
Theorems 26 and 27.

_ o ! B
— (Wfpj(ﬁ,a) o---oW pa(B,a) © W—pl(ﬁ,a)> (0),

where we used relation (23) in Lemma 9. Moreover, using (22), we obtain

B «a o
(Wm(ﬁ,a) © Wha(B.a) © 0 Wh(8.0)

8 8 o B
° Wpi(avﬁ) oo WP2(0«5) © Wpl(aﬁ)) (00) =0, (51)
B o o
[1 0] ‘ [Wpl(ﬁ,aﬂ ‘ [ngw,a)} [ng’(ﬁ,a)}

3 L R L B L [(1)] =0. (52)

Using Lemma 12, the condition (52) is exactly det (AP — A) = 0 with A in the form

of (50). Similarly, we get that the condition W} (o0) = m in (46) reads det(AP —
J

A) =0, where

p1(a, B)-times P2 (e, B)—times pi(a, B)—times
. ———
A:dlag(a,a, ...... 0, 8,08, .. ... By 8,6, oR
Q0. ... SO BB Biosa, . ,a)
pj(a, B)—times p2(a, B)—times  pi(a, B)—times

for k=1i+j— 1 even, i even and j odd, and
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C;
1
T B ‘ Cr
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R B : Co
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Fig. 21. The Fuéik spectrum % (AP) for n = 4 (left) and samples of corresponding non-trivial solutions
(right).

p1(a, B)—times p2(a, B)-times pi(a, B)—times
. ———— e |
A:dlag(a,a, ...... ,a, 8,8, . ... .. B, ,
6,6,...... ,B,...,p,ﬂ, ...... S B0 ,Oﬁ)

p;(a, B)—times pa2(a, B)—times  p1(a, B)-times

for k =4+ 75 — 1 even, ¢ odd and j even.

In the following last example we consider n = 4 and discuss specific representation
for each Fucik curve.

Example 29. In this example, let us consider n = 4. Thus, we have 4 x 4 Dirichlet matrix

with the eigenvalues
)‘8:%(3_\/5)7 )\‘i:%(5—\/§), )‘g:%(3+\/§)a Ag:%(5+\/g)

See Fig. 21 for the Fucik spectrum of AP (left) and for some corresponding non-
trivial solutions (right). Now, we apply Theorem 27 to get the following results. At
first, as for the first non-trivial Fuc¢ik curve Cj, we focus on all pairs («, ) € QI? =

{(a, ) € D : pi(e, B) + p1(B, ) = 4}, for which the condition
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0

Fig. 22. The sets Q;’; as grey regions for n = 9 (left) and the Fuéik curves Cj, as black curves (right) due to
Theorems 26 and 27.

_ 1
-~ Wi(o0)

Wi (o) (53)

is satisfied. Since pi(a, 8),p1(8, @) € N, there are exactly three following cases (recall
Remark 28).

1. For pi(a, B) = 1, p1(B, a) = 3, the condition (53) reads

det(AD - diag(avﬂvﬁa B)) =0,
af® —283 —6a8% +115% + 10af —4a — 168 +5 =0,
vevE —vevP =o.

2. For p1(a, B) = 2, p1(B, ) = 2, the condition (53) has the following form

det(AD - diag(oz, a, ﬁv B)) =0,
a?B? — 402p — 4ap? + 302 + 1506 + 3% — 10a — 1068 + 5 =0,
Vevy —veve =o.

3. For p1(a, B) = 3, p1(B, ) = 1, the condition (53) reads

det(AP — diag(a, a, a, B)) = 0,
3B — 203 — 6026 + 11a® 4+ 1008 — 160 — 48+ 5 = 0,
VevE = vevg =o.
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Fig. 23. The sets QZ; as grey regions for n = 9 (left) and the Fucik curves C;, as black curves (right) due to
Theorems 26 and 27.

Secondly, as for the second non-trivial Fuéik curve C3, we focus on all pairs (a, ) €
Qry =937 ={(a,8) € D: 2pi(a, B) + pa2(a, ) = 4}, for which the condition

1
— Wi(o0)

Wi (c0) (54)

is satisfied. Since p1(a, f), p2(a, B) € N, we have that p;(a, ) = 1 and pa(«, 8) = 2 and
the condition (54) reads (recall Remark 28)

det(AD - diag(a7 Ba ﬁ7 Oé)) = 07
a?B? — 4028 — 4a8? + 302 + 14aB + 45% — 8a — 126 + 5 = 0,
veveve —avevP 11 =o. (55)

Moreover, using VQ’B = Vlﬁ Vlﬁ — 1, the equality (55) can be simplified as

(VevP —ve =DV + Ve —1) =0,
(af —28—a+1)(af —28—-3a+5)=0.

Finally, as for the last non-trivial Fuc¢ik curve C3, we focus on all pairs («, ) from sets

Qv ={(a,8) € D: pi(e, B) + p1(B, @) + p2(B, ) + ps(B, ) = 4},
0% = {(a,8) € D+ pi(a, ) +pa(e ) +p1(B.) + pa(B.0) = 4}
Q1 ={(a,8) € D: pi(a, ) +pala, B) + pa(ar, B) +pr(B, ) = 4},

for which one of the following conditions is satisfied, in particular,



100 I. Looseovd, P. Necesal / Linear Algebra and its Applications 553 (2018) 58-103

'n=9
5 | P 5
I
‘ p
B ‘ B
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4 ALmmm e 4
\‘ I
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TS +n
\\\\‘\ . 95,4
3 e, 3
e +,’II
Q4,4
2 | 2 |
1 1
0 1 2 3 4 a B 0 1 2 3 4 a B

Fig. 24. The sets Q;Z as grey regions for n = 9 (left) and the Fucik curves C;, as black curves (right) due to
Theorems 26 and 27.

1 1 1

W = O T I T g

. (56)

For j =1,2,3, pj(c, B) and p;(B, o) are positive integers, which implies that

pl(aa B) = p2(avﬁ) = p3(aa 5) = pl(ﬂv Oé) = p2(5a O[) = p3(67 Oé) = 17
and thus, each condition in (56) can be simplified to the following form (recall Remark 28)

det(AD - dia'g(a7 /87 a, /8)) = Oa
o?f% — 40%B — 4aB? + 40 + 1308 + 46% — 100 — 108 + 5 = 0,
VevevEvy —svevf +1=o.

In the final corollary, we reveal the algebraic structure of the first non-trivial
Fucik curve Ci in detail.

Corollary 30. For the first non-trivial Fucik curve, n € N, n > 3, we have that

ch=c;=Cctuct,

where
n—2 T
- 42 _
ch = Z_L_Jl {(gn_i7§i+1)}, & 1= 4sin % k=2...n,
n—1
¢s = J {(@m e Wi (o0)- W (o0) =1},

s
Il
a
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and

Q= (gmgn—l) X (52,—}-00),
Qi = (it §ni) X (Gir1,6i) s 1=2,...,n =2 forn >4,
Q1 := (&2, +00) X (§ny &) -

Proof. According to Theorem 27, we have the following characterization of the first
non-trivial Fucik curve

+n . 1
Ci = {(a,ﬁ) € Q) Wi(oo) = W4} U

1(c0)

{(a.8) € Q11" : Wi(o0) = 00 = Wi ()}

Firstly, we detect all points («, 3) € Qt’f“ such that W (co) = co = Wj(00). Thus,
we look for all «, 8 > 0 such that

pi(e, B) + p1(B,0) =n+1, Wﬁ(a,g)(oo) = 00, Wpﬁl(@a)(oo) = 00, (57)

where
LWLJ for0<a<4, >0,
pi(a, ) = - (58)
LTB(Q—Q)—f—lJ fora>4,0<p <4,
LWLJ fora>0,0< 8 <4,
p(f,a) =4 -7 (59)
|T*2—-p8)+1] forO0<a<4, >4
Now, if we denote i := p1(8,a) — 1 then (57) reads
p1 (av /B) =n—1, Wr?—z(oo) = 0, (60)
p1(B,a) =i+1, Wiﬁ_irl(oo) = 00. (61)

Both conditions in (60) imply that i <n —2 and 7~ =n —1,ie a=§, ;. On the other
hand, conditions in (61) imply that ¢ > 1 and ﬁ =4+ 1, which means that § = &;,1.
Secondly, we determine all points (, ) € Q7’7 such that Wy (co) = m Thus, we

look for all a, 8 > 0 such that

a 1
4! (Oz, B) +p1 (Ba Oé) =n, Wpl(a,,@)(oo> = m7 (62)
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where pi(a, 5) and p1 (S, ) are given by (58) and (59). If we denote i := p1(f3, ) then
1<i<n-—1,pi(a,8) =n—iand the second equation in (62) reads

W i(00) - WP (00) = 1.

The condition p; (5, ) = i implies that (recall the basic properties of wg and T* and
note that for i > 2, we have that ﬁ =4 if and only if  =&;)

&< B fori=1,
i1 < B for i > 2.

Finally, the condition p;(a, 8) = n — ¢ implies that

&H<a fori=n—1,

bn—it1 <a<é&,_ fori <n—2,
which finishes the proof. O
5. Conclusion

In this paper, we introduced a new approach how to investigate the Fucik spectrum for
the discrete Dirichlet operator of the second order, which allowed us to reveal its algebraic
structure. We started with the initial value problems (9) and (29) and we discussed
properties of their solutions. A suitable continuous extension of the discrete solution
was used to localize all its generalized zeros. We defined recurrently two sequences of
functions (p;) and (9;) (recall Definition 17) in order to localize all generalized zeros and
to obtain several descriptions of particular Fucik curves. Thus, we introduced various
analytic implicit formulas for Fucik curves and we also identified sets, where these curves
are localized. Let us point out that our description of the Fucik spectrum has the form
of necessary and sufficient conditions.

Approach presented in this paper can be directly applied for other discrete operators
of the second order as well (e.g. with Neumann or mixed boundary conditions) and
provides a new way how to deal with the discrete Fuc¢ik spectrum problems.
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1. Introduction

In 1976, two papers [10] by Fucik and [5] by Dancer were published concerning the
solvability of the following Dirichlet problem

v'(z) + g(v(z)) = f(z), =€ (0,1),
(1)

v(0) =v(1) =0,
where g is a jumping nonlinearity, i.e., lim < (:) =a#b:= 1121 g (SS). Both authors
S——00 S—+00

independently recognized that the solvability of the problem (1) depends strongly on the
fact if there exists a non-trivial solution v of the following problem

v"(z) + avt(z) —bv(z) =0, z€(0,1),
(2)

v(0) =v(1) =0,

where v+ and v~ are the positive and negative parts of v, respectively, i.e. v¥(z) :=
max{zv(z),0}. The following set

3¢ := {(a,b) € R? : the problem (2) has a non-trivial solution v}
is usually called as the Fuc¢ik spectrum for (2) and can be expressed analytically in the

following way (see [10,11]). The Fu¢ik spectrum X¢ consists of two lines C& : (a — 7?) -
(b— %) = 0 and countably many curves C; (see Fig. 1, left) given by (j € N)

* .odm T _ + . UHhm | ogm - . odm o DT
Let us note that for a pair (a,b) € Cj, the corresponding non-trivial solution v of (2)
has exactly [ zeros in (0,1) and consists of positive and negative semi-waves of lengths
and %, respectively (see Fig. 1, right).

T
ﬁIn 1987, Lazer and McKenna introduced a new nonlinear model of a suspension bridge
using the asymmetric nonlinearity g(v) = kv to describe supporting cable stays as one-
sided springs which do not exert restoring force if they are compressed. They studied
periodic solutions of such asymmetric systems and showed in [17] that a sufficiently large
asymmetry in the system leads to large oscillations which cannot be predicted by the
linear theory. In [8], authors consider the following normalized symmetric model of the
vertical motion of a suspension bridge

Vi (2, 1) + Vpgra (2, t) + kvt (2, t) = f(x,t) in (—g, %) x R,

v(£Z,t) =vg, (£3,8) =0, tER, (4)
v(x,t) =v(—x,t) =v(x,—t) =v(z,t +T),
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the Fuéik spectrum 3¢ the solution v for (a,b) = As
500 yl .
e Va
b ‘
L 0 1z
400
Vb Vb
i the solution v for (a,b) = Az
300 y . .
r a ~—va
0 I
200
Vo
i the solution v for (a,b) = A;
100 y .
L ‘;ﬁ‘.
C(_) 0 1z
‘ /‘/ Ta0 a0 s00 E
e Vo

Fig. 1. The Fucik spectrum X° (left) for the continuous problem (2) given by countable many Fué¢ik curves
C;, 1 € N U {0}, and corresponding non-trivial solutions v (right) for three different pairs (a, b) as points
A1 € C], Az € C5 and A3 € Cj, where A; = (971'2, %ﬂ'z), Ay = (167T2,47r2) and Az = (367r2,97r2).

and investigate its set of solutions v that are T-periodic in the second variable. For special
right hand sides f and T > m, they show that it has very rich set of non-stationary
solutions with blow up points in the sense that for bounded values of the parameter k
there are non-stationary solutions of (4) with the amplitude approaching infinity. Let
us point out that the blow up points are determined by the Fucik spectrum of the
beam operator v — — (V¢ + Vzgrr) With the boundary conditions given in (4). However,
the knowledge of the Fucik spectrum of this operator seems to be a hard problem.
For other one dimensional models of suspension bridges, we recommend the reader the
book [12] by Gazzola with a focus on Subchapter 2.8 concerning models with asymmetric
nonlinearities. Finally, let us note that asymmetric nonlinearities also surprisingly appear
in the study of competing systems of species with large interactions in biology (see
[4,6,22]) and the Fuc¢ik spectrum of the Dirichlet Laplacian (the Laplace operator u —
—Au with zero Dirichlet boundary conditions) is needed (see [6] for details).

Nowadays, there are a number of papers in which authors study the structure of the
Fucik spectrum for particular linear differential operators, let us mention here only some
of them: [1,2,7,9,14,23,24] for the Dirichlet Laplacian on bounded domains, [3,13,15,16,
26,27] for the ordinary differential operators with various boundary conditions (Dirichlet,
Neumann, Robin, Navier, periodic, multipoint, integral type).

In [22] and [25], authors consider a finite dimensional nonlinear matrix-vector equation

Au = g(u), (5)
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where A is an n x n matrix and g : R” — R™ is mildly nonlinear, i.e. g(u) = au™ —bu™ +
h(u), where h : R™ — R™ is such that lim h{w) — 0. Equations of this type (5) can

Jull—+o0 1
represent numerical approximations of continuous boundary value problems describing

nonlinear oscillations in asymmetric systems such as suspension bridges (see [25] and
[18]). The Fué¢ik spectrum of the matrix A is defined as the set of all pairs (a,b) € R?
such that the problem Au = au®™ — bu~ has a non-trivial solution u and plays an
important role in questions of the solvability of the discrete equation (5). More precisely,
in [22], the solvability of (5) is provided in the so-called nonresonance case when the point
(a,b) is not in the Fué¢ik spectrum of A and can be connected by a continuous curve
to a point (A, \) on the diagonal a = b such that this curve belongs to the complement
of the Fué¢ik spectrum. In [25], authors investigate the Fucik spectrum of the following
tridiagonal persymmetric matrix (§ > 0)

(246 —(1+90)
-1 246 —(1+49)

-1 246 —(1+49)
~1 246 |

which represents a discrete approximation of the differential operator u — —(u” + du’)
with zero Dirichlet boundary conditions. Moreover, the solvability of (5) is investigated
in both the resonance and nonresonance case, i.e. when the point (a,b) is, or is not in
the Fucik spectrum of As. Finally, at the end of the paper [25], authors leave the reader
with two interesting problems and one of them is to determine a complete description of
the Fucik spectrum of the n x n matrix Ags for n > 3. In the special case of § = 0, the
Fucik spectrum of Ay has been also studied in [20-22,28] and let us note that its known
description for n > 3 is rather more complicated in comparison to the simple description
of Fucik curves Cj given in (3) for the continuous problem (2).

In this paper, we continue in studying the Fucik spectrum of the matrix Ay given
in (6) for § = 0 and thus, we deal with the following discrete Dirichlet problem

A%u(k —1) + au™ (k) — Bu=(k) =0, keT,
{ (7)

u(0) =u(n+1) =0,

where T :={1,...,n},n € N, and u : T = R, T:=T U{0,n+ 1}. Moreover, a, 8 € R,
A? denotes the second order forward difference operator, i.e.

Au(k —1) :=u(k — 1) — 2u(k) + u(k + 1),

u* : T — R are positive and negative parts of u, i.e. u* (k) := max{+u(k),0}. The aim
of this paper is to investigate the Fué¢ik spectrum for the problem (7) as the set
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Y the solution u for (o, 8) = B3

&1t

&at- f, Y

Co

Fig. 2. The Fucik spectrum X (left) for the discrete problem (7) given by twelve Fuéik curves C§, Ci, C3,

C;, Ci, C: in the case of n = 6 (note that C] = Cj, C; = C; and C{ = C;) and corresponding non-

trivial solutions w (right) for three different pairs («, 8) as points By € Cj, B2 € C; and B3 € C3, where
By = (3.342,0.309), By = (3.421,0.538) and Bz = (3.732, 1.657).

¥ :={(a, ) € R? : the problem (7) has a non-trivial solution u} .

Let us note that the set ¥ is exactly the Fucik spectrum of the matrix Ag.

Let us briefly recall some known results concerning the set 3 (for a more detailed
overview see the first section in [20]). The Fuéik spectrum consists of a finite number of
algebraic curves (see Fig. 2)

n—1

s=Jua),

=0

where

Ct :={(a,B) € R?: the problem (7) has a non-trivial solution u

with exactly [ generalized zeros on T and u(1) = 0} .

Let us note that j € T is a generalized zero of the solution w of (7) if u(j) = 0 or
u(j)u(j — 1) < 0. Fucéik curves C¢ are trivial ones (lines « = A\g and § = g, where

Ao = 4sin? m), each non-trivial Fucik curve Cj, I € {1,...,n — 1} is located in the

domain D := ((0,4) x (0,+00)) U ((0,4+c0) x (0,4)). For & = 8 = A, the problem (7)
is a linear one and thus, it is straightforward to verify that it has a non-trivial solution

2 (J+)=
2J(n+1)’ J

u if and only if A = \; := 4sin =0,...,n — 1. Moreover, the corresponding
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TBa T8,8 p1(B)

> c

Ug 7

)

1 (Oé) Ta,a Ta,B

Fig. 3. The geometry of the discrete solution u of (7) for (e, 8) = By € Cj, where By = (3.342,0.309).
The solution u has one generalized zero at j = 2 and two continuous extensions ug ; and u3 ;.

. . ) ) 2-\;
non-trivial solution is u;(k) = sin(wx,k)/sinwy,, where wy, := arccos =5-%, and thus,

the point (A;, ;) on the diagonal a = 3 belongs to both Fucik curves C; and C;.

The qualitative properties of the first non-trivial Fucik curve Ci were studied in [20,28].
In [28], a conjecture is stated that Ci has no elementary parametrization and possible
ways to prove it are also discussed. On the other hand, in [20], it is shown that the
first non-trivial Fuc¢ik curve Cj has an elementary parametrization for n < 7. The reason
is that it is possible to provide the implicit description of Ci in terms of Chebyshev
polynomials of the second kind. More precisely, due to Corollary 30 in [20], the first
non-trivial Fu¢ik curve C} consists of the following (n — 1) algebraic curves in prescribed

rectangles
Vna—l : (2 - B) - Vna—Q =0 for (Oé,ﬁ) € (gnvé-n—l) X (£2a —|—OO),
Ve, vi-ve, vl =0 for (o, B) € (§n—iv1,&n—i) X (&i+1,&i)
i=2,...,n—2,
(2-a) VL =V, ;=0 for (a, 8) € (€2, +00) X (&nr6n-1)

where V& and ng are defined by the Chebyshev polynomial Uy = Ug(x) of the second
kind of degree k

Vi =Us(%52), ke€Z, NeR, (8)
and the values & for k = 2,...,n are given by the formula
& = 4sin? . keN. 9)
2k’

Moreover, the first non-trivial Fu¢ik curve Ci contains also (n — 2) points (&,—;, &i+1),
i=1,...,n—2 (see Fig. 2 for the Fucik curve C; in the case of n = 6, which consists of
four points and five algebraic curves).
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2+
Ta,p Taa D1 (04)

y —
U8,1 ug 7
@ @
k
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p1(a) p2(a, B) Tga TBa

Fig. 4. The geometry of the discrete solution w of (7) for (a, 8) = B2 € C;, where By = (3.421,0.538).
The solution u has two generalized zeros (2 and 6) and three continuous extensions ug ;, ug 5 and ug .

Now, let us recall the discrete anchoring procedure introduced in [28] which is also
called the matching-extension method in [21] and can be used to obtain an implicit
description of all Fucik curves Cj. This technique consists of successive anchoring positive
and negative continuous semi-waves which are defined as continuous extensions of the
discrete solution u of (7) on intervals determined by generalized zeros of u. See Figs. 2 and
3 for a non-trivial discrete solution u of (7) for («, ) = By € Cj. This discrete solution
u has one generalized zero on T at j = 2 and thus, we have one positive continuous
semi-wave u§ ; on the interval [0,2] and one negative continuous semi-wave u$ ; on the
interval [1,7]. These two continuous semi-waves are anchored on the interval [1, 2] such
that u§;(1) = u§ 7(1) and ug;(2) = u§,(2). Now, for simplicity, let us consider that
0 < «, 8 < 4. By Theorem 26 in [20], the problem (7) has a non-trivial solution u with
u(1) > 0 and exactly one generalized zero on T if and only if

pi(a) +p1(B) + Ta,a + Ta g =n+1, (10)

where we have denoted

p1(a) = L&J , p(B) = LﬁJ y Tapi=T¢ <V‘§i) . Taa=T° (V‘Zpof(a) ) 7

p1(B8)—1 p1(a)—1

(11)

and |-| is the floor function, w, := arccos 252 and the function 7% : R* — R with the

domain R* := R U {co} (the one-point compactification of R) is defined as

1 _
T%(c0) := 0, T%(q) := — arccot M for g € R. (12)
Wa sin wg,
Let us point out that the function arccotangent in (12) is strictly decreasing on R with
the range (0, 7). Thus, a pair (a, 3) belongs to Cj if and only if (10) holds. Moreover,
the equation (10) can be equivalently replaced by
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2, 2,-
TN Tag P2(8 @) p1(B)
y uc It
0,1
UZA
1 M\ 1
4‘ 2 4 6 k
C
Ug 3 e
5,7
-
T8, o5 o 7;
,
2- | 2
p1(e) pa(a, B) 78,0 Tﬁ;

Fig. 5. The geometry of the discrete solution uw of (7) for (e, 8) = Bs € C3, where Bs = (3.732,1.657).
The solution has three generalized zeros (2, 4 and 5) and four continuous extensions “8,17 u§’3, “2,4 and

c
u5,7.

pi(a) +p1(B) + 785 +Tpa =n+ 1. (13)

Let us point out that if (a, 8) € C] such that a # S and 5 # & for all k € {2,...,n—1}
then zeros of the positive and the negative continuous semi-waves do not coincide (see
Fig. 3). Indeed, (pi(c) + Tu,o) and (pi(a) + 75,4) are zeros of the positive and the
negative semi-waves, respectively, and we have that 7, o = 73, if and only if & = 3 or

5 € {527 s 7577,—1}-
Now, using Theorem 26 in [20], the second non-trivial Fucik curve C3 can be implicitly
described as (see Figs. 2 and 4)
2p1 () + p2(a, B) + Ta,a + Ti; =n-+1, (14)

where we have denoted

pale B) 1= |70+ Z |

a B a B
2% o ( Voie) Vpa(as) = Vii(@)-1Vpaap) 1 ) (15)
a,p T « Vﬁ _ Vo V’B ’
p1(e) "p2(a,B)—1 p1(e)—1"pa(a,8)—2

As in the previous case, the equation (14) can be equivalently replaced by
2p1 () + p2(, ) + 705 + Tha =1+ 1, (16)

where we have denoted

Ve ye v 1%

B e 8 o

2 e ( Vor8) Voe(8.0) = Vor(8)-1Von (8.0) -1 >

Q’ﬂ T :
p1(B) "p2(B,)—1  Vpi(B)—1

0%
p2(570‘)72

Finally, the third non-trivial Fucik curve C3 can be implicitly described as (see Figs. 2
and 5)
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p1(@) + p1(B) + pa(e, B) + p2(B, @) + 72 + Top =n+1, (17)

or as

pi(a) +p1(B) + p2(a, B) + p2(B, a) + TE& + 752; =n+1. (18)

Now, if we would like to describe higher Fucik curves then we have to use functions
with higher level of nesting depth and also a higher number of different Chebyshev
polynomials. Let us only note that to obtain an implicit description of the Fucik curve
C/ for | > 4, we need to use nested functions ps(«, ) := Lrig + iJ and

a oY a B a ay/B a a B «
o ( Vin ViV - Vpl—l‘/Pz—lvzl?S B Vpl‘/lw_lvp?’_l +VP1_1V Ve )

P1 P2 ' P3 p2—2"p
‘/2001[ VB Va . Va VB Voc _ Va VB ‘/200245_2 + Va V,B Va

b2 Vp3—1 p1—1"pa—1"ps—1 P17 p2—1 p1—1"p2—2"p3—2

(19)

where p1 = p1(a), p2 = p2(a, ) and p3 = ps(a, ). If we compare the definitions of
Ta,Bs Tj; and ng in (11), (15) and (19), respectively, we have to conclude that the
complexity of the known implicit description of Fucik curves C; substantially increases
with increasing numbers of generalized zeros [ of the solution u. As far as we know, it
is not possible to lower the level of used nested functions. Thus, in this paper, for each
non-trivial Fucik curve Cf, we provide new bounds with the same description complexity
as the implicit description (10) for the first non-trivial Fuéik curve Ci. In the following
section, we introduce these new bounds and present the main results of this paper.

2. Main results

In this section, we introduce two main results of this paper concerning the discrete
problem (7), namely Theorems 3 and 5. Proofs of both these theorems are provided in
the following sections.

One of the main goals of this paper is to provide new suitable bounds for each
non-trivial Fucik curve C;j such that all these bounds will have the same simplicity
of description as used in (10) for the first non-trivial Fucik curve Ci. Let us recall that
the Fucik spectrum ¥ is symmetric to the diagonal @ = 8 and each of its non-trivial
Fucik curve Cf is in the domain D = ((0,4) x (0,400)) U ((0,400) x (0,4)) (see Fig. 6).
Thus, it is enough to construct bounds for Fucik curves only in the following half-strip

D :=(0,4) x (0,400).
Now, let us define the basic map kg : (0, +00) — Ny, where Ny := N U {0}, as

LﬁJ_l for 0 < 8 < 4,

Kg 1= (20)
0 for 5 > 4,
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10 4 «
Fig. 6. All non-trivial Fuc¢ik curves C; (black curves) for [ = 1,...,n — 1 are contained in the domain

D = ((0,4) x (0,400)) U ((0,400) x (0,4)) (grey region). Let us note that for n = 11, we have C; = C; for
1=1,3,5,7,8,9,10.

where wg := arccos ¥ for 0 < 8 < 4. Using kg, we decompose the half-strip D into
rectangles by kg = k, k € Ny, i.e. we have (see Fig. 8)

D = ((0,4) x (&,+00] ) U ((0,4) x (&5,&] ) U+~ U ((0,4) X (&rg2,&rt1] ) U ..,

where ¢, is defined in (9). On each rectangle given by kg = k, we use Chebyshev
polynomials of two degrees Vfﬁ and Vfﬁ 41 to introduce three basic elements 14,3, Ta,s
and /1o, in the following definition. Let us note that for fixed 5 € (0, 4), the value ﬁ used
in (20) represents the distance between zeros of the continuous extension of a negative
semi-wave (see Figs. 4 and 5 for continuous extensions u$ 5 and u$ 3, respectively).

Definition 1. For 0 < o < 4 and 3 > 0, let us define

B B B
n B8 = Ta —V’%H_l ! T B = Ta —VKB—'_I 1% Jé] = Ta 7‘/}{{3—’_1
’ Ve, ’ Vi, ’ Ve +1

where the function T is given by (12) and Vkﬁ is given in (8) by Chebyshev polynomials
of the second type of degree k.
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max

5. ,,,,, y:pa7ﬂ

Fig. 7. Graphs of functions 8 — p';'tif‘ﬁ and 8 +— p'gfj‘ﬁ for fixed o = 3.9 and the graph of the function g — .

wg

™

Let us recall that using 7,3, we can formulate an implicit description of the first
non-trivial Fuc¢ik curve Ct as in (10) or (13). Now, using 74,5 and g, g in the following

min

definition, let us introduce p5; and pg¥ that are given on the half-strip D. See also
Fig. 7 and note that pfi'} < o5 Shapfor 0<f <4

Definition 2. For 0 < o < 4 and § > 0, let us define

min 21“‘1:6 + Kkp for a S Ba
p =
of 2, + K +1 for a> g,

pa,ﬁ =

max 27704,[3 + Kp +1 for a S Ba
2fta,p + Kp for a > .

min max

In the following theorem, we use pii; and pps to construct sets T7 as bounds for
Fucik curves Cj such that (see Figs. 9 and 8)

(CiND) C Y3.

Theorem 3. In the domain D = (0,4) x (0, +00), we have the following bounds for Fucik
curves Ci, Il =1,...,n—1,

(C3;.0D) CYy; =75 4,
(ng N D) CYjp1,, = 5]’7
(C3;ND) C Tjju1 = T3y,

Jj € N, where for k,s € N, sets Ty, s are given by
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T3 n=38 ] n =131

0 4 « 0 4 «
Fig. 8. The decomposition of the half-strip D into rectangles by kg = k, k € Ng, and the set T3 C D as

a bound for the third non-trivial Fucik curve C3 for n = 8 (left) and the set Y3; C D as a bound for the
forty-first non-trivial Fuéik curve Cj; for n = 131 (right).

Tk:,s = {(O&,ﬁ)G’Dl prgzi,%’ < %<n+1—k%> < prgéa’}é}.

Remark 4. Due to Theorem 3, the part of the Fucik curve C3;_; that belongs to the
half-strip D is in the set T3, ; with the boundary determined by two curves

s (kg +2p0a,8) +h- =n+1, s(kp+2nap + 1) + k- =n+1, (21)

where k = s = j. And similarly, parts of Fucik curves C3;ND and C;; ND are in sets T3;
and Y3, with boundaries given by curves in (21) for k = j+1,s =jand k = j, s = j +1,
respectively.

For 0 < «,8 < 4, the equation (10), which describes the first non-trivial Fué¢ik
curve Cj, can be written in the following form

Rﬂ+Ta75+1+£:n+1, (22)

since LﬁJ = kg+1and LiJ +Tae = - (see Lemma 16). Let us note that the equation
(22) has the same structure as equations in (21) which describe the boundary of the set
T} containing the particular Fu¢ik curve Cf (74,5 is used in (22) instead of fiq g O 7q,8
n (21)). On the other hand, the structure of equations in (21) is much simpler than the
known precise description of higher non-trivial Fucik curves Cf for [ > 2. For example,
compare (21) for k = 3 and s = 2 to the description of the fourth non-trivial Fuc¢ik curve

C; which has the following form

2 UTJ - 2{75@ + ﬁj - Lrj;; - j—aJ troh T =0+, (23)
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RS ST S CiCy C
B a=p
g LN N !
T
2% T % 3
T3
> i ‘ : :
s . | o s | s %
1o & & &2 3 4 « Ao & & &2 3 4 «

Fig. 9. Sets Y7 in D (grey regions) as bounds for Fucik curves Cj (black curves, right) for n = 5.

Wa Wa Wa Wa
[ > o T o T
oo L LN % o®e
[ ] [ ] [ ] ° Py ° [}
[ PY ° ®
‘ L L L L L L ‘ L L L L L L L L L L L L L L L L L L L , L L L Il Il ! L L L L L L L L L L L x
1.2 3 4 5 6 8 9 10 11 . 13 14 15 16 17 18 19 20 21 22 23 “ 25 26 27 28 29 30 31)32 33 34 35 36 37 38 39 40 41 42 43 . 45 46 47 48
° ° ® i o
L4 [ [ ] [ ] [ [}
(X ] ) Y o0
+ -
tl t+ = tl
- 2 t+ t- 2 | ]
3 t+ t— 3
4 4

Fig. 10. A non-trivial solution of the problem (7) with 7 generalized zeros on T for (a, ) € Cy (n = 48,
o = 0.205, 8 = 0.332).

where Tig and 7'2}, are defined in (15) and (19), respectively.

The implicit description of all non-trivial Fuc¢ik curves Cj is provided in the next The-
orem 5. Let us note that ¢} and ¢; determine zeros of positive semi-waves (as continuous
extensions) and p, g (introduced in Definition 19 in Section 5) measures the distance
between every two consecutive zeros of two different positive semi-waves. See Fig. 10 and
observe that ¢] = 7= and ([-] denotes the ceil function)

t=ti+pap([til —11), fG=t+g- =1+ pas (3] —13).

See also Figs. 29, 30 and 31 at the end of Section 5 for other examples of non-trivial

solutions of the problem (7).
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Theorem 5. In the domain D = (0,4) x (0,+00), we have the following description of
Fucik curves Cf, 1 =1,...,n—1,
C5; 1 ND = {(a,f) €D: ti(a,8) +t;(a, 5) = n+1},
ng ND = {(a,ﬁ) eD: t;’-H(a,ﬁ) -l—t;(a,ﬁ) :n+1},

C3;ND = {(,B) €D: t;(a,8) +t;(a, 5) =n+1},

where
P T . [t Fpas ([61] —t_y)  forj even,
tl = —, ‘[; = (24)
o o+ o for j odd,
i+ oo for j even
- _ j 1 N ,
ty = pap(0), 1= { e ] | (25)
tiy + pas (611 —t;_1)  for j odd.

Finally, let us point out that the value p, s(s) of the distance function p, g is bounded
by p‘;”é and pp*% used in Theorem 3 to construct sets Tj as bounds for Fucik curves Cj.

3. Connections between the Fucik spectra for discrete and continuous problems

In this section, we show some consequences of obtained results in Theorems 3 and 5 in
order to reveal the link between the Fucik spectrum ¥ for the discrete problem (7) and
the Fucik spectrum Y€ for the continuous problem (2). For this purpose, let us consider
the following discrete Dirichlet problem

{ A2v(k —h) +avt (k) —bv (k) =0, ke Tp,
u(0) =u(l) =0,

where a,b € R, h := %H,nEN,Th :={ih: i=1,...,n} and

k+h) — 20(k) + v(k — h)
h2

A2y —h) = 2 .
Thus, the problem (26) is the rescaled version of the original problem (7) and it can
be also viewed as the result of a discretization of the continuous Dirichlet problem (2).
The Fuéik spectrum for the rescaled discrete problem (26) consists of finite number of
Fucik curves Cj; ;, 1 =0,...,n — 1, such that

Cr,={(a,b) eR*: (ah®bh?) €C}},



P. Necesal, I. Sobotkovd / Bull. Sci. math. 171 (2021) 103014 15

+ + +
Ch,2 Ch74 Ch,ﬁ

500 500

400 | 400 H| - |
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Fig. 11. Non-trivial Fu¢ik curves Cj (grey dashed curves) for the continuous problem (2) and non-trivial
Fucik curves CZ ; (black curves) for the rescaled discrete problem (26): five curves Cj, 1, C, 5, Cj, o, C, 3 and
Cj, 4 for n =5 in the domain Dy, = ((0, 144) X (0, +00)) U ((0, +o0) x (0, 144)) (grey region, left) and eleven
curves Cj, 1, C, 2, Cp. 5, ..., C;, g for n =9 in the domain Dj; = ((0,400) x (0, +o0)) U ((0, +o0) x (0,400))
(grey region, riéht). 7 ’

where non-trivial Fucik curves Cj are described implicitly in Theorem 5. Since each non-
trivial Fuc¢ik curve C; is located in the domain D = ((0,4) x (0, +00)) U ((0,400) x (0,4))
then each non-trivial Fucik curve Cj, ; is contained in the domain

Dy, := ((0,4h™2) x (0,+00)) U ((0,400) x (0,4h7?)).

See Fig. 11 for the domain Dy, containing all non-trivial Fucik curves Cj, ; for the rescaled
problem (26) and notice their correspondence to Fucik curves Cj for the continuous
problem (2). Moreover, according to Theorem 3, we have for [ =1,...,n — 1 that

(CiiNDy) € Thy = {(a,b) € Rz (ah®,0h%) € T},

where Dy, := (0,4h72) X (0,+00). See Figs. 12 and 13 for sets Y%, and check their
correspondence to Fucik curves Cj for the continuous problem (2).

This paper is organized in the following way. Firstly, we recall some basic facts and
results concerning mainly the semi-linear initial value problem in Section 4. At the end of
this section, in Theorem 13, we obtain some basic bounds for each non-trivial Fucik curve
Ci using kg. The next Section 5 is devoted to the investigation of the distance p,, g of
two consecutive zeros of two different positive semi-waves as continuous extensions. We
explore the properties of 7.3, Ta,8, fta,s and pa g in detail. This careful analysis leads to
the proof of Theorem 5, which is available at the end of this section. The next Section 6
is devoted to the construction of improved bounds Y7 for non-trivial Fuéik curves C;.
In Theorem 31, we prove that p, g is a differentiable function which attains its global
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- + + - + +
Th,b’ h,6 +h7 Th,STh,S h,9 a=b

0 200 400 600 800
a

Fig. 12. Sets Y3 ; (black regions), I = 1,...,9, as bounds for Fucik curves C;,l for the discrete rescaled
problem (26) (n = 18) and Fuéik curves C; (grey dashed curves) for the continuous problem (2).

+ - + + - +
h5 Th,(i Th,(j h,7 Th,éi h,8

a
Fig. 13. Sets Y73, ; (black thin regions), I = 1,...,8, as bounds for Fucik curves C;, ; for the discrete rescaled
problem (26) (n = 50) and Fuéik curves C] (grey dashed curves) for the continuous problem (2).
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extrema at points 1, g and j, g. Finally, the proof of the main Theorem 3 is available
at the end of Section 6 and let us note that it is based on both Theorems 5 and 31.

4. Preliminaries and basic bounds for Fuéik curves

In the first part of this section, we recall some preliminaries used in [20], and we
also prove some basic properties of Vfﬁ and V,f; 41 defined by Chebyshev polynomials
of the second kind. Let us note that we follow the notation used in [20]. In the second
part of this section, we deal with the sequence of functions p; introduced in [20] that
are used to describe implicitly a non-trivial Fu¢ik curve Cf (recall (10), (14) and (17),
where p; and p, are used). Using kg, we provide a new description of functions p; in
Lemma 14. Moreover, due to this description, we obtain some basic bounds for each
non-trivial Fuc¢ik curve Cj in Theorem 13.

For 0 < o < 4, the function T* defined in (12) is strictly increasing on R (see Fig. 14),
maps R* onto [0, i) and

rO=1, TN=) TM=ieg, TCR) = £
Moreover, we have the following useful formula (see Lemma 3 in [20])
T(q)+T° <%) =1 for ¢ <0 or ¢ = . (27)
Let us denote the inverse function of T by Q% : [0, i) — R*
in(wa(l —t¢
QU0) = oo, Qo= —SmWall=t) gy z, (28)

sin(wqt)

where w, = arccos Q_TO‘ Let us point out that 1 < J—a and that Q¢ is a strictly increasing

function on (0, wl> Moreover, using (28), we obtain that

ol 1
Q% (t) = o =1 for0 <t <1. (29)

Let us consider the following semi-linear initial value problem

{ A%u(k —1) + au™ (k) — Bu=(k) =0, keZ,
(30)

’LL(O) = 0, u(l) = 01,
where C; € R, C; # 0 and («,3) € D := ((0,4) x (0,400)) U ((0,+00) x (0,4)). For

0 < a = 8 < 4, the problem (30) is a linear one and it has a unique solution u of the
form
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Fig. 14. The graph of the function T'% = T“(q) for fixed o = 3.4.

sin(wgk)

u(k) = Oy =V, (31)

sin wg

where Vkﬁ ", is given in (8) by the Chebyshev polynomial of the second kind. For (o, ) €
D, the problem (30) has a unique solution u which consists of infinitely many positive
and negative semi-waves (as continuous extensions). Moreover, for 0 < a < 4, § > 0
and Cy > 0, we have due to Lemma 19 and Remark 20 in [20] that all non-negative zero
points of all positive semi-waves form a sequence (tj);;og such that

I pila, B) + T(W;(a, B)) for C1 >0,
t(]:O, tJ: jeNv

S pi(Ba) + T*(W;(8,a)) for Cy <0,

where functions p; and ¥; are given recurrently for ¢ € N in the following way (see
Definition 17 in [20])

190(05’5) = 00,
T (Vi —2(cx, o f 4,
poi (e, B) = L (V2i—2(a, B)) + waJ or a < (32)
| TP (09i—2(cv, B)) + TP (2 — @) + 1] for o > 4,
T8 (99i_1(a, I for 4,
P A CRURE wp<h
T (o (0 ) 4T (2~ )11 for 824
V2i—1(a, B) =Wy (a5 (D2i—2(, B)), (34)
Oai(er, B) := Wi g (D2i1(a, B)): (35)

Finally, to complete the definition of 9; in (34) and (35), let us recall the function
W2 :R* — R* for A € R and k € Z as (see Definition 5 in [20])
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Yy i Yy
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Fig. 15. Graphs of functions WlB = WIB (q) (left) and WQB = WQB(q) (right) for fixed 8 = 2.7.

X V)\ _ V/\
1 )’f k;1 for g € R,
Ay ) Vits = Vils
Wiila) = VA (36)
)’f for ¢ = oo.
Vita

Let us note that the function W' is the restriction of a complex Mébius transformation
on R* (see Fig. 15). Now, let us recall some useful properties of W,g‘ due to Lemma 9 in
[20]

WrWR(a) = Wiale),  WA(WR(e) =q,  W2(a) = (37)

1
A1)’
w2 (4)
where k,l € Z and g € R*. Moreover, due to Remark 10 in [20], we have for A € R and
k,l € Z that

Qi1 = W (qw), qk = %7 (38)

where u is a non-trivial solution of the linear equation A%u(k — 1) + \u(k) = 0.
In (36), the coefficients V;} are defined in (8) using Chebyshev polynomial of the
second kind and thus, V,j‘ satisfies the three terms recurrence formula

Vil = 2= NV + Vi =0 (39)
Moreover, by Lemma 4 in [20], we also have
2
(VkA) - VkAquVk)\fl =1 (40)

Let us introduce the next identity for Chebyshev polynomials of the second kind.
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Fig. 16. The graph of the piecewise constant function 5 +— kg.

Lemma 6. For A € R and k € Z, the following equality holds

2
(VA= V) =1-X- VA, Vi (41)

Proof. Using (39) and (40), we obtain

2 2 2
(VkA-H - Vk/\) Vk/\+1) - 2VI~:>\+1VI~:>\ + (sz)\) + )‘Vk/\+1 Vi - )‘VkA—&-le)\

2
Vk/\+1) - Vk)\+1 (Vk)\—l + Vk)\—i-l) +1+ Vk/\+1Vk/\—1 - >‘Vk>\+1 VP

= (
= (Vk)\+1)2 — V2=V + (VkA)2 — AV VR
-
=1-X-V2, V) O

Now, let us take into account kg defined in (20) for 5 > 0 (see Fig. 16). The function
B — kg is a piecewise constant and decreasing function, which has a jump discontinuity
at & for k € N, k > 2, defined in (9). Let us note that for § = &, k € N, k > 2, we
have wg = 7, kg = k — 1 and W,f is the identity function on R* (see Lemma 11 in [20]
for A= and j = 1). Thus, we have

We i(@=q qeR*, forB=&, keN, k>2 (42)
Let us investigate some basic properties of Vfﬁ and Vfﬁ 41 (see Figs. 18 and 19).

Lemma 7. For 8 > 0, we have 0 < V,f; <1 and Vfﬁﬂ < 0. Moreover, Vfﬁ and V,f;H
have the following properties:

Vfﬁzl if and only if B > & = 2.
Vfﬁz()ifand only if B =& for some k € N, k > 2.
VP =-1forB=&, keN, k>2.

IfoB—l—V,iH:—lfor()<ﬁ7é4thenﬁszforsomek‘eN,k22.

Ll

Proof. At first, let us assume that 5 > & = 2. In this case, we have kg = 0 and thus
Ve =V =1and V) =V =2-p8<0.

At second, let us assume that &0 < 8 < &1 < & for fixed k € N. Then kg = k
and it suffices to show that (see Fig. 17)
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Fig. 17. Graphs of functions 8 — Vkﬂ (black curve) and 8 +— Vkﬁ_‘_1 (grey curve).

e,
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Fig. 18. The graph of the function S Vf@,

Fig. 19. The graph of the function 8 — V 1

LV =0and V), = —1for § =&,
2. 0<Vk6<1and Vk+1<0for§k+2<ﬁ<£k+1.

Now, we have that Vkﬁ = 0 if and only if 8 = 4sin® 2(k+1), m € {1,...,k}. Thus, the first

zero of Vkﬁ is 8 = &gy1. Similarly, 8 = £xyro < gy is the first zero of Vkﬂﬂ. Moreover,
we have that VkB > 0 for 0 < 8 < &4 since for f = 0, we have VP =k+1>0. Using
(41) for A = 8 = &i+2, we obtain

2
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2
which simplifies to (Vkﬂ ) = 1 since Vkﬁ 1 = 0 for B = &i2. Thus, we conclude that

Vkﬁ =1 for f = &x1o < &gy since V,f is positive for 0 < 8 < &x+1. The Chebyshev
polynomial of the second kind monotonically oscillates between its extrema and the first
extreme of § — Vkﬁ does not belong to the interval (0, &g+1). Thus, for {xyo < 8 < &ky1,
we have that 0 < V,f < 1. Since Chebyshev polynomials of the second kind are orthogonal
with weight function w(z) = /1 — 22, using Corollary 3.3.3 on page 93 in [19], we have
that two consecutive polynomials strictly interlace, i.e. between two consecutive zeros of
V,ﬁrl is exactly one zero of V,f. Since Vkﬁ+1 =0 for f = &;42 and Vkﬁ =0 for 8 = &1,

we have that Vkﬁ+1 < 0 for &kyo < B < &k41. Finally, using (41) for A = 8 = &4, we
2
obtain (V,f +1) = 1 and thus, we conclude that VkB b1 =L
Now, it remains to justify the last statement. Thus, let us assume that V,f’; + Vfﬁ 1=
—1 for 0 < B # 4. Using (41) for A = § and k = kg, we obtain

2
(VfBH—Vﬁ> +8-VE L VE =1,

Kg
(zvg +1>2 —3. (vfg +1) Ve =1,
4(V@)2+4V@ —B- (v@)Q—ﬁ-v@ —0,
4-p)(VE +1VE =0,

(B-4)VL V=0,

H3—|—1 Kpg

which implies that Vfﬂ = 0 and thus, § = & for some ke N, k> 2. O

In the second part of this section, we simplify the definition of functions p; = p;(«, 5)
given by (32) and (33) within the following four lemmas. As a consequence of this sim-
plification, we also obtain the basic bounds for each non-trivial Fucik curve C;.

Lemma 8. For 0 < 8 < 4, we have
= -z =17" (W) (43)

wp wa

Proof. We have that - — LLJ = L — 1 — kg and thus, using (31), we get
E

wpa

. sin (ws (1= +1458) ) sin (s +2))
QB< 1—/@5) T (wﬁ (ﬁ —1—f<:/3)) - sin(wZ(nZH))
VB

_ _metl B
R Wesq1(00). O
kB
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Fig. 20. Graphs of functions W£3+1 = ng_,_l(q) (left) and W§E+2 = W£E+2(q) (right) for fixed 8 = 0.8 (i.e.
Kg = 2).

Lemma 9. Let 8 > 0.

1. If =&, ke N, k>2, then WfﬂH(q) = 00 if and only if ¢ = cc.
2. If B > 2 then Wgﬁﬂ(q) = oo if and only if ¢ = 0.
3. If B<2and B#&;, k€N, k> 2, then W,fﬁﬂ(q) is finite for ¢ < 0 and for ¢ = oc.

Proof. Firstly, in the case of 8 = &, k € N, k > 2, we have k = kg + 1 and V[/ﬁﬁ_H is

K

the identity function (recall (42)). Secondly, for 8 > 2, we have kg = 0 and Wfﬁﬂ(q) =

W¥(q) =2 — 8 —1/q (see Fig. 15). Thirdly, let us assume that 8 # &, k € N, k > 2,
and that 0 < 8 < 2. Then we have (see Fig. 20)

B B
q- Vn - VI{
BBH 5 2 for g € R,
wh — ¢ Vs — V"”“B*1 44
ng—i—l(q) B ( )
VKB-i—l
5 for ¢ = oo.

Using Lemma 7, we obtain that WEB 4+1(00) is negative and that WEB +1(q) is finite for
g < 0. Indeed, using (40) for A =  and k = kg, we have

B _(vB)?

¢-VEVE L1 (v,

A Ve,) <0. O
Vnﬁ—l—l

The following lemma is based on Lemmas 14 and 16 in [20] and it allows us to
determine the length of the interval [i — 1,7 + 1] for a positive or negative semi-wave
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q <0
° i it+rp =] . °
i—1 ° j k
i o - ® J+1
Ui Wi (@) <0
° g <0 L]
i 1+ Kg J
t t t & t
i—1 . " i1k
° e Wi a(a) =0
L4 q <0 ¢
1 1+ Kg J
t t t ‘ t
i—1 g J+1 K
C
o 1 o W/ i(a) >0

Fig. 21. The length of the interval [{ — 1,5 + 1] for a negative semi-wave u§ ; of the solution u of (30) for
fixed (e, B) € D according to the sign of W,fﬁJrl(qi): j=1t+rg+1and u(j) <0 (bottom), j =i+ kg +1
and u(j) = 0 (middle) and j = ¢ + kg and u(j) < 0 (top).

of the solution u according to the ratio g; of the values u(i) and u(i — 1) (see Fig. 21).
Let us note that conditions in (45) or (46) mean that the solution u has a positive or
negative semi-wave on the interval [i — 1,5 + 1].

Lemma 10. Let (o, 8) € D and u be the solution of the initial value problem (30). More-
over, let 1,7 € Z be such that v < j and

u(i—1)<0, wu(k)>0 fork=id,....,75, u(j+1)<0, (45)
or
u(i—1) >0, wuk)<0 fork=i,...,5, u(j+1)>0. (46)
Then we have
. 14+ K for Wle( i) <0,
j:{i+l-€,\+1 for WA+1( i) >0, 47)

where we denoted q; = uz(_i)l) < 0 and N = « if (45) holds or X = [ if (46) holds.
Moreover, we have u(k) # 0 for k € Z such that i < k < j, and u(j) = 0 if and only if

WI{)\+1 ( ) - O

Proof. Let us assume that conditions in (46) hold, which means that we have a negative
semi-wave uf ; of u defined on the interval [i — 1,7 + 1] (see Fig. 21). Moreover, let us
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assume that the value WEB 41
of 3.
At first, let us consider 0 < 8 < 4. Using Lemma 14 in [20], we have that

(g:) is finite and we split the proof according to the value

=i+ |+ | -1, (48)

wp

where ¢; = uz‘i(j)l) < 0. If we denote s = 1 — T?(g;) then (48) reads

j=i+|z sl (49)
and s € [0,1) since 0 < T%(g;) < 1. Now, let us consider that

s>l—LlJ20, (50)

wp wp

wp

which implies that L’JLJ - 1< 2 -1< -5« {lJ and that Ll — SJ = LLJ —1=
5 ws wp wp
kg. Thus, we obtain using (49) that

j=i+ kg (51)

Moreover, using (43), (27) and (37), the strict inequality in (50) reads

1= T%(g5) > T7 (W) 41())
TB (Qz) < Tﬁ (Wf(n[g—i—l)(o)) )
W 1 (@) <0,

which justifies (47) if we take into account (51). Now, let us consider that

0<s<z - |z, (52)

Pl o

which implies U—ﬁj < I _s< o< [ﬁj +1 and that L% —sJ - [%J = kg + 1.

wg — wg

Thus, we obtain using (49) that
j=i+rg+1 (53)

And similarly as in the previous case, using (43), (27) and (37), the second inequality in
(52) reads W,fﬁﬂ (¢;) > 0, which justifies (47) if we take into account (53).

At second, let us consider 5 > 4. Then we have 0 < o < 4 and using Lemma 16 in
[20], we obtain that

J=i+T%(q:) + T2 -p)], (54)
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where ¢; = #j)l) < 0. Since 0 < T%(¢;) < 1 and 0 < T*(2 — ) < 3, we have

0 < T%(g;) + T*(2 — ) < 3 and thus, (54) reads

j=1 for T%(q;)+T*2-p8)<1, (55)
j=i+1  for T q)+T2-p5)>1. (56)

The inequality in (55) reads T%(¢;) < T¢ (ﬁ) or ¢; < Wfl(O), which justifies (47)
since kg = 0 for > 4. And similarly, (56) can be identified with the second case in (47).

Finally, for § > 0 and k € Z such that i < k < j, we have that u(k) < 0. In contrary,
if we assume that u(k) = 0 for some k strictly between ¢ and j then u(k—1)u(k+1) < 0,
which contradicts (46). Moreover, we have u(j) = 0 if and only if W£B+1 (gi) = 0. Indeed,

using (38), we have

u(j+1
Wo (@) =a _ )= v for Wiy (@) <0,
matt () S Qi1 =0 g e g
9= wG-1n or m5+1(%)_ .

Thus, the proof is complete in the case of a negative semi-wave such that the value
VVBB_H (g;) is finite. Now, let us clarify that the case Wfﬁﬂ (g;) = oo cannot occur. If we

assume that W,;BBH (¢;) = oo then we have ¢y 41 = 00, u(i + kg) = 0 and j =i + kg.
Taking into account that ¢; is finite, we obtain using Lemma 9 that ¢; = 0 and § > 2.
Thus, we have that kg =0, ¢ = j and that (i — 1) > u(i) = 0 = u(j) < u(j + 1), which
is a contradiction.

In the case of a positive semi-wave on [i — 1,7 + 1], i.e. if conditions in (45) hold, we
prove statements in an analogous way. O

Remark 11. Let u be the solution of (30) for (a, 8) € D such that u(i — 1) = 0 and on
the interval [i — 2, j + 1], we have a negative semi-wave (cf. (46) in Lemma 10)

w(i—2)>0, w(@i—1)=0, uk)<0 fork=1d,...,5, u(G+1)>0.

u(i—1)

Moreover, using Lemma 9, we conclude that Wf . 4+1(q@i) = oo if and only if B = &,
keN, k>2.

Then we have ¢; = = 00, j = i+ kg and Wfﬁﬂ(qi) is negative or infinity.

We provide a new expression for the values of p;(«, 3) (defined in (32) and (33)) using
the Heaviside unit step function H defined as

Hiq) = 1 for g >0,
V=0 for ¢ < 0 or g = 0.
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Lemma 12. For (a, ) € D and k € N, we have

pl(aaﬁ) = Ko + 1,
por(e, B) = kg + 1+ HWS oy (921-1(a, ), (57)
part1(e, B) = ko + 1+ H(WS 1 (Var(r, B)) ). (58)

Proof. Firstly, the statement (47) in Lemma 10 can be equivalently written in the fol-

lowing form
j=i+rx+HW. 11 (%)) (59)

Now, let u be the solution of the initial value problem (30) with C; > 0. Then u has a
positive semi-wave on the interval [—1,p; + 1], where p; is defined in (32) as

LTQ(W) + ﬁJ for o < 4,

pi(a, B) =
|TP(c0) + TP (2—a)+ 1]  fora>4.

Since T%(oc0) = T (00) = 0, we have that p;(a, 3) = ke + 1. Indeed, for o > 4, we have
ko =0and 0 < TP (2—a) < 3. Moreover, using (34), we have ¥;(a, 3) = W (a ﬁ)(oo)

u(p1+1)
u(p1)

interval [p1, p1 + p2 + 1], where py is given by (33) in the following way

which is exactly the value of . The solution u has a negative semi-wave on the

|72 8)) + Z | for < 4,
pZ(Oé?B) - ’
[T 8) +T° (2= B)+ 1] for B2 4.

Thus, using (48), (54) and (59) for A = /3, we get

palo, ) =j—i+1=rg+HW. | (h(a,B)) +1,

which corresponds to (57). Moreover, using (35), we have that vYs(c,3) =

sz (a ﬁ)(ﬁl (a, 8)) which is equal to %. And similarly, the solution u has a

positive semi-wave on [p; + pa2,p1 + p2 + ps + 1], where ps is defined in (32) as

LTQ(ﬁ2(Oz,/B)) + LJ for ae < 4,

Wa

p3(a, B) =
|TP(02(c, B)) + TP (2— ) +1]  fora>4.

Thus, using (59) for A = «, we obtain

ps(a,B) =7 —i+1=kKq —i—H(I/V,S‘Cerl (192(04,5))) +1,
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Fig. 22. The set O, (grey region) as the basic bound for the second non-trivial Fu¢ik curve C; C ©3 (black
curve) for n = 8 (left) and for n = 9 (right).

B
4 4
& & 1
&1 &t
f4 [ //// 54 ; i C;
0 5868 &o 4 « 0 & & &2 4 «

Fig. 23. The set ©F (grey region) as the basic bound for the third non-trivial Fuéik curve C; C O3 (black
curve) for n = 10 (left) and for n = 11 (right).

which corresponds to (58). To conclude, we have justified (57) and (58) for k =1 (i.e.
for py and ps, respectively). In the case of k > 2, the proof of (57) and (58) concerning

par, and peg41 can be done in an analogous way. O

At the end of this section, using Lemma 12, we obtain some basic bounds for each
Fucik curve C; C O (see Figs. 22 and 23).

Theorem 13. In the domain D, we have the following bounds for Fucik curves C; C ©fF,

Il=1,...,n—1, where

2j—1=1(,B)eD: 0<n+1—j(ka+1)—jhg+1)<2j—1},

2j i ={le,B)€D: 0<n+1—=(j+1)(ka+1)—jks+1) <25},

03, = {(,B) €D: 0<n+1—j(ka+1)—(+1)(ks+1) <25}
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Proof. First of all, it is enough to focus only on Fucik curves C; since we have

¢, ={(a,8)eD: (B,a) €C}.

By Theorem 22 in [20], we have that C;” C €], where € is the set of all pairs (o, 3) € D
such that

+1

i=1
Thus, using Lemma 12, we obtain for [ = 25 — 1 that
J(ha+1) +i(kg+1) <n+1<j(ka+1)+j(kg+1)+2j—1
and for [ = 25 that
(G+D(a+1)+ikg+1) <n+1<(G+1)(ka +1) +h(kg+1)+25. O

5. Implicit description of Fucik curves

In this section, we investigate the distance between zeros of two consecutive continuous
positive semi-waves of the solution w of the initial value problem (30) for 0 < o < 4 and
B > 0. Thus, let i, € Z be such that i < j and that (46) holds, i.e. i is the generalized

zero of u and the next generalized zero of u is j or (j + 1) if u(j) = 0 or u(j) < 0,
respectively. Moreover, we have two consecutive continuous positive semi-waves u§ and

& & 3 &2 4 5

Fig. 24. The graph of the function 8 — 74,3 for fixed o = 2.9.
u§ of u with zeros t1 € (¢ — 1,4] and ty € [j,j + 1), respectively. In the following
Lemma 14, we show how to reconstruct the zero t; according to values of t1, a and S.

For this reconstruction, we use 7,3 = T (V,i 1/ VH%) introduced in Definition 1 (see
Fig. 24) to distinguish between two disjoint cases (see Fig. 25)

J=1+kKg and Jj=1i+kKg+1
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pa,ﬁ(s) >
i Na,p(s) u$
o U s s 8( 2 o
o ]
3 4 é 6 T 9 10
t ° S * I k
-
Ta,p 1=25 j=38
, pap(s) ——] B
Nas(s 3
. us s o a(s) o PY
‘ ' : : ® m 0
12 13 14 15
¢ k
t3 ty

Tap | i=14 j =16

Fig. 25. Two details of the solution u of the initial value problem (30) for fixed o = 0.432 and 8 = 0.671
(i.e. kg = 2). On top, we have two continuous positive semi-waves u§ and uj with zeros t; and t2 such that
Jj =14 kg + 1. Bottom, we have two continuous positive semi-waves u% and ug with zeros t3 and t4 such
that j =1+ Kkg.

Let us note that 0 < 7, 3 < 1 since Vfﬁ 1/ V,f; is negative or equal to oo according to
Lemma 7.

Lemma 14. Let u be the solution of the initial value problem (30) for0 < a < 4 and > 0
and let u§ and u$§ be two consecutive continuous positive semi-waves of u. Moreover, let
t1 be the second zero of u§ and let to be the first zero of u§. If we denote s = [t1] — t1
then we have

ti+s+ kg +T¢ ( g1 (@(1— s))) for s > 714 3,
to = (60)
ti+s+rg+14+T¢ < K2 (Qa(l—s))) for s < 7yp.

Proof. We have t; € (i — 1,i] and t5 € [j,j + 1), where i,j € Z are such that i < j and
that (46) holds. Moreover, we have

=Q"(1-s), dj+1 = Wj‘ﬁ—i—i—l(%’)> (61)

where we denoted g, := “(ﬁ) for k=1,...,57+ 1. Now, using Lemma 10 and (47) for
u(k—1)

A = 3, we obtain

i+ kg forW (¢;) <0
i=1 ot (62)
i +rg+1 forWﬁH( i) > 0.

Since ty — j = to — [t2] = T (gj+1), we get using the second equality in (61) that
to=7+T1¢ (I/Vjﬁf”l(qi))7 which implies using (62) that
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t i+ rg+T1° (Wwﬂ(qz)) for WHBH( qi) <0, 63)
2 pum—

i+kg+1+T? <W£ﬁ+2(qi)> for Wnsﬂ( i) > 0.
Using the first equality in (61), the inequality W, B_H(q,) < 0in (63) reads Q¢ (1 —s) <
Vfﬁ / Vfi 41 which can be equivalently written as Q®(s) > V,i +1/VE oras s> 7,5 due
o (29). Similarly, we obtain that the second inequality Wﬂﬁ +1(q ) > 0 in (63) reads
s < 7,,3. To conclude, (63) can be also written in the following way

i+ rg+T° (W,fﬁﬂ(qi)) for s > 74,3,
to =
i+kg+1+T¢ (WEBH(%)) for s <743,

which is exactly (60) if we take into account the first equality in (61) and that i = [t1] =
t1 +s. O

Remark 15. Let us note that for s = Ta B We have using (60) that to =t; + s+ kg + 1,
since Q*(1 — 74,8) = 1/Q*(T0,8) = / 541 and thus

T (W10 (Q°(1 = 7a,9)) = T° (00) = 0.

See also Fig. 20 and note that for ¢ = / w5+1, We have WHBH( ) =0and W, 6+2( )=
Wi (W (@) = .

In the following lemma, we provide some basic properties of 7, 5 (see Fig. 24).
Lemma 16. For 0 < o < 4 and 8 > 0, we have that 0 < 7, 3 < 1. Moreover, if we denote

£ = 4sin? %, (== 4sin?

T
> 2
5% 1 forkeN, k> 2

then we have

1. 7a5 =0 if and only if B = & for some k € N, k > 2,

2. Ta,3 =5 if and only if B = ¢, for some k € N, k > 2,

3. Twzﬁ—ﬁj for0 < B < 4.

Proof. First of all, for 0 < o < 4 and > 4, we have that 7, g =T (g—?) =T*(2-7)

and thus, 0 < 74,3 < % since (2 — ) < —1. For the rest of the proof, let us restrict to
the case 0 < 8 < 4. We claim that

Tap =T (Qﬁ (ﬁ — {éJ)) for 0 < a, B < 4. (64)
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Indeed, using Lemma 8, we get

B
@' (5 -8 ]) =i =

which justifies (64) according to the definition of 7, 3. Now, since 0 < ﬁ — LLJ <lor

ws

o {LJ = 0, we have that

ws  Lws
Bm _ | Blzm | |) =
@ (‘%' LWﬂJ><O or ¢ (wrf LJBJ)_OO’
respectively. Thus, using (64), we get that 0 < 7,5 < 1 for LﬁJ < {5 and that 74,5 = 0
for LLJ = . Morcover, LLJ = = ifand only if = =k, k €N, k > 2 (recall that

ws wg wp
1< ;—B), and let us note that ﬁ = k reads 3 = 2 — 2cos  or 8 = §. Finally, using
(64), we conclude that 7, 3 = % can be equivalently written as Q° (ﬁ — LﬁJ) = -1

orl:{lJ—i—%or T k—l—%,kEN,kEQ,andletusnotethat:—B:k—i—%reads

wg wp ws

[3:2—20052%11 or f=_(. O

Let us introduce the function N, g : [0,1 + 74 5] — R, which we use to measure the
distance t5 —t; between zeros t1 and t, of two consecutive continuous positive semi-waves
of u (see Figs. 25 and 26).

Definition 17. For 0 < a < 4 and 8 > 0, let us define

Maﬁ(s) +1 for s e 0,74,
Dom(Ng,5) := [0,1 + 74 4], Nap(s) = Maﬁ(s) for s € (10,8, 1),

My p(s—1) forse[l,14 714 4]
where
Mop(s) = T° <WEB+1 (Q*(1 - 5))) , S € [map 1],
Map(s) = T (W2 (@Q°(1=9)), 50,7

Remark 18. Let u be the solution of the initial value problem (30) for 0 < a < 4 and
B > 0 and let t; and ty be two zeros of positive semi-waves of u as in Lemma 14 (see
Fig. 25). Then we have

to=t1+s+r3+Nap(s), 0<s<1+73. (65)

Indeed, for 0 < s < 1, we have that s = [t;] — t; and we obtain using (60) that
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Fig. 26. The graph of the function Ny, g = N g(s) for fixed a = 1.2 and 8 = 3.2.

th+s+rs+ 1+ Myg(s) for0<s<tag,
t2:

t1+s+ks+ Maﬁ(s) for 7, 3 < s < 1.
Moreover, for 1 < s <1+ 7,3, we have 0 < s —1 < 7, g and thus,
to=t1+s—1+ks+1+Myg(s—1)=t; +5+rs+Nas(s).

Let us introduce the function p, s according to (65), which measures the distance
between zeros of two consecutive continuous positive semi-waves.

Definition 19. Let 0 < @ < 4 and 8 > 0. Let us define
pa,p(s) = s+ kg + Ny g(s), 0<s<1+74p4
Now, using (65), we have for zeros t; and to in Lemma 14 that
2 = t1 + pas([t2] — ). (66)

In the following three lemmas, let us investigate some basic properties of N, g.



34 P. Necesal, I. Sobotkovd / Bull. Sci. math. 171 (2021) 103014
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Fig. 27. The graph of the function 8 — p, g for fixed a = 2.9.

Lemma 20. The function Ny g is a continuous involution, i.e.
Vs € (0,14 Tap] : NapNag(s)) =s.
Moreover, we have Ny 3(0) =1+ 74,5 and Ny g(Ta,p) = 1.

Proof. At first, M, s is the continuous strictly decreasing function on [, s, 1], which
maps this interval onto itself. Moreover, M, g is an involution. Indeed, for 7, 3 < s <1,

we have

Map(s) =T (W40 (1/Q(s)) =T (WP, (Q(5)))

and thus, we obtain

Map(Mays()) = T (1/W2, (@ (T (W10 (1/Q°(s))) ) = =

At second, Mm 3 is the continuous strictly decreasing function on [0, 7, 3], which maps
this interval onto itself. Moreover, M, g is an involution, which can be justified similarly
as in the case of Maﬁ.

Finally, N, 3 is the continuous strictly decreasing function on [0, 147, s], which maps
this interval onto itself, and it is an involution. Indeed, for 0 < s < 7, g, we have

No,s(Na,p(8)) = Ma,g (Ma,ﬂ(s) +1- 1) = s,

and for 1 < s <1+ 71,3, we have

Na,s(Na,5(s)) = Mo (Ma,ﬁ(s - 1)) +l1=s5-141=s5 0O

Now, let us focus on 1,3 and fa,5 introduced in Definition 1 (see Figs. 27 and 28).
Using Lemma 7, we get that 0 < 7,3 < 1 and 0 < pq s < 1 since (Vfﬁﬂ - 1)/V/53 is
negative or equal to oo and VfﬁH/(Vfﬁ + 1) is negative.
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& & &3

Fig. 28. The graph of the function 8 — n., g for fixed o = 2.9.

Lemma 21. The points 14,3 and pa,p are fized points of ]\:40475 and Maﬂ, respectively.
Moreover, we have

Nog(Ma,p) =Nap+1,  Nap(tia,s) = tlas

Proof. Using (29), we obtain

_ VP ||
Mo g(as) =T (WP | ——2— )| =T | 25— | = 1as,
5 (1a,p) ( Rah2 (Vfﬁﬂ - 1)) ( Ve U

where we used (40) to simplify

w,

K

B8 - B 3
V Vi, Vi,

B B
5 ( Vfﬁ ) Vﬂﬁg+1 - <V/§ﬁz+1vﬂg+1 - V@Vnﬁz) Vfﬁﬂ -1
+2 = :
’ I€5+1 - 1

In a similar way, we show that Ma s(ka,s) = Ha,s Finally, we have No,p(1a,5) =

Mo pg(Map) +1 = nap + 1 and Ny g(tta,s) = Ma s(Ha,8) = Ha,p, Which finishes the
proof. O

Lemma 22. Let 0 < a < 4.

1. If B=¢, k€N, k>2, then Ny g(s) =1—s.
2. IfﬁzathenNa,ﬁ(S):1—5—}—7576:1_54_&_ LLJ

wpa

Proof. At first, let us assume that g = &, k € N, k > 2. Using Lemma 16, we obtain
that 7,3 = 0 and thus, we have that N, g(0) = 1 and N, g(1) = 0. Moreover, since
T/VﬂﬁJrl is the identity function (recall (42)), we have for 0 < s < 1 that

K

Nos(s) = Mays(s) = T (W), 11 (Q™(1 = 5)) =1 —s.
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At second, let us assume that 0 < § = o < 4. Then using (64), we obtain

T =ty—ti=s+rg+Napg(s), 0<s<1+754, (67)

wp
where 73 3 = - — Lﬁj due to Lemma 16. Finally, using (67), we get
Naop(s) = —s—kp="—5— LLJ +1=1-s5+7133. O

wp wp

In the following lemma, we show that values 14 g, To,3 and pq,g are always ordered
in one way (see Figs. 27 and 28).

Lemma 23. For 0 < a < 4 and 8 > 0, we have that
0<Nag <Tap < pa,s <1 if B# &, keN, k> 2. (68)
Moreover, we have

1. Na,p = 0 if and only if B = & for some k € N, k > 2,
2. pap = % if and only if B = & for some k € N.

Proof. At first, for 5 # &, k € N, k > 2, we have that

Vf@i—f—l -1 Vlf[g-’-l Vfiﬁﬁ-‘rl
E 5 <8
VKJB VEB VHB + ].

<0,

which implies 0 < 74,8 < Ta,8 < fa,s < 1. At second, for 8 = &, k € N, k > 2, we
have VfB =0, V,iﬂ = —1, and thus, 74,8 = Ta,s = T%(c0) = 0 and po 5 = T(—1) =
%. At third, for 8 = 4, we have kg = 0, VH% = 1, VHBB+1 = 2 — 3 = —2 and thus,
fta,s = T%(—1) = L. Finally, let us assume that 8 # 4 and piq,g = 3. This means that
Vfg«l»l
Vil +1

= —1 and thus, we have

VeVl =1
Thus, using Lemma 7, we obtain that § = & for some k € N, k> 2. O

Let us reveal a close connection among values 14,3, To,3 and fi,g using the function
G? : R — R* defined in the following way

_ 20— (2-P)¢

G’(q): I

for ¢ # +1, GP (1) := 0.
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Lemma 24. For 0 < «a, 8 < 4, we have

Tap =1 =T (G7(Q*(1 = Na.p))) , (69)
Tap =T (G” (Q*(Ha.p))) » (70)

bimary _ 1
G (Q(1 = 1a,p)) Qs (71)

Proof. Firstly, let us assume that § = & for some k € N, k > 2. According to Lemmas 16
and 23, we have 14,5 = To,3 = 0 and 14,5 = 3. Moreover, we have

1-T(GP(Q*(1 —nap))) =1 —T*(G? (Q*(1))) =1 - T (G"(0)) =1 —T°(0)
=0=17ap

and
T (G (Q%(pa,p)) = T (G7 (Q7 (3))) = T (G"(-1)) = T%(00) = 0 = Tup.

Secondly, let us assume that 8 # &, kK € N, k > 2. We claim that 74,3 # % Indeed,
if we assume that 74,5 = 5 then we get (VHBB_I_1 - 1)/VHBB = —1 and

Ve VP =1,

K

which is a contradiction since VfB —i—V’i 41 < laccording to Lemma 7. Thus, 0 < 74,5 < 1,

K

0<1=7ap<1, Q%L —1n4p) <0and

Qa(l - 77047/8) ?é _1a Qa(na,ﬁ) 7é —1.

Now, using (29), we have

G?(Q(1 = nap)) = G° ( 1 ) _ 2Q%(ap) — (2= 5)

Q% (1a,8) (Q%(Na,p))? — 1

and thus, using (39), we obtain

520V = 1) = (2=B)V)

kg

Gﬁ *(1 = Na =V,
N (R (A

B 2(VBB+1 B 1) B (VﬁﬁJrl + Vfg—l)

K K

" (Vfﬁﬂ -1 -(1+ V,53+1Vni—1)

5 VP -2V, Ve
=V o8 2 8 3 35— B (72)
(Vfiﬁ-‘rl) - 2Vfi3+1 - Vnﬁ—&-anB—l Vli/g-i-l
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Using (27) and (72), we get

B
1 Vfi +1
1T (G (Q¥(1 — na :T"‘( ):Ta E | = 1o
QD) =T\ G 1 ) Vi )T
which justifies (69). According to Lemma 23, we have that 0 < piq.5 < 1 and fia g # 3,
which means that Q*(pq,5) < 0 and Q*(ia,3) # —1. As in the previous case, using (39),
we simplify G* (Q%(a.5)) as Vfﬁ 1/ V,f;, which justifies (70). Finally, if we combine (69)
and (70) and use (27) then we obtain (71). O

Let us note that for 0 < a < 4, we have

0< Na,g < Ta,f < Ha,g < % for g > 4,
0<Nap <Tap < fhag = % for 6 =4,
0<Nag <3 <pas<l for 2 < B < 4, (73)

since Q*(Na,p) =1— 5, Q*(Ta,p) =2 — f and Q*(ta,p) = # for B > 2. The following

lemma indicates that the values of 1,3 and j4 g are separated by % for 0 < o, B < 4.

Lemma 25. For 0 < o, 8 < 4, we have that
0< N <3 <fap <L

Proof. Firstly, for 2 < 8 < 4, we have the inequalities in (73). Secondly, for 0 < § < 2
such that 8 # &, k € N, k > 2, we have 0 < 7, 3 < 1, which implies G®?(Q%(jta,5)) < 0
according to (70). Thus, we obtain that —1 < Q*(ta,g) < 0, which leads to § < pa,g < 1.
Similarly, using (71), we get G®(Q*(1 —14,3)) < 0, which implies 0 < 14,5 < 3. Finally,
for B =&k, ke N, k> 2, we have n, 3 =0 and pq 5 = % due to Lemma 23. O

Proof of Theorem 5. The proof is based on Theorem 26 in [20]. Let us find the descrip-
tion of the Fucik curve C3;_;, j € N, in terms of functions 7 = t3(c, 8) and t; = t;(«, B)
defined in (24) and (25), respectively. Using Theorem 26 in [20], we obtain that the
Fucik curve ng_l has in D the following implicit description

> pila, B)+ Y pilBia) + T(W;(a, ) + T(0;(B,0)) =n + 1 (74)

=1 =1

and moreover, the corresponding non-trivial solution u has exactly (25 — 1) generalized
zeros on T and has exactly j positive semi-waves as continuous extensions. These positive
continuous semi-waves have the zeros t; and f_;, which can be reconstructed from left
and right endpoints of T, respectively, in the following way
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Fig. 29. A non-trivial solution of the problem (7) with 7 generalized zeros on T for (o, ) € C; (n = 30,
o = 0.240, B = 3.534).

ti=Y pela,f) + TWi(a, 8)),  foi=n+1-Y p(B,a)—T(5,a)),
k=1 k=1

for i = 1,...,j. The condition (74) means that t; = ¢_;. Now, according to Lemma 14,
Remark 18 and (66), we have that

ti = t;(a, B),
ti=n+1-t(a,p), (75)

and thus, the condition (74) reads as
ti(c, B) + (e, B) = n+ 1.

To justify (75), it remains to show that p, 5(0) = p1(8, @) + T (91(5, v)). Indeed, using
Lemma 20, we obtain

00,8(0) = kg + Na 5(0) = kg + 1 + 7o g,
and using Lemma 12, we get
pl(ﬁva) = Kp + 1a

B
5 =7 (1 0) =7 (82) =

Now, the description of Fucik curves Cy;_;, C3; and C3; in terms of functions ¢ =
ti(a, B) and t; = t;(a, B) can be obtained analogously (see Figs. 30 and 31). Let us only
mention here the implicit description of curves C3; similar to (74)

Jj+1 J
C3it Y pila, B)+ Y pila, B) + T (011 (cr, B)) + T*(0; (v, B)) = m + 1,
=1

=1
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Fig. 30. A non-trivial solution of the problem (7) with 6 generalized zeros on T for (o, ) € C5 (n = 48,
o = 0.145, 8 = 0.329).
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Fig. 31. A non-trivial solution of the problem (7) with 6 generalized zeros on T for (a, ) € Cg (n = 48,
a = 0.150, B = 0.251).

Jj+1

Cyj Zpi(ﬁaa) + Zpi(ﬁva) + T4 (B, ) + T*(9;(f,)) =n+ 1. O

6. Improved bounds for Fucik curves

In this last section, we focus on the function p,, g introduced in Definition 19 which
measures the distance between every two consecutive zeros of two different continuous
positive semi-waves. In Theorem 31, we prove that p, g attains its global extrema at
Na,p and 1o, (see Fig. 32). Since p, g is defined by N, 3, we express the first derivative
(Na,g)" in Lemma 28 and then in Lemma 30, we determine where this derivative is less
or greater than —1. Let us note that at the end of this section, the proof of the main
Theorem 3 is available.



P. Necesal, I. Sobotkovd / Bull. Sci. math. 171 (2021) 103014 41

Yy
Kg+1+2008 f---— g mmm e

Kg+ 1+ Topg - - -—— - @ -mmmmm oo

KB+ 2fap t---———r-—-m----=

S

} >

|
|
|
|
|
| | |
| | |
| | |
0 Na,f TaB Ha,B 1 1T+na5 1+7ap

Fig. 32. The graph of the function pn,g = pa,s(s) for fixed a = 2.6 and 8 = 3.8.

Let us introduce the function S}’ # , which we use to express the first derivative (N, 3)’
of the function N, g given in Definition 17.

Definition 26. Let 0 < a < 4 and 8 > 0, k € Z. Let us define the function S,?’B :R* =R

as
2778 B B
O Virr — 24V + Vi
S¥P(q) = VP + f R 76
S,?’B(oo) = V,f . VkB_H. (77)

Let us note that the denominator ¢> — (2 — «)q + 1 in (76) is always positive since its
discriminant is a(a —4) < 0.

Lemma 27. Let 0 < o < 4, B8 >0 and k = kg or k = kg + 1. Then for 0 <t <1, we

have
a g B o O% ' = !
(T Wi, 0Q ) (t) (=S (0() (78)
Moreover, we have
@ g B8 o O% ' = !
(oW, 0Q )+ (0) = — (5= )5 (o) (79)

Proof. For 0 < t < 1, let us denote ¢ = Q*(t). Thus, we have that ¢ is finite and
non-positive for 0 < ¢t < 1 and ¢ = oo for t = 0.

At first, in the special case of Vkﬂ = 0, we have that S,‘:’ﬁ (¢) = 0 and W£+1(q) =q
and thus, we obtain

T (Wi (Q(1) = T° (@7 (1) =t
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which justifies (78) and (79).
Now, for the rest of the proof, let us assume that V,f # 0. Using (12), we obtain

(@) = T2 e (30)
o/ _ 1
R CT)
Moreover, we have
a\/ B
(1 (W @ @)) = >(T<”)’k(;) ) (W) @ (51)

Let us point out that W,fﬂ (q) is a finite number due to ¢ = Q“(t) for 0 < ¢ < 1 and
k = rp or k = kg + 1. Now, let us expand the factor (T) <W,f+1 (q)> in (81). Thus, let

us write the denominator in (80) for ¢ equal to W,f 11 (q) as

Ag?> + Bq+C
(qvkﬁ - Vkﬁ—1)2

(Wen@) — @ oW () +1= , (2)

where the polynomial Ag? + Bq + C has the form of

2 2
(Vo - VE) = =a) (Vi = V) (v = Vi) + (a0 - V)
Moreover, the coefficients A, B and C of this polynomial can be identified as

A= Vkﬁ+1Vkﬁ+1 —(2- a)VkﬂVkﬁﬂ + Vkﬁvﬁ =1+(2- B)Vkﬁvlﬁrl -(2- a)vkﬁvkﬂ+l

=1-(B-a)V/Vl,, (83)
C=VPVl -Vl +VE Ve =14+ 02-pVIVE - @2-a)ViV

=1-(B-a)VV,, (84)
B==2vV (Ve +Vl )+@2-a) (VV-VI, VE

k k+1 k—1 kE Yk k+1Vk—1
= =22 - AV + 2 - o) (257 1)
= —(2-a)+2(8 - a)VIV]. (85)

If we combine (83), (84), (85) and (82), we obtain
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@y (Win@) (= @2-a)g+1) (v - v,f_l)2
TV@ - @-ag+1- -V (Vi - 20 + V)
)
- (B-08 ()

which means that (81) has the form of (78) since we have that

(W]f+1>/ (q) = Vkﬁ—l-l (qVkIB - Vk:ﬁ—l) - <QV€+1 - Vkﬁ) Vk:ﬁ _ 1 O
(qvkﬁ - Vlf—l) (qVkIB - Vkﬁ—l)

Using the function S,?’B , we express the first derivative (N, 5) (see Fig. 33).

Lemma 28. For 0 < a < 4 and > 0, we have

( -1
1— (8- )85, (Q2(1— ) for s € (0,74.5],
-1
(Na,ﬁ)/ (S) - 1— (ﬁ — OL)SS’B (Qa(l . 8)) fOT s € (Ta,,B, 1)7
-1
1—(8—a)S8% (o) for s =1,

where the functions SSAB and S:,ﬁ-1 are defined in (76), (77) as S,‘:’B for k = kg and
k = kg + 1, respectively.

Proof. Let us split the proof according to the value of the variable s.
At first, let us assume that 0 < s < 74, 3. Then we have

Nos(s) = Mas(s) + 1 =T (W), 15 (Q°(1 = 9)) ) +1

and thus, the expression of the first derivative (N, g)’(s) follows directly from (78) for
t=1-sand k=rg+1.
At second, let us assume that 7, 3 < s < 1. Then we have

Noo(s) = Mapls) = T (W7, 41 (Q%(1 = 9)))

and thus, the expression of (N, g)’(s) follows from (78) for t =1 — s and k = kg.
At third, let us assume that s = 7, 3. If we take into account that

2 2
B B —_1_1h B
VIV = (VEn) = 1=V Vi - (V)
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then we obtain

B B V'f
Siir (Q*(1—Ta8)) = S B °
Vf€5+1

2
B B
Vliﬁ+2vl‘€ﬂ/3 - (Vﬁ,/g—i—l)

= Vfﬁ+1vﬂﬁﬁ 2 2
(V&) —@-aVavi o+ (Vi)
2
VeV - (V2)
B Hg—l-l Iig—l kg
=Vi v

" (Vfﬁf — -V L+ (Vfﬁﬂf

And thus, we obtain that the one-sided derivatives of N, g at 7, s coincide. Indeed, we
have

-1 -1
L= (B= )82 (@ (1=Tap) 1= (8- )8 (Q(1 = 7ap))

= (Nap)y (Tap). O

(Nag) (Ta,p) =

Remark 29. If we take into account that Sgéﬁ(oo) = S:;i1 (0), we obtain using Lemma 28
that
—1

(Nap) (1) = .
’ 1= (B—a)S2E 1 (0)

= (Na,p)', (0).
Moreover, due to Lemma 20, the function N, g is an involution and thus, for all s €
(0,14 74.5), we have that (Ny.5)" (Na.s(s)) - (Nag) (s) = 1. And thus, we have

N
(Nag) (Ta,s)

1
= Na ! = NOZ ' = / )
(Na,p) (1) = (Na,p)y (0) (Nag) (1+ Tap)

Let us examine where the value of the first derivative (N, 5) (s) is equal, less or
greater than —1 (see Fig. 33).

Lemma 30. Let 0 < a <4 and 8 > 0. For 8 =&, k€ N, k> 2, we have that

(Nap) (s) = =1 forse(0,1). (86)
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1
(Nays), (0) |

Fig. 33. The graph of the first derivative s — (Nq,5)’ (s) for fixed « = 1.5 and 8 = 2.7.

In the case of B # & for allk € N, k > 2, we have for a < 3 that

= -1 forse(0,008)U (las,1),
—1  for s =43 and for s = pa. g,
§ -1 fOT s € (na,ﬁnua,ﬁ)a

(Na.p)' (5)

and the statement (86) holds for a = 3.

Proof. In the case of B = &, k € N, k > 2, we have N, g(s) = 1 — s according to
Lemma 22 and thus, (86) holds. For the rest of the proof, let us assume that 8 # & for
all k € N, k > 2. According to Lemma 23, we have that 0 < 7,3 < Ta.8 < fta,g < 1.
Now, let us denote ¢ = Q“(1 — s) and split the proof according to the value of s.

At first, let us assume that 7, 3 < s < 1. Thus, we have ¢ < Vﬁi /Vfﬁﬂ < 0. Using

Lemma 28, we obtain

AV
o

(87)

(NMap) (s)=—-1  ifandonly if  (a—p) .ggﬁ,ﬂ(q>

ANV

2
If we take into account that VfﬁflVﬁﬁH = (Vfﬁ) — 1, it is possible to write Sgg’ﬁ(Q) in

K

Vfﬁq VfﬁJrl
49— 5 49— 37
_ Vﬁ VB NB-‘—l nB—Q—l )

SaB
Kg (q) kg ' kg+1 q2 _ (2 _ Oé)q+ 1

the following form

Thus, the sign of Sg‘f(q) is equal to the sign of the factor (q - (Vfﬁ + 1)/V,_i+1> due to

B

VK/
VQV!;+1<0, q—vf+1<07 ¢ —(2—-a)g+1>0.
~p
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Now, since ¢ = Q*(1 — s) and (Vfﬁ + 1)/ ot = 1/Q%pa,p) = Q%L — pia,p), we
conclude that

a,B = : : a > o
S (@) 20 if and only if  Q%(1—s) = Q*(1 — pra,p)- (88)

If we combine (87) and (88) and take into account that Q® is a strictly increasing
function, we obtain

(Nap)"(5)

ANV

-1 if and only if (o —f) - (fta,3 — 5) % 0. (89)

At second, let us assume that 0 < s < 7, 3 and 0 < 3 < 2. Thus, we have V, / gl S
q < 0. Using Lemma 28, we obtain

Nap)(s) Z2=1  ifandonlyif  (a—B) 83, (q) £ 0. (90)

AV

It is possible to write S:/ﬁ-l(Q) in the following form

vy
(qV,iJrz - V/i—l—l + 1) (q v )

m5+1

Sa76 V:B
rar1(@) = Vi, - (2—a)g+1

Now, the factor ( v/ 542 V56+1 + 1) is positive since for 0 < 8 < 2, we have

K K

ves>o,  vli<o VL, =@-pV -V <o

K

Thus, S,'j[;il(q) has the opposite sign than the factor (q — V',fﬁ/(‘/',fﬁle — 1)> Moreover,

since ¢ = Q*(1 — s) and V,f;/(V,i_H —1) =1/Q“(Na.p) = Q*(1 — na,p), we conclude
that

S ()20 ifandonlyif  Q¥(1—s) S Q(1 - ). (92)

If we combine (90) and (92) and take into account that Q< is a strictly increasing
function, we obtain

(Na8)'(s)

ANV

—1 if and only if  (a— ) (Ma,p — 9) § 0. (93)

At third, let us assume that 0 < s < 7, 3 and 8 > 2. In this case, we have kg = 0,
L}B < g < 0 and (90) holds. Moreover, the factor (qV:;JrQ — Vi*“ + 1) in (91) reads

as (B—1)(¢(8—3)+1) and thus, it is positive due to 0 < g(f —2)+ 1. As in the previous
case, we obtain that (93) holds.

Finally, the statement now follows from (89) and (93). O
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The following theorem provides the values of the global extrema of the function p, s
as well as points where these extrema are attained: o g and 74, 3.

Theorem 31. Let 0 < ov < 4 and > 0. Then the function p, g attains its global extrema
at Na,p and fo,5. More precisely, we have that

PaB(Ma,) = 2Ha,p + Kg for a < B,

s€[0,1+74,5] Pa,g(Nag) =200+ ks +1 fora>p,

min  pas(s) = {

Pa,8(Na,8) = 2Nap + kg +1 fora<p,
Pa,s(fha,8) = 2Ma,p + Kp for a > B.

max  pas(s) = {

s€[0,147q, 8]

Proof. Using Lemma 28 and Remark 29, we get that the function p, g is continuously
differentiable on [0, 147, 3]. Let us point out that p, g(s) = p(s—1) for 1 < s < 147, 3.
Indeed, for 1 < s <14 7,3, we have

Pa.p(s) = s+ kg +J\:4a75(s —1)=s—1+kg —|—]\:4a”3(5 -1)+1
=(s—1)+ kg +Nag(s—1)=paps(s—1).

Thus, we obtain for 0 < s < 14 7,3 that

(Pa.p) (s) = 14 (Na,p)'(s).

Moreover, using Lemma 21 we have that

P (Map) = Nap + kg + Nag(ap) = 20a,p + ks + 1,
Pop(Ha,p) = Hap + K + Nag(lla,p) = 2106 + Kp-

For f =&, k € N, k > 2, we have that N, g(s) = 1 — s according to Lemma 22 and
thus pa g(s) = 1+ kg, which means that p, g is a constant function. Let us note that in
this case, we have 17,3 = 0 and o5 = % due to Lemma 23.

Now, let us assume that 5 # £ for all K € N, k > 2. Using Lemma 30, we determine
the monotonic intervals of p, g. The points o g and 1, 5 are stationary points of p, 3.
Firstly, let us assume that a < 8. Then p, g is strictly increasing on intervals (0,74,3),
(fta,8,1) and strictly decreasing on the interval (14,8, fta,5). Thus, 14,5 and pa g are
points of the global extrema of p, s on the interval [0,1 + 74 5] (the global maximum
and the global minimum, respectively). Secondly, let us assume that o > (. In this
case, we similarly obtain that 7, 3 and p. g are points of the global minimum and the
global maximum, respectively. Finally, in the case of a = 3, we get using Lemma 22 that
Naop(s)=1—s+1p=1—s+ ﬁ - ﬁJ Thus, we obtain that p, g is a constant
function such that p, g(s) = 1+kg+755 = o5 - Let us note that 75 5 = 215 3 = 25— 1
in this case. O
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Remark 32. Due to Theorem 31, we have for all (o, ) € D and s € [0,1 + 7,,] that

max

Pl < pa,s(s) < oG, where pf
Lemma 25, we get the following bounds

mln max

and pp*% are given in Definition 2. Moreover, using

LmJ =1+rp < pah < Pap(s) < poh <2+ kg = ﬁJ 1
for 0 < o, B < 4.

Proof of Theorem 3. At first, let us prove that (ng_l N D) C T34, 7 € N, where

o= {(@B) eD: g < P - < R
Thus, let us assume that («, 5) € C%,l N D. Then using Theorem 5, we get
th(a, B) +t;(c, B) =n + 1, (04)

where ¢} and ¢} are defined in (24) and (25), respectively. The corresponding non-trivial
solution wu consists of j positive and j negative semi-waves (as continuous extensions)
and the equation (94) reads as

J
J- i*'zpavﬁ(ﬁ%—ﬂ —tai—1) =n+1, (95)
i=1
where t;, 1 =1,...,25 — 1, are zeros of positive semi-waves

O<ti=t] < - <tj=ti=n+1l—t;<-- <ty 1=n+1-t] <n+1
Now, using Theorem 31, we obtain for ¢ = 1,...,j that

2ta,p + K < pap ([t2io1] —t2io1) < 2Nap + K + 1 for a < 83,
L+ 200, + K5 < pa,g ([t2i-1] — t2i-1) < 2pa,8 + kg for > 3.

And thus, we have

i
Fo RS <Y pas ([taia] — tai) < - 2%, (96)

=1

where pi'% and pi are given in Definition 2. Finally, if we combine (95) and (96), we

n+1
obtain pfi'} < i — =<
At second, let us Show that (CQJ ND)CTh

max

55 J € N, where

j+1
5 ={@peD: my < m - H < )
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Using Theorem 5, we obtain for («, 8) € C3; ND that

a0 B) + (0. f) = n + 1, (97)

and the corresponding non-trivial solution u consists of (j + 1) positive and j negative
semi-waves. The equation (97) can be also written as

J

G+1)- =+ Z Pa,p ([t2im1] —t2ic1) =n+1, (98)
-1

where t;, ¢ = 1,...,25 — 1, are zeros of positive semi-waves. Using Theorem 31, we
obtain the same inequalities as in (96). Now, if we combine (96) and (98), we get pi'% <
n+1 J+1 i max 7

= Pa B
J
At third, the last type of the inclusion (62 ;N D) C T5;,j € N, can be proved similarly

as in the previous two cases. Let us only note that for (o, ) € C3;ND, we obtain (to =0)

J
Jo 4 o ([ta] —tar) =n+1,
=0

L A
which leads to p’“111 < ?i - gjﬁ . Z prgta% 0

7. Conclusion

In the paper, we improve and extend known results for the Fucik spectrum of the
discrete Dirichlet operator. In Theorem 5, we present a new simple implicit description
of all non-trivial Fucik curves Cjf. Moreover, for each non-trivial Fucik curve Cj, we
provide the suitable bound Y7 by two simple curves in Theorem 3. These results are
based on Lemma 10 concerning the detailed analysis of nodal properties of the solution
u of the discrete initial value problem (30). Generalized zeros of the solution u can be
described by the sequence of functions p; which are given recurrently and were introduced
n [20]. In Lemma 12, we provide a new simpler expression of these functions p;, which
can be used to obtain the basic bound ©7 for each non-trivial Fuc¢ik curve C; C O (see
Theorem 13).

In this paper, we mainly focus on positive semi-waves of u as continuous extensions
and investigate the distribution of zeros of these extensions with respect to the integer
lattice. More precisely, if t; and ts are two consecutive zeros of two different positive
semi-waves (as continuous extensions) then we have

ta = t1 + pa,p([tr] —t1),

where the function p, g is given explicitly in Definition 19 using Chebyshev polynomials
of the second kind. We use this function p, g in Theorem 5 to describe implicitly all
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non-trivial Fucik curves Cj. Let us emphasize that this new description using p. g does
not require complicated construction of sequences of functions p; and ¥; as it was done
in [20].

Let us note that in the case of a = [, the discrete initial value problem (30) is
linear and p, g is the constant function p, g(s) = ﬁ. Now, for 0 < a« < 4 and 8 > 0,
the function p, g is a differentiable bounded function and its global extrema are given
in Theorem 31. Since the global extrema of p, s are available in an explicit form, we
provide the improved bound Y7 for C; in Theorem 3 with the boundary given by two
simple curves, which are described similarly to the first non-trivial Fuc¢ik curve C;.
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