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i





Abstrakt

Disertačńı práce je zaměřena na studium Fuč́ıkova spektra pro diskrétńı operátory. Vzhle-
dem k tomu, že obecné vyšetřeńı Fuč́ıkova spektra diskrétńıch operátor̊u je v dnešńı době
stále těžce uchopitelnou výzvou, studium v této práci je zaměřené na konkrétńı operátor
– Dirichlet̊uv diskrétńı operátor.

Tento operátor odpov́ıdá diferenčńı rovnici druhého řádu s Dirichletovými okrajovými
podmı́nkami. V disertačńı práci je dopodrobna vyšetřena odpov́ıdaj́ıćı semilineárńı úloha,
zaveden pojem spojitého rozš́ı̌reńı diskrétńıho řešeńı úlohy a hlavně je zde uveden kompletńı
implicitńı popis Fuč́ıkova spektra Dirichletova diskrétńıho operátoru. Na závěr práce jsou
popsány tři typy odhad̊u pro Fuč́ıkovy větve, které umožňuj́ı lokalizovat Fuč́ıkovy větve i
pro velký rozměr odpov́ıdaj́ıćı matice.

Celý text disertačńı práce se oṕırá o dva autorčiny články (v př́ıloze práce) – [25], [31].
Samotný text disertačńı práce je koncipován jako shrnut́ı kĺıčových výsledk̊u odkázaných
článk̊u a obsahuje podrobná vysvětleńı jednotlivých nově zavedených koncept̊u pro práci
s Fuč́ıkovým spektrem pro vybraný diskrétńı operátor.

Kĺıčová slova: Fuč́ıkovo spektrum, diferenčńı operátor, Dirichlet̊uv diskrétńı operátor,
Chebyshev̊uv polynom druhého druhu, asymetrické nelinearity
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Abstract

The dissertation thesis is devoted to the study of Fuč́ık spectrum for discrete operators.
Considering the fact, that the problem of exploring Fuč́ık spectrum for general discrete
operators is still a significant challenge, in this thesis we focus on analyses in regards of a
particular operator – Dirichlet discrete operator.

This operator corresponds to the second order difference equation with Dirichlet bound-
ary conditions. In the thesis, we explore corresponding semi-linear problem, we define a
continuous extension of a discrete solution and finally, we provide a complete implicit de-
scription of the Fuč́ık spectrum of Dirichlet discrete operator. Last but not least, three dif-
ferent bounds for Fuč́ık curves are described. This allows for a localization of Fuč́ık curves
even for large size of a corresponding matrix.

The whole text of the thesis is based on two articles of the author [25], [31]. The main
goal is to summarise key results introduced in cited articles and to explain in detail new
concepts of working with Fuč́ık spectrum for the chosen discrete operator.

Key words: Fuč́ık spectrum, difference operator, Dirichlet discrete operator, Cheby-
shev polynomial of the second kind, asymmetric nonlinearities
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Zusammenfassung

Diese Dissertation widmet sich dem Studium des Fuč́ık Spektrum für diskrete Operatoren.
Angesichts der Tatsache, dass das Problem der Untersuchung des Fuč́ık Spektrums für
allgemeine diskrete Operatoren immer noch eine große Herausforderung darstellt, konzen-
trieren wir uns in dieser Arbeit auf Analysen in Bezug auf einen bestimmten Operator –
den diskreten Dirichlet-Operator.

Dieser Operator entspricht der Differenzengleichung zweiter Ordnung mit Dirichlet-
Randbedingungen. In der Dissertation untersuchen wir ein entsprechendes semilineares
Problem, definieren eine kontinuierliche Erweiterung einer diskreten Lösung und liefern
schließlich eine vollständige implizite Beschreibung des Fuč́ık Spektrums des diskreten
Dirichlet-Operatoren. Nächst werden drei Bounds von Fuč́ık Kurven beschrieben. Diese
Bounds ermöglichen eine Lokalisierung von Fuč́ık Kurven auch bei großen Dimensionen
einer entsprechenden Matrix.

Der gesamte Text der Dissertation basiert auf zwei Artikeln der Autorin: [25], [31]. Das
Hauptziel besteht darin, wichtige Ergebnisse aus zitierten Artikeln zu veranschaulichen und
neue Konzepte der Arbeit mit Fuč́ık spectrum für den gewählten diskreten Operator im
Detail zu erklären.

Schlüsselwörter: Fuč́ık Spektrum, Differenzenoperator, diskrete Dirichlet-Operator,
Tschebyschow-Polynome zweiter Art, asymmetrische Nichtlinearitäten.
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Ph.D., and to the supervisor specialist, Ing. Petr Nečesal, Ph.D.
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2.2 Descriptions of the Fuč́ık spectrum of matrix AD – part I . . . . . . . . . . 19
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Chapter 1

Introduction

Svatopluk Fuč́ık and other mathematicians studied solvability of a problem

−u′′(x) = f(x, u(x)),

on some interval with various boundary conditions. Solvability of such problem with

f(·, s) ∼ λs for s → ±∞

is dependent on the fact whether λ is (or is not) an eigenvalue of the corresponding operator.
Main results are due to S. Fuč́ık [11] and E.N. Dancer [5] who considered a different
asymptotic behaviour of f , in particular

f(·, s) ∼ µs for s → +∞, f(·, s) ∼ νs for s → −∞.

Solvability of the problem can be answered using information about all pairs (µ, ν) ∈ R2

such that the following problem (together with corresponding boundary conditions)

−u′′(x) − µu+(x) + νu−(x) = 0

has a non-trivial solution. Traditionally, a set of all such pairs is called the Fuč́ık spectrum.
For more information, see [8].

Fuč́ık spectrum for discrete operators was investigated by R. Švarc (see e.g. [38], [40]).
In [40], R. Švarc considered two particular square matrices of size 4 and gave a description
of their Fuč́ık spectra. These matrices were chosen in such a way that their Fuč́ık spectra
(even for small matrices of size four) exhibit rather strange behaviour.

Authors G. Holubová and P. Nečesal [17] discussed similarities of structures in Fuč́ık spec-
tra for continuous and discrete operators. They also suggested an algorithm for numerical
reconstruction of the Fuč́ık spectrum for reasonably small matrices. They focused on the
case of all general real square matrices of size 2 and shown all feasible structures in their
Fuč́ık spectrum. They also suggested that there are more than 300 qualitatively different
patterns of the Fuč́ık spectrum even for matrices of size 3. This illustrates that the problem
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1 Introduction

of finding Fuč́ık spectra for general matrices is a significant challenge that has not been
solved yet.

Various physical phenomena are represented by continuous initial or boundary value
problems. Moreover, the theory of Fuč́ık spectrum for these problems is applied in practice
for analyses of (mechanical) systems with pronounced asymmetry / asymmetric structure.
One of the typical examples are suspension bridges – explored in [22, 9, 15] and the book [13]
with a focus on models with asymmetric nonlinearities. Also, asymmetric nonlinearities
appear in the study of competing systems of species with large interactions in biology
(see [4, 6, 27]) and the Fuč́ık spectrum of the Dirichlet Laplacian (the Laplace operator
u 7→ −∆u with zero Dirichlet boundary conditions) is needed (see [6] for details).

Hence we contemplate that the exploration of discrete problems might be useful for
practical applications. Sometimes, even though the problem is naturally discrete, re-
searchers tend to make a simplification and look at this as a continuous problem (such
examples can be found e.g. in the area of mathematical finance). On the other hand, some-
times, due to complexity of the physical phenomena, researchers tend to use a discretization
of the studied continuous problem. This way, one might obtain superior analytical results
or a more suitable numerical solution. Thus, we conclude that discrete problems might be
relevant for both continuous and discreet natural phenomena. We note that sometimes the
discrete problem can be solved in a simpler way, but quite often the discrete structure of
such problems can lead to specific difficulties which pose further challenges.

We are going to make a brief comparison of the Fuč́ık spectrum for continuous and
discrete operators. We will illustrate that discrete domain brings extra challenges in finding
the Fuč́ık spectrum and we will solve several challenges for a particular problem within the
thesis and in the referenced articles of the author.

Let us also mention some other articles where the structure of Fuč́ık spectrum is studied
– [1, 2, 3, 7, 10, 16, 19, 20, 21, 23, 28, 30, 34, 35, 36].

In the following paragraph, we will recall a well known result for the Fuč́ık spectrum
of the continuous second order boundary value problem.

The Fuč́ık spectrum Σ for the continuous second order boundary value problem with
Dirichlet boundary conditions, i.e. u′′(x) + αu+(x) − βu−(x) = 0, x ∈ (0, 1),

u(0) = u(1) = 0,
(1.1)

is defined as the set

Σ :=
{
(α, β) ∈ R2 : the problem (1.1) has a nontrivial solution u

}
.

The description of the set Σ is well known. In fact, as shown in [11, 12], the Fuč́ık spectrum
Σ consists of two lines C±

0 : (α − π2)(β − π2) = 0 and countably many curves C±
l given by

(j ∈ N)

C±
2j−1 : jπ√

α
+ jπ√

β
= 1, C+

2j : (j + 1)π√
α

+ jπ√
β

= 1, C-
2j : jπ√

α
+ (j + 1)π√

β
= 1.

2



1.1 Main definitions

On the other hand, investigating the Fuč́ık spectrum for the corresponding discrete
problem is a much more elaborate process to which we will devote remaining parts of the
thesis.

1.1 Main definitions
In this section, we will introduce main problems of our interest and several concepts asso-
ciated with the studied problems.

Studied problems:

i. linear initial value problem ∆2u(k − 1) + λu(k) = 0, k ∈ Z,

u(0) = C0, u(1) = C1,
(P1)

ii. linear boundary value problem ∆2u(k − 1) + λu(k) = 0, k ∈ T,

u(0) = u(n + 1) = 0,
(P2)

iii. semi-linear initial value problem ∆2u(k − 1) + αu+(k) − βu−(k) = 0, k ∈ Z,

u(0) = 0, u(1) = C1,
(P3)

iv. semi-linear boundary value problem ∆2u(k − 1) + αu+(k) − βu−(k) = 0, k ∈ T,

u(0) = u(n + 1) = 0,
(P4)

where n ∈ N, n ≥ 2, T = {1, . . . , n}, T̂ = {0, . . . , n + 1}, u : T̂ → R, u+, u− stand for the
positive and negative parts of u, i.e. u+(k) := max{+u(k), 0}, u−(k) := max{−u(k), 0}
and α, β, λ ∈ R. In case of problem (P1), C0, C1 ∈ R are constants such that C2

0 + C2
1 ̸= 0.

In case of problem (P3), C1 ∈ R \ {0}. The second order forward difference operator is
given by ∆2u(k − 1) := u(k − 1) − 2u(k) + u(k + 1).

1. Sign property of a vector
Let us define a sign property of a vector u = [u1, u2, . . . , un]T of size n as

sign u = [sign(u1), sign(u2), . . . , sign(un)]T

3



1.1 Main definitions

and simplify the notation. For x ∈ R

instead of sign(x) =


1 for x > 0,
−1 for x < 0,
0 for x = 0,

we denote sign(x) =


+ for x > 0,
− for x < 0,
0 for x = 0.

2. Positive and negative part of a vector
For vector u of size n, n ∈ N, u = [u(1), . . . , u(n)]T , we define its positive part
u+ := [u+(1), . . . , u+(n)]T , and its negative part u− := [u−(1), . . . , u−(n)]T (see
Figure 1.1).

u2 u2 u2 u2

u1 u1 u1 u1

u = u+

u− = 0

u u+

u−

u

u+ = 0

u−

u

u+

u−

Figure 1.1: Illustration of positive u+ (red) and negative u− (blue) part of vector u =
[u1, u2]T . In this particular case, we assume n = 2.

3. The Fuč́ık spectrum of a matrix
The Fuč́ık spectrum of a real square matrix B of size n × n, n ∈ N, n ≥ 2, is the set:

Σ (B) =
{
(α, β) ∈ R2 : the problem Bu = αu+ − βu− has a non-trivial solution u

}
.

(1.2)
The pair (α, β) ∈ Σ(B) is called the Fuč́ık eigenpair and the non-trivial solution u is
called the Fuč́ık eigenvector for the matrix B.

4. The Dirichlet matrix
Matrix AD is called the Dirichlet matrix and will be used throughout the thesis:

AD =



2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 . (1.3)

5. Fuč́ık curves
For Fuč́ık spectrum Σ(AD), where Dirichlet matrix AD is of size n × n (we are going
to see the relationship between matrix AD and semi-linear boundary value problem

4



1.2 Typical challenges while investigating the Fuč́ık spectrum for
matrices

(P4) further in the text), we define Fuč́ık curves C+
l , C-

l , l = 0, . . . , n − 1 as (the term
of generalized zero is defined later in this text)

C+
l := {(α, β) ∈ R2 : the problem (P4) has a non-trivial solution u

with exactly l generalized zeros on T and u(1) > 0} ,

C-
l := {(α, β) ∈ R2 : the problem (P4) has a non-trivial solution u

with exactly l generalized zeros on T and u(1) < 0} ,

which we jointly denote by the following simplified notation:

C±
l := C+

l ∪ C-
l .

1.2 Typical challenges while investigating the Fuč́ık spec-
trum for matrices

Having in mind that investigating the Fuč́ık spetrum for general matrices is at this time
unsolved as far as we know, we specify a particular matrix which comes from the discretiza-
tion of the continuous problem (1.1) (which has also practical applications, see [25] and
[31]). We consider the following discrete problem with Dirichlet boundary conditions (P4) ∆2u(k − 1) + αu+(k) − βu−(k) = 0, k ∈ T,

u(0) = u(n + 1) = 0,

where n ∈ N, n ≥ 2 and α, β ∈ R.
Equivalently, the problem (P4) can be rephrased using a matrix notation

ADu = αu+ − βu−,

where matrix AD is the Dirichlet matrix (1.3) and and u = [u(1), . . . , u(n)]T , u+ =
[u+(1), . . . , u+(n)]T , u− = [u−(1), . . . , u−(n)]T .

In particular, studying the set of all pairs (α, β) ∈ R2 such that the problem (P4) has
a non-trivial solution u, is equivalent to the investigation of the set Σ (AD)

Σ
(
AD

)
=

{
(α, β) ∈ R2 : the problem ADu = αu+ − βu− has a non-trivial solution u

}
,

and similarly to the general notation within this thesis, Σ(AD) is called the Fuč́ık spectrum
of matrix AD. To find the set Σ(AD) will be the main purpose of our investigation.

Let us point out that Fuč́ık spectrum is symmetric with respect to the line α = β, i.e.
(α, β) ∈ Σ(AD) with Fuč́ık eigenvector v if and only if (β, α) ∈ Σ(AD) with Fuč́ık eigen-
vector −v (see Figures 1.4 and 1.5). Before diving into particular challenges, let us recall

5



1.2 Typical challenges while investigating the Fuč́ık spectrum for
matrices

0 4

4

λD
0 λD

1 λD
2 λD

3 λD
4

λD
0

λD
1

λD
2

λD
3

λD
4

S0

S1

S2

S3

S4

S5

α

β

0 4

4

C-
0

C+
0

C±
1

C+
2

C-
2

C±
3

C±
4

α

β

Figure 1.2: Inadmissible areas (defined in [18]) for the Fuč́ık spectrum Σ (AD) (left, n = 5)
and the particular Fuč́ık curves C±

k (black curves) of the Fuč́ık spectrum Σ (AD) (right,
n = 5).

some known results about Σ(AD) (for more details, see [25] and [31]). The eigenvalues of
AD are of the form

λD
j = 4 sin2 (j + 1)π

2(n + 1) , j = 0, . . . , n − 1

and λD
j ∈ (0, 4). Note that the eigenvalues λD

j of matrix AD belong to the Fuč́ık spectrum
in the sense (λD

j , λD
j) ∈ Σ(AD), i.e. (λD

j , λD
j) is the Fuč́ık eigenpair for matrix AD. For the

Fuč́ık spectrum of AD we have

Σ
(
AD

)
=

n−1⋃
l=0

C±
l ,

where C+
l and C-

l are Fuč́ık curves (see Section 1.1 – point 5).
In [18], authors were exploring inadmissible areas of Fuč́ık spectrum (i.e. Fuč́ık spec-

trum has empty intersection with these areas in (α, β) plane – see [18] for proper definition
of an inadmissible area). Since λD

0 is a principal eigenvalue of AD, it implies that{
(α, β) ∈ R2 :

(
α − λD

0

) (
β − λD

0

)
< 0

}
∩ Σ

(
AD

)
= ∅,

i.e. both shifted quadrants are inadmissible areas for the Fuč́ık spectrum Σ (AD). For
illustration, see Figure 1.2 where we can see inadmissible areas for the Fuč́ık spectrum
Σ (AD). Thus, it is enough to investigate the Fuč́ık spectrum Σ (AD) only on the set
D = ((0, 4) × (0, +∞)) ∪ ((0, +∞) × (0, 4)).

Also, it is enough to investigate only all Fuč́ık curves C+
l (l = 1, . . . , n − 1), since

C-
l = {(α, β) ∈ D : (β, α) ∈ C+

l } .
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1.2 Typical challenges while investigating the Fuč́ık spectrum for
matrices

Authors Ma, Xu and Gao introduced the matching-extension method for solutions of
the Fuč́ık spectrum problem for matrix AD in [26]. P. Stehĺık studied the qualitative
properties of the first non-trivial Fuč́ık curve of the matrix AD in [37]. Although this topic
was studied by several authors, corresponding analytic description was not introduced prior
to author’s articles [25] and [31] (as far as we know).

Before looking into individual results, we contemplate what possible challenges can
appear while investigating the Fuč́ık spectrum for matrix AD, using illustrative examples.
In Example 1 we will investigate the Fuč́ık spectrum of matrix AD of size n = 2.

Example 1. Let n = 2, thus let us deal with the Dirichlet matrix in the form

AD =
[

2 −1
−1 2

]
.

Eigenvalues and corresponding eigenvectors are of the form

λD
0 = 1, v0 = [1, 1]T , λD

1 = 3, v1 = [1, −1]T .

All possible sign properties for Fuč́ık eigenvectors are

[+, +]T , [+, −]T , [+, 0]T , [−, +]T , [−, −]T , [−, 0]T , [0, +]T , [0, −]T , [0, 0]T .

Similar to the case of eigenvalue problems, the sign properties [+, +]T and [−, −]T lead to
the Fuč́ık eigenvectors where we have opposite signs of the entries. The same works for
couples [+, −]T and [−, +]T , for [+, 0]T and [−, 0]T and for [0, +]T and [0, −]T . Thus, it is
enough to consider only [+, +]T , [+, −]T , [+, 0]T , [0, +]T and [0, 0]T .

1. Case [0, 0]T : Such case cannot happen since the Fuč́ık eigenvector cannot be trivial.

2. Case [0, +]T : The first entry of the Fuč́ık eigenvector is zero, thus the solution of prob-
lem (P4) is zero in two consequential points (due to the zero boundary conditions).
The difference equation in (P4) can be written as

u(k + 1) = 2u(k) − u(k − 1) − αu+(k) + βu−(k),

thus if the solution u is zero in two consequential points, it has to be zero everywhere.
That is a contradiction with the sign property [0, +]T .

3. Case [+, 0]T : There is the same issue as in the previous case.

4. Case [+, +]T : In this case the Fuč́ık eigenvector does not change sign thus it is
equivalent to the eigenvalue problem for λD

0. We have (α, β) ∈ Σ(AD) : α = λD
0 =

1, β ∈ R with Fuč́ık eigenvector [1, 1]T and (α, β) ∈ Σ(AD) : β = λD
0 = 1, α ∈ R with

Fuč́ık eigenvector [−1, −1]T . The Fuč́ık curves C±
0 are trivial ones

C+
0 =

{
(α, β) : α = λD

0, β ∈ R
}

, C-
0 =

{
(α, β) : β = λD

0, α ∈ R
}

.

7



1.2 Typical challenges while investigating the Fuč́ık spectrum for
matrices

5. Case [+, −]T : From the sign property of vector u = [u1, u2]T we have u+ = [u1, 0]T
and u− = [0, −u2]T , where

u1 > 0 and u2 < 0. (1.4)
We can rewrite the problem ADu = αu+ − βu− as[

2 −1
−1 2

][
u1
u2

]
= α

[
u1
0

]
− β

[
0

−u2

]
. (1.5)

Matrix equation in (1.5) is equivalent to[
2 − α −1
−1 2 − β

][
u1
u2

]
=

[
0
0

]
⇔ det

[
2 − α −1
−1 2 − β

]
= 0. (1.6)

The determinant in (1.6) is zero if

(2 − α)(2 − β) − 1 = 0. (1.7)

This leads to
β = 2 − 1

2 − α
, u =

[
− 1

2 − α
, −1

]T

.

Let us go back to the sign property in (1.4). It is satisfied when

− 1
2 − α

> 0 ⇔ α > 2.

If we would consider sign property sign u = [−, +]T we would get the same result,
thus the Fuč́ık curves C±

1 are

C+
1 = C-

1 =
{

(α, β) : β = 2 − 1
2 − α

, α > 2
}

.

While going through all possible sign properties for the Fuč́ık eigenvectors we were able
to find complete description of the Fuč́ık spectrum of matrix AD of size n = 2 as

Σ(AD) = C±
0 ∪ C±

1 ,

where C±
0 and C±

1 are given as above. See Figure 1.3 for illustration of this example.

In the following example we will consider n = 6, to illustrate a dimension complexity
of the problem.

Example 2. In this example we will consider matrix AD of size n = 6. We will show
all the possible sign properties for the Fuč́ık eigenvectors. It is enough to investigate sign
properties with positive first entries (since the Fuč́ık spectrum is symmetric with respect
to the line α = β and the Fuč́ık eigenvectors have opposite signs). Also, for the sake of
simplicity, we can investigate sign properties sign(u(k)) = 0 and sign(u(k)) = 1 (for some

8



1.2 Typical challenges while investigating the Fuč́ık spectrum for
matrices

2 4

2

4

2 4

2

4

2 3 4-1

2

3

4

-1

α α α

β β β

β = 2 − 1
2−α β = 2 − 1

2−α

C±
1 C±

1C+
0

C-
0

Σ(AD)

Figure 1.3: Graph of the function β = 2 − 1
2−α

(left), Fuč́ık curves C±
1 (black) as part of

the graph of the function β = 2 − 1
2−α

(middle) and the Fuč́ık spectrum Σ(AD) of matrix
AD for n = 2.

k ∈ {1, 2, . . . , n}) together. After this simplification, we need to investigate 2n−1 different
sign properties.

All sign properties which we need to investigate are written in Table 1.1. Each column
has 6 entries and represents one sign property for vector. Those sign properties which are
in blue color are sign properties which at least one of the Fuč́ık eigenvectors has (in the
thesis it will be shown how to select the right ones).

To illustrate a curse of dimensionality of the studied problems, let us compare two cases
of matrix AD dimension: n1 = 2 and n2 = 6. Within Example 1, we have shown that we
need to investigate only 2 cases or more generally 2n1−1 cases. However, in this example
we are solving 2n2−1 = 25 = 32 different sign properties, each leads towards investigation
of a different eigenvalue / eigenvector problem.

In particular, let us take one of the sign properties: [+, +, +, −, +, −]T . For this sign
property we need to solve

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2





u1
u2
u3
u4
u5
u6


= α



u1
u2
u3
0
u5
0


− β



0
0
0

−u4
0

−u6


.

This leads to the determinant equation

det(AD − Λ) = det





2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2


−



α 0 0 0 0 0
0 α 0 0 0 0
0 0 α 0 0 0
0 0 0 β 0 0
0 0 0 0 α 0
0 0 0 0 0 β




= 0,

(1.8)
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1.2 Typical challenges while investigating the Fuč́ık spectrum for
matrices

+ + + + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + +
+ + + + + + + + − − − − − − − −
+ + + + − − − − + + + + − − − −
+ + − − + + − − + + − − + + − −
+ − + − + − + − + − + − + − + −

+ + + + + + + + + + + + + + + +
− − − − − − − − − − − − − − − −
+ + + + + + + + − − − − − − − −
+ + + + − − − − + + + + − − − −
+ + − − + + − − + + − − + + − −
+ − + − + − + − + − + − + − + −

Table 1.1: Considered sign properties for n = 6. The blue sign properties are sign
properties satisfied by some Fuč́ık eigenvectors.

i.e.

det



2 − α −1 0 0 0 0
−1 2 − α −1 0 0 0
0 −1 2 − α −1 0 0
0 0 −1 2 − β −1 0
0 0 0 −1 2 − α −1
0 0 0 0 −1 2 − β


= 0.

Since we are dealing with tridiagonal matrix, we can easily calculate its determinant and
the determinant equation is a polynomial equation

α4β2 − 4α4β + 4α4 − 8α3β2 + 29α3β − 26α3 + 22α2β2 − 70α2β + 53α2 − 24αβ2

+65αβ − 38α + 8β2 − 18β + 7 = 0.

By comparing this with (1.7) (for n = 2), we can see that the dimension of the problem
brings a lot of difficulties. We can find two values of β (dependent of the value of α as it was
done in Example 1) for which we can derive that neither one of them has a corresponding
eigenvector with the sign property [+, +, +, −, +, −]T . That means that there does not
exist Fuč́ık eigenvector for matrix AD of size n = 6 with such sign property.

Since this problem depends highly on the dimension of the matrix AD (we are dealing
with 2n−1 different eigenvalue / eigenvector problems based on the number of possible sign
properties), our computational possibilities might be limiting for practical applications
using the illustrated approach 1.

Let us summarize some of the challenges which appear in the investigation of the
Fuč́ık spectrum Σ(AD) of matrix AD of size n:

1E.g. in a relatively reasonable time we might be able to find (numerically)Fuč́ık spectrum up to n = 16.

10



1.3 Structure of the thesis

• Number of possible sign properties is 2n−1 (after the simplification which was done
in Example 2).

• Only some of them are sign properties satisfied by Fuč́ık eigenvectors of Σ(AD).

• We note that for a general matrix, one might struggle with computation of the matrix
determinant. Whereas for the Dirichlet matrix, det(AD − Λ) (see (1.8) in Example
2) can be calculated recurrently (due to having a tridiagonal symmetric matrix).

• For each sign property we need to verify which parts (if any) of the solution (curve)
of det(AD − Λ) = 0 are actually in the Fuč́ık spectrum Σ(AD).

On Figure 1.4 we can see the Fuč́ık spectrum Σ(AD) of size n = 9. In the thesis, we
will introduce how to deal with the curse of dimensionality and other challenges mentioned
above.

0 4

4

2

2C+
0

C-
0

C±
1

C+
2

C-
2

C±
3

C-
4

C+
4

C±
5

C+
6

C-
6

C±
7

C±
8

α

β

Figure 1.4: The Fuč́ık spectrum Σ (AD) of the Dirichlet matrix AD of size n = 9 and its
Fuč́ık curves C±

l , l = 0, 1, . . . , 8.

1.3 Structure of the thesis
First of all, we would like to note that the thesis is mainly based on research articles of
the author: [25] and [31]. The aim of the thesis is not to provide in-depth technical details
for all newly introduced concepts in [25] and [31], but rather to provide a comprehensive
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1.3 Structure of the thesis

1 2 3 4 5

1

2

3

4

5

α

β Σ (AD) , n = 6

Figure 1.5: The Fuč́ık spectrum Σ (AD) of the Dirichlet matrix AD of size n = 6.

overview, illustrate the concepts on particular examples and to explain connections between
individual concepts.

We note that in order to provide such comprehensive text, we also extend the results
in aforementioned articles by supporting lemmas / theorems, new illustrations / examples
and other new results. However, for most of the proofs of original theorems and lemmas
we refer the reader to the articles which are attached to the thesis. If there is no citation
(excluding citation to [25] and [31] – articles of the author) in the definitions, lemmas
and theorems, then the results presented there are original and (as far as we know) not
published anywhere else. We note that results in Section 5.5 of the thesis are completely
new and not published anywhere yet. The thesis is organized as follows.

Chapter 1 provides an introduction to the problems and showcases possible issues which
may appear while investigating discrete Fuč́ık spectrum. In the following chapters, we are
going to investigate in detail four problems, introduced in Section 1.1:

i. linear initial value problem (P1);

ii. linear boundary value problem (P2);

iii. semi-linear initial value problem (P3);

iv. semi-linear boundary value problem (P4).

Chapter 2 is devoted to the study of linear problems (P1) and (P2). We are going
to define one of the most important tool-kits in the thesis – the continuous extension of

12



1.4 Structure of the summary text

respective solutions. Exploring such continuous extension will allow us to explore nodal
properties of the solution. A generalization of this result will be very valuable in the analysis
of semi-linear problems. Let us note that even though we are spending a substantial part
of the thesis (and likewise a substantial part of research articles [25] and [31]) studying
simple linear problems (P1) and (P2), the results in this chapter are new and (as far as we
know) not published anywhere. We need to construct a robust theory for the linear case
in order to explore semi-linear case.

In Chapters 3 and 4, we are solving and investigating semi-linear initial value problem
(P3). Generalizing the theory from the linear case (such as continuous extension) will allow
us to “anchor” positive and negative semi-waves. This will lead to the detailed investigation
of zeros of a continuous extension of the solution. Chapter 3 leverages the main results
from [25] and Chapter 4 references results from [31].

Finally, Chapter 5 is devoted to the investigation of the Fuč́ık spectrum of matrix AD

(i.e. the corresponding semi-linear boundary value problem (P4)) – which is our main
goal in the thesis (and in the research articles [25] and [31]). Several descriptions of the
Fuč́ık spectrum (analytical and implicit) are introduced. As far as we know, this is the first
time anyone was able to find an analytical (and implicit) description of Fuč́ık spectrum
of matrix (excluding trivial cases) for any dimension n. In Chapter 5, we also introduce
bounds of the Fuč́ık spectrum. Such bounds can be used for efficient numerical estimations
as illustrated therein.

Last but not least, we provide published articles [25] and [31]. Introduction sections
in both articles describe historical references related to the Fuč́ık spectrum and also our
motivation for studying this topic in detail (including more details about practical appli-
cations).

1.4 Structure of the summary text
In this summary text, we provide introduction to the problems and we showcase possible
issues which may appear while investigating discrete Fuč́ık spectrum (as it is done in
Chapter 1 of the thesis). We also define all main functions and terms and provide main
theorems. Chapters 2 and 3 in this summary text are devoted to the brief introduction
and summary of main results of the thesis – descriptions of the Fuč́ık spectrum of matrix
AD and bounds of Fuč́ık curves of the Fuč́ık spectrum for matrix AD.

13



Chapter 2

Main results – description of the
Fuč́ık spectrum of matrix AD

This chapter (and also the next one) is devoted to the summary of main results. We
investigate semi-linear boundary value problem (P4) ∆2u(k − 1) + αu+(k) − βu−(k) = 0, k ∈ T,

u(0) = u(n + 1) = 0,

where n ∈ N, n ≥ 2, u±(k) = max{±u(k), 0} and α, β ∈ R.
Equivalently, the problem (P4) can be rephrased using a matrix notation

ADu = αu+ − βu−,

where matrix AD is the Dirichlet matrix defined in (1.3). Thus, our main goal is to
investigate Fuč́ık spectrum Σ (AD). Some known results were already discussed in Section
1.2.

We are going to briefly present two main results. As a first main result we introduce
(in this chapter) two different descriptions (both implicit and recurrent) of Fuč́ık spectrum
of matrix AD. And as second main result, we introduce (in the next chapter) two different
bounds of Fuč́ık curves which can be used for numerical estimation of Fuč́ık curves (they
are not recurrent and they do not become more complicated when dimension n increases).

2.1 Linear case
Firstly, let us consider the linear initial value problem (P1){ ∆2u(k − 1) + λu(k) = 0, k ∈ Z,

u(0) = C0, u(1) = C1,

where λ ∈ R and C0, C1 ∈ R are constants such that C2
0 + C2

1 ̸= 0.

14



2.1 Linear case

This problem is the easiest one to solve (considering all problems (P1), (P2), (P3) and
(P4)). Yet, a complete understanding of how one can get the solution and what are the
properties of such a solution, leads to valuable knowledge and tools for further study of
more difficult problems such as linear boundary value problem (P2), semi-linear initial
value problem (P3) and even semi-linear boundary value problem (P4).

The following lemma is used to find a solution for linear initial value problem (P1)
which might be also utilized later on for more complex problems.

Lemma. (Lemma 3 in the thesis)
For given λ ∈ R and C0, C1 ∈ R, the linear initial value problem (P1) has a unique solution
of the form

u(k) = C0F
λ(1 − k) + C1F

λ(k), k ∈ Z,

where the function F λ : R → R is defined as

F λ(t) :=



sinh(ωλt)/ sinh ωλ for λ < 0,

t for λ = 0,

sin(ωλt)/ sin ωλ for λ ∈ (0, 4),
−t cos(πt) for λ = 4,

− cos(πt) sinh(ωλt)/ sinh ωλ for λ > 4,

ωλ :=


arcosh 2−λ

2 for λ ≤ 0,

arccos 2−λ
2 for λ ∈ (0, 4),

arcosh λ−2
2 for λ ≥ 4.

For the solution u of the discrete problem (P1), let us define its continuous extension
uc on R as

uc(t) := C0F
λ(1 − t) + C1F

λ(t), t ∈ R.

For illustration of the continuous extension of solution u for the case λ ∈ (0, 4) see Figure
2.1.

−1 0

C1

C0

y

1

t1 = T λ(q1)

2 3 4 5 6 k

y = uc(k)

Figure 2.1: Continuous extension uc of solution u of the initial value problem (P1) for
λ ∈ (0, 4), λ = 1.3 and the first non-negative zero t1 of uc; q1 = C1

C0
.

Definition. (Definition 4 in the thesis)
Let us define the sequence (qk)k∈Z as a mapping from Z to R∗ := R ∪ {∞} (the one-point
compactification of R) as

qk := u(k)
u(k − 1) , k ∈ Z.
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2.1 Linear case

Such sequence (qk) is defined correctly since value of u in two consecutive integers
cannot be zero. If u(0) = C0 = 0, then q1 = C1

C0
= C1

0 = ∞ independent of the sign of C1.
Sequence (qk) will be very important in the investigation of initial value problems and the
properties of the solution. We are not going to focus on the values of u themselves but on
these ratios (qk). Using such approach will allow us to study the problem in detail, find
zeros of solution u and describe any term of such sequence (qk).

We can define generalized zero of a solution u (for the original definition of a generalized
zero see [14]).

Definition. (Definition 5 in the thesis)
Solution u of the discrete problem (P1) has a generalized zero at k ∈ Z if

u(k) = 0 or u(k)u(k − 1) < 0.

From the definition of (qk) we have that u has a generalized zero at k ∈ Z if and only
if qk ≤ 0 and qk ̸= ∞.

We can distinguish between three different cases dependent on the value of λ and find
the number of generalized zeros of solution u of the discrete problem (P1) (distinct cases
are: λ ≤ 0, λ ∈ (0, 4) and λ ≥ 4). We will (for the purpose of this summary text) focus
mainly on λ ∈ (0, 4). For such value of λ, the solution u has infinitely many generalized
zeros. In this case, 0 < ωλ < π and the continuous extension uc is 2π

ωλ
-periodic function.

The first non-negative zero of a continuous extension uc is determined by the function T λ

(only for λ ∈ (0, 4); for other cases of λ, function T λ has a different role) defined in the
following definition (see again Figure 2.1 where the first non-negative zero is shown; and
see Figure 2.2 for illustration of function T λ in case λ ∈ (0, 4).)

Definition. (Definition 8 in the thesis)
For λ ∈ R, let us define the function T λ : R∗ → R, R∗ := R ∪ {∞}, as

Dom(T λ) :=


R∗ \ [e−ωλ , eωλ ] for λ ≤ 0,

R∗ for λ ∈ (0, 4),
R∗ \ [− eωλ , − e−ωλ ] for λ ≥ 4,

T λ(∞) := 0

T λ(q) :=



1
ωλ

arcoth
(

cosh ωλ−q
sinh ωλ

)
for λ < 0,

1
1−q

for λ = 0,

1
ωλ

arccot
(

cos ωλ−q
sin ωλ

)
for λ ∈ (0, 4),

1
1+q

for λ = 4,

1
ωλ

arcoth
(

cosh ωλ+q
sinh ωλ

)
for λ > 4.

We assume that inverse cotangent (arccotangent) has the usual principal values, thus
it is defined for all real numbers and its range is interval (0, π).

We can define function Qλ which is the inverse function of T λ.
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2.1 Linear case

0−1 12−λ
2

1
2

π
2ωλ

1

1
2 + π

2ωλ

π
ωλ

y = T λ(q)

y

q

Figure 2.2: The graph of T λ as a function of q, case λ ∈ (0, 4).

Definition. (Definition 9 in the thesis)
For λ ∈ R, let us define the function Qλ : R → R∗, R∗ := R ∪ {∞}, as

Dom(Qλ) :=


[
0,

π

ωλ

)
for λ ∈ (0, 4),

R for λ ∈ R \ (0, 4),
Qλ(0) := ∞

Qλ(t) :=



−sinh(ωλ(1 − t))
sinh(ωλt) for λ < 0,

−1 − t

t
for λ = 0,

−sin(ωλ(1 − t))
sin(ωλt) for λ ∈ (0, 4),

1 − t

t
for λ = 4,

sinh(ωλ(1 − t))
sinh(ωλt) for λ > 4.

We have that the first non-negative zero t1 can be calculated as (for λ ∈ (0, 4))
t1 = j + T λ(q1+j), j = ⌈t0⌉, . . . , 0, . . . , ⌊t1⌋,

where t0 is the previous zero of continuous extension uc of solution u. For illustration, see
Figure 2.3, where is ⌈t0⌉ = −1, ⌊t1⌋ = 4. For such example, there are 6 possible ways how
to get t1 using sequence (qk)k∈Z. We have

t1 = −1 + T λ(q0), t1 = T λ(q1), t1 = 1 + T λ(q2),
t1 = 2 + T λ(q3), t1 = 3 + T λ(q4), t1 = 4 + T λ(q5).

There is a connection between the solution u of linear initial problem (P1) and Cheby-
shev polynomials of the second kind. Let us recall definition of Chebyshev polynomials of
the second kind (for more details see [29]).
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2.1 Linear case

y

−2 −1
1 2 3 4

5 6 k

y = uc(k)

t1

t0

q0

q1
q2 q3

q4

q5

T λ(q0)
T λ(q1)

T λ(q2)
T λ(q3)

T λ(q4)
T λ(q5)

Figure 2.3: The bi-infinite sequence (qk)k∈Z of ratios of values of u as the solution of the
initial value problem (P1) and its relation to the first non-negative zero point t1 using
function T λ (case λ ∈ (0, 4)).

Definition. Chebyshev polynomials Uk of the second kind of degree k ∈ Z at the point
x ∈ R are defined by the recurrence formula

Uk+1(x) = 2xUk(x) − Uk−1(x)

with initial conditions U0(x) = 1, U1(x) = 2x.

For all λ ∈ R and k ∈ Z, let us denote

V λ
k := Uk

(
2−λ

2

)
.

For all λ ∈ R, polynomials V λ
k satisfy the three terms recurrence formula

V λ
k−1 − (2 − λ)V λ

k + V λ
k+1 = 0, k ∈ Z,

with initial conditions V λ
0 = 1, V λ

1 = 2 − λ. Initial value problem (P1) has solution in
recurrence form

u(k − 1) − (2 − λ)u(k) + u(k + 1) = 0
with initial conditions u(0) = C0 and u(1) = C1. Therefore, V λ

k is the solution of the initial
value problem (P1) with C0 = V λ

0 = 1 and C1 = V λ
1 = 2 − λ.

Moreover, for all λ ∈ R and k ∈ Z we have

F λ(k) = V λ
k−1.

Such property allows us to get the solution u of (P1) as

u(k) = −C0V
λ

k−2 + C1V
λ

k−1.

It is convenient to use Chebyshev polynomials V λ
k for the definition of function W λ

k .
Function W λ

k determines the value of k-th element qk by the value of q0.
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2.2 Descriptions of the Fuč́ık spectrum of matrix AD – part I

Definition. (Definition 13 in the thesis)
For all λ ∈ R and k ∈ Z, let us define the function W λ

k : R∗ → R∗ in the following way

W λ
k (q) :=



q · V λ
k − V λ

k−1
q · V λ

k−1 − V λ
k−2

for q ∈ R,

V λ
k

V λ
k−1

for q = ∞.

Lemma. (Lemma 15 in the thesis)
For all λ ∈ R and k ∈ Z, we have

qk = W λ
k (q0).

Let us assume that we have some element of bi-infinite sequence (qk) (for example
q1 = C1/C0 given by the initial conditions). If we want to get any other element of such
sequence or the first non-negative zero t1 of uc, we can use the following formulas.

1. For λ ∈ R and i, j, k ∈ Z such that i + j = k, we have that

qk = W λ
j (qi).

This can be used for calculation of any term in the sequence (qk)k∈Z from the initial
condition. Let our initial condition be C0 = 0, C1 ∈ R \ {0}. Then we have q1 =
u(1)
u(0) = C1

0 = ∞. And for any k ∈ Z, we have qk = W λ
k−1(q1) = W λ

k−1(∞).

2. For λ ∈ (0, 4), we have for the first non-negative zero t1 of uc that

t1 = j + T λ(W λ
j (q1)), j = ⌈t0⌉, . . . , 0, . . . , ⌊t1⌋.

2.2 Descriptions of the Fuč́ık spectrum of matrix AD

– part I
We can use theory from the linear case in order to extend the theory also for the semi-linear
initial value problem (P3) ∆2u(k − 1) + αu+(k) − βu−(k) = 0, k ∈ Z,

u(0) = 0, u(1) = C1,

where u±(k) = max{±u(k), 0}, C1 ∈ R, C1 ̸= 0 and (α, β) ∈ D,

D := ((0, 4) × (0, +∞)) ∪ ((0, +∞) × (0, 4)).

We can define a continuous extension uc
i,j of u on the interval [i − 1, j + 1], where i ∈ Z

is a generalized zero (similarly as we have defined a generalized zero for problem (P1), we
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2.2 Descriptions of the Fuč́ık spectrum of matrix AD – part I

can define it for different problems such as (P3)) and j ∈ Z : j > i is such that for all
k = i, . . . , j, u(k) is non-negative (or non-positive) and (see Figure 2.4 (left))

u(j)u(j + 1) < 0 or u(j) = 0.

This means that i and (j + 1) are two consecutive generalized zeros of u if u(j) ̸= 0. In
the case of u(j) = 0, i and j are two consecutive generalized zeros of u.

i j

j + 1

i j

j + 1

uc
i,j

Figure 2.4: Consecutive generalized zeros i, j + 1 and the continuous extension uc
i,j of u.

On such interval, we construct a continuous extension. We define the continuous ex-
tension uc

i,j of u (see Figure 2.4 (right)) on the interval [i − 1, j + 1] as

uc
i,j(t) :=

 u(i − 1)F α(1 − (t − i + 1)) + u(i)F α(t − i + 1) for u(i − 1) < 0,

u(i − 1)F β(1 − (t − i + 1)) + u(i)F β(t − i + 1) for u(i − 1) > 0,

where functions F α and F β are given by F λ for λ = α and λ = β, respectively.
Positive semi-wave is a continuous extension uc

i,j of u such that u(k) is non-negative
for all k = i, . . . , j. Negative semi-wave is continuous extension uc

i,j of u such that u(k) is
non-positive for all k = i, . . . , j. See Figure 2.5 where positive semi-waves are in orange
color and negative semi-waves are in blue color.

In the following definition, we define (recurrently given) sequences (pk)k∈Z, (Pk)k∈Z,
(ϑk)k∈Z, (W+

k)k∈Z and (W-
k)k∈Z. In the text following this definition, we will explain (for

the simplest case 0 < α, β < 4) what these sequences represent.
Definition. (Definition 20 in the thesis)
For all j ∈ Z, let us denote

ϕj :=
{

α for j odd,

β for j even.

On the domain D = ((0, 4) × (0, +∞)) ∪ ((0, +∞) × (0, 4)), let us define sequences of
functions (pi) and (ϑi), which are given recurrently for i ∈ N in the following way

ϑ0(α, β) := ∞,

pi(α, β) :=


⌊
T ϕi(ϑi−1(α, β)) + π

ωϕi

⌋
for ϕi < 4,⌊

T ϕi+1(ϑi−1(α, β)) + T ϕi+1 (2 − ϕi) + 1
⌋

for ϕi ≥ 4,

ϑi(α, β) := W ϕi

pi(α,β)(ϑi−1(α, β)).

20



2.2 Descriptions of the Fuč́ık spectrum of matrix AD – part I

1 2 3 4 5 6 7 8 9 10 11 12 13 k

y

uc
0,3
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4,4

uc
5,7

uc
8,9

uc
10,12

Figure 2.5: Continuous extension of solution u of semi-linear initial value problem (P3)
for α = 0.8, β = 3.94, C1 = 1.

Moreover, for all k ∈ N, let us define function Pk : D → N and composite functions
W±

k : R∗ → R∗ as

Pk(α, β) :=
k∑

i=1
pi(α, β), W+

k := W ϕk

pk(α,β) ◦ · · · ◦ W ϕ2
p2(α,β) ◦ W ϕ1

p1(α,β),

W-
k := W

ϕk+1
pk(β,α) ◦ · · · ◦ W ϕ3

p2(β,α) ◦ W ϕ2
p1(β,α).

We are going to illustrate what sequences in the previous definition mean for special
case 0 < α, β < 4 and C1 > 0. Let u be a solution of the semi-linear initial value problem
(P3). Since we are looking for description of the sign properties of the solution u, we are
interested in all positive generalized zeros of u.

For our restriction (0 < α, β < 4), first few terms in the sequences (pj)j∈Z and (ϑj)j∈Z
are:

p1(α, β) :=
⌊

π
ωα

⌋
, ϑ1(α, β) := W α

p1(α,β)(∞),

p2(α, β) :=
⌊
T β(ϑ1(α, β)) + π

ωβ

⌋
, ϑ2(α, β) := W β

p2(α,β)(ϑ1(α, β)),

p3(α, β) :=
⌊
T α(ϑ2(α, β)) + π

ωα

⌋
, ϑ3(α, β) := W α

p3(α,β)(ϑ2(α, β)),

p4(α, β) :=
⌊
T β(ϑ3(α, β)) + π

ωβ

⌋
, ϑ4(α, β) := W β

p4(α,β)(ϑ3(α, β)),
... ...

In this part of the text, for simplification, we are going to write p1 instead of p1(α, β) and
similarly for other terms of all sequences from previous definition. For easier understanding
of the following text, see Figure 2.6.
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k0 1 4 8 12

y
π

ωα

π
ωα

π
ωβ

π
ωβ

uc
0,4 uc

5,7 uc
8,12 uc

13,14

s0 t0 t1 s1 s2 t2 t3s3 t4 s4

Figure 2.6: Positive and negative semi-waves of a solution of the semi-linear initial value
problem (P3) for 0 < α, β < 4 and C1 > 0 (0 = s0 = t0 < t1 < s1 < s2 < t2 < s3 < t3 <
t4 < s4).

(a) First positive semi-wave: The first positive semi-wave of u (we have C1 > 0) is uc
0,p1 ,

thus p1 represents the length which we need to add to t = 0 in order to find interval
where positive semi-wave is anchored with negative semi-wave.
Positive semi-wave uc

0,p1 is defined on [−1, p1 + 1] and has two zeros t0 = 0 and
t1 = π

ωα
. For zero t1 we have (remember, that function T α(qp1+1) returns position of

zero of positive semi-wave calculated from p1, since qp1+1 = ϑ1 is the ratio u(p1+1)
u(p1) )

t1 = p1 + T α(qp1+1) = p1 + T α(ϑ1).

The first positive generalized zero of u is z1 = p1 + 1 if ϑ1 < 0 or z1 = p1 = t1 if
ϑ1 = ∞.

(b) First negative semi-wave: The next semi-wave of u is negative. It has two zeros s1
and s2 and is defined on [⌈s1⌉ − 1, ⌊s2⌋ + 1]. Its first zero s1 can be calculated as

s1 = ⌊t1⌋ + T β
(
q⌊t1⌋+1

)
= p1 + T β (ϑ1) .

And its second zero s2 is
s2 = s1 + π

ωβ
,

since we are just adding length of negative wave π
ωβ

to the first zero s1. For s2 we
have

⌊s2⌋ = p1 + p2

which implies

qp2+p1+1 = W β
p2(p1 + 1) = W β

p2(ϑ1) = W β
p2(W α

p1(∞)) = ϑ2

and
s2 = p1 + p2 + T β (ϑ2) .

The second positive generalized zero of u is z2 = p1 +p2 +1 if ϑ2 < 0 or z2 = p1 +p2 =
s2 if ϑ2 = ∞.
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2.2 Descriptions of the Fuč́ık spectrum of matrix AD – part I

(c) Second positive semi-wave: The next semi-wave of u is the positive semi-wave uc
⌈t2⌉,⌊t3⌋,

which has two zeros t2 and t3 and is defined on [⌈t2⌉ − 1, ⌊t3⌋ + 1]. We have that
t3 − t2 = π

ωα
and

t2 = ⌊s2⌋ + T α
(
q⌊s2⌋+1

)
= p1 + p2 + T α (ϑ2) ,

ϑ3 = qp3+p2+p1+1 = W α
p3(W β

p2(W α
p1(∞))),

t3 = ⌊t3⌋ + T α
(
q⌊t3⌋+1

)
= p1 + p2 + p3 + T α(ϑ3).

The third positive generalized zero of u is z3 = p1 + p2 + p3 + 1 if ϑ3 < 0 or z3 =
p1 + p2 + p3 = t3 if ϑ3 = ∞.

α

β

Ω+
1 Ω+

2 Ω+
3

0 4

4

n = 4

C+
1

C+
2

C+
3

α

β

Ω+
1 Ω+

2 Ω+
3

0 4

4

n = 4

Figure 2.7: The sets Ω+
k as grey regions for n = 4 (left) and the Fuč́ık curves C+

k as black
curves (right).

Finally, we can formulate our main result – theorem which describes Fuč́ık curves C+
k ,

k = 1, . . . , n − 1 – implicit recurrent description of the Fuč́ık spectrum Σ(AD). In the
first chapter of this summary text, we have explained that it is enough to investigate C+

k ,
k = 1, . . . , n − 1 for the complete description of Σ(AD).

Theorem. (Theorem 32 in the thesis)
For k = 1, . . . , n − 1, we have that

C+
k = {(α, β) ∈ (0, 4) × (0, +∞) : Pk+1(α, β) + T α(ϑk+1(α, β)) = n + 1} ∪{

(α, β) ∈ (0, +∞) × (0, 4) : Pk+1(α, β) + T β(ϑk+1(α, β)) = n + 1
}

.

Moreover, if we denote

Ω+
k := {(α, β) ∈ D : Pk+1(α, β) = n + 1} , k = 1, . . . , n − 1,
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2.3 Descriptions of the Fuč́ık spectrum of matrix AD – part II

then we have that
C+

k =
{
(α, β) ∈ Ω+

k : W+
k+1(∞) = ∞

}
.

An example of sets Ω+
k for n = 4 can be seen on Figure 2.7. Also, see Figure 2.8 for the

complete Fuč́ık spectrum of matrix AD for n = 4 and n = 7 (including Fuč́ık curves C-
k).

α

β

Σ(AD)

0 4

4

n = 4

α

β

Σ(AD)

0 4

4

n = 7

Figure 2.8: Fuč́ık spectrum Σ (AD) for n = 4 (left) and n = 7 (right).

2.3 Descriptions of the Fuč́ık spectrum of matrix AD

– part II
In this section, we are going to investigate problem (P3) from a different angle. A conti-
nuous extension of solution u of (P3) will be constructed in a manner considering positive
semi-waves only. We will calculate the distance between every two consecutive zeros of
two different (consecutive) positive semi-waves. This will allow us not only to study nodal
properties of solution u of (P3) in more detail, it will also allow us to find simpler implicit
description of all Fuč́ık curves C±

k , k = 1, . . . , n − 1.
Continuous extension – positive semi-waves only – can be seen on the Figure 2.9. If we

would have 0 < α < 4 only, then the length of all positive semi-waves is the same and is
equal to π

ωα
. This way, localization of intervals, where positive semi-waves are anchored,

can be rephrased to – “what is the distance between every two consecutive zeros of two
different consecutive positive semi-waves.” We denote such distance as ρα,β (we will define
such function later in the text) – see Figure 2.10 for better understanding of the distance
ρα,β. Let us define half-strip D as

D := (0, 4) × (0, +∞).
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2.3 Descriptions of the Fuč́ık spectrum of matrix AD – part II

In the following text, without any loss of generality, we are going to assume that (α, β) ∈ D
(it is enough to investigate (α, β) ∈ D due to the symmetry of the Fuč́ık spectrum). We
note that it is easier to deal with zeros of positive semi-waves when α ∈ (0, 4).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

y

Figure 2.9: Continuous extension of only positive semi-waves for solution u of problem
(P3) for α = 0.8, β = 0.33 and C1 = 1 > 0.

κβ

κβ + 1 κβ + 2

y

kρα,β(s)

s

Figure 2.10: The distance ρα,β – the distance between two consecutive zeros (last and
first) of two different positive semi-waves (orange color). Continuous extension for β < 4
(α = 3.5, β = 0.53).

Let us define map κβ : (0, +∞) → N0, where N0 := N ∪ {0}, as

κβ :=


⌊
π

ωβ

⌋
− 1 for 0 < β < 4,

0 for β ≥ 4.

Function κλ allows us to determine the length of a semi-wave (as continuous extension)
– see the following lemma which describes semi-wave uc

i,j. The semi-wave is defined on an
interval [i − 1, j + 1]. Knowing i and using the ratio qi = u(i)

u(i−1) , we can (using the value
κλ) determine j.
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2.3 Descriptions of the Fuč́ık spectrum of matrix AD – part II

Lemma. (Lemma 23 in the thesis)
Let (α, β) ∈ D and u be the solution of the initial value problem (P3). Moreover, let
i, j ∈ Z be such that i ≤ j and

u(i − 1) < 0, u(k) ≥ 0 for k = i, . . . , j, u(j + 1) < 0, (2.1)

or
u(i − 1) > 0, u(k) ≤ 0 for k = i, . . . , j, u(j + 1) > 0. (2.2)

Then we have

j =
 i + κλ for W λ

κλ+1 (qi) < 0,

i + κλ + 1 for W λ
κλ+1 (qi) ≥ 0,

where we denoted qi := u(i)
u(i−1) ≤ 0 and λ = α if (2.1) holds or λ = β if (2.2) holds.

Moreover, we have u(k) ̸= 0 for k ∈ Z such that i < k < j, and u(j) = 0 if and only if
W λ

κλ+1 (qi) = 0.

In the following definition, we will define three functions ηα,β, τα,β and µα,β. These
functions (for fixed α, β) represent important values for distance ρα,β.

Definition. (Definition 24 in the thesis)

For 0 < α < 4 and β > 0, let us define

ηα,β := T α

V β
κβ+1 − 1

V β
κβ

 , τα,β := T α

V β
κβ+1

V β
κβ

 , µα,β := T α

 V β
κβ+1

V β
κβ + 1

 .

We will define function Nα,β (for illustration, see Figure 2.11) which is used in the
definition of distance function ρα,β.

Definition. (Definition 27 in the thesis)
For 0 < α < 4 and β > 0, let us define

Dom(Nα,β) := [0, 1 + τα,β], Nα,β(s) :=


¯̄Mα,β(s) + 1 for s ∈ [0, τα,β],

M̄α,β(s) for s ∈ (τα,β, 1),
¯̄Mα,β(s − 1) for s ∈ [1, 1 + τα,β],

where
M̄α,β(s) := T α

(
W β

κβ+1 (Qα(1 − s))
)

, s ∈ [τα,β, 1],
¯̄Mα,β(s) := T α

(
W β

κβ+2 (Qα(1 − s))
)

, s ∈ [0, τα,β].

And finally, we can define the distance function ρα,β – the distance between every two
consecutive zeros of two different (consecutive) positive semi-waves (for illustration, see
Figure 2.12).
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0 ηα,β τα,βµα,β 1 1 + ηα,β 1 + τα,β s

ηα,β

τα,β

µα,β

1

1 + ηα,β

1 + τα,β

y

y = Nα,β(s)

Figure 2.11: Function Nα,β for α > β (α = 3.2, β = 1.2).

Definition. (Definition 28 in the thesis)
Let 0 < α < 4 and β > 0. Let us define

ρα,β(s) := s + κβ + Nα,β(s), 0 ≤ s ≤ 1 + τα,β.

All of the theory and definitions above lead to the following theorem – another descrip-
tion of the Fuč́ık spectrum Σ(AD).

Theorem. (Theorem 35 in the thesis)
In the domain D = (0, 4) × (0, +∞), we have the following description of Fuč́ık curves C±

l ,
l = 1, . . . , n − 1,

C±
2j−1 ∩ D =

{
(α, β) ∈ D : t+

j(α, β) + t-
j(α, β) = n + 1

}
,

C+
2j ∩ D =

{
(α, β) ∈ D : t+

j+1(α, β) + t+
j(α, β) = n + 1

}
,

C-
2j ∩ D =

{
(α, β) ∈ D : t-

j+1(α, β) + t-
j(α, β) = n + 1

}
,
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κβ + 2µα,β

κβ + 1 + τα,β

κβ + 1 + 2ηα,β

y

0 ηα,β τα,β µα,β 1 1 + ηα,β 1 + τα,β s

y = ρα,β(s)

Figure 2.12: The graph of the function ρα,β for α > β (α = 3.9, β = 3.1).

where

t+
1 := π

ωα

, t+
j :=

 t+
j−1 + ρα,β

(
⌈t+

j−1⌉ − t+
j−1

)
for j even,

t+
j−1 + π

ωα
for j odd,

t-
1 := ρα,β(0), t-

j :=
 t-

j−1 + π
ωα

for j even,

t-
j−1 + ρα,β

(
⌈t-

j−1⌉ − t-
j−1

)
for j odd.

Let us note that even though our descriptions of the Fuč́ık spectrum are for a particular
matrix AD (Dirichlet matrix), theory in the thesis (and both research articles [25] and [31])
can be extended. The theory was constructed for a difference equation in (P4). In order
to describe the Fuč́ık spectrum for a problem with the same difference equation but with
a different boundary conditions, one would use the same theory only changing aspects
related to the boundary conditions. Thus, our results can be generalized also for different
boundary conditions (one would need to explore the inadmissible areas for such matrices,
since our theory does not include cases (α > 4 and β > 4) and (α < 0 or β < 0)).
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Chapter 3

Main results – bounds of
Fuč́ık curves of matrix AD

In this chapter, we introduce two different bounds of Fuč́ık curves which can be used for
numerical estimation of Fuč́ık curves (they are not recurrent and they do not become more
complicated when dimension n increases).

3.1 Delta bounds of Fuč́ık curves for matrix AD

Let us investigate in detail the “gaps” between positive and negative semi-waves – the dif-
ference between zero points of two consecutive positive and negative semi-waves. Knowing
minimal and maximal such difference allows us to find regions (bounds) for Fuč́ık curves.
In the following definition we define function δα,β which represents such difference (the
length of such “gap” is then equal to the absolute value of function δα,β) – see Figure 3.1.

Definition. (Definition 40 in the thesis)
For 0 < α, β < 4, let us define

δα,β(q) := T α(q) − T β(q), q < 0.

We can calculate extrema of function δα,β:

Theorem. (Theorem 42 in the thesis)
Let 0 < α, β < 4. Function δα,β has one global minimum and one global maximum (for
q < 0):

min
q<0

δα,β(q) =


δα,β(qα,β

1 ) for α > β,

0 for α = β,

δα,β(qα,β
2 ) for α < β,

max
q<0

δα,β(q) =


δα,β(qα,β

2 ) for α > β,

0 for α = β,

δα,β(qα,β
1 ) for α < β,
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3.1 Delta bounds of Fuč́ık curves for matrix AD

where

qα,β
1,2 := Jα,β ∓

√
(Jα,β)2 − 1, Jα,β := ωα sin ωβ cos ωα − ωβ sin ωα cos ωβ

ωα sin ωβ − ωβ sin ωα

. (3.1)

Also,
max
q<0

δα,β(q) = − min
q<0

δα,β(q).

Definition. (Definition 43 in the thesis)
For 0 < α, β < 4, let us define

δmin
α,β := −|δα,β(qα,β

1 )|,

δmax
α,β := +|δα,β(qα,β

1 )|,

where qα,β
1 is defined in (3.1).

y

0
1

k

T α(q)
T β(q)

|δα,β(q)|

C0

C1

Figure 3.1: The distance between zero point of positive semi-wave and zero point of negative
semi-wave – the distance |δα,β| for α = 1.9, β = 3.9.

In the following theorem, we derive “delta bounds” for Fuč́ık curves C±
l , l = 1, . . . , n−1

using values δmin
α,β and δα,β. For illustration of such bounds, see Figure 3.2.

Theorem. (Theorem 45 in the thesis)
In the domain D0,4 = (0, 4) × (0, 4), we have the following “delta” bounds for Fuč́ık
curves C±

l , l = 1, . . . , n − 1, (
C±

2j−1 ∩ D0,4
)

⊂ Ψj,j =: Ψ±
2j−1,(

C+
2j ∩ D0,4

)
⊂ Ψj+1,j =: Ψ+

2j,(
C-

2j ∩ D0,4
)

⊂ Ψj,j+1 =: Ψ-
2j,

j ∈ N, where for k, s ∈ N, sets Ψk,s are given by

Ψk,s := {(α, β) ∈ D0,4 : Fk,s(α, β) ≤ n + 1 ≤ Gk,s(α, β)}

and

Fk,s(α, β) := k
π

ωα

+ s
π

ωβ

+ (k + s − 1)δmin
α,β , Gk,s(α, β) := k

π

ωα

+ s
π

ωβ

+ (k + s − 1)δmax
α,β .
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Figure 3.2: Delta bounds for Σ(AD) of n = 5 (left) and n = 6 (right).

3.2 Rho bounds of Fuč́ık curves for matrix AD

Another bounds we are going to discuss are referred here as “rho bounds” (originally
introduced as “improved bounds” in [31], see Figure 3.3 for illustration). The main idea is
based on using extrema of function ρα,β.

Theorem. (Theorem 46 in the thesis)
Let 0 < α < 4 and β > 0. Then the function ρα,β attains its global extrema at ηα,β and
µα,β. More precisely, we have that

min
s∈[0,1+τα,β ]

ρα,β(s) =
{

ρα,β(µα,β) = 2µα,β + κβ for α ≤ β,

ρα,β(ηα,β) = 2ηα,β + κβ + 1 for α > β,

max
s∈[0,1+τα,β ]

ρα,β(s) =
{

ρα,β(ηα,β) = 2ηα,β + κβ + 1 for α ≤ β,

ρα,β(µα,β) = 2µα,β + κβ for α > β.

Definition. (Definition 47 in the thesis)

For 0 < α < 4 and β > 0, let us define

ρmin
α,β :=

{
2µα,β + κβ α ≤ β,

2ηα,β + κβ + 1 α > β,

ρmax
α,β :=

{
2ηα,β + κβ + 1 α ≤ β,

2µα,β + κβ α > β.
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α

β

n = 4

0 4

4

α

β

n = 7

0 4

4

Figure 3.3: Rho bounds Υ±
l (l = 1, . . . , n − 1) for the Fuč́ık spectrum Σ (AD) of n = 4 (left)

and n = 7 (right).

Finally, rho bounds are such bounds, that we take ρmin
α,β and ρmax

α,β instead of function ρα,β

in the description of Fuč́ık spectrum Σ(AD).

Theorem. (Theorem 48 in the thesis)
In the domain D = (0, 4)×(0, +∞), we have the following “rho bounds” for Fuč́ık curves C±

l ,
l = 1, . . . , n − 1, (

C±
2j−1 ∩ D

)
⊂ Υj,j =: Υ±

2j−1,(
C+

2j ∩ D
)

⊂ Υj+1,j =: Υ+
2j,(

C-
2j ∩ D

)
⊂ Υj,j+1 =: Υ-

2j,

j ∈ N, where for k, s ∈ N, sets Υk,s are given by

Υk,s :=
{
(α, β) ∈ D : ρmin

α,β ≤ 1
s

(
n + 1 − k π

ωα

)
≤ ρmax

α,β

}
.
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Chapter 4

Abstracts of published research
articles of the author

Research articles in impacted journals:

Abstract of [25]:
I. Looseová (Sobotková), P. Nečesal, The Fuč́ık spectrum of the discrete Dirichlet operator,
Linear Algebra Appl. 553 (2018) 58–103

In this paper, we deal with the discrete Dirichlet operator of the second order and we
investigate its Fuč́ık spectrum, which consists of a finite number of algebraic curves. For
each non-trivial Fuč́ık curve, we are able to detect a finite number of its points, which are
given explicitely. We provide the exact implicit description of all non-trivial Fuč́ık curves
in terms of Chebyshev polynomials of the second kind. Moreover, for each non-trivial
Fuč́ık curve, we give several different implicit descriptions, which differ in the level of
depth of used nested functions. Our approach is based on the Möbius transformation and
on the appropriate continuous extension of solutions of the discrete problem. Let us note
that all presented descriptions of Fuč́ık curves have the form of necessary and sufficient
conditions. Finally, our approach can be also directly used in the case of difference
operators of the second order with other local boundary conditions.

This article was published in Linear Algebra and Its Applications (Elsevier). For 2020,
it has impact factor 1.401, cite score 2.1 and it belongs to Q1 in “Algebra and Number
Theory” and “Discrete Mathematics and Combinatorics” fields of Mathematics.
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Abstract of [31]:
P. Nečesal, I. Sobotková, Localization of Fuč́ık curves for the second order discrete Dirich-
let operator, Bulletin des Sciences Mathématiques 171 (2021) 103014

In this paper, we deal with the second order difference equation with asymmetric nonlin-
earities on the integer lattice and we investigate the distribution of zeros of continuous
extensions of positive semi-waves. The distance between two consecutive zeros of two
different positive semi-waves depends not only on the parameters of the problem but also
on the position of one of these zeros with respect to the integer lattice. We provide an
explicit formula for this distance, which allows us to obtain a new simple implicit descrip-
tion of all non-trivial Fuč́ık curves for the discrete Dirichlet operator. Moreover, for fixed
parameters of the problem, we show that this distance is bounded and attains its global
extrema that are explicitly described in terms of Chebyshev polynomials of the second
kind. Finally, for each non-trivial Fuč́ık curve, we provide suitable bounds by two curves
with a simple description similar to the description of the first non-trivial Fuč́ık curve.

This article was published in Bulletin des Sciences Mathématiques (Elsevier). For
2020, it has impact factor 1.118, cite score 1.6 and it belongs to Q1 in “Mathematics
(miscellaneous)” field.

Other activities:

Abstract of [24] in Proceedings:
I. Looseová (Sobotková), Conjecture on Fuč́ık curve asymptotes for a particular discrete
operator, in: S. Pinelas, T. Caraballo, P. Kloeden, J. R. Graef (eds.), Differential and Dif-
ference Equations with Applications, Springer International Publishing, Cham, 2018

In this paper we study properties of the Neumann discrete problem. We investigate so
called polar Pareto spectrum of a specific matrix which represents the Neumann discrete
operator. There is a known relation between polar Pareto spectrum of any discrete oper-
ator and its Fuč́ık spectrum. We also state a conjecture about asymptotes of Fuč́ık curves
with respect to the matrix and we illustrate a variety of polar Pareto eigenvectors corre-
sponding to a fixed polar Pareto eigenvalue.

Conferences:
1. Equadiff 13, Praha, 26.-30.8.2013, The asymptotes of Fuč́ık curves for asymmetric

difference operator

2. XXIX Seminar in Differential Equations, Mońınec, 14.-18.4.2014, Properties of the
Fuč́ık spectrum for difference operator
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3. Setkáńı student̊u matematické analýzy a diferenciálńıch rovnic, Praha 2016, The
Fuč́ık spectrum of the Neumann discrete operator

4. XXX Seminar in Differential Equations, Ostrov u Tisé, 30. 5. – 3. 6. 2016, The
Fuč́ık spectrum of the second order discrete operators

5. International Conference on Differential & Difference Equations and Applications
2017, Amadora, Portugal, 5. 6. – 9. 6. 2017, The Fuč́ık spectrum of the discrete
Dirichlet operator
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