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Abstrakt

Tato prace se zabyva itera¢nim fesenim sedlobodovych soustav linedrnich algebraickych
rovnic ziskanych diskretizaci Navierovych—Stokesovych rovnic pro nestlacitelné proudéni
pomoci isogemetrické analyzy (IgA). Konkrétné se zaméiuje na predpodminovace pro
krylovovské metody. Jednim z cilt prace je prozkoumat efektivitu modernich blokovych
predpodminiovaéu pro ruzné isogeometrické diskretizace, tj. pro B-spline bazové funkce
ruzného stupné a spojitosti, a poskytnout prehled o jejich chovéani v zavislosti na riznych
parametrech tlohy. Hlavnim cilem je na zakladé této studie navrhnout vhodny piistup
k feseni téchto soustav s pfipadnymi tipravami, které by zlepsily vlastnosti dané metody
pro soustavy ziskané isogeometrickou analyzou.

Priace ma dvé ¢asti. V prvni ¢asti jsou predstaveny ulohy pro nestlacitelné vazké
proudéni a metoda diskretizace pomoci isogeometrické analyzy. Dale uvadime podrobny
prehled metod Teseni sedlobodovych soustav linearnich rovnic, ve kterém se zaméiujeme
predevsim na blokové piredpodminovace.

Druh4d ¢éast je vénovana numerickym experimentum. Provadime srovnani vybranych
pfedpodminovacu pro nékolik staciondrnich a nestacionarnich tloh ve dvou a tfech di-
menzich. Zvlastni pozornost je vénovana aproximaci matice hmotnosti, jejiz volba se
ukazuje byt v kontextu IgA dilezitd, a okrajovym podminkdm pro PCD pfedpodminovac.
Navrhujeme vhodnou kombinaci varianty PCD, okrajovych podminek a jejich skalovandi,
abychom ziskali efektivni predpodminovac, ktery je robustni vzhledem k stupni a spo-
jitosti diskretizace. V mnoha piipadech se tato volba ukazuje jako nejefektivnéjsi z
uvazovanych metod.

Kliéova slova: Navierovy—Stokesovy rovnice, nestlacitelné vazké proudéni, isogeomet-
rickd analyza (IgA), sedlobodové soustava linearnich algebraickych rovnic, krylovovské
metody, pfedpodminéni, blokové pfedpodmitniovace, PCD piedpodminovaé, LSC pied-
podminovaé, predpodminovace typu SIMPLE, AL pfedpodminova¢
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Abstract

This doctoral thesis deals with iterative solution of the saddle-point linear systems ob-
tained from discretization of the incompressible Navier—Stokes equations using the isoge-
ometric analysis (IgA) approach. Specifically, it is focused on preconditioners for Krylov
subspace methods. One of the goals of the thesis is to investigate the performance of the
state-of-the-art block preconditioners for various IgA discretizations, i.e., for B-spline
discretization bases of varying polynomial degree and interelement continuity, and pro-
vide an overview of their behavior depending on different problem parameters. The main
goal is, based on the this study, to propose suitable solution approach to the considered
linear systems with possible modifications that would improve the performance for IgA
discretizations in particular.

The thesis is basically divided into two parts. In the first part we introduce the
mathematical model of incompressible viscous flow and the isogeometric analysis dis-
cretization method. Then we provide a detailed overview of the solution techniques for
saddle-point linear systems, especially aimed at the family of block preconditioners.

The second part is devoted to numerical experiments. We present a comparison of
the selected preconditioners for several steady-state and time-dependent test problems
in two and three dimensions. A particular attention is devoted to mass matrix approx-
imation within the preconditioners, which appears to be important in the context of
IgA, and to the boundary conditions for the pressure convection—diffusion (PCD) pre-
conditioner. A suitable combination of PCD variant, boundary conditions and their
appropriate scaling is proposed, leading to an effective preconditioner which is robust
with respect to the discretization degree and continuity. In many cases, this choice of
preconditioner proves to be the most efficient among all considered methods.

Keywords: Navier—Stokes equations, incompressible viscous flow, isogeometric ana-
lysis (IgA), saddle-point linear system, Krylov subspace method, preconditioning, block
preconditioner, pressure convection—diffusion (PCD) preconditioner, least-squares com-
mutator (LSC) preconditioner, SIMPLE-type preconditioner, augmented Lagrangian
(AL) preconditioner

iii



Acknowledgements

I would like to express my gratitude to my supervisor doc. Ing. Marek Brandner, Ph.D.,
for his support and guidance during my study, his patience and motivation.

I would also like to thank doc. Ing. Bohumir Bastl, Ph.D., for helping me develop
my background regarding isogeometric analysis and prof. Kees Vuik from the Delft Uni-
versity of Technology for his time and valuable suggestions.

Last but not least, many thanks also belong to my family, friends and colleagues for
their support and understanding.

I acknowledge the financial support of European Union’s Horizon 2020 research and
innovation programme under grant No. 678727, Czech Science Foundation GA CR
(Grantové agentura Ceské Republiky) grant No. 19-04006S and Technology Agency
of the Czech Republic TA CR (Technologickd agentura Ceské Republiky) grant No.
TK04020250.

v



Contents

Introduction

The incompressible Navier—Stokes equations

2.1 Problem formulation . . . . ... ... ... ... ... .. ... ... ...

2.2 Galerkin discretization and linearization . . . . . . .. ... .. ... ...
2.2.1 The steady-state problem . . . . .. ... ... .. .........
2.2.2  The time-dependent problem . . . . . .. ... ... ... ... ..

Isogeometric analysis

3.1 Preliminaries . . . . . . . .. L e
3.1.1 Splinesand B-splines . . . . . ... ... .. ... ... ... .
3.1.2 B-splineobjects. . . . . . ...
3.1.3 NURBS . . . . . e

3.2 B-splines as abasis for IgA . . . . .. ... L Lo
3.2.1 Computational mesh and matrix assembly . . . . . . . .. ... ..
3.2.2 Mesh refinement . . . .. ... ... .. ... ... ..

3.3 Poisson example . . . ...

3.4 Discretization of the Navier—Stokes equations . . . . . . . . ... ... ..

Solution methods

4.1 Basic principles . . . . . .. e
4.1.1 Direct methods . . . . . . . . . ... ...
4.1.2 Stationary iterative methods . . . . .. .. ... ... ..
4.1.3 Krylov subspace methods . . . . ... ... ... ...

4.2 Solution of saddle-point systems . . . . . ... ... L

4.2.1 Schur complement reduction . . . . ... ... ... ... ... ..

4.2.2 Uzawamethod . . .. . ... ... . ... ... ... ... ...

423 SIMPLE . . . . ..
Preconditioning

5.1 Preconditioned GMRES . . . . . . . . ... ... ... .. ... ... ...
5.1.1 Left preconditioning . . . . . . . ... ... oL
5.1.2 Right preconditioning . . . . . . ... ... oL
5.1.3 Variable preconditioning . . . . . . . ... ..o

5.2 Krylov acceleration of stationary iterations . . .. .. .. ... ... ...

5.3 Navier—Stokes preconditioners . . . . . . . . .. .. .. ... ...
5.3.1 Block triangular preconditioners . . . . . ... ... ... ... ..
5.3.2 Approximations of the Schur complement . . . . . ... ... ...

10
11
16

18
19
19
21
22
22
23
24
25
29

32
33
33
34
35
43
44
44
45



CONTENTS vi

5.3.3 Augmented Lagrangian approach . . . . . . . ... ... ... ... 66

5.3.4 SIMPLE-type preconditioners . . . . . . . ... ... ... ..... 69

5.3.5 Solution of subproblems . . . . . ... ... ... .. ... ... .. 71

6 Numerical results 73
6.1 Software and hardware . . . . . . . . .. .. L L L oo 73
6.2 Experiments settings . . . . . .. .. oL 75
6.2.1 Discretization bases . . . . . .. ... oo 000 75

6.3 Test problems . . . . . . . ... 7
6.3.1 Lid-driven cavity . . . . . . . . . .. ... o 7

6.3.2 Backward-facingstep. . . . . ... oo 80

6.3.3 Water turbine runner wheel . . . . . . . . .. ..o 82

6.4 Approximation of mass matrices . . . . . ... ... ... ... ... .. 86
6.41 M, in LSC and MSIMPLER. . . . . .. .. ............. 87

6.42 M,inPCD ... ......... ... 87

6.43 M,in ALand MAL . .. .. ... .. ... . ............ 88

6.5 Boundary conditions for PCD . . . . . . ... ... ... .. 89
6.5.1 Scaling of Dirichlet conditions . . . . . . . . .. ... ... ..... 91

6.5.2 Comparison of different choicesof BCs . . . . . . .. ... ... .. 93

6.5.3 Mass matrix approximation in A, = Bﬁ;lBT ........... 95

6.5.4 Summary . . . . ... e e e e e 96

6.6 Comparison of ideal versions of block preconditioners . . . . . . . ... .. 99
6.6.1 Parameter v for AL and MAL . . . ... ... ... ... ..... 99

6.6.2 Steady-state 2D test problems . . . . ... ... ... ....... 100

6.6.3 Time-dependent 2D test problems . . ... ... ... ....... 108

6.6.4 3D test problems . . . . ... .. 113

7 Conclusions 118
8 Bibliography 120
List of publications 128
Appendix A Test problems: DOFs and nonzeros 129
Appendix B Complete results 133
B.1 Mass matrix approximation . . . . . . ... ... L Lo Lo 133
B.2 PCD boundary conditions . . . . . . . . .. .. ... 135
B.3 Comparison of ideal versions . . . . .. .. .. ... .. ... ... 137
B.3.1 Lid-driven cavity 2D . . . . . . ... .o oo 137

B.3.2 Backward-facing step 2D . . .. ..o o000 143

B.3.3 BFS-2D: eigenvalues of preconditioned matrix . . . . . . . .. ... 149

B.3.4 Lid-driven cavity 3D . . . . . . ... oo 152

B.3.5 Backward-facing step 3D . . .. ... 156

B.3.6 Turbineblade 2D . . . . . . . .. .. L Lo 158

B.3.7 Turbine blade 3D . . . . . . . . . . ... 158



Chapter 1

Introduction

The incompressible Navier—Stokes equations are a set of partial differential equations
used to model the motion of an incompressible viscous Newtonian fluid in d-dimensional
space. They consist of d nonlinear momentum equations representing the momentum
conservation law and the incompressibility condition representing the mass conservation
law. The solution of the equations is a d-dimensional flow velocity field and a scalar
pressure field.

Numerical simulation of fluid flow is an indispensable part of many research and ap-
plication areas, such as meteorology, biological engineering, aecrodynamics, mechanical
engineering and many others. The Navier—Stokes equations form a basis of many compu-
tational fluid dynamics (CFD) problems. With the continuous development of computer
technologies and increasing requirements on the size and complexity of simulations, nu-
merical methods for solution of the Navier—Stokes equations are still an evolving and
challenging area of research interest.

The solution techniques are typically based on linearization of the governing equa-
tions and their spatial discretization. Classical discretization methods involve finite
difference, finite volume or finite element method. The finite difference method (FDM)
is very simple to derive and easy to implement, but it is not very useful for real world
problems because its use for general complex domains is rather complicated. The finite
volume methods (FVM) is a common approach in CFD, because it is well suited for solv-
ing problems based on conservation laws, even in complex domains with unstructured
meshes. Many CFD softwares commonly used in the industrial practice are based on
FVM. The finite element method (FEM) is also applicable for complex problems, but is
not that popular in the context of CFD. To obtain a stable finite element solution of the
incompressible flow problems, the finite element spaces for velocity and pressure have to
fulfill the discrete inf-sup (or LBB) condition or some stabilization has to be employed.
But even if an inf-sup stable pair of finite elements is used, spurious oscillations can still
occur, especially for convection dominated flows, and stabilization is often necessary.
Some of the most widely used stabilization methods are based on the Petrov—Galerkin
approach, where the shape functions and test functions are different, e.g., SUPG/PSPG
or GLS stabilization [49]. An alternative approach, quite popular in CFD nowadays,
is the discontinuous Galerkin FEM (DGFEM), which combines some ideas from FEM
and FVM, [19, 18]. The spatial discretization of the steady-state incompressible Navier—
Stokes equations using any of the mentioned methods results in nonsymmetric sparse
linear systems of saddle-point type. This is true also for the time-dependent equations,
if implicit time-stepping method is used.
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Our work is motivated by the problem of automatic shape optimization of runner
blades in water turbines, which we have dealt with in several research projects. The goal
is to improve the turbine efficiency in a wide range of operating conditions by changing
the runner blade shape automatically, such that the turbine development costs and time
are reduced. The optimization problem is stated as minimization of a given objective
function subject to constraints given by the Navier—Stokes equations (or RANS equations
in case of turbulent flow).

For several reasons, we have chosen the isogeometric analysis (IgA) approach for the
spatial discretization of the Navier—Stokes equations. IgA is a relatively new discretiza-
tion approach proposed by Hughes et al. in [63], which is based on the Galerkin method
and has a lot in common with FEM. The main idea is to combine the computer aided
design (CAD) tools, usually used for representing the geometries in industrial practice,
with the analysis tools, i.e., to be able to compute the quantities of interest directly
for the designed geometry, for example the velocity and pressure in the case of fluid
flow. B-spline and NURBS objects are used as standard in CAD, therefore IgA uses
the B-spline or NURBS basis as the basis for representing the approximate solutions.
The IgA approach is suitable for the purpose of automatic shape optimization, because
it allows an exact representation of the geometry regardless of the mesh coarseness and
does not require new mesh generation every time the domain shape changes, since the
computational mesh is already built in the geometry representation.

Similarly to FEM, the IgA discretization of the linearized Navier—Stokes equations
(and also RANS equations) leads to a sequence of sparse saddle-point linear systems.
One of the main differences between IgA and FEM is that the FEM solution is always C°
across the element boundaries, while the higher-degree IgA solution is usually of higher-
order interelement continuity. This leads to denser matrices, which makes the linear
systems more expensive to solve compared to the linear systems of the same size arising
from FEM discretizations [20, 21]. However, Hughes et al. show for elliptic problems,
that the IgA solution of degree k has the same order of convergence as the classical
FEM solution with basis functions of the same degree, independently of the order of
continuity [23]. The order of convergence describes, how the error of the approximate
solution changes under mesh refinement. Assuming that something similar holds also
for other than elliptic problems, we expect IgA to be more efficient than the classical
FEM, since the number of degrees of freedom grows much slower with mesh refinement
for high-continuity IgA than for standard FEM. In other words, we expect to get an
equally “good” solution for much less degrees of freedom using IgA.

During the automatic shape optimization process, the Navier—Stokes/RANS simula-
tion has to be run many times and the linear systems arising from the IgA discretization
have to be solved many times during one simulation. Their solution represents the main
bottleneck of the whole process, therefore, an efficient linear solver is a key component.

A lot of attention has been devoted to the solution of the large saddle-point linear
systems in recent decades. Researchers from various fields are interested in the solution
methods for this problem, since it does not arise only in the context of the incompressible
fluid flow, but also in many other applications. Some of them are, e.g., linear elasticity,
constrained optimization, image reconstruction or mixed FEM approximations of elliptic
PDEs. A survey on solving the saddle-point systems has been written by Benzi et al. [5].

There are generally two approaches to the solution of saddle-point problems — cou-
pled and segregated. Coupled methods deal with the resulting linear system as a whole,
computing both unknown vectors (velocity and pressure in the case of the incompressible
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flow) simultaneously. Segregated methods compute the velocity and the pressure field
separately. An example of such method is a Schur complement reduction [5] based on
transforming the system to a block triangular one using a block LU factorization of the
system matrix. First, the pressure is computed as a solution of a reduced system with
the Schur complement matrix and the velocity is obtained afterwards. This approach is
not very practical for the linear systems obtained as a discretization of the Navier—Stokes
equations, because the Schur complement is dense. As another example of segregated
approaches, we name the class of pressure-correction (or projection) methods (see, for
example, [93]), where the momentum equations are solved first using the pressure from
the previous step to obtain an intermediate velocity field. This velocity field does not
fulfill the incompressibility condition. In the next step, it is projected onto the space of
divergence-free vector fields using a pressure correction which is computed from an equa-
tion of Poisson type. For example, the well known SIMPLE algorithm (Semi-Implicit
Method for Pressure Linked Equations) [82] is also a pressure-correction scheme. The
advantage of the segregated approach is that we deal with smaller linear systems that
can be easier to solve. On the other hand, the convergence to a steady state is often
slow.

This work deals with the solution of the coupled linear system. The solution methods
for systems of linear algebraic equations can be divided into two groups - direct and
iterative methods. Direct methods are usually based on some factorization of the system
matrix and give the exact solution of the linear system (assuming exact arithmetic).
They are robust, but very expensive in terms of computer memory and CPU time.
Therefore, direct solution is almost not feasible for large problems, especially in 3D.
On the other hand, iterative methods, which compute an approximate solution, are
economical with respect to computer memory, but also less robust and can require many
iterations to converge.

The simplest class of iterative methods are the stationary methods, which can be
expressed by a simple formula that does not change from iteration to iteration. The
other major classes of iterative methods are non-stationary methods, including Krylov
subspace methods, and multilevel methods such as multigrid.

Classical representatives of the stationary methods are Jacobi, Gauss-Seidel and
SOR. These methods are easy to implement, very cheap in terms of memory, but their
convergence can be very slow and is not guaranteed for general matrices. There are also
stationary methods developed specifically for saddle-point systems, namely the Uzawa
and Arrow-Hurwicz method [108, 5]. Nowadays, the stationary methods are used as
preconditioners for Krylov subspace methods or smoothers for multigrid methods rather
than standalone solvers.

Krylov subspace methods belong to the most commonly used iterative methods in
practice. They are a special case of projection methods, that are based on searching
an approximate solution of a linear system in a given m-dimensional subspace S,, of
R™, m < n, called search space, such that the new residual is orthogonal to another m-
dimensional subspace C,, of R™ called constrained space. We refer, e.g., to [87, 71, 104]
for more details on projection methods. Krylov subspace methods form a sequence of
nested search spaces K, spanned by the initial residual and vectors obtained by repeated
multiplication of the initial residual and the system matrix. The choice of the constraint
space yields different versions of Krylov subspace methods. A typical example is the
conjugate gradient (CG) method, which can be used for solving linear systems with a
symmetric positive definite matrix. For general nonsymmetric indefinite problems, the
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generalized minimal residual method (GMRES) or the biconjugate gradient stabilized
method (BiCGSTAB) belong to the best known methods. GMRES is a stable method
which can not break down [88, 104], but its disadvantage is that the work per iteration
and memory requirements increase with the iteration number. Therefore, a restarted
variant GMRES(k) is often used, which is restarted after every k iterations using the
last approximate solution as a new initial guess.

The key ingredient to efficient iterative solution of linear systems is suitable precon-
ditioning. In this context, preconditioning means a transformation of the original system
such that the resulting transformed linear system is easier to solve with the given it-
erative method. The transformation is done by applying a so-called preconditioner to
the system matrix and the right hand side vector. The preconditioner should be easy to
construct and cheap to apply. This means that linear systems with the preconditioner
matrix should be efficiently solvable.

The preconditioner can be either purely algebraic (e.g. incomplete LU factorization
or sparse approximate inverse) or based on knowledge of the problem origin, discretiza-
tion, matrix structure etc. In principle, the algebraic preconditioners can be applied as
a black-box, but they often show poor convergence for saddle-point systems [5]. More-
over, the incomplete LU preconditioner will break down when applied to a saddle-point
problem due to zero pivots if no fill-in is allowed. A suitable apriori renumbering of
unknowns can be used to avoid zero pivots, decrease the memory and time requirements
and also to improve the convergence of ILU-preconditioned solvers [94, 105].

In recent years, a lot of attention has been paid to the so-called block triangular
preconditioners in context of solving linear systems associated with the incompressible
Navier—Stokes equations. These methods belong to the second class of preconditioners,
which exploit the knowledge of the system matrix structure and the physics behind in-
dividual blocks. Similarly to the segregation methods mentioned above, they are based
on splitting the system into the velocity and pressure part. They can be derived using
a block LDU decomposition of the system matrix leading to an upper (or lower) block
triangular preconditioner matrix. The application of the preconditioner requires solv-
ing two subsystems, one with the pressure Schur complement matrix and one with the
(1,1) block of the original saddle point matrix (a discrete convection—diffusion opera-
tor). Since it is impractical to construct the Schur complement explicitly, it has to be
approximated. The choice of the approximation then yields different preconditioners.
In the ”ideal” versions of the block preconditioners, the subsystems are solved with a
direct solver. However, in practice it is necessary to use approximate solution methods
for these subsystems to obtain an efficient preconditioner.

One of the widely used block triangular preconditioners is the pressure convection—
diffusion preconditioner (PCD), proposed by Kay et al. [68], where the Schur comple-
ment approximation is derived based on fundamental solution operators, and Silvester et
al. [96] based on the idea of approximate commutators. A disadvantage of this method
is the need to assemble new matrices — a discrete convection—diffusion and a discrete
Poisson operator on the pressure space — that are not readily available in the standard
FEM or FVM codes. To overcome this, Elman et al. in [35] developed the least-squares
commutator preconditioner (LSC), where the pressure convection—diffusion operator is
computed from a weighted least-squares problem and the discrete Poisson operator is
not explicitly needed. It corresponds to a different interpretation of a scaled variant of
the BFBt preconditioner proposed earlier by Elman [33].

Another approach was proposed by Benzi and Olshanskii in [6]. They start with the
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augmented Lagrangian (AL) formulation of the saddle-point problem and construct a
block triangular preconditioner, which is applied to the augmented system instead of the
original one. This preconditioner has an attractive property of convergence independent
of mesh refinement and Reynolds number, but its efficiency strongly depends on the
availability of a good approximate solver for the (1,1) block of the augmented matrix.

As already mentioned above, the SIMPLE algorithm is a popular solver for flow prob-
lems, which often requires many iterations to converge to a steady state. In [112, 113],
Vuik et al. proposed a Krylov accelerated version of SIMPLE-type methods, treating
these algorithms as block preconditioners for Krylov subspace methods. They show that
it can result in much faster convergence to the steady state than if SIMPLE is used as
a solver, see also [69].

The mentioned block preconditioners have been developed and successfully used for
finite element discretizations of the incompressible Navier—Stokes equations. The goal of
this thesis is to study and implement the selected state-of-the-art preconditioning tech-
niques and investigate their behavior for linear systems arising from the IgA discretiza-
tion of the incompressible Navier—Stokes equations. The question we try to answer is
whether they are applicable to the IgA discretizations of high degree and high continuity
with the same success. A similar study was done for IgA discretizations of the Stokes
equations by Cortes et al. [22], where the authors combine a block triangular strat-
egy with several “black-box” solvers to get a scalable preconditioner. We consider the
steady-state and time-dependent Navier—Stokes equations linearized by Picard method
and present a comparison of the block preconditioners for several test problems in two
and three dimensions and a variety of IgA discretizations. Based on our results, we give
recommendations for the choice of preconditioner.

The text of this thesis is organized as follows. In Chapter 2, we formulate the in-
compressible Navier—Stokes equations and describe the steps leading to the saddle-point
linear systems. This includes the weak formulation of the equations, their linearization
and Galerkin discretization. Chapter 3 is devoted to the isogeometric analysis. We re-
view the basic definitions and properties of B-spline and NURBS, describe important
aspects of the use of B-splines as a Galerkin discretization basis in general and also
for the Navier—Stokes equations specifically. The first part of Chapter 4 provides a brief
overview of solution methods for general linear systems with the main focus on the Krylov
subspace methods. The second part then deals with methods designed for saddle-point
problems. Chapter 5 begins with a description of the concept of preconditioning and the
preconditioned GMRES algorithm and its main part is devoted to the preconditioners
for linear systems arising from discretization of the Navier—Stokes equations. Results of
our numerical experiments are presented in Chapter 6. Finally, we conclude the thesis
with a summary of observations and our recommendations and outline possible topics
for future work.



Chapter 2

The incompressible Navier—Stokes
equations

The Navier—Stokes equations represent the fundamental mathematical model describing
the motion of viscous fluids. In this chapter, we formulate the model equations for an
incompressible Newtonian fluid. Further, we outline the steps needed for the numerical
solution of the steady-state and time-dependent Navier—Stokes equations using Galerkin
discretization method, leading to saddle-point linear systems.

2.1 Problem formulation

Consider a domain Q C R? filled with a fluid, where d € {2, 3} is the space dimension,
and a time interval [0,7]. The flow of the fluid is described by the following physical
quantities: density p(x,t), velocity u(x,t) and pressure P(x,t), for x € Q,t € [0,T]. In
the following, we assume that all quantities are sufficiently smooth functions.

The Navier—Stokes equations are derived based on two physical conservation laws,
the conservation of mass and the conservation of momentum. The conservation of mass
means that the rate of change of mass in an arbitrary volume w C €2 is equal to the flux
of mass across its boundary 0€2. The local form of the mass conservation law takes the
form

dp

E%—V'(pu)zo, Ve € Q,t € (0,7], (2.1)

which is called the continuity equation. If the fluid is incompressible and homogeneous,
the density p is constant in space and time, i.e., p(x,t) = po > 0. Thus, the continuity
equation (2.1) simplifies to

V-u=0, VxeQte(0,T] (2.2)

The conservation of momentum states that the momentum in w is neither created nor
destroyed, but only changed through the action of forces as described by Newton’s laws
of motion. For a homogeneous, incompressible fluid, using the fact that the density p is
constant as well as the continuity equation (2.2), the local form of the law of conservation
of momentum takes the form

2% <‘987:+u.v”) =V S+ for, VxeQte(0,T), (2.3)
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where S = S(«, t) is the Cauchy stress tensor and f.; = fox (T, ) represents the external
forces acting on the fluid. The external forces can include, e.g., gravity, buoyancy or
electromagnetic forces. The relation (2.3) is called the momentum equation.

The Cauchy stress tensor S is a symmetric (d x d)-tensor of order 2 representing all
internal forces in the fluid. Its divergence is defined row-wise, i.e.,

OSik

V‘S:T'rkei,

(2.4)
where €; is the unit vector in the direction of i-th Cartesian coordinate axis and Einstein
summation convention is used. For Newtonian fluids, S depends linearly on the velocity
deformation tensor .
Vu + (Vu
D(u) = Vu+ (Vu) ,
2
i.e., the symmetric part of the velocity gradient. The Cauchy stress tensor can be
expressed as

(2.5)

S = 2uD(u) — PI, (2.6)

where p is the dynamic viscosity of the fluid and I is the identity tensor.

After substituting the relation (2.6) into the momentum equation (2.3) and dividing
both sides of the equation by the constant density pg, we get the momentum equation
for an incompressible Newtonian fluid in the form

0

8—’:+U-Vu—2uv-ﬂ)(u)+vp:f, (2.7)
where v = pu/pp is the kinematic viscosity of the fluid, p = P/py is the kinematic pressure
and f = f/po. This relation can be further simplified thanks to the incompressibility
constraint (2.2), since

V -D(u) = % (V- (Vu)+ V- (Vu)T)

1 1 (2.8)
= i(Au +V(V-u)) = QAu.
Note that the Laplacian of a vector function is a vector of Laplacians of the corresponding
components.
By substituting (2.8) into the momentum equation (2.7) and combining it with the
continuity equation (2.2), we obtain the formulation of the Navier—Stokes equations for
an incompressible Newtonian fluid

a—u+u-Vu—yAu+Vp:f in Q x (0,77,

ot (2.9)
V-u=0 in Q x (0,7).
For more details on the derivation of the Navier—Stokes equations see, e.g., [66, 45].
The incompressible Navier—Stokes equations bring several difficulties for the numer-
ical simulation as well as mathematical analysis. One of them is the fact that the
continuity equation does not involve the pressure variable. This kind of coupling is
called saddle-point problem. As a result, if we solve the problem using Galerkin-based
method such as finite elements, the solution spaces for velocity and pressure cannot be
chosen arbitrarily. We will comment on that issue in more detail later. Another difficulty
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is the nonlinearity of the convective term w - Vu. In order to solve the Navier—Stokes
equations numerically, we have to use some linearization method first. Two well known
linearization methods, Picard and Newton, will be described in the next section.

Moreover, the numerical solution becomes challenging if the convective effects domi-
nate the viscous effects. The relative contributions of convection and diffusion are defined
by a dimensionless quantity called the Reynolds number

Re = E, (2.10)
v

where L is a characteristic length scale of the domain €2 and U is a reference velocity.
The characteristic length scale L is chosen by convention for specific types of domain
geometries. For example, it is the pipe diameter for pipe flow, the chord length for flow
around an airfoil etc. The characteristic velocity U is usually chosen as the maximum
velocity of the fluid relative to the walls or an object moving in the fluid. The Reynolds
number is used to characterize the flow regime (laminar or turbulent) and predict the
flow patterns. For very low Reynolds numbers, the flow is diffusion-dominated and the
fluid tends to move in non-mixing layers (laminar flow). On the other hand, for high
Reynolds numbers, the flow is convection-dominated and turbulent flow occurs, which is
characterized by chaotic behavior and random fluctuations. For Reynolds number values
in some range starting from a so-called critical Reynolds number, there is a transition
phase where the flow loses stability and becomes turbulent. The value of critical Re
varies for different fluids and domains.

Initial and boundary conditions

The time-dependent incompressible Navier—Stokes system (2.9) has to be formulated
with an initial condition at t = 0 and boundary conditions on the domain boundary 0f).
An initial velocity field u(x,0) = uo(x) is prescribed as the initial condition at ¢ = 0.
It has to be divergence-free and fulfill the given boundary conditions for t — 0.

There are several types of boundary conditions that can be specified for an incom-
pressible flow problem. Here we do not give a full list of options, we only mention the
boundary conditions considered in this work. For more detailed overview see, e.g., [66].

One of the basic types of boundary conditions is a Dirichlet condition, which means
that we prescribe the velocity at a part of the boundary

u(x,t) = g(x,t) in 0Qp x (0,77, (2.11)

where 0€)p C 0f2 and g is a given function. At fixed walls, we usually set g = 0, which
is called no-slip boundary condition. Generally, the Dirichlet boundary can be divided
into three parts

e the inflow part (g -n < 0),
e the outflow part (g -n > 0),
e the characteristic part (g - n = 0),

where n denotes the outward-pointing unit normal to the boundary.
If the Dirichlet condition is specified on the whole boundary 92, the pressure is
determined only up to an additive constant, sometimes referred to as the hydrostatic
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pressure. To obtain a unique pressure solution, we have to fix that constant by intro-
ducing an additional condition for pressure, e.g., that its integral mean value over 2 is
equal to zero. Moreover, the prescribed velocity has to satisfy the compatibility condi-
tion obtained by integrating the incompressibility constraint (2.2) over  and using the
divergence theorem

Oz/V-u:/ u~n:/ g-n Vte (0,T]. (2.12)
Q o0 o0

A special case is the enclosed flow for which g - n = 0 everywhere on 0f2.
Another common type of boundary condition is the so-called do-nothing boundary
condition

(2vD(u) — pI)n = 0 in Ay x (0,7, (2.13)

where 02y C 0 and I is the identity tensor. This condition models zero normal stress
on the boundary part 9y and it is often used at free outflow boundaries. It arises
as a natural boundary condition for the Navier—Stokes equations, when the momentum
equation formulation (2.7) is used. The reason why it is called ”do-nothing” is that
the term (2vD(u) — pl)n appears in the boundary integral in the weak formulation
and due to the condition (2.13), this boundary integral vanishes at 9Qy. Thus, if no
further boundary integrals are added to the weak formulation, the do-nothing condition
is satisfied automatically.

However, this outflow condition does not allow the Poisseuille flow, which is an
analytical solution to a simple two-dimensional channel problem with a parabolic inflow
velocity. An extension of the inflow velocity solves the incompressible Navier—Stokes
equations together with a pressure, which cannot satisfy the outflow condition (2.13)
(see e.g. [66]). If the same problem is solved such that (2.13) is satisfied, the velocity
vectors at the outlet are directed to the boundaries of the channel. It corresponds to a
situation, when the channel ends in an open space.

The modified do-nothing condition

(vVu —pl)n =0 in 0Qy x (0,77, (2.14)

where the symmetric part of the velocity gradient is replaced by the whole gradient, does
allow the Poisseuille flow. This condition does not have a physical meaning anymore,
but it can be interpreted as an artificial boundary condition such that the computational
domain {2 is only a restriction of a larger physical domain, which is assumed to continue
further. It arises as a natural boundary condition for the Navier—Stokes equations for-
mulation with the velocity Laplacian (2.9), since the term (vVu — pl) n appears in the
boundary integral in the weak formulation.

Note that if (2.13) or (2.14) is prescribed at some part of the boundary, we do not
need to introduce any additional conditions for pressure, since a pressure term is already
included in the do-nothing boundary condition.

It is also important to mention that the do-nothing condition is not suitable if there
is some inflow at the outlet boundary (e.g., if a vortex crosses the outlet). Therefore, a
modification called directional do-nothing condition was introduced, see [11] for details.
However, we do not consider this modification in this work.

Steady-state Navier—Stokes equations

If the velocity and pressure do not change in time, we talk about a stationary flow.
Hence, the time derivative of the velocity is equal to zero, which leads to the stationary
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or steady-state Navier—Stokes equations

u-Vu—vAu+Vp=f in ,

] (2.15)
V-u=0 in €,

where the function f also does not depend on time. In practice, such flows can be
expected if the viscosity v is sufficiently large (i.e., the Reynolds number Re is sufficiently
small).

The steady-state Navier—Stokes equations need to be equipped with boundary condi-
tions on 9S2. The same types of boundary conditions can be prescribed as in the case of
unsteady Navier—Stokes equations, assuming that all given data are time-independent.

Stokes equations

A stationary flow of a viscous fluid with a very low velocity such that the convection
effects can be neglected, is modeled by the so-called Stokes equations

—vAu+Vp=f in ,

] (2.16)
V-u=0 in Q.

This simplified model is obtained from the stationary Navier—Stokes equations by omit-
ting the nonlinear convective term w - Vu. Thus, the resulting equations are linear.

Oseen equations

Another simplification of the Navier—Stokes equations are the Oseen equations

w-Vu—vAu+Vp=f %n Q, (2.17)
V-u=0 in Q,
which take convection into account. The convection field w (which is assumed to be
divergence-free) is given and thus the Oseen equations are again linear.

The Oseen equations often arise as a part of numerical solution of the Navier—Stokes
equations. Specifically, if the Picard linearization method is applied, we obtain a se-
quence of Oseen problems, where w corresponds to the velocity field obtained in the
most recent iteration.

2.2 Galerkin discretization and linearization

Since the isogeometric analysis is based on the Galerkin method, before we go into
the description of the IgA discretization itself, we briefly summarize the steps leading
to the Galerkin discretization of the steady-state and time-dependent Navier—Stokes
equations. In the steady case, these steps include weak formulation of the problem and
linearization of the convective term. In the case of time-dependent problem, there are
several possible approaches to the discretization. We choose to discretize in time first
and proceed similarly to the steady case at each time level.
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2.2.1 The steady-state problem

We consider a boundary value problem for the steady-state Navier—Stokes equations in
a bounded domain Q C R? with a Lipschitz continuous boundary 0€) consisting of two
complementary parts d€2p and 92y, with no external forces, i.e. f = 0. The problem
is given as

u-Vu—vAu+Vp=0 in Q, (2.18)
Vou=0 in Q, (2.19)
u=g on 0Qp, (2.20)
ou
i 0 on (2.21)

where the Dirichlet boundary condition g = g(x) does not depend on time.

Weak formulation

Let (u,p) be a classical solution of the steady-state Navier—Stokes problem, that is, let
u € [C%*(Q)]? and p € C1(Q) satisfy (2.18) - (2.21). The weak formulation is derived
by multiplying the momentum equation (2.18) with a test function v and the continuity
equation (2.19) with a test function ¢ and integrating over the domain Q. We obtain
the identities

/('u,-Vu—yAu+Vp)-v:O,
Q

/qV-uzO,
Q

for all v and ¢ from suitably chosen spaces of test functions. To reduce the continuity
requirements on the weak solution, integration by parts is applied, leading to

/(u-Vu)-v—l—V/Vu:V'v—/ <8u—pn>-v—/pv-’020,
Q Q o0 \On Q
/qV-u:O.
Q
d

d
(w-Vu) v=>3" uj%vi, (2.24)
J

i=1 j=1

(2.22)

(2.23)

The convective term should be understood as follows

and the expression Vu : Vv represents the componentwise scalar product, i.e.,

d d d
8'&@' 81)1'
Vu: Vv = ZVUZ- -V = Z Z 9z, 0z, (2.25)
i=1 i=1 j=1

where wu;,v; are the components of w,v. The appropriate velocity solution space V,,
velocity test space V and pressure solution and test space Q are defined as follows
V, = {uc[H' Q)% u=gondp},
V={ve[H(Q)]? v=0o0nd0p}, (2.26)
Q= L*(9),
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where the boundary values of uw and v are understood in the sense of traces, assuming
that g € H'/2(9Qp). The boundary integral in (2.23) vanishes on 9Qp, since the test
functions v vanish on that part of the boundary, and also on 95 due to the do-nothing
boundary condition. Thus, the weak formulation is: find u € V, and p € Q such that

/(u-Vu)-'v+u/Vu:V'U—/pV-'UzO Vv eV,
@ Q@ 0 (2.27)

/qV-uzO Vq € Q.
Q

In the case 0Q2p = 012, the existence of weak solution can be proven (under additional
conditions on the Dirichlet data g), see, e.g., [45, 50] for the proof. The uniqueness
of the solution is guaranteed only for small data (Reynolds number, external force and
boundary conditions). Moreover, Galdi in [50] gives examples of problems for the steady-
state Navier-Stokes equations with Dirichlet boundary conditions in three dimensions
that admit more than one weak solution. For discussion of more general boundary
conditions, see [45] and references therein.

Linearization

To be able to solve the Navier-Stokes equations numerically, the nonlinear problem (2.27)
needs to be linearized and solved iteratively. Given an initial guess (u,p®) € YV, x Q,
we compute a sequence of approximate solutions (u¥,p*) € Vyx Qfork=12,..., by
solving certain linear problems. Here we describe two widely used linearization methods,
Newton and Picard iteration, following the exposition in [40].

Assume that we have computed the iterate (uk, pk) and denote R, r* the nonlinear
residuals of the weak formulation (2.27),

Rk:—/(uk-Vuk)"u—u/Vuk:Vv+/pkv'va (2.28)

Q Q Q

ok _/ oV - ut, (2.29)
Q

Further assume that (u,p) is the exact solution. Let us express it as a combination of
the solution from the k-th linearization step and unknown corrections du* € V, ép* € Q:

w=u"+ouf, p=p"+pF, (2.30)

and substitute it into the weak formulation. After rearranging the equations, we obtain
the following relations for the corrections

/(uk-Vduk)‘v—i—/(5uk-Vuk)"v—i—/(éuhv&uk)-v—i—
Q Q Q
+V/V5uk :Vv—/dka-U—Rk, (2.31)
Q Q
/ qV - ouF =k (2.32)
Q

forallv e V,qe Q.
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The Newton’s method is based on dropping the quadratic term fﬂ(éuk . V(Suk) -V
from (2.31) and solving the following linear problem in each iteration: find du* € V and
(5pk € Q such that

/(uk-Véuk)‘v—i-/(éuk-Vuk)‘v—i-V/V&uk:V'v—/5ka-'v:Rk,
Q Q Q Q

/qv-éuk :rk,
Q

is satisfied for all v € V,q € Q. Once the corrections are obtained, the new approxi-
mations of the velocity and pressure are then defined by updating the previous iterate
via

(2.33)

uft = w4 gut, PP = pF 4 gt (2.34)

The algorithm of the Newton’s method can be also reformulated such that the new iterate
(uk“,pkﬂ) is determined explicitly as a solution of a linear problem. Substituting
Suf = uFt! — uF and opF = pFt1 — p* into the equations (2.33) leads to the following
problem: find uf*! € VY, and pF*! € Q such that

/(uk Vurth v 4 / (ur . Vuk) v+
0 0

—i—u/ Vaurth . Vv—/pkHV-v:/(uk-Vuk)-v, (2.35)
Q Q Q

/qV-ukJrl =0,
Q

is satisfied for all v € V,q € Q. Note that the new iterate depends on the velocity
approximation from the previous iteration w*, but it is independent of the pressure
approximation p¥, and thus, the initial pressure guess p° can be arbitrary. If the Newton
iteration converges, its convergence is quadratic. However, the main drawback is that
the initial velocity u” has to be sufficiently close to the exact solution for the Newton’s
method to converge. Moreover, the initial guess has to be better and better for increasing
Reynolds number [40].

Similarly to the Newton’s method, the Picard’s linearization is based on the equations
(2.31) - (2.32). Here, not only the quadratic term, but also the term [, (du” - Vu*) - v
is omitted. Thus, the linear problem which is solved in each iteration of the Picard’s
method is: find su* € V and 6p* € Q satisfying

/(uk-V5uk)-v+y/V&uk:V'v—/éka-v:Rk Vv eV,
@ @ @ (2.36)
/qv-éuk—rk Vg € Q.
Q

The new approximation of the solution is obtained using (2.34). This approach can be
also reformulated such that the new iterate (uk+1,pk+1) is determined explicitly as a
solution of a linear problem: find u*+! e VY, and pF*t1 € Q such that

/(uk-Vuk“)-'v—ku/Vuk“:Vv—/pkHV‘v—O Yo eV,
0 0 Q

(2.37)
/qV-uk“:O Vg e Q.
0
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This corresponds to a simple fixed point iteration for solving (2.27) with the convection
velocity taken from the most recent linearization step. Note that the problem (2.37) is
a weak formulation of an Oseen problem with w = u¥. The convergence of the Picard
iteration is generally only linear, but its advantage is that it is convergent for a wide
range of initial guesses u" (the initial pressure p° is again arbitrary). Often, the initial
velocity u® is set to zero, which results in solving the Stokes problem in the first Picard
iteration.

Another advantage of the Picard’s method is that, unlike the Newton’s method, the
components of the unknown velocity are decoupled. This can be beneficial for some
methods for solving the discretized problem, where the velocity and pressure part are
solved separately. Thanks to the velocity components decoupling, the resulting velocity
matrix is block diagonal and thus the velocity linear system can be split into d smaller
systems.

Sometimes, the Picard and Newton iteration are combined. First, several iterations
of the Picard’s method are used to start the iteration process and get closer to the
solution, and then the Newton’s method is used to accelerate the convergence. In this
work, we limit ourselves to the Picard linearization. Thus, we are interested in solving
problems of the form (2.37).

Galerkin discretization

The idea of Galerkin discretization method is to define finite dimensional subspaces of
the solution and test spaces and solve the problem (2.37) projected onto these subspaces.
Thus, we define V" ¢ V, VZ C V,, Q" C Q and in every Picard iteration, we look for

kH € Vh, pn € Q" such that

/( VukH -vp + 1// V'u,]€+1 — / szV cvp =0 Yoy, € V!,
Q Q

(2.38)
/qhv uk+1 0 Yaqy € oh.

Further, we introduce a set of velocity basis functions {¢}'} and pressure basis func-
tions {¢'}. Let us assume, for simplicity, that the vector-valued velocity basis functions
oy, consist of d equal components denoted as ¢;'. We express the approximate velocity

k“ € Vh and pressure p, € Q" in the form

uhtt = Zuk+1 gy Z wipl, (2.39)

1=Nqy+1

such that )" u"Cle v ¢ V. The coefficients u ¢ R? and pk'H € R are the unknown
velocity and pressure coefﬁmentb and the coefﬁments u; € R? are known, assuming that

Z u; oy (2.41)

1=Ny+1

holds on the domain boundary 0f2.
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The approach described above is referred to as strong imposition of the Dirichlet
boundary conditions. Let us mention that it is not the only possible treatment of the
Dirichlet boundary conditions in methods based on Galerkin method. Another approach
is based on considering u,v € [H'(0)]? instead of the solution and test spaces defined
in (2.26) and augmenting the variational formulation by terms that enforce the Dirichlet
boundary conditions in a weak sense. As we do not consider this approach in this work,
we refer to the literature for more details, see e.g. [2].

After substituting (2.39) and (2.40) into the formulation (2.38), we obtain a system
of linear algebraic equations that can be written in the matrix form

F BT uk—l—l f
|:B 0 :| |:pk+1:| = |:g:| ’ (242)
where the right hand side comes from the Dirichlet boundary conditions.
Consider the test functions in the form ¢j'e,, for m = 1,...,d. Then the matrix

F € R¥™uxdnu js block diagonal with d equal diagonal blocks,

F = diag(N(uﬁ) +A,... N+ A), (2.43)
d

where the diagonal blocks N(u],?b) + A consist of the discretization of the linearized
convective term and the viscous term. B” € R¥™X™ and B € R™*%¢™u are discrete
gradient and negative divergence operators, respectively. The elements of the blocks
N(uf) and A are as follows

(2.44)
A =[Ay] = [V/QVW V@}‘}
The matrix B consists of d blocks B = [By, ..., By, where
B, = [Bn,ij] = [/ @r (Vh - ém)] form=1,...,d. (2.45)
Q

Particular discretization methods based on Galerkin method are defined by the choice
of the subspaces and their basis functions. The most popular example is the finite
element method (FEM), where the domain §2 is first divided into simple subdomains
(elements) forming a computational mesh. As a consequence, the domain boundary 952
has to be approximated in most cases. The basis functions are defined as piecewise
polynomial functions, polynomial in the interior of each element, with local support
containing only a few elements. This leads to a sparse coefficient matrix of the resulting
linear system.

The inf-sup condition

It follows from the theory of saddle-point problems that the finite dimensional spaces V"
and Q" cannot be chosen arbitrarily. In order for the discretized problem (2.38) to be
well-posed, the spaces V" and Q" have to satisfy the so-called discrete inf-sup condition

V-
inf fQ i on

sup e > >0, (2.46)
an€Q"\{0} 4, cyh\ {0} [lonllynllanl| o
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where -y is a constant independent of the mesh. In standard finite elements, so-called inf-
sup stable pairs of finite element spaces are used to ensure that this condition is satisfied.
Some of the most popular are the Taylor-Hood [98], Nédélec [77] or Raviart—Thomas [85]
element. Alternatively, the inf-sup condition can be circumvented by suitable stabiliza-
tion. Some examples of stabilized elements are given in [40].

2.2.2 The time-dependent problem

In this section, we briefly describe the discretization and linearization of the initial-
boundary value problem for the time-dependent Navier—Stokes equations

?;:—i—u~Vu—yAu+Vp:0 in Qx (0,7), (2.47)
Vou=0  inQx(0,7), (2.48)
u=g on 0Qp x [0,T], (2.49)
ou
Vo T TD = 0 on 00y x [0,T7], (2.50)
u(x,0) = ug in Q, (2.51)

where ug = ug(x) is a given initial condition. The Dirichlet boundary condition g can
be generally dependent on both space and time variable, however, we will assume that it
depends only on the space variable, i.e., g = g(x). The discretization considered in this
work consists of discretization in time first, leading to a sequence of spatial problems
that are linearized and discretized using Galerkin method similarly to the stationary
problem.

We can choose any time stepping scheme for the time discretization. One of the
simplest choice is the one-stage finite difference discretization using the ©-scheme which
includes the well known Crank-Nicolson method and backward Euler method. Unlike
backward Euler method, which is only first-order accurate, the Crank-Nicolson method
is second-order accurate. Both mentioned schemes are unconditionally stable, however,
the approximate solution obtained with the Crank-Nicolson method can still contain
some spurious oscillations. It can require very small time steps to avoid the oscillations,
leading to strict condition on the time step size similar as for the explicit (forward) Euler
method. The backward Euler method is immune to oscillations and allows large time
steps. It is especially suitable for problems where time accuracy is not of importance,
i.e., if we are interested only in the steady state. We refer to [40] for more details on
time discretization of the time-dependent Navier—Stokes equations, including adaptive
time stepping.

Here we consider the backward Euler method with a constant time step At¢. Denot-
ing u”, p" the velocity and pressure at the n-th time step, respectively, we obtain the
following set of equations

un+1 —um

Az + " Vurt — p AW 4Vttt =0 in €,

V-u"tt=0 in Q.

(2.52)

Analogously to the previous section, we derive the weak formulation: find u € V,
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and p € Q such that

1 1
/u"“'U—I—/(U"H-VU"H)-U—I-V/VU”H:VU—/p"+1V-v:/u"-'v,
At Jo Q Q Q At Jo

Q
(2.53)

for all v € YV and ¢ € Q. Note that the first equation was just rearranged by moving
the term with u"” to the right-hand side.

The problem (2.53) is still nonlinear and needs to be linearized. A simple linearization
strategy in this case is to replace the unknown velocity in the convective term by the
velocity from the previous time step u”, i.e., to replace the convection term by the
integral fQ(u" - Vu™t!) - v. Alternatively, we can apply the Picard iteration method
at each time level, which means solving several spatial problems in every time step
instead of one to obtain an approximation of w™*!. For simplicity of notation, let us
drop the index n + 1 and denote u* the k-th approximation of w”t!. Thus, in each
Picard iteration, we search u*t! VY, and PPt € Q as a solution of the following Oseen
problem

1 1
/uk+1-v+/(uk-Vuk+1)~v+V/V'u,k“:V'v—/pkHV-'v:/u”-v,
At Jq Q Q Q At Jo

/ qv . ,ukJrl =0,
Q
(2.54)

for all v € V and ¢ € Q, where u® = u™. Note that performing only one Picard iteration
corresponds to the simple linearization strategy mentioned above.

The Galerkin discretization of the problem (2.54) is also analogous to the steady-
state problem and leads to a linear system of the same structure as (2.42). For the time-
dependent problem, the diagonal blocks of the matrix F include the (scaled) velocity
mass matrix,

F = diag<AitMu +N(ub)+ A, ... éMu + N(uk) + A), (2.55)
d
where
M. = Ml = | [ ott]. (2.56)

Further, the vector f on the right hand side of the resulting linear system includes the
discretization of the term < [, u™ - v.



Chapter 3

Isogeometric analysis

One of the most widely used approaches to solving problems modeled by partial dif-
ferential equations is the finite element method (FEM). As already mentioned above,
it is a discretization method based on the Galerkin method, where the weak formula-
tion of the problem is derived and then solved in finite dimensional subspaces of the
corresponding solution and test spaces. The subspaces are defined as a linear span of
suitable basis functions. In order to define the FEM basis functions and thus the finite
element spaces, the computational domain €2 is subdivided into simple non-overlapping
subdomains called elements, e.g., triangles, quadrilaterals, tetrahedra, etc., forming a
computational mesh.

The process of creating the mesh takes several steps. In industrial practice, the
computational domain is usually a complex model created using CAD (Computer Aided
Design) tools. Such geometries typically consist of trimmed surfaces with small gaps
and overlaps and therefore they are not analysis-suitable. Thus, before the meshing
step, an analysis-suitable geometry has to be created. Then the computational mesh is
generated, which is only an approximation of the original geometry in most cases, since
only simple domains (e.g. polygons in two dimensions), can be described exactly as a
union of simple finite elements. This approximation can result in errors in the subsequent
analysis, especially in some applications such as analysis of thin shells, problems with
solutions containing boundary layers, etc. Moreover, it is often necessary to refine the
mesh or create a new mesh during the analysis phase which requires access to the original
CAD model. This complicates, for example, the use of adaptive mesh refinement or
automatic shape optimization.

Hughes et al. [63, 23] proposed a new discretization approach called isogeometric
analysis (IgA) with the aim to unify CAD and finite element analysis. The main goals
of this approach are to always work with the exact geometry no matter how coarse the
discretization and to simplify the refinement process. It is based on the Galerkin method
together with the isoparametric concept, which means that the basis functions used for
the geometry representation are also used as basis for the solution space. IgA is based
on NURBS (Non-Uniform Rational B-Splines), which is a standard technology used to
represent the geometry in CAD.

One of the main differences between FEM and IgA is that the classical FEM basis
is interpolatory and thus the degrees of freedom correspond to the nodal values of the
finite element solution, which is not true for the NURBS-based IgA. Another difference
is that the FEM solution is only C°-continuous across the element boundaries, whereas
the IgA solution can be generally of higher-order continuity. On the other hand, one of

18
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the important common features of the two methods is a compact support of the basis
functions which results in sparse linear systems. However, the sparsity pattern is not the
same for FEM and high-continuity IgA due to larger overlaps of the IgA basis function
supports.

In this chapter, we outline the basics of B-spline and NURBS and briefly describe how
they are used as a basis for isogeometric analysis. We also mention several inf-sup stable
combinations of IgA bases that can be used for the discretization of the Navier—Stokes
equations.

3.1 Preliminaries

We begin this section with the definition of a spline function and B-splines as a basis of
the spline space. We mention some of the important features of B-splines and describe
how they are used to represent geometric objects like curves and surfaces. We also define
NURBS as a rational generalization of B-splines. Further details on the properties of
B-spline and NURBS objects and some related algorithms can be found in Piegl and
Tiller [84].

3.1.1 Splines and B-splines

Consider a partition of an interval [a,b] C R into ¢ subintervals determined by a vector
x = (xg,21,...,2¢), where a = 9 < 1 < ... < xy—1 < ¢ = b. Further consider
a nonnegative integer k and a vector of regularities r = (r1,7r2,...,79-1). A spline
function f : [a,b] — R is a piecewise polynomial function that satisfies the following
conditions:

e fis a polynomial of degree at most k in [x;, x;41) for i =0,...,0—1,
e f has r; continuous derivatives at x; fori=1,...,/ — 1.

The space of all such spline functions is denoted as Sj.

A classical basis of the spline space S}, are the B-splines (or basis splines). The B-
splines are defined by the spline degree k and a so-called knot vector =. The knot vector
is obtained from the vector x by repeating x; such that its multiplicity is m; = k — r;
fori=1,...,—1. In IgA, we usually work with open knot vectors, where the first and
the last knot are repeated (k + 1) times which corresponds to no continuity conditions
at the endpoints of the interval [a,b]. Thus, the (open) knot vector takes the form

E = (T0y e s L0y Ty ooy Tlyee ey Ty e e s Th1y Ty e vy Tp)
—_———

k+1 k—r1 g1 k+1 (3.1)

= (617’527 <o >§n+k+1)>

where §; < &1 are the knots and n is the dimension of S;. The i-th B-spline of degree

k, N;k(§),i=1,2,...,n, for the knot vector = is defined recursively as follows
) _ L & <& <&,
Nio(§) = { 0, otherwise, (3.2)

Nip(&) = wik(©)Nig—1(§) + (1 —wit1£(8)) Nig1—-1(§),  for k>0,
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Nip Ny 1
0 1 2 3 4 5 6 ¢ 0 1 2 3 4 5 6 ¢
g b o m e e e
Na2o
0 1 2 3 4 5 6 ¢
.
N3 o
0 1 2 3 4 5 P

0 1 2 3 4 5 6 0 1 2 3 4 5 6

T N 777777777777777 T e

0 1 2 3 4 5 66 0 1 2 3 4 5 65

T N 77777777 T e

0 1 2 3 4 5 66 0 1 2 3 4 5 6§
Figure 3.1: B-splines of degree k = 0,1,2,3 for a uniform knot vector = =

(0,1,2,3,4,5,6).

where

§-&

X = Sitk—&’ & 7 Ciths

wikle) = { 0,+ otherwise. (3:3)

Figure 3.1 shows the first three B-spline basis functions (for i = 1, 2, 3) of degree

k =0,1,2,3 for a uniform vector E = (0,1,2,3,4,5,6). Figure 3.2 shows two examples

of a cubic (k = 3) B-spline basis for two open knot vectors. The knot vector of the basis

in Figure 3.2a is 2 = (0,0,0,0,1,2,3,4,4,4,4), i.e., all internal knots have multiplicity

1, which results in the highest possible continuity C? over the whole interval (0,4). The

knot vector of the basis in Figure 3.2b is 2 = (0,0,0,0,1,2,2,3,3,3,4,4,4,4), thus the
continuity of the basis functions is C? at £ = 1, C* at £ =2 and C? at & = 3.

1 1
olL >/< 2 . é Ef; X i
,0 1 2,2 333

0° 13
0,0,0,0 1 2 3 4444 0,0,0

(a) A cubic basis with C? continuity at all inter- (b) A cubic basis with continuity C? at ¢ = 1,
nal knots. Clat ¢ =2and C° at & = 3.

4AA2

Figure 3.2: Cubic (k = 3) B-spline bases for two different open knot vectors. The knots
are indicated on the £-axis of the graphs, including their multiplicity.

The B-spline basis functions have several important features. The basis function
N; 1(§) is nonzero only in the interval [§;, &1 x+1], i-e., the support of each basis function
of degree k is k + 1 knot spans. In any given knot span, at most k + 1 basis functions
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are nonzero. They are all pointwise nonnegative and form a partition of unity on the
interval [£k+17£n+1]> Le.,

VE € [Ghs1s ] 0 D Nig(§) = 1. (3.4)
i=1

Note that for an open knot vector [{xy1,&nt1] = [a, b].
Multivariate spline functions are defined by tensor-product of univariate splines. For
example, given two nonnegative integers k, [, two vectors of regularities ri,ro and the

corresponding knot vectors = = (£1,&2, ..., &ntkr1), ¥ = (¢¥1,%2, ..., ¥mii41), the space
of bivariate spline functions is defined as

SP =8 @S, (3.5)

with tensor-product B-spline basis functions N; ;(§)N; (). For more details on splines,
we refer to de Boor [25].

3.1.2 B-spline objects

The B-spline basis can be used to describe objects like curves, surfaces, solids, etc., in
d-dimensional space R?. For example, a B-spline curve of degree k is constructed as a
linear combination of the B-spline basis functions

n
C(¢) =D PiNix(9), (3.6)
i=1
where the coefficients P; € R% i = 1,...,n, are called control points. The piecewise

linear interpolation of the control points is referred to as control polygon.

An example of a B-spline curve in R2, together with its control points and control
polygon, is shown in Figure 3.3. It is a piecewise cubic curve constructed as a linear
combination of the basis from Figure 3.2b corresponding to the open knot vector = =
(0,0,0,0,1,2,2,3,3,3,4,4,4,4). Note that the curve is generally not interpolatory at the
control points, except the first and last control point and also the seventh control point,
where the curve is only C%-continuous. Furthermore, the control polygon is tangent to
the curve at the first, last and seventh control point, and also at the knot & = 2, where
the curve is C'-continuous.

The features of the B-spline basis functions result in several important features of the
B-spline curves. For example, they satisfy a strong convex hull property, which means
that the B-spline curve of degree k is contained in the union of all convex hulls of k£ + 1
neighboring control points. Another important property is the variation diminishing
property meaning that no plane has more intersections with the curve than with the
control polygon.

Similarly to a curve, a B-spline surface is defined as a linear combination of the
tensor-product B-spline basis functions

S(&v) = PiiNi(§Nju(t), (3.7)
i=1 j=1

where P; ; € R%i=1,...,n,5 =1,...,m, are the control points forming a bidirectional
control net. A B-spline solid is constructed analogously.
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Figure 3.3: A cubic B-spline curve in R? constructed as a linear combination of the
basis shown in Figure 3.2b, its control points (black dots) and control polygon (dashed
line). The parts of the curve corresponding to different knot spans are distinguished by
different colors.

3.1.3 NURBS

Since B-splines are piecewise polynomial, it is not possible to represent some elemen-
tary shapes like circle or ellipse as B-spline objects. Therefore NURBS objects were
introduced. The piecewise rational NURBS basis functions are given by

w;iN; 1 (€)

'21 w;Nji(€)
j=

, (3.8)

where N; ;(§) is the i-th B-spline basis function of degree k defined in (3.2) and wj is the
i-th weight. The weights are usually assumed to be positive real numbers. Note that if
all weights are equal, then R; ;(§) = N;(§) for i = 1,...,n, thanks to the partition of
unity property, i.e., B-splines are special cases of NURBS.

Similarly to B-spline objects, the NURBS objects are constructed as linear combi-
nations of the NURBS basis functions with control points as coefficients. For example,
a quarter circle can be represented as a NURBS curve with & = 2 for a knot vector
= = (0,0,0,1,1,1), the weights w; = w3 = 1,ws = v/2/2 and a control polygon con-
sisting of two perpendicular line segments of equal length. The quarter circle is shown
in Figure 3.4 (in red color) together with another three NURBS curves obtained for
different values of ws. For we = 1, the curve is a quadratic B-spline curve.

Since we do not work with NURBS discretizations in this work, we limit ourselves
to B-spline basis in the rest of this thesis.

3.2 B-splines as a basis for IgA

The computational domain {2 can be represented a single B-spline object or it may
consist of multiple separate B-spline objects called patches, which is common for complex
geometries in industrial practice. Such geometry is referred to as a multipatch. Each
patch has its own parametric space and basis independent of the other patches. For the
purpose of analysis, it is necessary to connect the patches in some way. One possibility
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0.2

Figure 3.4: NURBS curves of degree k = 2 for a knot vector = = (0,0,0,1,1,1). The
weights w; = w3 = 1 for all four curves and wy varies (its values are displayed beside
the corresponding curves). The quarter circle is displayed in red.

is to consider conforming patches, which means that the bases on both sides of the patch
interfaces match. Thus, the control points corresponding to the basis functions at the
interface can be identified with the control points of the respective basis functions at
the other side of the interface. Let us emphasize that the geometry (and also the IgA
solution) is only C?-continuous across the interfaces in this case. Another way to connect
the patches is to use the discontinuous Galerkin method at the patch level, where the
connection is enforced weakly [70]. This method can be used also for nonconforming
patches. However, in this work, we consider only conforming patches connected via
identifying the control points at the interfaces.

3.2.1 Computational mesh and matrix assembly

For simplicity, let us consider a two-dimensional domain @ C R? as an illustrative
example. Let © be described as a single B-spline patch G(§,1) over a parametric
domain 2 defined by given knot vectors =, W,

G(e¥) = 32 3 PusNea@Njulw) = 3. 3 PisQE(6 v), 59)

G: (&) = (1Y), (Ev)eQ, (z,y) e,

where we denoted the product of two univariate B-spline basis functions N; (&) Nj (1))

as one bivariate function Q (§ ). For convenience, let us re-index the control points
and basis functions with one 1ndex such that

N
=Y " PQM(&y), N=n-m. (3.10)

i=1

A computational mesh is given by the product of the knot vectors = x W. Thus, if
the subsequent knots are different from each other, i.e., § # &1 and ¢; # ;1 for
some given i, j, then [&,&41] X [j,1;41] defines an element. In the parametric space,
the elements form a structured rectangular mesh, and its image in the physical space is
generally a curvilinear tensor-product mesh.
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The IgA discrete spaces on the physical domain €2 are generated by the push-forwards
of the B-spline basis functions Qf’l(g , 1) from the parametric space, i.e., by the functions

Qi (z,y) = (QF' oG Y (z,y), r=1,...,N, (3.11)

where G™! : Q — ). The transformation (3.11) is nothing but a change of variables.
The coefficient matrices in IgA can be assembled in a similar way as in standard FEM,
that is, the integrals over ) are computed element by element. The element integrals
are transformed into the parametric space using classical change of variables rules and
computed using Gaussian quadrature. We obtain a local coefficient matrix from each
element. Finally, the local matrices from all elements are assembled into a global matrix.
However, the computational costs of such assembly can be very high, especially for higher
degree discretizations, and therefore specialized assembly procedures for IgA have been
developed, see, for example [15, 74].

3.2.2 Mesh refinement

An important feature of isogeometric analysis is the possibility to enrich the discretiza-
tion space in several ways such that the geometry of the computational domain can be
still represented exactly in the basis of the enriched space. Also the parametrization of
the geometry stays unchanged. The analogues of the finite element h-refinement and
p-refinement are knot insertion and degree elevation, respectively. Moreover, IgA offers
another refinement strategy referred to as k-refinement.

Knot insertion and degree elevation belong to fundamental B-spline/NURBS algo-
rithms described in [84]. For a B-spline curve of degree k in the form (3.6), the knot
insertion algorithm consists of inserting new knots into the knot vector =, generating
a new B-spline basis of degree k using (3.2) and computing new control points from
the original ones such that the shape and parametrization of the curve is not changed.
Figure 3.5a shows an example of a linear B-spline basis for a knot vector = = (0,0,1,1)
and a refined basis obtained by inserting new knots £; = 1/3 and & = 2/3 into the knot
vector is shown in Figure 3.5b.

RNy

0 1,1 0,0 1,1 0,0,0 1313 2/3,2/3 1,11
(a) Linear basis for knot vector (b) Linear basis for knot vector (¢) Quadratic basis for = =
= 00,1,1) ==(0,0,3,2,1,1). (000,;,§,§,§,1,1,1)

Figure 3.5: An example of basis refinement by knot insertion ((a)-(b)) and degree ele-
vation ((b)-(c)).

The degree elevation is achieved by increasing the multiplicity of all knots by one in
order to preserve the continuity of the curve, constructing a new B-spline basis of degree
k 4+ 1 for the new knot vector and finding new control points for the obtained basis.
Figure 3.5¢ shows an example of a quadratic B-spline basis obtained from the basis in
Figure 3.5b by degree elevation.



CHAPTER 3. ISOGEOMETRIC ANALYSIS 25

In many situations, we would like to perform both A- and p-refinement. In isogeo-
metric analysis, these operations do not commute. If we first refine the mesh by inserting
new knots and elevate the basis degree afterwards, the number of basis functions will
increase considerably and the resulting basis will have a decreased continuity at each
knot. On the contrary, elevating the degree of the basis on the coarsest level and then
inserting new knots into the knot vector results in less basis functions with less points
of decreased continuity. The latter strategy is denoted as k-refinement [63]. An example
of k-refinement is shown in Figure 3.6 (compare with Figure 3.5).

! 1

N

0 1,1 0,00 1,1,1 0, O 0
(a) Linear basis for knot vector (b) Quadratic basis for knot ( Quadratlc basis for = =
Z=(0,0,1,1). vector = = (0,0,0,1,1,1). (000,§,§,1,1 1)

Figure 3.6: An example of k-refinement.

Of course, all mentioned algorithms can be generalized for surfaces etc. Note that
the h-refinement using knot insertion does not allow true local refinement. This is not
a consequence of using IgA itself, but rather that the B-spline/NURBS-based IgA is
limited to tensor-product meshes. By inserting knots, the mesh is always refined in
the sense of tensor refinement and in the case of multipatch with conforming interfaces,
the refinement propagates to adjacent patches. The situation is similar in standard
FEM with tensor-product meshes. True local refinement in IgA is an active research
area, there are several generalizations of B-splines that allow local refinement, such as
T-splines [92], THB-splines [52] and LR-splines [27].

3.3 Poisson example

To illustrate the process of solving a PDE with isogeometric analysis, we describe the
discretization and solution of a model Poisson problem in this section.

Let © € R? be a B-spline approximation of a quarter annulus with the quarter
circle boundaries approximated by quadratic B-spline curves as in Figure 3.4, where
the B-spline curve corresponds to we = 1. The domain can be described as a B-spline
surface of degree k£ = 1 in the radial direction and degree [ = 2 in the other direction
with the knot vectors = = (0,0,1,1) and ¥ = (0,0,0,1,1,1), respectively. Thus, the
parametric domain is () = [0,1]? and the geometry mapping G(€, 1)) is defined as a linear
combination of the tensor-product basis functions obtained from the bases displayed in
Figures 3.6a and 3.6b. The parametric domain and the physical domain with its control
points and control polygon are displayed in Figure 3.7. Note that the mesh on this
domain consists of only one element.

Consider the following Poisson problem with a constant source function and constant
Dirichlet conditions

—Au=f in Q,

(3.12)
U=y on 01},
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Figure 3.7: The parametric domain (left) and the physical domain (right) with its control
points and control polygon (in blue).

where f,g > 0. The weak formulation is as follows: find u € V), such that for all v € V

/QVU-VU:/va, (3.13)

where the solution and test spaces are given as

Vy = {u € HY(Q) |u= g on 99},

. (3.14)
V={ve H (Q)|u=0on 00},
respectively. Further, we define the IgA finite dimensional spaces Vé‘ C V, and Vhcy

and search for an approximate solution uy € V!’; such that

/QVuh-Vvh = /vah, (3.15)

for all v, € V". Let us emphasize that the finite dimensional spaces in IgA are defined
on the actual physical domain €2, in contrast with standard finite element method where
Q) is often replaced by its approximation.

Assume that we want to approximate the solution on a 3 X 3 mesh using a B-spline
basis of degree 2 with C'' continuity in both directions. Since our representation of the
geometry is only linear in the £-direction, we need to elevate the degree in this direction.
We also need to insert two new knots into the knot vectors in both directions in order
to obtain a 3 x 3 mesh. If we refined the knot vectors first (h-refinement) and elevated
the degree in the &-direction afterwards (p-refinement), we would obtain a basis that is
CY-continuous at the newly inserted knots in the ¢-direction (see Figure 3.5). In order
to obtain a basis with global C' continuity in both directions, we need to elevate the
degree in the ¢-direction in the first place and then insert new knots (k-refinement, see
Figure 3.6). Assuming uniform knot vectors, this results in = = ¥ = (0,0, 0, %, %, 1,1,1).
The left panel of Figure 3.8 shows the parametric domain with the refined mesh and the
univariate B-spline bases forming the tensor-product basis and the right panel shows the
physical domain with the refined mesh and its new control points and control polygon.

The refined spline space over the parametric domain is generated by 25 basis func-
tions, where 9 of them vanish on the boundary and the remaining 16 have a nonzero value
on some part of the boundary. Let us denote the basis functions as Q;(§,),i =1,...,25,
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Figure 3.8: Left: The parametric domain with the refined mesh and the univariate B-
spline bases forming the tensor-product basis over the parameter space. Right: The
physical domain with the refined mesh (black) and the new control points and control

polygon (blue).

such that the basis functions with zero value on the boundary are numbered first. As
already mentioned in Section 3.2.1, the discrete spaces on the physical domain are gen-
erated by the functions

Qi(z,y) = (Qi 0 G Y(z,y), i=1,...,25, (3.16)

that are shown in Figure 3.9. The finite dimensional space V" is defined as the space

Figure 3.9: The push-forwards of the B-spline basis functions on the physical domain.

spanned by the basis functions vanishing on the boundary, i.e., V* = span{@i}?zl.

The approximate solution up € V;‘ is constructed as a linear combination of all
functions @1 In this case, it is possible to satisfy the Dirichlet boundary condition
exactly by setting the coefficients of all basis functions on the boundary equal to g.
Thus, the solution is considered in the form

9 25
uh=Zuij +79g, whereg= Zng, (3.17)

j=1 7=10
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uj € R are unknown coefficients and g = g(z,y) is a function that has a constant value
g on the whole boundary 992. We substitute (3.17) into (3.15) and utilize the fact that
(3.15) holds for all v, € V! if it holds for all basis functions of V*. We obtain a linear
system Au = f, where A € R?%? and the elements of the matrix A and the right hand
side f are

A=Ay = [/ﬂ VG v@,] f=[fi] = [/QU' -9 @z] . (3.18)

Using the standard element-by-element assembly procedure as in FEM, the integral
over € in (3.15) is rewritten as a sum of integrals over the individual elements

9
/ Vuy, - Vop, = Z/ Vuy, - Vuy,. (3.19)
Q e=1 "%

On each element, the indices of nonzero basis functions are identified and a local element
matrix is computed. Let 7, 7 be indices of two basis functions that are nonzero on a given
element .. The integral over the element is transformed into the parametric variables,

. VQ;-VQ; = /(A2 VQi-VQ; |det I, (3.20)
where Jg is the Jacobian matrix of the geometric mapping G, and computed using
Gauss quadrature. The contributions from all elements are assembled into the global
matrix A.

After solving the global linear system we obtain the coefficients w;, ¢ = 1,...,9, of
the linear combination in (3.17). The approximate solution u; can be also described as
a B-spline surface in R3, that is

25
un(z,y) = (€, ) = ;Pi@-(w), (&9) €2 =1[0,1]%, (3.21)

(z,y) = G(§v),

where the first two components of the control points P; € R? are equal to the com-
ponents of the corresponding control points of the physical domain 2 displayed in Fig-
ure 3.8 (right) and the third component is u; for i = 1,...,9, and ¢ for i = 10,...,25.
The approximate solution together with its control points and control net is shown in
Figure 3.10.

It is interesting to take a closer look at the sparsity pattern of the matrix A and
compare it to the matrices obtained from standard FEM. Since the mesh 3 x 3 is so coarse
that one of the basis functions is nonzero on the whole domain, the global matrix for our
example is dense. Therefore, we display the sparsity pattern of a matrix obtained for a
finer mesh 7 x 7, see the left panel of Figure 3.11. For comparison, the sparsity pattern of
a matrix for the same mesh with a biquadratic C%-continuous B-spline basis is shown in
the right panel of Figure 3.11, which corresponds to the sparsity pattern for the standard
Q2 finite element. Obviously, the FEM-like matrix is larger since there are more basis
functions than for IgA with higher continuity on the same mesh. Both matrices are
banded, however, the band of the matrix for higher continuity basis is denser. The
reason is that in standard FEM (or IgA with C continuity), on each element, there are
basis functions with supports containing only the given element, whereas the supports
of higher-continuity IgA basis functions always contain more than one element. The
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z

Figure 3.10: The approximate solution w; with its control points and control net (in
blue).

Mesh 7x7, deg2, c! basis Mesh 7x7, deg2, c0 basis

500 16 26 36 : 40 50 5‘0 160

nnz = 841, approx. 35 % nnz = 2209, approx. 8 %
Figure 3.11: Sparsity pattern of the global matrix on a 7 x 7 mesh with a biquadratic
C1- (left) and C%-continuous basis (right). The number of nonzero values (nnz) and
their percentage is displayed for both matrices.

only exceptions are the basis functions that are nonzero on the boundary. Compare
the bases in Figures 3.5¢ and 3.6¢c. This results in larger overlaps of the local element
contributions.

Thus, smaller size of the IgA matrices does not mean that the solution of the linear
systems will be equally expensive as of the FEM linear systems of the same size. The
higher the continuity, the denser the matrices. For example, we compare the matrix in
the left panel of Figure 3.11 with a matrix resulting from a C° biquadratic discretization
on a 4 x 4 mesh which is of exactly the same size. However, this matrix has 529 nonzero
elements, which is only 22 % of the total number of elements (compare with the number
of nonzeros and their percentage displayed in Figure 3.11 (left)).

3.4 Discretization of the Navier—Stokes equations

The IgA discretization of the Navier—Stokes equations proceeds as described in Sec-
tion 2.2. As already mentioned, the finite dimensional spaces V* and Q" have to be
chosen such that they satisfy the inf-sup condition (2.46). In this work, we do not con-
sider the case where the inf-sup condition is circumvented by stabilization. The inf-sup
stability of some particular combinations of IgA discrete spaces has been shown in the



CHAPTER 3. ISOGEOMETRIC ANALYSIS 30

literature. For example, three stable pairs of spline spaces that can be viewed as exten-
sions of the Taylor-Hood (TH), Nédélec (N) and Raviart-Thomas (RT) elements were
introduced by Buffa et al. in [13]. The isogeometric TH pair was already known from
Bazilevs et al. [1]. Another stable isogeometric element referred to as subgrid (SG) ele-
ment, was proposed by Bressan and Sangalli in [12]. The inf-sup stability of some other
combinations of the discrete solution spaces were also addressed by Nielsen et al. in [78].

Consider a two-dimensional physical domain  C R? represented as a single B-
spline patch. Further consider a B-spline basis obtained by h-, p- of k-refinement of
the original basis in which 2 is described. Assume that the refined basis is of degree k
in both directions and that all inner knots of its knot vectors = and ¥ have the same
multiplicity m = k — r, where 0 < r < k — 1. Denote the spline space generated by such
basis as S,:}; Recall that the number r corresponds to C” continuity at the inner knots.
Denote the finite dimensional velocity and pressure space on the parametric domain

—~ ~h ~
Qas V' and Q" respectively. The velocity spaces on the parametric domain for the
isogeometric Taylor-Hood, Nédélec and Raviart-Thomas element are given as

oh r,r r,r

Vrr = S X Skt

oh r+1,r rr+1

VN = Ski1kt1 X Sk kt10 (3.22)
P r+1,r rr—+1

Vrr = Siik X Sektn

and the pressure spaces are the same for all elements,
Ah h Ah )
Qry =9Qn =9Qpr = S]:f];. (3.23)

An interesting feature of the isogeometric Raviart-Thomas pair is that the following
equality holds

~~ O -~
{v T e vRT} =0, (3.24)

which guarantees that exactly divergence-free velocities ¥ are obtained. However, special

care must be taken if the unknown velocity is searched in a subspace of \A)ZT, for example
if there are Dirichlet boundary conditions imposed strongly. See [13] for more details.

The simplest way to construct the spaces V" and Q" on the physical domain is to
map the pressure and each component of the velocity via the geometrical parametrization
G:ﬁ—)Q,thatis

oh
Vi={v|voGeV},
Q" ={p|poG e Q"},
giving isoparametric discretization spaces. However, Buffa et al. [13] demonstrate exper-
imentally that the inf-sup stability is preserved only for the Taylor-Hood pair of spaces.

For the RT- and N-spaces it is necessary to use a Piola mapping for the velocity space
to preserve stability, i.e.,

(3.25)

J ~h
h G
= — GeV ;, 3.26
v {det(JG)”‘“ } (3.26)
where Jg is the Jacobian matrix of the mapping G.

For the isogeometric SG element, the velocity space is defined on a subgrid of the
pressure grid obtained by subdividing each pressure element into 2¢ velocity elements in
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the sense of k-refinement, where d is the space dimension. This allows to take both pres-
sure and velocity fields with the highest possible continuity, thus, for example, k-degree
C*~1_continuous pressure and (k + 1)-degree C*-continuous velocity. The isoparametric
mapping (3.25) is considered in this case.

Due to simplicity of implementation, we consider only the isogeometric TH element
in this work.



Chapter 4

Solution methods

In practical applications, the linear systems arising from discretizations of the linearized
incompressible Navier—Stokes equations are usually very large, especially for problems
in three dimensions or flows with high Reynolds number, where proper resolution of the
flow phenomena (for example boundary layers) requires very fine meshes. Recall that
we are dealing with sparse nonsymmetric saddle-point linear systems of the form

IR w

where the block F depends on the velocity solution from the most recent Picard iteration
or time step. Let us denote the matrix of the linear system (4.1) as

B o (4.2)

T
A [F B ]
for convenience. These systems have to be solved in every Picard iteration for steady
problems and at least once in every time step for time-dependent problems. Thus, it
is often necessary to solve these large linear systems many times during the solution
of a single flow problem, and therefore, it is very important to be able to solve them
efficiently. Moreover, we need a robust solver that is able to deal with a wide range of
problem and discretization parameters, such as Reynolds number and mesh refinement
level. The solver should also perform well for stretched grids, since the meshes needed in
the real-world flow computations are often far from uniform. In isogeometric analysis,
robustness with respect to the discretization basis degree and continuity is also desirable.

An overview of solution methods for general saddle-point linear systems can be found,
e.g., in Benzi et al. [5], where several particular applications including the incompressible
flow problems are commented on in more detail. There are two possible approaches to
the solution of saddle-point systems: coupled and segregated. Coupled methods deal
with the linear system (4.1) as a whole, computing both unknown vectors (velocity
and pressure in the case of the incompressible flow) simultaneously. On the other hand,
segregated methods compute the velocity and pressure separately. The solution methods
for general linear systems can be divided into two main categories: direct and iterative
methods. The coupled methods for saddle-point systems can be either direct or iterative.
The segregated methods can involve direct or iterative methods or a combination of both
as their components.

Direct methods are usually based on a factorization of the system matrix, such as
LU factorization. Assuming exact arithmetic, they give the exact solution in a finite

32
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number of steps. Direct methods are robust, however, their main disadvantage is that
their time and memory requirements are too high and for large problems, especially
in three dimensions, the direct solution can be even unfeasible. Moreover, all steps of
the algorithm have to be always performed, since no meaningful approximations of the
solution are obtained during the solution process.

On the other hand, iterative methods are based on constructing a sequence of ap-
proximations of the exact solution. The iterative process is stopped when a ”sufficiently
good” solution is obtained, for example if the residual norm is reduced by a given number
of orders of magnitude.

A widely used family of methods for solving large linear systems are the Krylov
subspace methods. These methods have some common features with both direct and
iterative methods. Theoretically, they find the exact solution of the linear system in a
finite number of steps, similarly to direct methods. In exact arithmetic, the solution is
obtained in at most NN iterations, where N is the number of unknowns. At the same
time, an approximation of the solution is constructed in each iteration. Even if exact
arithmetic was used, if N is large, performing all iterations needed to obtain the exact
solution would be impractical. The situation in finite precision arithmetic is even more
complicated. Therefore, Krylov subspace methods are used as iterative methods, i.e.,
the iteration process is stopped as soon as a "sufficiently good” approximation of the
solution is obtained.

Another very important class of methods for solving linear systems arising from
discretization of partial differential equations that was not mentioned so far are the mul-
tilevel methods. This class includes the multigrid and domain decomposition methods
which can be both used as coupled solvers for the saddle-point system or as a part of
segregated methods or preconditioners for Krylov subspace solvers. We do not describe
the details of these methods in this work. For a comprehensive survey of multigrid
methods including applications to fluid flow problems, we refer to [101]. An overview of
domain decomposition algorithms and also their use as preconditioners for saddle-point
problems can be found, e.g., in [100].

This work is devoted to the coupled solution of the linear systems of the form (4.1).
In this chapter, we give a brief overview the basic principles of direct and iterative
methods with focus on the Krylov subspace methods. Then we mention several methods
specifically for saddle-point problems including some segregated methods, since these
principles are frequently exploited in the construction of preconditioners for the coupled
system.

4.1 Basic principles

In this section, we briefly describe of the principles of direct methods, stationary iterative
methods and Krylov subspace methods for a linear system Ax = b with a general
nonsingular square matrix A € RVXV,

4.1.1 Direct methods

Direct methods are often based on the LU factorization of the system matrix, i.e., on
the decomposition A = LU, where the factors L and U are lower and upper triangular,
respectively. The solution x can be written as

x=A"b=U"'L'b=U"ly, (4.3)
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where y = L™'b, and x is computed in two steps. First, the vector y is obtained as
a solution of the system Ly = b and then the system Ux = y is solved. These are
two triangular linear systems that can be solved using forward and back substitution,
respectively. Thus, once the LU decomposition of the matrix A is available, the linear
system Ax = b is easy to solve.

The basic Gaussian elimination algorithm realizes the solution process described
above. The LU decomposition and the vector y are obtained in the forward elimina-
tion step and the system with the upper triangular matrix Ux = y is solved in the
back substitution step. We note that pivoting (choosing suitable diagonal elements of U
by permutation of the rows and/or columns of A) may be necessary to prevent break-
down caused by division by zero. Further details can be found, e.g., in Golub and Van
Loan [54].

In finite precision, only an approximation X of the exact solution is always computed
due to roundoff errors. Pivoting is also helpful to control the roundoff errors. In fact,
using a suitable pivoting strategy can guarantee that the residual r = b — AX will be
small in some sense. However, a small residual does not imply a small error of the
solution e = x — X. After substituting X = x — e into the expression for residual, we
obtain the relation between the residual and error r = Ae and hence e = A~ 'r. Thus,
if the absolute value of the elements in A~! is large, the error can also be large even for
a small residual.

The solution of a linear system with a dense N x N matrix using Gaussian elim-
ination requires O(N?) floating point operations (flops) and O(N?) storage memory.
The computational costs of direct methods are often very high also for sparse matri-
ces, since new nonzeros typically arise in the factors L and U compared to the matrix
A (fill-in), which can result in L, U being much denser than A. The state-of-the-art
implementations of direct methods for sparse matrices exploit sophisticated combinato-
rial algorithms and matrix reordering heuristics to reduce fill-in and thus the time and
memory requirements, see, for example [10, 5].

As already mentioned in Section 3.3, the costs of direct methods for linear systems
resulting from high continuity IgA discretizations are higher than for linear systems of a
similar size in standard FEM or C° IgA. Collier et al. presented a study of performance
of direct solvers for linear systems resulting from various IgA discretizations of a model
three-dimensional Laplace problem in [21]. This topic was further studied in [51], where
the use of high continuity IgA with CY separators was proposed, which is referred to as
refined isogeometric analysis (rIgA). For illustration of the increasing costs, we present
computational times (in seconds) of the matrix factorization for various IgA discretiza-
tions with maximum continuity in Table 4.1. The linear systems were obtained from
discretizations of the Poisson problem described in Section 3.3 of degree k = 2,...,7
with C*~! continuity for a mesh with 256 x 256 elements. Notice that the size of the
matrices does not change significantly. Two different sparse direct solvers based on LU
factorization were used: the sparse LU solver available in the Eigen library [55] and the
Intel MKL PARDISO solver [91]. All computations were performed on a single thread.

4.1.2 Stationary iterative methods

Iterative methods are a more economical choice for large sparse linear systems than
direct methods, especially in terms of computer memory. Stationary iterative methods
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discr. N Figen | Pardiso
k=2C' | 65536 6.6 1.0
k=3,C%|66049 | 23.4 2.4
E=4,C%| 66564 | 52.1 4.2
k=5,C%| 67081 | 83.2 7.2
k=6,C° | 67600 | 201.6 10.9
E=7,C% 68121 | 541.1 16.2

Table 4.1: Computational times (in seconds) of the factorization of the matrices obtained
from various IgA discretizations of the Poisson problem.

form a class of simple methods based on an iteration formula of the form
X,11=Hx,+c¢c, n=12..., (4.4)

starting from an initial guess xg. The reason why they are called stationary is that the
iteration matrix H and the vector ¢ do not change during the iteration process.

The method is called consistent if the relation (4.4) holds for the exact solution x of
the linear system, i.e., x = Hx + c¢. Then, the error e,, of the solution generated in the
n-th iteration of a consistent stationary iterative method can be expressed as

e, =x—X, =Hx+c— (Hx,_1+c) =He,_; =H'¢ (4.5)

and thus
llenl| < |[H"[||[eo]]- (4.6)

It is a classical result that such method converges to the exact solution of the linear
system Ax = b for any initial vector x¢ if and only if p(H) < 1, where p(H) is the
spectral radius of the iteration matrix. See, for example, [54, 87] for more details.

If the method is consistent, the iteration formula (4.4) can be rewritten as

Mx,+1 = Nx, +b (4.7)

or also in the form
Xpi1 =X, + M H(b — Ax,), (4.8)

where M = A(I - H)"™!, N = MH and hence A = M — N. Thus, every consistent
stationary iterative method corresponds to a splitting of the matrix A. In order to
obtain a potentially efficient method, the splitting has to be chosen such that linear
systems with the matrix M are relatively easy to solve. If A is a so-called M-matrix,
the iteration process given by (4.7) is guaranteed to be convergent for certain splittings
called regular, which can be found relatively easily. For more details, see [87, 115].

The convergence of stationary iterative methods is often very slow and therefore
they are rarely used as standalone solvers nowadays. They are much more often used as
smoothers for multigrid methods or preconditioners for Krylov subspace methods that
will be described in the following section.

4.1.3 Krylov subspace methods

Individual Krylov subspace methods can be described from several points of view. To
explain the idea of this class of methods, we begin the exposition by introducing general
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projection methods and we describe the Krylov subspace methods as their special case
as, for example, in the books by Saad [87] and Liesen, Strakos [71]. Then we state
the classical algorithms of two widely used Krylov subspace methods, the probably best
known conjugate gradient (CG) method and GMRES (generalized minimal residual)
method, which is used in all numerical experiments in this work. We refer to [87, 71] for
detailed derivations and proofs of the statements mentioned in this section.

Projection methods

Given an initial vector xg, we generate a sequence of approximations x, to the solution
of the linear system Ax = b in the form

Xn = X0 + Zn, Zn € Sn, (4.9)
for n =1,2,..., where S, is an n-dimensional subspace of RV called search space. For
the n-th residual, it holds

r,=b—Ax, =b—A(x¢ + z,) =r9 — Az,, (4.10)

i.e. r, € rg + AS,,, where rg is the initial residual for the vector xy.

Since the search space S,, has dimension n, we need n constraints to determine z,
(and hence x,). These constraints are imposed on the residual. We define another
n-dimensional subspace C, C R called constraint space and require the n-th residual
vector r, to be orthogonal to that space, i.e.

r, L C, orequivalentnly r, €Cr. (4.11)
If the spaces S, and C,, are chosen such that RY is a direct sum of AS,, and Cf;,
RY = AS, @ C;, (4.12)

then the vectors Az, and r, are uniquely determined for any ro € RY, which can be
written as

07 Polas, Tl (413)
= Az, +r,.

Thus, the vector Az, represents a projection of the initial residual ry onto the space
AS,, and orthogonal to C,, with the complement given by r,. Moreover, if AS, = C,,
the decomposition (4.13) is orthogonal.

Consider arbitrary bases of the search and constraint space and two matrices S, C,, €
RN whose columns are formed by the basis vectors of S,, and C,,, respectively. Then,
the n-th approximation x, can be written in the form

X, = X0 + Sntn, (4.14)

where t,, € R™ is a vector of unknown coefficients of z,, in the basis represented by S,,.
The orthogonality constraints (4.11) are applied to determine t,,, i.e., we require

0=Clr, =CI(b - Ax,) = Clry — CTAS,t,. (4.15)
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Thus, instead of solving the linear system Ax = b of order IV, we solve a reduced system
of order n
CIAS,t, = Clrg (4.16)

in the n-th iteration of a projection method, which is referred to as the projected system.
The idea of projection methods is to obtain a good approximation x, &~ x for some
n < N. The projection process is said to be well defined at step n if the projected
matrix CI' AS,, is nonsingular. This is true if and only if (4.12) holds.

There are some conditions on the matrix A and the choice of the search and constraint
space for which the projection process is guaranteed to be well defined at step n for any
bases S,,, C,,. Two important cases are:

(i) A is symmetric positive definite and C, = Sy,
(ii) A is nonsingular and C,, = AS,,.

A projection process is said to have a finite termination property if the exact solution
of the system Ax = b is obtained in a finite number of steps. Assume that a projection
process is well defined at step n and that x,, is the exact solution, i.e. Ax,, = b. Then
we have r, = 0 and according to (4.13), this can be true if and only if ro = rO‘ASn,
which means that ryp € AS,,. A sufficient condition for this is that rg € S,, and S,, =
AS,,. Therefore, it is beneficial to build a sequence of nested search spaces such that
S1 =span{rp}, S €S2 C S3 C ... and AS,, = S, for some n.

Krylov subspaces

In this paragraph, we introduce Krylov subspaces that are a suitable choice of search
spaces such that the resulting projection method has the finite termination property. For
a given matrix A € RM*Y and a nonzero vector v € RV, the Krylov subspace C,, (A, v)
is defined as

Kn(A,v) = span{v, Av,A?%v,..., A" 1v}. (4.17)

For n =1,2,..., the sequence of Krylov subspaces K, (A, v) is obviously nested.

By definition, K, (A, V) is a subspace of RY containing all vectors x that can be
written in the form x = p(A)v, where p is a polynomial of degree at most n — 1.
The monic polynomial of the lowest degree for which p(A)v = 0 is called the minimal
polynomial of v with respect to A and its degree d = d(A,v) is called the grade of v
with respect to A. It means that d is the lowest integer such that

AV +ag ATV 4.+ Av+agv=0 (4.18)
with some a; € R,i = 0,...,d — 1. In other words, A%v is a linear combination of
the vectors v, Av,..., A% v that are linearly independent. Thus, the dimension of

Kn(A,v) is equal to n for n = 1,...,d, and Kq4;(A,v) = Kq(A,v) for all j > 0.
Moreover, if A is nonsingular, then A (A, v) = K4(A, V), i.e. the subspace becomes
A-invariant.

The properties described above make Krylov subspaces suitable search spaces for
projection methods. In particular, if S,, = KC,,(A,rg) for n = 1,2,..., then rg € S; C
Sy C ... C S and AS; = S, where d is the grade of rg with respect to A. If the
projection process with such choice of search spaces is well defined at step d, then
rg = 0, i.e. the exact solution is obtained in d < N steps. Projection methods with



CHAPTER 4. SOLUTION METHODS 38

S, = Kn(A,rg) are called Krylov subspace methods. Different choices of constraint
spaces Cy, yield different Krylov subspace methods.

Let us mention another property which will be important later in the text. The
minimal polynomial of a matrix A is the monic polynomial of the lowest degree such
that p(A) = 0, denote it as pmin(A) and its degree as D = D(A). Then it holds d < D
for any vector v, since pmin(A)v is always equal to zero. Thus, a Krylov subspace
method finds the exact solution in at most D steps for any initial residual ro.

Although the individual Krylov subspace methods are mathematically completely
determined by the choice of S, and C,, their numerical behavior depends on the choice
of the bases of these spaces. Recalling the power method for finding the dominant eigen-
value of a matrix, we know that the vectors of the Krylov sequence rgp, Arg, A’rg, ...
converge to an eigenvector of A corresponding to the dominant eigenvalue. It means that
they eventually become very close which can lead to loss of linear independence in finite
precision. Therefore, orthogonal bases are used in practice. Practical implementations
of particular Krylov subspace methods rely on variants of the Gram—Schmidt orthogo-
nalization algorithm for generating an orthonormal basis of the Krylov subspace: the
Arnoldi and Lanczos algorithms.

In the rest of this section, we describe the mentioned orthogonalization algorithms
and two Krylov subspace methods based on the conditions (i) and (ii) stated above:
the conjugate gradient (CG) method, and the GMRES (generalized minimal residual)
method.

Arnoldi algorithm

Consider a Krylov subspace K, (A, v) and assume that n < d, where d = d(A, v) is the

grade of v with respect to A. Denote as vy, ..., Vv, the orthonormal basis of K, (A, V)
generated by the Arnoldi algorithm. The algorithm proceeds as follows: the initial vector
vy is chosen such that vi = v/||v||, where ||.|| denotes the classical Euclidean vector

norm. At the n-th step, the previously generated Arnoldi vector v, is multiplied by
the matrix A and the obtained vector is orthonormalized against all previous Arnoldi
vectors v;, ¢ = 1,...,n, using the Gram—Schmidt procedure. The individual steps are
summarized in Algorithm 1, where the modified implementation of the Gram—Schmidt
algorithm is used.

Algorithm 1: Arnoldi algorithm

Input: matrix A € RV*N vector v € RV,

Output: orthonormal vectors vy,..., vy with span{vy,...,v,} = K,(A,v) for
n=1,...,d.

Set vi = v/||v]|.

forn=1,2,...do

w, = Av,,

fori=1,2,..., ndo

L hin = Wy Vi

Wn = Wp — hi,nvi

S ok W N

Pt i = |[Wal|
If hpt1,n = 0, then stop.

© ®w

| Vn+1 = Wn/hn+l,n
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It can be shown that the Arnoldi algorithm stops at step 8 (hp+1,, = 0) if and only

if n = d, and thus, the Krylov subspace spanned by the generated vectors vq,...,v, is
A-invariant.
Denote by V,, the N x n matrix with column vectors v1i,...,v,. Further, denote by

H, the (n+ 1) x n matrix whose nonzero entries h; ; are defined in Algorithm 1 and by
H,, the matrix obtained from H, by omitting the last row, i.e.,

hii hip - hin
ha1 haa -+ hop

n = ) ) ) (4.19)
hn,nfl hn,n

The matrix H,, is in an unreduced upper Hessenberg form, which means that all entries
below the first subdiagonal are zero, while no entry of the first subdiagonal vanishes.
After n steps of the algorithm, it holds

AVn = Van + hn—l—l,nvn—‘rlé’g1

v (4.20)
— n+1Liy,

where €, denotes the n-th column of the n x n identity matrix I,,. Further, since
VIV, =1, and VIv, ;1 = 0, we have

VIAvV, =H,. (4.21)

Symmetric Lanzos algorithm

The symmetric Lanczos algorithm can be viewed as a simplification of the Arnoldi algo-
rithm with a symmetric matrix A. If A is symmetric, then, since (4.21) holds, the upper
Hessenberg matrix H,, has to be also symmetric and thus it is a tridiagonal matrix. It
is usually denoted by T, and written in the form

(1 02

d2 2 03

-| o ] (122)

On—1 Tn—1 On
on Tn

where y; = h;; fori =1,...,n,and §; = h;—1; fori = 2,...,n. This leads to Algorithm 2
which is the standard implementation of the symmetric Lanczos algorithm corresponding
to the modified Gram—Schmidt procedure.

The most important difference from the Arnoldi algorithm with a general nonsym-
metric matrix is that, in the n-th step, the vector Av,, is orthonormalized only against
the two preceding vectors using the three-term recurrence relation

Ont1Vnt1 = AVy — YV — 6 V1. (4.23)

This leads to constant work and memory requirements per iteration. On the contrary, the
work and memory requirements of the Arnoldi algorithm with a nonsymmetric matrix
increase in each iteration.
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Algorithm 2: Symmetric Lanczos algorithm

Input: symmetric matrix A € RV*N | vector v € R,

Output: orthonormal vectors vy,..., vy with span{vy,...,v,} = K, (A, v) for
n=1,...,d.

Set vo =0, 01 =0, vi = v/||v]].

forn=1,2,... do

Wy = Av, —0,Vp_1

Tn = ngn

Wn = Wp — TnVn

Ont1 = [|Wn|

If 6,41 = 0, then stop.

Vn+1 = Wn/5n+1

w N O Ok W N

Conjugate gradient method

The conjugate gradient method, proposed by Hestenes and Stiefel in [59], is characterized
by the condition (i), i.e., it can be used for linear systems with a symmetric positive
definite (SPD) matrix and the search and constraint spaces are chosen such that S, =
Cn = Kn(A,rg). Thus, the orthogonality condition (4.11) becomes r, L K, (A, rp), or
in other words

vit, =0, YveK,(A rg). (4.24)

Since the n-th residual can be written as
r, =b—Ax, = Ax — Ax, = A(x — x,) = Ae,, (4.25)
where e,, is the error of the approximation in the n-th iteration of the method, it holds
vIiAe, =0, VYveKk,(A, rg), (4.26)

i.e., the n-th error is A-orthogonal to the n-th Krylov subspace, e, La K,(A,rp). This
orthogonality condition is equivalent to the optimality property

lealla = lx=silla = min b= ylla, (.27)
which means that the solution found in the n-th iteration of the CG method is the vector
in the space xo + K, (A, rg) which is closest to the exact solution x in the A-norm ||.||a,
where ||v||a = VVvTAv.

Since the A-norm of error is minimized over nested spaces of growing dimension
during the CG iterations, the sequence of ||e,||a is obviously non-increasing (in fact, it
is strictly decreasing). The most widely known error bound for the CG method is

||en||A H(A)—l " B
|eo|\A§2<\/@+l> ;o n=1,....4d, (4.28)

where k(A) = Apaz/Amin is the condition number of the matrix A and Apaz, Amin are
the maximal and minimal eigenvalue of A, respectively. However, this bound is too
pessimistic and often not descriptive even for the worst-case convergence of CG. It is
possible to derive a bound that describes the worst-case behavior of the method for a
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given matrix A based on all eigenvalues of A, see [71] for its derivation and more insight
into the convergence of the CG method.

The implementation of the CG method is based on the symmetric Lanczos algorithm
for generating an orthonormal basis of IC,(A,rp). In this case, the projected system at
step n (4.16) becomes

VIAV,t, = VIr,. (4.29)

Since (4.21) holds with T), on the right-hand side for the symmetric Lanczos method
and ro = ||ro||v1, the system (4.29) takes the form

Tyt, = |’r0‘|€1- (430)

The individual steps of one iteration of the CG method are based on solving this linear
system using an LDLT decomposition of T,, and determining the new approximation x,
from (4.14), i.e., x, = Xo+ Vyty,. The resulting algorithm is summarized in Algorithm 3.
The residuals rg, . . ., r, are scalar multiples of the Lanczos vectors vy, ..., vy4+1 and form

Algorithm 3: Conjugate gradient (CG) method

Input: SPD matrix A € RV*V | right-hand side b € RY, initial
approximation xo € RY, stopping tolerance e.

Output: approximation x,.

Compute rp = b — Axg, pg = ro.

fuy

2 forn=1,2,...do
_ _lraall?

3 Hn-1= p;llﬂflApnfl
4 Xp = Xp—1 1+ Qn—1Pn—1
5 ry, =Tp 1 — Qp_1Apy_1
6 If the stopping criterion is satisfied (e.g., ||ryn||/||rol| < €), stop the iteration.

_ lrall?
I
8 | Pn=1"In + BuPn-1

an orthogonal basis of the Krylov subspace K, +1(A,rp). The vectors po,...,p, form

an A-orthogonal (or conjugate) basis of K, +1(A,rg). They are called direction vectors,
since they represent a search direction in which a new approximation to the solution
is searched starting from the previous one. In the classical implementation of CG,
the vectors r,, and p, are generated using two coupled two-term recurrences. It is also
possible to reformulate the algorithm such that two decoupled three-term recurrences are
used, however, such implementations tend to be more sensitive to rounding errors [71].

GMRES method
The GMRES method, proposed by Saad and Schultz in [88], is characterized by the

condition (ii), i.e., it can be used for linear systems with a general nonsingular matrix
and S, = K, (A,rg) and C,, = AK,,(A,rp). The orthogonality condition (4.11) yields

wlir, =0, VYw e AK,(A,r) (4.31)

or equivalently
vIATr, =0, Vv eK,(A, rg). (4.32)
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Thus, the error e, satisfies
vIATAe, =0, VYveK,(A,r), (4.33)

that is, the n-th error is AT A-orthogonal to the n-th Krylov subspace, e, Lara
Kn(A,rp). These orthogonality conditions are equivalent to the optimality properties

ry|l = min b—- Ay 4.34
||zn ] yexot K (Auro) | I ( )
and

llenllara = |[x — XnllaTa = min x —yllaTa, (4.35)
yeEX0+Kn (A ro)

which means that the solution found in the n-th iteration of the GMRES method is the
vector in the space xg + K, (A, rg) with the smallest residual measured in the Euclidean
norm and the smallest error measured in the A7 A-norm.

Again, the sequence ||r,|| (and also ||e,||a7a) is obviously non-increasing. Unlike
CG, the convergence of GMRES is not that well understood. An important difference
from CG is that it is generally not possible to derive a descriptive convergence bound
based only on eigenvalues of the matrix A.

The implementation of the GMRES method is based on the Arnoldi algorithm for
generating an orthonormal basis of K,,(A,rp). The projected system (4.16) takes the
form

VIATAV,t, = VI ATy, (4.36)

which can be rewritten as
H,H, t, = H|[[ro||&: (4.37)
using the relation (4.20). Thus, the new approximation x,, is determined using (4.14)
. —1 -
with t,, = (ﬂgﬂn) ﬂzHroHel.
The algorithm can be also derived directly from the optimality property (4.34), where
y is written as y = x9 + V,,t and the optimality property takes the form

|Ira|l = min [[ro — AV,t]|
teR™

= nin [[[[ro[[v1 = Vi H 8]

= *?elﬁ%l}b [|Vig1(]|roll€r — H, t)||

(4.38)

= Iin || ||roller — Hyt]],
where the fact that the columns of V11 are orthonormal has been used in the last step.
This is a least-squares minimization problem with a unique solution t = t,, given as the
solution of the corresponding normal equations (4.37). In the practical implementation
of GMRES, this least-squares problem is solved using a QR factorization of the matrix
H,. The QR factorization is obtained by a sequence of Givens rotations. Once the

factors are computed, the residual norm ||r,|| can be evaluated easily. The individual
steps of the GMRES algorithm are summarized in Algorithm 4.
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Algorithm 4: GMRES method

Input: nonsingular matrix A € RV*VN  right-hand side b € RY initial
approximation xo € RY, stopping tolerance «.
Output: approximation x,,.

1 Compute ro = b — Axg, vi =ro/||roll.

2 forn=1,2,...do

3 Compute the n-th step of the Arnoldi algoritnm for A and v = rg.

4 Update the QR factorization of H,,.

5 If the stopping criterion is satisfied (e.g., ||ry||/||rol| < €), stop the iteration
and go to 6.

6 Compute t,, as the minimizer of || ||ro||€1 — H,,t|| and x,, = x¢o + V,ty,.

Other Krylov subspace methods

The CG method is the method of choice whenever we deal with a linear system with a
symmetric positive definite matrix. In the case where the matrix is symmetric indefinite,
the minimal residual (MINRES) method or the symmetric LQ (SYMMLQ) method
proposed in [80] can be used.

For linear systems with a general nonsymmetric matrix, there is quite a wide va-
riety of Krylov subspace methods that can be applied besides GMRES. We mention,
for example, the generalized conjugate residual (GCR) method [32] or the orthogonal
direction (ORTHODIR) method [116] that are mathematically equivalent to GMRES
and also use long recurrences, i.e., their computational costs and memory requirements
increase during the iteration process. There are some Krylov subspace methods that
overcome this difficulty, such as the biconjugate gradient (BiCG) method [47] and its
variant BiCGstab [109]. The implementation of these methods is based on a nonsym-
metric Lanczos algorithm (also called Lanczos biorthogonalization or two-sided Lanczos
algorithm) which generates two sets of biorthogonal basis vectors instead of one orthog-
onal basis. This leads to three-term recurrence relations and thus constant work and
memory per iteration. However, these method suffer from serious breakdowns, which
means that they can stop although no invariant subspace has been computed.

The memory requirements of GMRES or equivalent methods can be also reduced by
using their restarted variants, e.g., GMRES(k) where the GMRES algorithm is restarted
every k iterations. On the other hand, the convergence of the restarted versions can be
slow or they can stagnate completely.

There are many other Krylov subspace methods that were not mentioned here, see,
for example, [89, 97].

4.2 Solution of saddle-point systems

All solution techniques described in the previous section can be used as coupled solvers
for the saddle-point system (4.1). Direct solvers can be applied in a black-box manner.
There is no specialized direct solver for nonsymmetric saddle-point systems, nevertheless,
we refer to [5] for a discussion of coupled direct solvers for symmetric saddle-point linear
systems.

Krylov subspace methods for nonsymmetric linear systems can be also used in a
straightforward way. However, their convergence is strongly dependent on the precon-
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ditioning. As already mentioned, the preconditioning techniques for saddle-point linear
systems often exploit the segregated approach or stationary iterative methods. Several
preconditioners suitable for linear systems obtained from discretization of the Navier—
Stokes equations will be described in Chapter 5.

In this section, we briefly mention one of the segregated approaches to the solution of
(4.1) called Schur complement reduction and then we describe two examples of stationary
iterative methods for saddle-point linear systems.

4.2.1 Schur complement reduction

We consider the linear system (4.1) and write it in the form

Fu+B'p=rf,
P (4.39)

Bu=g.
Assuming that F is nonsingular, if we multiply the first equation of (4.39) by the matrix
BF ! and subtract it from the second equation, we obtain a reduced linear system for

b,
—~BF 'B'p =g - BF'f, (4.40)

where the matrix S := —BF~!B7 is the Schur complement of F in \A. If we also assume
that the whole system matrix A is nonsingular, it can be easily shown that S is also
nonsingular, see [5]. Thus, the pressure solution p can be computed from (4.40) and the
velocity solution u is then obtained from another reduced system

Fu=f—Bp. (4.41)

This is actually a block Gaussian elimination applied to (4.1) which leads to a block LU
decomposition of the matrix A,

1, o] [F BT
Accu- [k, O)[F B, i

where I, and I, are identity matrices of size (d - n,) x (d-n,) and n, x n,, respectively.
The two reduced systems (4.40) and (4.41) correspond to the block back substitution,
i.e. solving the linear system with the matrix &«. We note that forming the right-hand
side of (4.40) requires solving of a linear system with the matrix F (if the vector f is
nonzero), and thus the Schur complement reduction method requires solving one linear
system with the matrix S and two linear systems with the matrix F. These systems
can be solved directly or iteratively. However, in the case of linear systems arising
from discretizations of the Stokes and Navier—Stokes equations, the Schur complement
is typically dense and very expensive to construct. Therefore, this method is not of
practical interest for our problem, but it forms a basis for some of the most effective
preconditioners for the Navier—Stokes equations.

4.2.2 Uzawa method

The Uzawa method is one of the first iterative schemes for saddle-point systems proposed
in [108] in the context of constrained optimization. It became popular also in the field
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of fluid dynamics. The classical Uzawa method is based on the following stationary
iteration: given an initial guess pg, compute

Up41 = F_l(f - BTPn):

4.43
Pn+1 an—i-aJ(BunH—g), n=12,..., ( )

where w > 0 is a relaxation parameter. Thus, a linear system with the matrix F is
solved in every iteration of the algorithm. It can be solved directly or by an inner
iterative method.

As any stationary iterative method, the iteration formula (4.43) corresponds to a
splitting of the matrix A = M — N and it can be written in the form of a coupled
stationary iteration

Xn+1 _ M—INXn _ M_1b7 (444)
where Xp = [unypn]Ta b= [f7g]T and
Mmo[E O] [0 B (4.45)
=B _%Ip ) = lo _%Ip . .

However, it can be also seen as a segregated method. If we eliminate u,4; from the
second equation of (4.43) using the first equation, we obtain

Pni1 = pn +w(BFIf - BF!'BTp, — g), (4.46)

which is, in fact, a Richardson iteration applied to the Schur complement system (4.40)
(multiplied by -1). For saddle-point systems with symmetric positive definite matrix F,
this fact can be exploited to determine the optimal value of w in terms of maximal and
minimal eigenvalues of the negative Schur complement —S = BF BT see [34].

The convergence of the Uzawa method is rather slow for linear systems obtained from
discretization of the Navier—Stokes equations, especially for high Reynolds numbers. It
can be improved by suitable preconditioning. For example, a preconditioned Uzawa
algorithm in the form

u,11 =F'(f-B'p,),

1 (4.47)
Prn+1 = Pn + wP (BunJrl - g),

is considered in [34]. This is equivalent to a Richardson iteration applied to a precondi-
tioned Schur complement system

P 'BF'B7p = P }{(BF'f — g), (4.48)

which indicates that the preconditioner P should be an approximation of the negative
Schur complement.

4.2.3 SIMPLE

The SIMPLE method (Semi-Implicit Method for Pressure Linked Equations) is an itera-
tive method widely used for numerical solution of the stationary incompressible Navier—
Stokes equations. It is a segregated method proposed by Patankar and Spalding in [82]
for finite volume discretization of the Navier—Stokes equations. It belongs to the class of
pressure-correction schemes, where the momentum equations are solved first to obtain
an intermediate velocity which does not fulfill the incompressibility condition. Then a
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pressure correction is computed and used to project the intermediate velocity field onto
the space of divergence-free vector fields.

In the original literature, the description of the SIMPLE method is usually mixed
with the discretization of the equations itself and often not very clear. In [115], Wesseling
gives a unified formulation of several stationary iterative methods for the Navier—Stokes
equations in the framework of distributive iteration, including the SIMPLE algorithm.
We follow his exposition here.

A distributive iterative method for a general linear system Ax = b is based on right
preconditioning by a matrix B, i.e. solving

ABy =b, x=By (4.49)

instead of the original system. The preconditioner B is chosen such that the matrix AB
has some desirable properties for iterative solution, for example it is an M-matrix while
A is not. Then, one proceeds similarly to Section 4.1.2: a splitting of the system matrix
AB = M — N is chosen, which corresponds to the following splitting of the original
matrix

A=MB!-NB L (4.50)

The resulting stationary iteration takes the form
MB'x,,1 = NB"!x, + b, (4.51)
which can be also written as
Xpi1 = Xp + BM_l(b — Ax,). (4.52)

The method is called distributive because the correction M~!(b— Ax,,) corresponding to
a non-distributive iterative method (compare with (4.8)) is distributed over the elements
of xXp41.

Since the method defined by (4.52) is obviously consistent for any nonsingular B
and M, these matrices do not need to be exactly the same as in (4.50). For example,
a sophisticated preconditioner B can be used in order to design a suitable M and then
both matrices can be slightly changed to make (4.52) more practical.

For saddle-point systems, a preconditioning matrix B can be chosen such that the
matrix AB is block lower triangular. This leads to decoupling of the two variables
(velocity and pressure in our case) and the splitting AB = M — N can be obtained by
splitting the diagonal blocks. For example, the matrix B can be defined as

1T
s o[l FE] w0

leading to the preconditioned matrix

F 0
as -5 ¢] (4.59)
where S is the Schur complement.
The original SIMPLE algorithm is obtained for the splitting AB = M — N with

(4.55)

M:[F O},

B Sp
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where S p = —BD™!'B7 is an approximation of S obtained by replacing the inverse of
F by the inverse of its main diagonal D = diag(F). The block F in (4.55) could be also
replaced by its approximation representing, for example, an inner iterative method for
approximate solution of linear systems with F. Further, the matrix B in the distribution
step (4.52) is replaced by

I _-D-!'BT
= [5 L ] - (456)
This results in the following stationary iteration
Un+1 Un L, -D~'BT F-! 0 Tun
- S g ’ 4.
|:pn+l:| |:pn:| + |:O Ip _SBIBFfl SBI Tpn ’ ( 57)

where [ry,p, rpyn]T is the residual vector for [u,, p,]”.
Let us express the new velocity and pressure as a sum of the approximation from
the previous iteration and a correction du, dp, respectively. Then, given u, and p,, one

iteration of the SIMPLE algorithm is performed in the following steps:
1. Compute a preliminary velocity correction du* as a solution of

Fou* = f — Fu,, — B p,. (4.58)

2. Compute a preliminary pressure correction dp* by solving

Spép* = g — Bu,, — Béu. (4.59)

3. Distribute the preliminary corrections using the matrix B to obtain new corrections

fu = du* — D 'BYsp*
. P (4.60)
op =Jp”.
4. Update the velocity and pressure solution using the new corrections. In the classical
SIMPLE method, this step is performed with underrelaxation:

Upt1 = Uy, + ayiu,

(4.61)
Pn+1 =Pn + apép)

where the underrelaxation parameters a,,, o, are taken from the interval (0, 1].

It is usually seen it the literature that an intermediate velocity u* is computed in
the first step of the algorithm instead of the preliminary correction du*. The algorithm
can be easily reformulated in this sense using u* = u,, + du*, which leads to Algorithm
5. This saves some computational work, since we avoid evaluating Fu, and Bu, on
the right-hand side of (4.58) and (4.59), respectively. In this variant of the algorithm,
only an initial pressure guess pg is needed at the beginning of the iteration process. We
note that the velocity update step in Algorithm 5 does not involve any underrelaxation.
However, the underrelaxation can be incorporated into the algorithm also in this case,
see, e.g., [111].

Several variations of the SIMPLE method have been proposed in the literature,
e.g., SIMPLER (SIMPLE Revised) [81], SIMPLEC (SIMPLE Consistent) [29] or PISO
(Pressure-Implicit with Splitting of Operators) [64], which was originally designed specif-
ically for time-dependent problems. We will describe the first mentioned variant, SIM-
PLER, in more detail.
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Algorithm 5: SIMPLE method
Input: matrix A, right-hand side vectors f, g, initial pressure guess po.
Output: approximate velocity u, and pressure p,.

1 for n=1,2,..., until convergence do

2 Solve Fu* = f — BTp,,.

3 Solve §D6p =g — Bu".

4 Update u,+1 = u* — D7'B76p.

5 Update pp4+1 = pn + ap0P.
SIMPLER

The idea of the SIMPLER method is that instead of using the pressure p, from the
previous iteration, a new pressure p* is computed first. Assuming that the exact velocity

is known, we have
B'p =f — Fu (4.62)

from the discrete momentum equation. Further, we write the matrix F as a sum of its
diagonal and off-diagonal part, i.e., F = D + (F — D), and multiply both sides of (4.62)
by the matrix —BD ™! to obtain

-BD 'B’p = -BD!(f - Du— (F — D)u)

=Bu—-BD !(f — (F — D)u). (4.63)

Finally, using the discrete continuity equation Bu = g, we get that the pressure is a
solution of the linear system

Spp=g—BD (f — (F—D)u). (4.64)

Thus, in the first step of one SIMPLER iteration, an intermediate pressure p* is obtained
by solving the linear system

Spp* =g —BD (f — (F — D)u,) (4.65)

and used instead of p,, in (4.58) or in step 2 of Algorithm 5. Only an initial velocity ug is
needed to start the iteration. This modification results in faster convergence compared
to the original SIMPLE method, but also in increased computational cost per iteration
since an additional linear system for pressure is solved in every iteration.

A formulation of the SIMPLER algorithm as a distributive iterative method can be
found, for example, in [112]. Denote the matrices M and B defined in (4.55) and (4.56),
respectively, as Mg and Bpg, since their derivation was based on right preconditioning
of the original system, which led to a block lower triangular preconditioned matrix. We
can also use a left preconditioning with the matrix

I, 0

leading to a block upper triangular matrix B.A. Following similar steps as in the deriva-
tion of SIMPLE, we can define a stationary iteration of the form

B-loesly)l e

Pn+1 Pn Tpn
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where

F BT 1, 0
o [o 2w [y )

One iteration of the SIMPLER algorithm can be expressed as a combination of one
iteration defined by the formula (4.67) and one iteration of SIMPLE (4.57), that is,

performing
u* _uy 1 Tyn
Bofoenl] e
followed by
Upt1 u* _1 |
=| .| +BrM M 4.70
[pmj [p] s M 470

*
p

solution [u*,p*]T from (4.69) into (4.70) and some algebraic manipulations, we obtain
the following iteration formula of the SIMPLER method

]T. After substituting the intermediate

where [r*,r*]7 is the residual vector for [u*, p*

[u”“} = [“"} +9 [r“"} : (4.71)
Pn+1 Pn Tpn
where
Q = BrMp' — BRM'AM [ 'B + M !By,
R0 (4.72)
= BrMy'B;! [0 2§D] Bp' M 'BL.

As noted in [112], the SIMPLER method is closely related to the symmetric block
Gauss—Seidel method.



Chapter 5

Preconditioning

Preconditioning in the context of solving linear systems can play different roles. It can
be used with both direct and iterative solution methods. In the case of direct methods,
preconditioning can help reduce spreading of roundoff errors and achieve maximum accu-
racy in finite precision, see, e.g., [43]. The goal of preconditioning for iterative methods
is to accelerate the convergence to the exact solution. Generally, the idea of precondi-
tioning is to transform the original linear system Ax = b into another system that has
some favorable properties for solution with a numerical method. This transformation is
realized by a matrix called preconditioner.

Effective preconditioning techniques for problems arising in a wide range of applica-
tions is an active research area in the past decades. We refer, e.g., to survey papers [89, 3]
for an overview of the developments in this area up to the beginning of the 21st century,
the book [17], where many example applications are covered, and more recent survey
papers [114, 83]. According to Benzi [3], the term preconditioning first appeared in the
literature in 1948 in a paper by Turing [102] dealing with roundoff errors in direct meth-
ods. Twenty years later, it was used in connection with iterative methods (specifically
SSOR) for the first time by Evans [42], but the idea of apriori transformation of a linear
system in order to ensure or improve convergence of iterative methods was used much
earlier by Jacobi [65] or Cesari [16]. In this work, we are interested specifically in pre-
conditioning for Krylov subspace methods. First ideas on preconditioning the conjugate
gradient method appeared not long after its introduction in 1952. According to [89],
already Hestenes’s formulation of the method in [58] is equivalent to the preconditioned
CG algorithm.

The preconditioner, denote it as M, can be designed such that either M =~ A or
M ~ A~! in some sense, which is referred to as forward and inverse type of precondi-
tioning, respectively, in [17]. Both types can be applied in several ways: from the left,
from the right or using a combination of both. Considering the forward type, the left
preconditioning leads to the transformed system

M 'Ax =M'b, (5.1)
the right preconditioning leads to
AM 'y =b, x=M"ly. (5.2)

If the preconditioner is available in a factorized form M = Mj;Ms, mixed (or split)
preconditioning can be applied such that

M 'AM; 'y = M;'b, x=M,'y. (5.3)

50
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In the case of inverse type preconditioning, the matrix M~! (or Ml_l7 M5 1) are replaced
by M (or My, Ms). We note that the matrix M does not have to be formed explicitly,
it is only important to be able to solve linear systems with M in the case of forward
type or multiply with M in the case of inverse type. We consider the forward type of
preconditioning in this work.

The requirements on the properties of the preconditioner M depend on the iterative
solution method used for solving the preconditioned system. For example, we can aim
at minimizing the condition number of the preconditioned matrix M~'A, clustering its
eigenvalues, etc. In general, there are two main requirements on the preconditioner:

e the preconditioned system should be easy to solve (with the given method),
e the preconditioner should be cheap to construct and apply.

These two requirements go against each other. It is important to find a balance between
them such that the resulting preconditioned method converges rapidly and one iteration
is not too expensive at the same time.

As already mentioned, there are descriptive convergence bounds for CG based only
on eigenvalues of the system matrix. Thus, in the case of linear systems with an SPD
matrix, it is possible to identify the desirable properties of a good preconditioner a
priori, at least theoretically (in exact arithmetic). However, we are interested in solu-
tion of nonsymmetric linear systems. There are no such eigenvalue-based descriptive
bounds for the GMRES method and the theory of other Krylov subspace methods for
nonsymmetric systems is even more limited. The ideas of preconditioning techniques
for nonsymmetric systems are mostly heuristics based on practical experience with the
problem at hand. There are, nevertheless, some useful tools that can provide conver-
gence bounds for Krylov subspace methods like MINRES and GMRES, including the
e-pseudospectrum or field of values of the matrix, that can be used for analysis of the
preconditioners. See, e.g., [4] for more details.

There are, in principle, two approaches to the construction of preconditioners. One of
them is purely algebraic, based only on the entries of the given matrix A. This approach
is suitable in situations when we have little or no knowledge of the underlying problem.
Such preconditioners are (almost) universally applicable and can be quite efficient for a
wide range of problems, however, they are not optimal for any particular problem and
can also perform poorly in some cases. This class of preconditioners includes incomplete
matrix factorizations, sparse approximate inverses or algebraic multigrid methods. For
an overview of these methods, we refer to the survey paper [3] which is focused mainly on
the purely algebraic preconditioning techniques. The other approach to the construction
of preconditioners is problem-specific, exploiting knowledge of the underlying problem,
e.g., in the case of PDEs, the original continuous equations, computational domain,
discretization, boundary conditions, etc. These preconditioners can be very effective
for the narrow class of problems they are tailored for. Since we are interested a specific
problem, the incompressible Navier—Stokes equations, we consider methods based on the
second approach in this work.

5.1 Preconditioned GMRES

As already mentioned, a preconditioner can be applied from the left, from the right or
from both sides. The convergence of GMRES can be different for different variants of
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preconditioning, although all matrices in (5.1), (5.2) and (5.3) are similar and thus have
the same eigenvalues. Right preconditioning is often preferred for GMRES, since the
method then minimizes the norm of the residual for the original system r, = b — Ax,,.
On the other hand, if left or mixed preconditioning are applied, the method minimizes the
norm of the preconditioned residual. However, according to [114], a good preconditioner
leads to fast convergence for all three forms of preconditioning.

In this section, we describe the algorithm of GMRES with left and right precondition-
ing. The algorithm with split preconditioning can be easily derived as their combination.
These variants of preconditioned GMRES are discussed, e.g., in Chapter 9 of [87]. We
also mention so called flexible variants of the method which allow for preconditioners
that vary during the iteration process.

5.1.1 Left preconditioning

Considering the forward type preconditioning where M =~ A, the left preconditioned
version of GMRES is a straightforward application of the original algorithm to the
preconditioned system (5.1), see Algorithm 6 for the individual steps.

The residual vectors computed during the algorithm, denoted as z,, in this case, corre-
spond to the residual vectors of the preconditioned system (or preconditioned residuals)

z, = M~ }(b — Ax,). (5.4)

The search space S, is the Krylov subspace generated by the preconditioned matrix and
the vector zg, i.e., S, = Kn(M ™A, zg). Thus, in the n-th iteration of the left precon-
ditioned GMRES method, the norm of the preconditioned residual ||z,|| is minimized
over the solution space xo + K,(M 1A, zg) (recall the optimality property (4.34)).

The stopping criterion is usually based on the preconditioned residuals z,, since
the original residual vectors r, are not available, unless they are explicitly computed
from z,. This can result in stopping the algorithm prematurely or with delay compared
to the stopping criterion based on r,, especially when the preconditioner M is very
ill-conditioned [87].

Algorithm 6: GMRES method with left preconditioning

Input: nonsingular matrices A, M € RV*V right-hand side b € R initial
approximation xo € RY, stopping tolerance .
Output: approximation x,.

1 Compute zg = M~ 1(b — Axq), vi = zo/||z0]|-

2 forn=1,2,...do

3 Compute the n-th step of the Arnoldi algoritnm for M~ A and v = zo.
4 Update the QR factorization of H,,.

5 If the stopping criterion is satisfied, stop the iteration and go to 6.

6 Compute t,, as the minimizer of || ||zo||€1 — H,,t|| and x,, = x0 + V.

5.1.2 Right preconditioning

If right preconditioning is applied, the linear system to be solved takes the form

AM 'y = b, (5.5)
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where the new variable y = Mx. However, the variable y does not have to be used
explicitly in the GMRES algorithm, see Algorithm 7.

Only the initial residual vector is needed to start the Arnoldi algorithm. Given an
initial guess x¢ for the x variable and yo = Mxq, the initial residual is b — AM ™'y, =
b — Axy = rg. Thus, the initial residual for the preconditioned system (5.5) is equal
to the initial residual for the original system Ax = b and it can be computed directly
from xq. In step 6 of Algorithm 7, the approximate solution y, would be computed as
Yn = Yo + Vpt,. By multiplying this by the matrix M~!, we obtain the relation for x,,.

The Krylov subspace whose orthogonal basis is constructed during the algorithm is
again generated by the preconditioned matrix and the initial residual, i.e., K, (AM™1, o).
Thus, the n-th approximate solution y, lies in the affine space yg + K,(AM™! rg) and
also x, € xg + M7, (AM~! rg). Tt can be easily shown (see [87]) that the solu-
tion space for the x variable is identical to the solution space of the left preconditioned
GMRES. Similarly to the initial residual, all residuals computed during the right precon-
ditioned GMRES are equal to the corresponding residuals for the original system. Thus,
the algorithm minimizes the norm of the original residual ||r,|| over the same space as
the left preconditioned version.

Algorithm 7: GMRES method with right preconditioning

Input: nonsingular matrices A, M € RV*N right-hand side b € R initial
approximation xo € RY, stopping tolerance e.
Output: approximation x,.

1 Compute rg = b — Axg, vi = ro/||rol|.

2 forn=1,2,...do

3 Compute the n-th step of the Arnoldi algoritnm for AM™! and v = ry.
4 Update the QR factorization of H,,.

5 If the stopping criterion is satisfied, stop the iteration and go to 6.

6 Compute t,, as the minimizer of ||||ro||¢; — H,,t|| and x,, = xg + M1V, t,,.

5.1.3 Variable preconditioning

In the above, it was assumed that the preconditioner is fixed, i.e., the same linear op-
erator is used as preconditioner in each iteration. However, the preconditioner can be
designed such that the operator varies from iteration to iteration, for example by incor-
porating some information from previous iterations or approximating the application of
M~! by some inner iterative process. In such cases, so called flexible variants of Krylov
subspace methods that allow for variable preconditioning have to be used. There are
several flexible variants of GMRES, see, for example, FGMRES (Flexible GMRES) [86]
or GMRESR [110].

5.2 Krylov acceleration of stationary iterations

As already mentioned in Section 4.1.2, stationary iterative methods are often used as
preconditioners for Krylov subspace methods rather than standalone solvers. However,
this does not mean that the application of the preconditioner is realized by an inner iter-
ative process, which would lead to variable preconditioning mentioned in Section 5.1.3.
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In practice, using a stationary iterative method as a preconditioner usually refers to
defining a fixed preconditioning operator as described for example in Chapter 7 of [40].

Recall that every consistent stationary iterative method corresponds to a splitting of
the matrix A = M — N and the iteration formula can be written in the form (4.8), i.e.,
the n-th iteration is obtained as

Xp =Xp_1 + M b — Ax,_1). (5.6)

Multiplication by the matrix —A and adding the vector b to both sides of (5.6) leads to
the following relations for the n-th residual

rn =Trnpn-1— AM_II‘n,1
= (I - AM Y)r, (5.7)
= (I— AM Y)"r.

Thus, the n-th residual can be written in the form r, = p,(AM™Y)rg, where p, is
a polynomial of degree m with unit absolute coefficient. This means that r, € rg +
AM~'K,,(AM~1 rg), which is the same space in which lies the residual generated by a
Krylov subspace method applied to the linear system preconditioned with the matrix M.
If we use GMRES to solve such system, then because of the optimality property (4.34),
the residual norm ||r,|| is minimized over the mentioned space. Thus, solving the linear
system Ax = b by preconditioned GMRES with the preconditioner M can be viewed
as acceleration of the stationary iterative method defined by the splitting A = M — N.

One of the simplest examples is the Jacobi method for which M = D, where D is
the main diagonal of A. Using Jacobi method as a preconditioner then corresponds to
dividing each equation of the linear system by the corresponding diagonal element of the
system matrix.

One of the best known stationary iterative methods used for solving saddle-point
linear systems is the Uzawa method and its preconditioned version described in Sec-
tion 4.2.2. The preconditioned version corresponds to the splitting A = M — N, where

(5.8)

M:[F i ]

B -1lp

where the matrix P should be a good preconditioner for the negative Schur complement
—S = BF!'B”. Thus, using the preconditioned Uzawa method as a preconditioner is
closely related to the block triangular preconditioners that will be described in detail in
the following section.

5.3 Navier—Stokes preconditioners

This section is devoted to an overview of the problem-specific preconditioners developed
for the linear systems arising from discretizations of the linearized incompressible Navier—
Stokes equations. Thus, we consider the saddle-point linear systems of the form (4.1)
with the coefficient matrix

F BT
= . 5.9
a=5 5] (5:9)
For construction of preconditioners for such linear systems, it is beneficial to exploit the
block structure of this matrix as well as the origin and structure of the individual blocks.
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Note that we consider inf-sup stable pairs of discretization spaces in this work, which
results in the zero (2,2) block in the matrix (5.9) and thus its block triangular structure.
If, on the contrary, stabilization is used to circumvent the inf-sup condition (2.46), a
nonzero block appears at the (2,2) position. However, the block structure of the matrix
is still important also in this case, since the block rows of the linear system correspond
to different quantities (velocity and pressure) and the individual blocks are associated
with certain continuous operators, which can be exploited.

When trying to construct a good preconditioner for GMRES (or other Krylov sub-
space methods for nonsymmetric systems), we can aim at obtaining a preconditioned
matrix, say AM !, with a low degree minimal polynomial ppi,(AM ™). Recall that
we have denoted the minimal polynomial degree as D = D(AM ™). As indicated in
Section 4.1.3, Krylov subspace methods give the exact solution of the linear system in
at most D iterations for any initial residual rqy in exact arithmetic and a small D would
probably lead to a fast convergence in finite precision arithmetic. However, precondi-
tioners with such properties will often not satisfy the second requirement mentioned in
the introduction of this chapter, i.e. that they should be cheap to construct and apply.
Therefore, these ”ideal” preconditioners are used only as a starting point for construc-
tion of practical preconditioners. Although eigenvalues of the preconditioned matrix do
not fully describe the behavior of Krylov subspace methods for nonsymmetric systems,
it can be seen from experiments of many authors that a clustered spectrum away from
the origin often results in fast convergence. Ideally, the eigenvalues should be bounded
independently of the problem parameters such as the discretization mesh size h or the
Reynolds number.

Probably the most widely used group of preconditioners in the field of fluid dynamics
are the so called block preconditioners. They usually possess some special block structure
and are related to the segregated solution approaches described in Section 4.2. They
can be also usually viewed as based on the block LDU decomposition of the system

matrix A,
F BT I, O][F o], F BT
A= [B 0] - [BF—l Ip] {0 S| [0 I, ] (5.10)
or one of the block LU decompositions
F BT I, O][F BT
A= {B 0} _[BF_1 Ip] 0 S} (5-11)
F 0] [L, F!'B”
BYETEL e

where S is again the Schur complement.

We refer to Loghin and Wathen [73] for a general analysis of block preconditioners
for saddle-point linear systems based on the stability (inf-sup) conditions and the field-
of-values equivalence.

A simple block structure for a preconditioner could be block diagonal. As pointed
out by Murphy et al. [76], preconditioning the saddle-point linear system with a precon-
ditioner of the form

M= {F 0 ] (5.13)

0 -S '
leads to a preconditioned matrix with minimal polynomial of degree D = 3 and thus
termination of the Krylov subspace method in at most 3 iterations. However, we do
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not consider block diagonal preconditioners in this work, see, for example, [40, 5] for
more details. They are especially suitable for symmetric saddle-point systems, since
they preserve the symmetry. However, we are interested in solving a nonsymmetric
system and thus we do not need a symmetric preconditioner. The block triangular
preconditioners (described in Section 5.3.1 below) are very similar and they require
only one additional matrix-vector multiplication. Moreover, it can be shown that the
GMRES iteration with a block triangular preconditioner takes half as many steps as
with an analogous block diagonal preconditioner for certain initial vectors, see [40, 46].

In the rest of this section, we describe several approaches to construction of practi-
cal block triangular preconditioners and a group of block preconditioners based on the
SIMPLE method.

5.3.1 Block triangular preconditioners

The family of block triangular preconditioners has been a subject of active research in
the field of solution techniques for saddle-point problems during recent years. Some of
the most efficient methods for solving the Navier—Stokes linear systems belong to this
group.

The ”ideal” block triangular preconditioner is of the form

0 s (5.14)

F BT
M, = [ } .
It is obvious from the block LU decomposition (5.11) that the right preconditioned
matrix AM; 1is block lower triangular with identity diagonal blocks, hence with a single
eigenvalue equal to one. The minimal polynomial of this matrix is of degree 2 (see [76])
and thus GMRES would terminate in at most 2 iterations. The left preconditioned

matrix can be obtained by the similarity transformation
MAAM YIM, = MTTA. (5.15)

Since similar matrices share the same eigenvalues and minimal polynomial, left precon-
ditioning with M, would also lead to termination of GMRES in at most 2 iterations.
The same holds for split preconditioning.

We could also use a block lower triangular preconditioner based on the block LU
decomposition (5.12). However, the block upper triangular form (5.14) is usually con-
sidered, which we will follow in this text.

The application of the preconditioner to a vector r, i.e. computation of a vector
z=M; y, is performed by solving the linear system

o 5= 19

in the steps summarized in Algorithm 8.

Algorithm 8: Application of M, !
1 Solve Sz, =r,,.

2 Updater, =1, — Bsz.

3 Solve Fz, = r,.
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This algorithm corresponds exactly to the Schur complement reduction method de-
scribed in Section 4.2.1. As stated there, this method is not practical since it requires
an explicit construction of the Schur complement and solution of a linear system with
it. The construction of S would be very expensive as well as the solution of the linear
system because S is typically a dense matrix. Therefore, practical block triangular pre-
conditioners use some inexpensive approximation S ~ S. The block upper triangular
preconditioner then takes the form

— F BT
m-[f B 517

The choice of the approximation S yields different preconditioners. Two most popular
choices will be described in Section 5.3.2 and a slightly different approach leading to a
block triangular preconditioner in Section 5.3.3. We note that the Uzawa preconditioner
(5.8) is nothing but a block lower triangular preconditioner where some of the approxi-
mations below can be used for the block P that should also approximate the (negative)
Schur complement.

The application of M, requires solving one linear system with the matrix F and one
linear system with S (or multiplication by S~! if the inverse is defined explicitly). In our
case of Picard linearization of the Navier—Stokes equations, the matrix F consists of d
decoupled discrete convection—diffusion operators, thus the solution of the linear system
with F requires solving several convection—diffusion subproblems. The application of
the inverse approximate Schur complement S—! often requires solution of subproblems
with a Poisson-type discrete operator or mass matrix. In order for M; to be an efficient
preconditioner, we need fast approximate solvers for all subproblems. We will comment
on approximate solution of the subproblems in more detail later in Section 5.3.5. For
now, we assume that all subproblems are solved exactly, which is referred to as the ideal
version of the preconditioner M; (here, the word ”ideal” does not refer to (5.14)).

Eigenvalues

As mentioned above, it is desirable that the preconditioned matrix has a clustered
spectrum away from the origin and bounded independently of the problem parameters.
Therefore, we are interested in the eigenvalues of the matrix

1 [F BT][F BT]!
AM, = B 0] [0 §}
F B7] |[F! —F!B7S!
_ R 5.18
B 0] s (5.18)

[ L 0 | L 0
- |IBF! -BF'BTS7!|  |BF! SS7!|°

It follows from the Leibniz formula for determinants that the determinant of a block
triangular matrix is equal to the product of determinants of its diagonal blocks. Thus,

the following holds:
det(AM,;  —AT) = det(I, — AL,) - det(SS! — AL), (5.19)

where Z is the identity matrix of appropriate size. It holds analogically for any block
triangular matrix. As a result, A is an eigenvalue of the block triangular matrix if and
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only if it is an eigenvalue of one of its diagonal blocks. Hence, the matrix A.//\\/lt_ ' has
the eigenvalue 1 of multiplicity d - n, and the rest of the eigenvalues are solutions of the
eigenproblem

S§_1p =)\p (5.20)

or equivalently of the generalized eigenproblem
Sp = ASp, where p =S~ 'p. (5.21)

This means that we have the same requirements for the Schur complement approximation
S as for the whole preconditioner J/\\/lt: S should be constructed such that the eigenvalues
of SS~! are clustered away from the origin and bounded independently of the problem
parameters.

5.3.2 Approximations of the Schur complement

A good approximation of the Schur complement is useful not only for construction of the
block diagonal and block triangular preconditioners described above, but also in other
methods already mentioned in this work, such as the preconditioned Uzawa stationary
iteration. In this section, we present several approaches to approximating the Schur
complement S = —-BF~'B7”.

Consider a Galerkin discretization of the Stokes equations for a moment. The ob-
tained saddle-point matrix is symmetric and the Schur complement Sstokes = —BA BT
is symmetric and negative definite (for inflow-outflow problems) or negative semidefi-
nite (for enclosed flow problems). The matrix A is defined in (2.44) and it arises from
discretization of the viscous term, i.e., the Laplace operator. It can be shown that
for a stable Galerkin discretization with a shape-regular, quasi-uniform mesh, Sgiokes 1S
spectrally equivalent to the negative pressure mass matrix —IM,,, which means that the
following is satisfied

2 q"BA"'B’q

7% < <TI? VqeR™\ {0}, (5.22)

a’Myq T~
where 7 is the inf-sup constant in (2.46). Both « and T" are independent of the mesh
parameter h and v is bounded away from zero. See, e.g., [40] for more details. As
pointed out for example in [5], it is not surprising that these two operators are related
since Ssiokes Can be viewed as a discrete counterpart of a pseudodifferential operator
—div A~!grad and the identity A = divgrad holds. The relation (5.22) implies, that
the eigenvalues of the generalized eigenproblem

SStokeSﬁ = _)‘Mpﬁ (523)

lie between the two constants v? and I'?, i.e., they are bounded independently of h.
Thus, approximations based on the pressure mass matrix lead to effective preconditioners
for the Stokes problem and h-independent convergence of the preconditioned Krylov
subspace method. It is usually sufficient to take S = —diag(M,;) to obtain h-independent
convergence. We again refer to [40] for more details as well as some numerical results.
A generalization of the Stokes preconditioner for the linearized Navier—Stokes equa-
tions using the approximation S M= —%Mp was presented and analyzed by Elman and

Silvester in [38]. They show that the eigenvalues of Sgi/[l are clustered and bounded
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independently of h also in this case. However, the bounds on the eigenvalues depend
on the viscosity v such that the real part of the eigenvalues approaches zero as v — 0.
As a result, the convergence of Krylov subspace methods deteriorates as the viscosity
decreases (the iteration counts increase roughly like 1/v). See [38] for comparison of
convergence for various mesh refinement levels and viscosity values.

Several approximations of S were later developed with the aim of reducing the sen-
sitivity to v. First of them, called the BFBt preconditioner, was introduced by Elman
in [33]. Another effective and widely used approaches are the pressure convection—
diffusion (PCD) preconditioner proposed by Kay et al. in [67, 68] and the least-squares
commutator (LSC) preconditioner introduced by Elman et al. in [35], which is closely re-
lated to the BFBt preconditioner. The three mentioned approximations will be described
in more detail in the rest of this section.

BFBt preconditioner

The construction of the approximate Schur complement in the BFBt preconditioner is
based on Moore-Penrose pseudoinverse, although this term is not explicitly mentioned in
the original paper [33]. The preconditioner is described using pseudoinverses for example
in [5].

Recall the expression for the Schur complement S = —BF !B’ If B were a square,
invertible matrix, the inverse of the Schur complement would take the form S—! =
—B~TFB~!. Since B is in fact a rectangular matrix, the inverses B~7 and B~! do not
exist, however, they can be replaced by some generalization of the inverse.

The Moore-Penrose pseudoinverse in one of the possible generalizations. It exists
for any matrix A € R™*" and it is denoted as AT. One of its definitions is that the
operators AAT and ATA are orthogonal projectors onto the range of A and the range of
AT respectively. It means that AATx = x if x € R(A) and AATx = 0 if x € R(A)L,
analogously for the operator AYA. It is easy to verify that if the matrix A has full
rank, the pseudoinverse can be expressed as a simple algebraic formula. If m < n and
rank(A) = m, i.e. the matrix AA7T is invertible, then

AT =AT(AAT)L. (5.24)
On the other hand, if m > n and rank(A) = n, the pseudoinverse is
AT = (ATA)1AT. (5.25)

Thus, assuming that B has full rank, an approximation of the inverse Schur comple-
ment can be defined as

S];%‘Bt = _(BT)T FBf

5.26
= —-BBY)'BFBY(BB’)L (5.26)

The approximation of S is then given as
Sere: = —(BBT)(BFBT)"(BB”). (5.27)

The block triangular preconditioner J/\\/tt in combination with §BFBt is called the BFBt
preconditioner due to the occurrence of the discrete operator BFB” in (5.27).

The application of §géBt to a vector requires solving two linear systems with the
matrix BB”, which corresponds to solving two Poisson-type problems on the pressure
space. Further, matrix-vector multiplications with the matrices BT, F and B are re-
quired.
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BFBt properties

It was shown in [33] that if the linear system (4.1) arises from the marker-and-cell (MAC)
finite difference discretization of an Oseen problem with a constant wind w (see (2.17)
for the formulation of the Oseen equations) and periodic boundary conditions, then
S = §BFBt holds. Thus, preconditioning such linear system with the BFBt precondi-
tioner would lead to a preconditioned system with a single eigenvalue equal to one and
convergence of Krylov subspace methods in at most 2 iterations. The numerical exper-
iments in [33] indicate that the iteration counts increase proportionally to h=Y2 for a
Dirichlet problem and also proportionally to v~1/2 if the wind is not constant. This is
observed for both finite difference and finite element discretizations.

PCD preconditioner

The PCD preconditioner was originally proposed in [67], later published as [68], with the
main goal to eliminate the dependence on the mesh parameter h. The derivation of the
Schur complement approximation was based on the fundamental solution tensor which
can be viewed as a continuous inverse of the Oseen operator. The choice of the approxi-
mation was later justified in a different way based on approximate commutators in [96].
We will briefly describe both approaches to the derivation of the PCD preconditioner in
the following.

We do not want to go into details of fundamental solution theory in this work,
therefore we comment on the first approach rather vaguely and refer to [68] for a deeper
insight. Consider the following problem

Lu=f inQCRY

(5.28)
u=0 on 0,

where L is a linear differential operator. A Green’s function G of the operator L corre-
sponding to the domain 2 and homogeneous Dirichlet boundary conditions is a solution
of a problem similar to (5.28), where the source function f is replaced by the Dirac
delta distribution. Then the solution u of (5.28) can be expressed as a convolution of
the Green’s function and the source function, i.e. u = fQ G f. Unfortunately, it is not
possible to obtain an explicit formula for the Green’s function for a general domain
Q. A fundamental solution G for the operator £ is basically the Green’s function for
Q) = R?. The Green’s function can be seen as a perturbation of the fundamental solution,
G = G + g, where the perturbation ¢ is small everywhere inside ) except the vicinity
of the boundary. The definitions of the Green’s function and the fundamental solution
can be generalized for systems of differential equations giving the Green’s tensor and
fundamental solution tensor.

Let us consider Picard linearization of a steady-state Navier—Stokes problem leading
to an Oseen problem, where the wind w represents the velocity field from the previ-
ous Picard iteration. A constant wind w is assumed instead for the derivation of the
preconditioner. The idea of [68] is to approximate the Green’s tensor of the Oseen op-
erator on a bounded domain €2 by its fundamental solution tensor. Thus, the Oseen
operator is considered on the whole space R? and Fourier transform is used to find the
fundamental solution tensor. The continuous counterpart of the inverse Schur comple-
ment S~! is one of the components of the fundamental solution tensor and it takes the
form (—vA + w - V)(—Ga), where Ga is the fundamental solution of the Laplacian.
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Note that both mentioned operators, the Laplacian and the convection—diffusion oper-
ator (—vA 4+ w - V), now act on the pressure space, i.e. on scalar functions, unlike
the corresponding operators appearing in the Oseen equations. Here we assume that
the functions in the pressure space are sufficiently smooth such that it makes sense to
consider these operators. Since Ga can be again interpreted as continuous inverse of the
Laplace operator, we can formally write the continuous inverse Schur complement as
(—vA +w - V)(—=A)~L. Intuitively, the discrete counterpart of this operator would be

STl ~ —FA Y, (5.29)

where the matrices F), and A, are discretizations of the convection-diffusion operator
and the Laplace operator on the pressure space, respectively. The pressure discretization
basis has to be at least C%-continuous in order to be able to define the discrete operators.

In the Stokes limit where w = 0, the approximation (5.29) would simplify to S~! ~
—vl,. However, considering Galerkin discretization, the fundamental solution approach
applied to the Stokes operator leads to the mass matrix Schur complement approximation
mentioned above, S M= —%Mp. Therefore, the pressure mass matrix is introduced into
(5.29) such that the Schur complement approximation tends to Sy as w — 0. Thus,
the PCD Schur complement approximation takes the form

Spcp = —A,F, M, (5.30)

The name pressure convection—diffusion preconditioner refers to the fact that the in-
verse discrete convection—diffusion operator on the pressure space appears in the Schur
complement approximation instead of F~! in the exact Schur complement S.

Denote the convection—diffusion operator acting on the velocity space as F, and
the analogous operator acting on the pressure space as JF,. The starting point for the
derivation in [96, 35] is the assumption that the convection-diffusion operator and the
gradient operator commute, i.e.

FuV = VF,. (5.31)

This equivalence holds for a constant wind w and Q = R?. If Q is a bounded domain,
(5.31) is true in its interior, but generally, it does not hold in real situations with a
bounded domain and non-constant wind. However, the commutator

£=F,N-VF, (5.32)

is likely to be small in some sense for smooth w [35]. In the context of Galerkin dis-
cretization, the matrix representation of the gradient operator is My 'B”, similarly for
the convection—diffusion operators on the velocity and pressure space. Note that M,
now denotes a block diagonal matrix with d blocks equal to the velocity mass matrix
defined in (2.56). The mass matrices are needed for correct scaling, see, e.g., [40]. This
results in the discrete version of the commutator in the form

E = (M, 'F)(M;'BY) — (M;'B")(M, 'F,). (5.33)
The assumption that E is small yields that
(M;'F)(M;'BT) ~ (M;'B)(M;'F,). (5.34)

After several algebraic manipulations, this leads to the following approximation of the
Schur complement
—-BF 'B" ~ -BM,,'B'F, 'M,,. (5.35)
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The matrix BM !B” would be expensive to compute and work with, since it is dense.
However, it can be viewed as a discrete Laplacian operator (acting on pressures) and
thus replacing it by the matrix A, considered above seems like a suitable workaround
(see [96] for more details on spectral equivalence of these matrices). This leads to the
Schur complement approximation (5.30).

The PCD preconditioner can be derived analogously for time-dependent problems.
Assuming the backward Euler time discretization as in Section 2.2.2, the only difference
is that the continuous operator represented by the matrices F and F), is (A~ A~ VAt w-
V) and thus the matrix F, involves the term AtM The time-dependent problem is
considered in [96].

The application of §§éD to a vector requires solving one pressure-Poisson linear
system, one linear system with the pressure mass matrix and a matrix-vector multipli-
cation with the matrix F,,. Thus, it is less expensive than the application of the BFBt
approximation.

The obvious disadvantage of this preconditioner is the necessity to assemble the
matrices A, and F), representing the discrete operators on the pressure space, that are
usually not available in standard CFD codes. Moreover, we need to define some boundary
conditions for these operators. Both derivations of the preconditioner described above
are based on the assumption that @ = R% and do not take into account any effect of
boundary conditions. The choice is therefore not clear, but at the same time a poor
choice can affect the performance of the preconditioner quite significantly. The original
paper [68] does not address the issue of boundary conditions at all. The article [96] only
mentions the case of enclosed flows, where the matrices A, and F, should represent
the Laplace and convection—diffusion operator, respectively, with Neumann boundary
conditions on the whole boundary 9€). It means that the elements of the matrices are
simply given by the following formulas

Ap = [Apij) [/ A V‘Pﬂy (5.36)

Fp = [Fpis] = [ /V<Pf V‘P] /QSOf(w'VSO?)] (5.37)

for stationary problems, or

1
Fp = [Fpu) = [At/%% V/QWf-WﬁJr/QsOf(w'W?)] (5.38)

for time-dependent problems, where w = qu is the discrete velocity from the most recent
nonlinear iteration and {¢?} denote the pressure basis functions as in Section 2.2.

PCD boundary conditions

For inflow-outflow problems, the domain boundary 0f) can be divided into three parts
depending on the velocity direction: the inflow part 0€,, the outflow part Q. and
the characteristic part 0Qar, that are defined as follows

0y = {ze€i|u-n <0},
out = {x€|u-n >0}, (5.39)
Ohar = {x€9Q|u-n =0},
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where n is the outward-pointing unit normal to the boundary at the point x. Usually,
it is assumed that 0Qn = 0Qout and 9N p = Ny U OQchar, where 0€2p is the Dirichlet
part of the boundary and 0y is the part where the do-nothing condition is prescribed
(see Chapter 2). The important case of inflow-outflow problems in connection with the
PCD preconditioner is addressed, e.g., in the first edition of the monograph by Elman,
Silvester, Wathen [39]. They suggest using Dirichlet boundary conditions along 0,
and Neumann conditions elsewhere for the construction of the discrete operators on the
pressure space. Practically, this is done by assembling the matrices A, F,, according to
(5.36) and (5.37) (or (5.38)) and then modifying the rows and columns corresponding to
the pressure basis functions that are nonzero on 9€2;, such that they contain only diagonal
entries. We refer to PCD with this choice of boundary conditions as the original PCD
preconditioner and we denote the Schur complement approximation as

~

Sorie = AP (RPN I, (5.40)

where Afin, Ffin denote the matrices resulting from the boundary modification of
A, F, described above. As pointed out in [39], the Dirichlet boundary conditions only
affect the definition of the algebraic operators, thus no boundary conditions are actually
imposed on the discrete pressures, there are no specific Dirichlet values to determine and
no right-hand side is affected. This also means that the diagonal values in the modified
rows are arbitrary and their choice can affect the quality of the preconditioner, see [41]
where this issue is addressed, although on a different part of the boundary.

Elman and Tuminaro [41] suggest a slightly different approach to the PCD precondi-
tioner and derive suitable boundary conditions for their formulation. Their starting point
is the commutator of the convection—diffusion operators with the divergence operator

Emod =V - Fy — fpv (541)

instead of the commutator £ with the gradient operator (5.32). They show the advantage
of (5.41) over (5.32) for a one-dimensional problem discretized using finite differences,
where it is not possible to make the discretized commutator £ zero on both inflow
and outflow boundary. The discrete commutator based on (5.41) leads to the Schur
complement approximation in the form

Speh = —M,F,'A,, (5.42)

which differs from (5.30) only in the order of matrices. Moreover, instead of assembling
the pressure-Poisson matrix A, as in (5.36), they suggest using A, = Bﬁ; BT, where
ﬁu is a diagonal approximation of the velocity mass matrix. Thus, the only new ma-
trix that needs to be assembled is F), and no artificial boundary conditions for A, are
required. The boundary conditions defined implicitly by taking A, = BM; IBT corre-
spond to Dirichlet boundary conditions on 0€Q,t, see [40, Chapter 9] for explanation.
According to [41], F), should be defined with a Robin condition

Op
—v—+(w-n)p=20 5.43
Lt (wenpp (5.43)
on the part of the boundary where the Navier—Stokes equations are posed with Dirichlet
conditions of inflow or characteristic type. For the characteristic part of the boundary,
(5.43) reduces to a Neumann condition and the new approach corresponds to the original
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one. Thus, the new boundary condition is used only on the inflow part of the boundary.
This leads to the pressure convection—diffusion matrix Ffm,

F = [F,5] = Fpij — /Q CROlA (5.44)

mod

which is used instead of F, in §PCD (5.42). The definition (5.44) corresponds to Neumann
boundary conditions on 992 \ 9€Q4,. Dirichlet boundary condition can be also used on
the outflow boundary, which is done by modifying rows and columns of Ffin similarly
as described above for 9Q4,; denote the resulting matrix as FaoPomt,

We refer to the dissertation of Blechta [9] for a theoretical analysis the PCD pre-
conditioner with emphasis on the proper choice of boundary conditions. The analysis
is based on the idea of operator preconditioning in infinite-dimensional spaces and thus
independent of any particular discretization. Both variants of the commutator, £ and
Emod, are considered. Also, the construction of the discrete preconditioner and incorpo-
ration of the boundary conditions is described in a general setting as well as for some
specific discretizations, leading to several variants of the PCD Schur complement ap-
proximation, §%régD being one of them. The analysis in [9] indicates that the variants
based on &y0q are more robust and thus preferable. In our setting (with continuous

pressure discretization), the discrete Schur complement approximation takes the form
SgCD — _Mp (Ffln,Dout) Al?out’ (545)

where AI?O‘“ is the discrete pressure-Poisson operator (5.36) with a boundary modifica-
tion corresponding to Dirichlet conditions on the outflow boundary. This is very close
to the variant of Elman and Tuminaro.

PCD properties

An analysis of the PCD preconditioner was presented by Loghin in [72]. He shows,
assuming quasi-uniform finite element discretizations, that the spectrum of the precon-
ditioned matrix is bounded independently of the mesh parameter. He also mentions that
mesh-independent e-pseudospectrum can be assumed, which results in mesh-independent
convergence of GMRES. Moreover, he demonstrates that the GMRES iteration counts
grow proportionally to v~1/2.

LSC preconditioner

The LSC preconditioner was proposed in [35] as an alternative to PCD in order to
circumvent the difficulty of assembling new matrices on the pressure space. Similarly to
PCD, the derivation of LSC is based on the idea of commutators, however, the discrete
convection—diffusion operator on the pressure space is constructed purely algebraically,
using only the available matrices obtained from the discretization of the Navier—Stokes
equations.

The starting point of the derivation is the requirement that the discrete commutator
E defined in (5.33) is small, i.e.

M, 'FM,'B" - M, 'B"M,'F, ~ 0, (5.46)
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which leads to the Schur complement approximation (5.35), where F,, € R™*" is now
an unknown matrix to be determined. This can be reformulated such that the columns
f, ; of F), are approximate solutions of n), linear systems of the form

M,'B"™M,'f,; =b;, j=1,...,n, (5.47)

where by is the j-th column of My, !FM_,'B”. These are overdetermined linear systems
for which approximate solution can be obtained, e.g., by solving a least-squares prob-
lem. That is, the vectors f, ; are determined as solutions of the following optimization
problems
: —1RpThf-1 2
IglfllMu B'M, f,; —b;||". (5.48)

It can be beneficial to replace the Euclidean norm in (5.48) by some other norm suitable
for the given problem. In our case, a suitable norm is ||x||n, = VX M,yx, which is a
discrete analogue of the continuous L? norm on the velocity space. This leads to the
weighted least-squares problem

min M, 'BTM, ', — bj|Rs, - (5.49)
P,J

The normal equations associated with this problem are
—1 —1pTrng—1 -1
M, BM,, ' B"M, ', ; = M, Bb;, (5.50)
thus, the matrix F), is obtained as follows

M, 'BM,'B"M,'F, = M, 'BM, 'FM, 'B”,
(5.51)
F, = M,,(BM,'B”)"'BM,, 'FM, 'B”.

By substituting this formula into (5.35), we get the Schur complement approximation
- BF 'BT ~ —(BM,'BT)(BM, 'FM; 'BT) "} (BM, !BT). (5.52)

Note that if the scaling by the mass matrices was omitted in (5.33) and the non-weighted
least-squares problem was considered, the procedure described above would lead to the
BFBt Schur complement approximation §BFBt (5.27).

The application of the inverse of (5.52) would be still too expensive. Therefore, the
formula is further approximated by replacing the velocity mass matrix M, by a diagonal
approximation M, e.g., M,, = diag(M,). This leads to the LSC Schur complement
approximation

Sisc = —(BM; 'BT)(BM; 'FM, 'BT) " (BM; 'B7). (5.53)

The LSC preconditioner is called scaled BFBt in the original paper [35].

The application of §£Slc to a vector requires solving two Poisson-type problems on
the pressure space, matrix-vector multiplications with the matrices B”, F and B and
two scalings with the diagonal matrix M, !.
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LSC boundary conditions

Unlike PCD, there is no need to make an explicit choice of boundary conditions for the
LSC preconditioner. Boundary conditions of the underlying operators on the pressure
space are defined implicitly. However, Elman and Tuminaro demonstrate in [41] that a
boundary modification can improve convergence also for the LSC preconditioner. They
introduce a new scaling in the Schur complement approximation,

Smed — _(BM; 'B”)(BM; 'FHB”) ! (BHB), (5.54)

where H = W%ﬁ; W2 and W is a diagonal weighting matrix. The definition of W
in [41] is limited to the case when the domain boundaries are aligned with the coordinate
axes and it is not clear how to choose its entries in a general case. Therefore, we do not
consider this modification in this work.

LSC properties

Regarding dependence of the convergence on the problem parameters h and v, a similar
behavior as for BFBt was observed for LSC in [35]. It means that its convergence
depends on both parameters. However, the iteration counts are significantly lower than
for the original BFBt preconditioner.

5.3.3 Augmented Lagrangian approach

The Augmented Lagrangian (AL) approach to preconditioning proposed by Benzi and
Olshanskii [6] belongs, in fact, to the group of block triangular preconditioners, but it
is not based on the form (5.14) and finding an approximation to the Schur complement
S = —BF'B”. Instead, the original saddle-point linear system (4.1) is replaced by
an equivalent linear system for which the Schur complement can be approximated more
easily. This approach is inspired by the methods used in constrained optimization, where
saddle-point problems arise as the first order optimality conditions.

Constrained optimization

Let us briefly explain the context on the example of quadratic programming. Consider
a symmetric positive definite matrix A € R™ " a vector f € R™ and the associated
quadratic functional J : R™ — R,

1
J(u) = iuTAu —fTu. (5.55)

Further consider the following minimization problem

meigJ(u), Q={ueR":Bu=g}, (5.56)

where B is a m x n matrix with m < n. One of the classical methods for finding the
minimizer of the constrained problem (5.56) is to define a penalized functional,

i
Jy(w) = J(u) + 5 [[Bu—gl[, (5.57)
and solve the unconstrained optimization problem

min Jy(u). (5.58)
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Its solution u*(7y) can be found by solving VJ,(u) = 0 which leads to the linear system
(A+~B'B)u=f++Bg. (5.59)

It can be shown that u*(y) tends to the solution u* of (5.56) for v — +o0. Thus, u*(vy)
will be a good approximation of u* for a sufficiently large parameter v. However, it is
difficult to obtain an accurate solution of (5.59) for large v, since the coefficient matrix
is dominated by the term vyBTB, which is singular, resulting in a very large condition
number of the matrix A ++yB”B.

Another common approach to solving the problem (5.56) is to introduce a vector of
so called Lagrange multipliers A € R and define the Lagrangian £ : R™ x R™ — R,

L(w,A) = J(u) + AT (Bu - g). (5.60)

It can be shown that £ has at least one saddle-point and all the saddle-points are in the
form (u*, \). Provided that B has full rank, there is exactly one saddle point. For the
quadratic programming problem, all stationary points of the Lagrangian correspond to
saddle-points, therefore all saddle-points can be found by solving VL = 0, leading to

the linear system
A B7] [u f
Nl oo

In practical computations, these saddle-point linear systems arising from constrained
optimization problems can be solved by the methods described in Chapter 4 of this
work or other methods mentioned, for example, in [5].

Note that discretization of the Stokes problem leads exactly to a linear system of the
form (5.61). Thus, solving the Stokes problem corresponds to minimizing a quadratic
functional with the pressure playing the role of a Lagrange multiplier.

The augmented Lagrangian method combines both approaches described above, the
penalty method and the Lagrange multipliers. The augmented Lagrangian is defined as

L(u,A) = J(u) + AT(Bu — g) + %HBu—gHQ. (5.62)

Any saddle-point of L, is a saddle-point of £ and vice versa, because the penalty term
in £, vanishes when the constraint Bu = g is satisfied. Finding the saddle-points of the
augmented Lagrangian £, requires solving the following linear system
A ++B"B BT] [u] _ [f%—'yBTg} . (5.63)
B 0| (A g
The (1,1) block of the coefficient matrix is the same as the matrix in (5.59), however,
unlike the penalty method, the problems (5.63) and (5.61) are equivalent for any value of
. Thus, the need for large v (and consequently the large condition number of the matrix
A+ ’yBTB) is avoided. At the same time, the penalty term improves the convergence
of some methods for solving the saddle-point linear system (5.63). More on the AL
methods and their applications can be found, for example, in [48].

The AL preconditioner
The AL approach to preconditioning is based on replacing the original system (4.1) by

the augmented linear system
F, BTl [u] [f,
= ol -l o9
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where F, = F + yBTW™!B, f, = f + yBTW~lg, v > 0 and W is a positive definite
matrix. The incorporation of the matrix W1 corresponds to using the norm ||.||yw-1
instead of the Euclidean norm for the penalty term in (5.62).

Recall that we denoted the saddle-point matrix in (4.1) as A and denote the aug-
mented matrix in (5.64) as A,. It can be shown that

ar—ar-o 0. (5.69)

see Golub and Greif [53]. Provided that the block F is invertible, it can be easily derived
that the (2,2) block of A™! is S71 (see the block LDU decomposition of A (5.10)).
Similarly, the (2,2) block of A" is S; !, where S, = —BF'B”. This, combined with
(5.65), implies the following relation between the two inverse Schur complements

S;t=8"t-yW (5.66)

Benzi and Olshanskii [6] propose to precondition the augmented system (5.64) with
the block triangular preconditioner

F, BT

M =
AL 0 S,

: (5.67)

where the action of f‘; 1is computed as an approximate solution to a linear system with
the matrix F,. The choice of the Schur complement approximation §v is based on the
relation (5.66). The original Schur complement S is approximated by —%ﬁp, where Mp
is an approximation of the pressure mass matrix, which is related to the preconditioner
S » mentioned earlier, that is known to give h-independent convergence for the original
problem. Thus, §7 is given through its inverse as

~

STl= Mt - yWL (5.68)

The matrix W is often chosen to be equal to ﬁp.

If ]/F\‘7 = F, and we assume that the subsystem with this matrix is solved exactly,
we talk about the ideal version of the AL preconditioner. In practice, direct solution od
this linear system is mostly unfeasible, since the additional term vyB” W 1B makes the
matrix denser compared to the block F and, moreover, introduces a coupling between
velocity components, which is not present in the discretization of the Picard lineariza-
tion of the Navier—Stokes equations. Finding a suitable F, i.e. a robust and efficient
approximate solver for linear systems with F., is also not trivial. See [6] for a specialized
multigrid method in two dimensions, which was later generalized to three dimensions
by Farrell at al. in [44]. However, these specialized multigrid methods are strongly tied
to the discretization and, to our knowledge, currently limited to some particular FEM
discretizations.

The modified AL preconditioner

One way to simplify the solution of the linear systems with F is the modified version
of the AL preconditioner (MAL) introduced by Benzi et al. in [8]. Let us denote the
blocks of F', corresponding to the velocity components in two dimensions as follows

F1 F12]

F., = 5.69
7 [Fm Fao (5.69)
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Benzi et al. suggest replacing this block by its block upper triangular part

= Fii Fio
F, = [ 0 F22] , (5.70)

such that instead of solving the whole system at once, we solve two smaller systems

with the blocks F1; and Fos. These blocks can be interpreted as discrete anisotropic
convection—diffusion operators, thus, applying f‘; ! requires solving two anisotropic convection—
diffusion problems. The situation is similar in three dimensions, where we have to solve

three subsystems.

AL and MAL properties

Benzi and Olshanskii show in [6] that for ]/F\‘7 =F,and W = ﬁp = M, the eigenvalues
of the preconditioned system are bounded independently of A and they tend to 1 for
7 — +oo. This also holds if the mass matrix is approximated by a spectrally equivalent
matrix M,,. According to their analysis, it is sufficient to set v = O(v~1) to achieve
eigenvalue bounds independent of v. However, numerical experiments indicate, it is
not necessary to use large values of v in practice, even for problems with low viscosity,
since much lower values of v already lead to convergence independent of both A and
v. Specifically, they suggest to set v ~ ||w||, where w is the convection velocity. We
refer to [31] for an experimental study, where we investigated the choice of 7 for IgA
discretizations.

Later, Benzi and Olshanskii presented a field-of-values analysis of the AL and MAL
preconditioners [7]. They consider inf-sup stable finite element discretizations with
shape-regular meshes. They prove that GMRES with the ideal AL preconditioner
converges independently of h and v. For the MAL preconditioner, they establish h-
independent convergence of GMRES.

5.3.4 SIMPLE-type preconditioners

The SIMPLE algorithm was described as a stationary iterative method for solving the
saddle-point linear system (4.1) in Section 4.2.3. As described in Section 5.2, any con-
sistent stationary method can be accelerated by a Krylov subspace method, i.e., used
as a preconditioner. It was first proposed to use variants of the SIMPLE method as
preconditioners for Krylov subspace methods by Vuik et al. in [113, 112]. We also refer
to [107, 69] for more on SIMPLE-type preconditioners. In this section, we will describe
three preconditioners from this group: SIMPLE, SIMPLER and MSIMPLER.

The SIMPLE preconditioner

Recall that the SIMPLE algorithm can be written in the form of a stationary iteration
based on the splitting A = MB~! — A'B~! (see (4.57) and its derivation), leading to

the iteration formula
[“"* 1} = [“”} +BM™! [r“’”} : (5.71)
Pn+1 Pn Tpn

where [ry,p, rpyn]T is the n-th residual vector and the matrices M and B are defined as

(5.72)

_ D-1lpT
M:[F 0}’ B:[Iu D B}’

B Sp 0 I,
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with Sp = —BD'B7 and D = diag(F).
Thus, in accordance with Section 5.2, Krylov acceleration of the SIMPLE method
corresponds to using the preconditioner

(5.73)

—1RT
MgnipLg = MB™! = [F 0] [I” b 'B ] :

B Sp||0 I,

This preconditioner can be also interpreted as an approximation of the matrix A based
on its block LU decomposition (5.12), where both occurrences of F~! are approximated
by D1,

The application of the preconditioner to a vector r = [r,, rp}T is performed by solving
the linear system Mgnvprgz = r. The individual steps are summarized in Algorithm
9, which corresponds to one step of the SIMPLE method described in Algorithm 5 with

pn = 0.

Algorithm 9: Application of Mg pr

1 Solve Fz;, =r,.
2 Solve §sz =r, — Bz,
3 Update z, = z! — D™'B”z,.

The SIMPLE preconditioner is relatively cheap per iteration, since it requires only
one velocity solve and one pressure solve. However, the convergence of the Krylov
subspace method with the SIMPLE preconditioner is usually quite slow. The variants
described below require one additional pressure solve, but they generally give much faster
convergence than SIMPLE.

The SIMPLER. preconditioner

The explicit matrix form of the SIMPLER, preconditioner can be derived similarly to
SIMPLE. Based on the iteration formula (4.71), the preconditioner takes the form

MgsivpLer = Q71 (5.74)

where the matrix Q is defined in (4.72). Algorithm 10 describes the individual steps
of the application of the preconditioner to a vector r. Again, this corresponds to one
iteration of the SIMPLER method with u, = 0 in (4.65).

Algorithm 10: Application of MS_I%\/[PLER
Solve §Dz;§ =1, — BD !r,.

Solve Ezz =TIy — BTZ;'

Solve Spdz, =r, — Bz}

Update z, =z}, — D™'B%6z,,.

Update z, = z;, + 0z,

SNV VN
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The MSIMPLER preconditioner

The MSIMPLER variant is a modification of the SIMPLER preconditioner proposed
in [107]. The modification consists in replacing the diagonal matrix D by a diagonal

approximation of the velocity mass matrix M,, leading to Algorithm 11, where S =
-BM,,'BT.

Algorithm 11: Application of MI\_/IISIMPLER
Solve gz; =1, — Bﬁqjll‘u-

Solve Fz}, = r, — BTz,

Solve Séz, =r, — Bz}.
Update z, =z, — M;lBT(SZp.
Update z, = z;, + 0z,

[SLEN [SIE VR

The advantage of MSIMPLER over SIMPLER is that the Schur complement approx-
imation S is does not depend on the convection velocity, i.e., it does not change during
the nonlinear or time stepping iteration. Thus its construction and solver setup for the
linear systems with S are performed only once.

Properties of SIMPLE-type preconditioners

The convergence of all SIMPLE-type preconditioners depends on both A an v. From
the results in the literature, it can be estimated that the growth of iteration counts is
between O(h~/2) and O(h~') and also between O(r~/2) and O(v~1), see, for example,
[56, 69, 94, 106, 107]. The iteration counts for the SIMPLE preconditioner is always
significantly higher than for the other two mentioned SIMPLE-type preconditioners,
SIMPLER and MSIMPLER.

5.3.5 Solution of subproblems

As mentioned earlier in this section, efficient solution of the subsystems is an important
part of the block triangular preconditioners. Of course, practical use of the ideal versions,
i.e. direct solution of the subproblems, would be too expensive or even unfeasible in the
case of three-dimensional problems. Thus, identifying suitable approximate solvers for
these subsystems should be the next step towards an efficient preconditioner.

Ideally, replacing the direct inner solvers by approximate methods should not lead to
a significant change in the convergence properties of the preconditioner. Thus, optimality
in the sense that their convergence is independent of the mesh parameter A is a reason-
able requirement. Therefore, some kind of multigrid (geometric or algebraic) is often
the method of choice. Suitable multigrid methods for Poisson and convection—diffusion
problems can be found in the literature, see, e.g., Elman, Silvester, Wathen [40] for an
overview of efficient solution methods for finite element discretizations of flow problems.

However, many authors in recent years have observed that the performance of classi-
cal multigrid methods applied to IgA linear systems is highly dependent on the B-spline
degree and the spatial dimension. Development of multigrid methods for IgA discretiza-
tions that would be robust with respect to these parameters has been quite an active
research area recently. Several promising approaches have been already proposed that
are based on different ideas, usually exploiting the tensor-product structure of the spline
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spaces, see, e.g., Donatelli et al. [28], Hofreither and Takacs [61], Hofer and Takacs [60]
or Riva et al. [26]. Alternatively, p-multigrid, where ”coarsening” in the spline degree
is performed, is considered by Tielen et al. [99]. These works are mainly focused on the
Poisson problem, but some of them consider a more general convection—diffusion-reaction
equation [28, 99].

Besides multigrid, one can also use a small number of iterations of a preconditioned
iterative solver for the subsystems. There are some robust preconditioners developed
specifically for IgA discretizations of the Poisson problem, see, for example, Harbrecht
et al. [14] or Sangalli and Tani [90].

We will not go into further details of these methods, since we consider only the ideal
versions of the block preconditioners in the numerical section of this work. We only have
some preliminary results with several approximate inner solvers, but more work still has
to be done in this direction.



Chapter 6

Numerical results

In the literature dealing with block preconditioners for the saddle-point linear systems,
we often find comparisons of some subset of the preconditioners described in this work,
usually for the most common low-degree inf-sup stable and stabilized finite element pairs
(P2-P1, Q2-Q1, Q1-P0, P1-P1, Q1-Q1) [8, 36, 37, 56, 79, 94, 105, 107] and some papers
also include the MAC finite difference discretization [35, 68] or a FVM discretization [57,
69]. One of our goals is to experimentally verify the properties of these preconditioners
for linear systems resulting from various IgA discretizations, especially the ones with
high-order continuity, which is a unique feature of IgA. Moreover, the experiments for
higher-degree C° IgA discretizations can give some information about the behavior of
the preconditioners for higher-degree standard finite elements.

We include PCD, LSC, SIMPLE, SIMPLER, MSIMPLER, AL and MAL precon-
ditioners in our comparison. We consider several 2D and 3D test problems where the
geometry is described as a B-spline or a B-spline multipatch and we create several IgA
discretizations of the incompressible Navier—Stokes problem in computational domains
represented by these geometries. The considered pairs of finite dimensional spaces cor-
respond to the isogeometric Taylor-Hood (TH) element. We have also experience with
discretizations using the isogeometric subgrid (SG) element, which we have included in
the numerical experiments in the paper [62]. However, the performance of the precondi-
tioners does not differ much qualitatively from the cases with the maximum continuity
TH element of the same degree and thus, we limit ourselves only to the TH element
here.

In the beginning of this chapter, we specify the used software and hardware, the
general settings of the experiments and describe the considered test problems and their
discretizations. Then we deal with the choice of the mass matrix approximation in the
preconditioners. Another set of experiments is devoted to the choice of PCD boundary
conditions and tuning the preconditioner for the IgA linear systems. Finally, a compar-
ison of all considered preconditioners is presented.

6.1 Software and hardware

In this section, we briefly describe the software tools used to obtain the presented numer-
ical results and parameters of the machines on which the experiments were performed.
We use our own implementation of the considered preconditioning techniques as well as
the isogeometric incompressible flow solver itself.

73
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Incompressible flow solver

Our research team has developed an incompressible flow solver based on isogeometric
discretization of the incompressible Navier—Stokes equations and also RANS (Reynolds—
Averaged Navier—Stokes) equations that are used for modeling turbulent flow. The solver
is implemented in C++ within a framework of the G+Smo library.

G+Smo (Geometry + Simulation Modules) is an open-source object-oriented tem-
plate C++ library that implements a generic concept for IgA, i.e., it enables to create and
work with geometries defined as B-spline or NURBS objects and provides tools for ana-
lysis on domains described by these geometric objects. Thanks to object polymorphism
and inheritance, it supports various discretization bases, such as B-spline, Bernstein,
NURBS and also generalizations of B-spline basis that allow local refinement (hierarchi-
cal and truncated hierarchical B-splines). It works with bases of arbitrary dimension and
polynomial degree. For more information about the library, see the documentation [75].

Our incompressible flow solver is not a public part of the G4+Smo library at the
moment, however, it will be made available in the future. The solver can handle steady-
state and time-dependent incompressible flow in two and three spatial dimensions. It
is mainly based on the coupled approach to the solution of the saddle-point problem,
but a segregated pressure-correction method related to the SIMPLE algorithm has been
also implemented. For turbulent flow simulation based on RANS equations, several
turbulence models have been implemented (see the dissertation of Turnerova [103] for
more on turbulence modeling with our solver). Further, several stabilization methods
can be used to suppress spurious oscillations. The linear systems resulting from the
discretization of the governing equations can be solved either directly or iteratively
within the solver.

Linear algebra tools and linear solvers

The tools for linear algebra that are available in G+Smo are based on the Eigen li-
brary [55]. It provides data structures for vectors, dense and sparse matrices, methods
for various matrix operations, commonly used matrix decompositions, linear solvers,
etc. Moreover, a common interface for some popular linear solver packages (e.g. PAR-
DISO [91)) is provided in Eigen.

In our flow solver, we use Eigen’s sparse LU and PARDISO as direct solvers. If not
stated otherwise, we use PARDISO with enabled OpenMP parallelization for direct so-
lution of all linear systems in this work. As iterative solvers, we use the Krylov subspace
methods available in G4+Smo and also our own implementations of some methods, such
as GMRES with right preconditioning.

We have implemented the block preconditioners for saddle-point linear systems de-
scribed in Section 5.3, namely PCD, LSC, AL, MAL, SIMPLE, SIMPLER and MSIM-
PLER. They are constructed in a similar way and use the same interface as other precon-
ditioners available in G4+Smo, so that they can be easily used with the G4+Smo iterative
solvers.

Hardware

The numerical experiments were performed on machines with the following parameters:

e two-dimensional test problems: laptop, Ubuntu 20.04.4 LTS, 64-bit, Intel Core
i7-10510U CPU @ 1.80GHz x 8, 16 GB RAM,
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e three-dimensional test problems: virtual machine, Ubuntu 20.04.4 LTS, 64-bit,
Intel Xeon CPU E5-2690 v2 @ 3.00GHz x 33, 182 GB RAM.

6.2 Experiments settings

For the purpose of comparison of different preconditioners, we always consider one linear
system obtained from discretization of a given problem in a particular Picard iteration
(for steady-state problems) or time step (for time-dependent problems). We solve that
linear system with the full (non-restarted) right-preconditioned GMRES with a zero
initial solution, xg = 0. The iteration is stopped using the criterion

HrnH

106 6.1
bl <10 (6:1)

where b is the right-hand side vector of the solved linear system.

Of course, in practical computations, it would be beneficial to choose the initial
solution for the Krylov subspace method as the solution vector from the previous Picard
iteration or time step. However, we choose zero initial solution to ensure the same
conditions for all preconditioners in the comparison. From our experience, if we use
zero initial vector for the iterative solution of the linear systems in all Picard iterations
for a steady-state problem, the iteration count of the linear solver settles on a constant
value after a few Picard iterations. Therefore, we consider linear systems obtained after
some initial phase of the Picard iteration, specifically, after the relative norm of the
nonlinear residual drops below 10~2. For time-dependent problems, there are almost no
fluctuations in the iteration count (with zero initial solution) during the computation.
In this case, we consider linear systems obtained after performing five time steps for all
tested problems.

6.2.1 Discretization bases

Since we are interested in convergence behavior of the preconditioners for various IgA
discretizations, we consider several B-spline discretization bases of different polynomial
degree and interelement continuity for each test problem. In this section, we describe
how these discretization bases are constructed and introduce their notation.

As an example, consider a rectangular domain which is a shape that can be described
by a single B-spline object (patch) of arbitrary degree and continuity. Thus, in accor-
dance with the isoparametric concept, we can use B-spline bases of arbitrary degree and
continuity as our discretization basis. The simplest representation of the geometry (with
continuous basis functions) is the following bilinear map

2 2
GEY) =D Y PiiNia(§Nja(), (6.2)

i=1 j=1

where N;1(§) and Nji(¢) are linear B-spline basis functions corresponding to knot
vectors Z =W = (0,0,1,1) and P; ; are the control points corresponding to the vertices
of the rectangle. Let us assume that we would like to use the isogeometric Taylor—
Hood element of degree k and C" continuity in both directions for pressure, i.e., the

discrete pressure and velocity spaces on the parametric domain are Q%H = S,:Z, and

oh . . . . .
Vorg = l:il pi1 X S,:’_:l 141> Tespectively (see Section 3.4). The pressure discretization
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basis can be obtained by h-, p- and k-refinements of the basis in (6.2) and the velocity
discretization basis is obtained by degree elevation (p-refinement) of the pressure basis.
We denote such combination of discretization bases as (k+1)-k, C" in this chapter. We
refer to Section 3.2.2 for more details on the refinement algorithms.

For instance, we describe the construction of the discretization bases with k = 3
and 7 = 0,1,2 on a uniformly refined mesh with 3 x 3 elements. To obtain the 4-3, C°
combination, we perform h-refinement of the basis in (6.2) first (i.e., the knots 1/3 and
2/3 are inserted into both knot vectors) and then we elevate the degree to 3 to get the
pressure basis. For the 4-3,C' combination, we elevate the degree to 2 first, then we
perform h-refinement and then we elevate the degree to 3. Finally, the combination 4-
3,C? is constructed by elevating the degree to 3 first and h-refinement afterwards. The
three resulting combinations of discretization bases are illustrated in Figure 6.1 in one
dimension. Note that the C isogeometric discretizations can be considered an analogy
of standard finite elements of the same degree, at least from the matrix structure point
of view.

1

0 13 23 1

23

(a) 4-3,C°. (b) 4-3,C". (c) 4-3,C2.

Figure 6.1: Examples of 1D velocity (top) and pressure (bottom) discretization bases
of degree 4 and 3, respectively, with various order of continuity for the isogeometric
TH element on a "mesh” with three elements.

If the computational domain is composed of rectangles in 2D or blocks in 3D such
as for the first two test problems described in Section 6.3 below, we can construct dis-
cretization bases of arbitrary degree and continuity similarly as in the example above.
(Recall that we consider conforming patches connected via identifying the corresponding
control points at the interfaces and thus the continuity is always C? across the inter-
faces.) However, if the computational domain has curved boundaries, we cannot use
discretization bases of arbitrary degree and continuity without violating the isopara-
metric concept. For example, if the domain geometry is described by a C'-continuous
biquadratic B-spline surface, using a bilinear discretization basis is not possible in iso-
geometric analysis, because the domain cannot be represented exactly in this basis.
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6.3 Test problems

We have chosen three two-dimensional problems and their three-dimensional counter-
parts as model problems for the numerical experiments. Both enclosed and inflow/outflow
types of flow are included. In this section, we describe the geometry and boundary con-
ditions of these problems and summarize the problem parameters, discretization bases
and meshes that are used in the comparisons.

The first two test problems described below are well-known benchmark problems
with very simple computational domains consisting of one or more squares/rectangles
(in 2D) or cubes/blocks (in 3D). These domains can be described by one or more B-
spline patches with uniform orthogonal meshes that allow IgA discretization bases of
arbitrary degree and continuity. Therefore, these are good first choice test examples for
a comparison of the convergence properties of the selected preconditioners applied to IgA
discretizations. Moreover, they are often used as benchmark problems in the literature
and thus the results can be compared with results of other authors dealing with different
discretization methods.

The third problem stems from industrial practice, specifically from modeling of flow
in a water turbine. In this case, the B-spline geometry representation leads to curvilinear
meshes and does not allow arbitrary degree and continuity of the discretization bases.

To investigate the influence of the degree and continuity of the discretization on the
convergence of linear solvers, we consider several discretizations of each problem. In
most cases, we present results only for selected discretizations (2-1,C? and some C° and
Ck=1 discretizations of higher degree k) and refer to Appendix B for complete results
that involve all considered discretizations. Further, we always consider several different
mesh refinements and values of problem parameters (viscosity, time step). For the time-
dependent problems, we present results only for one time step size, At = 0.01, since
there are no major qualitative differences in the performance of the preconditioners for
different values of At.

6.3.1 Lid-driven cavity

The first test problem is a representative of enclosed flow problems — a cavity with a
moving lid, usually denoted as the lid-driven cavity (LDC) problem. We consider both
two- and three-dimensional case, denote them as LDC-2D and LDC-3D, respectively.

LDC-2D

The two-dimensional LDC problem is illustrated in Figure 6.2. The computational
domain € = [0,1]? represents a square-shaped cavity filled with fluid with three sides
defined as no-slip walls and the top boundary is a lid that slides from left to right and
drives the flow in the cavity. That is, Dirichlet boundary conditions are defined on the
whole boundary, 0Q2p = 0f2, where a constant nonzero velocity u = (1,0) is prescribed
on the top boundary and homogeneous Dirichlet conditions are set on the rest of the
boundaries.

There are several ways to define the nonzero boundary condition on the top boundary
leading to different computational models. If the nonzero horizontal velocity is prescribed
also at the top two corners of the domain, we talk about a leaky cavity. If, on the contrary,
the velocity at the corners is set to zero, we refer to the model as a watertight or non-
leaky cavity. In both cases, there are singularities in pressure due to the discontinuity
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Figure 6.2: Schematic of the lid-driven cavity problem in 2D.

in the boundary condition. Sometimes, a regularized boundary condition is considered
to avoid the singularities. We consider the watertight variant of the LDC problem.

The fact that Dirichlet boundary conditions for velocity are imposed on the whole
boundary leads to non-unique pressure solution which is determined up to an arbitrary
constant. In computations, the value of pressure is often fixed at one point of the domain
to get a unique solution. We choose to set zero pressure at the bottom left corner.

The characteristic length scale and the reference velocity are chosen as L = 1 and
U = 1. Thus, the Reynolds number is simply a reciprocal of the viscosity in this case,
Re = v~!. The character of the flow changes depending on the Reynolds number. For
Reynolds numbers lower than some critical value (approximately 8000 for the LDC-2D
problem), the problem has a stable steady-state solution. A time-periodic solution with
waves running around the cavity walls occurs at the critical Reynolds number and for Re
higher than 10000, the steady-state solution is unstable, see, e.g., [40]. Thus, it would
not make sense to try to compute a steady solution for Re > 8000. We have chosen
four values of viscosity for comparison, v = 0.3, 0.03,0.003,0.0003, which correspond to
Reynolds numbers approximately 3, 33, 333 and 3333. Figure 6.3 displays steady-state
velocity solutions for all considered viscosity values.

We perform our experiments for IgA discretizations of degree k varying from 1 to 4
for pressure (i.e., 2 to 5 for velocity) with C° to C*~! continuity. For all discretizations,
we consider four uniform meshes with 16 x 16, 32 x 32, 64 x 64 and 128 x 128 elements and
we denote these meshes as M1, M2, M3 and M4, respectively. As described in Section 3.3
in more detail, the size of the linear systems resulting from different discretizations varies
on a given mesh. The number of degrees of freedom (DOFs), the number of nonzeros
and their percentage in the matrix for all discretizations and all uniform meshes are
summarized in Appendix A, Table A.1.

We are also interested in the performance of the preconditioners on stretched meshes.
Typically, meshes that are refined near boundaries are used for the LDC problem to
resolve the singularities at the top corners of the domain. Therefore, we consider three
stretched meshes obtained from the uniform mesh M1 by recursively refining one row of
elements near all boundaries. We perform two, four and six such recursive refinements
resulting in meshes denoted as SM1, SM2 and SM3, respectively. See Figure 6.4, where
the domain is divided into four parts with meshes M1, SM1, SM2 and SM3 displayed on
different parts.
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(a) v =0.3, Re =~ 3. (b) v =0.03, Re ~ 33.

(c) v = 0.003, Re ~ 333. (d) v = 0.0003, Re ~ 3333.

Figure 6.3: Streamlines and velocity magnitude of the steady-state solutions of the
LDC-2D problem for different values of viscosity.

LDC-3D

The three-dimensional LDC problem is analogous to the two-dimensional one. The
computational domain is Q = [0,1]® and we prescribe the velocity u = (1,0,0) on the
top boundary (lid). Again, we consider the watertight cavity model and set the pressure
to zero at the corner at the origin of the coordinate system.

Similarly to the two-dimensional cavity, the length scale L and reference velocity U
are equal to one and thus the Reynolds number is Re = v~!. In the three-dimensional
case, the steady solution loses stability for Reynolds number less than 1000 [40, 95].
We present results for viscosity values v = 0.1,0.05,0.01,0.005, corresponding to Re =
10, 20, 100, 200. An example of a steady velocity solution in the 3D cavity with Re = 100
is shown in Figure 6.5.

The experiments were performed for IgA discretizations of degree k from 1 to 3 for
pressure with CY to C*~1 continuity on three uniform meshes denoted as M1, M2, M3
with 4 x 4 x4, 8 x 8 x 8 and 16 x 16 x 16 elements, respectively. The number of DOFs,
the number of nonzeros and their percentage in the matrix for all discretizations and all
uniform meshes are summarized in Appendix A, Table A.3.
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Figure 6.4: The uniform mesh M1 and  Figure 6.5: Streamlines and velocity mag-
three stretched meshes used for LDC-2D. nitude of the steady-state solution of the
LDC-3D problem for v = 0.01 (Re = 100).

6.3.2 Backward-facing step

The second test problem is the backward-facing step (BFS) problem, a widely used
inflow /outflow benchmark problem. Analogously to the notation above, we denote the
two- and three-dimensional case as BFS-2D and BFS-3D, respectively.

BFS-2D

The setting of the two-dimensional BF'S problem is illustrated in Figure 6.6. It models
fluid flow in a channel with a backward-facing step on the bottom. The fluid enters the
channel through the left vertical boundary (inflow) and leaves through the right vertical
boundary (outflow). The top and bottom boundaries are defined as no-slip walls. Thus,
homogeneous Dirichlet conditions are set on the top and bottom boundary, a nonzero
velocity is prescribed on the inflow boundary and the do-nothing condition is set on the
outflow boundary. We consider an inflow velocity with zero y-component and a parabolic
profile with maximum of one in the z-component.

wall

inflow 1

A outflow

wall
Figure 6.6: Schematic of the backward-facing step problem in 2D.
The choice of the characteristic length L and the reference velocity U varies in the

literature. If L is taken to be the height of the channel at the outflow and U as the
maximum of the inflow velocity as in [40], i.e., L = 2 and U = 1 in our case, then the
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Reynolds number is Re = 2-v~!. According to [40], the steady solution of this problem
is unstable for v < 0.001. For the comparison of preconditioners, we consider viscosity
values v = 0.2,0.02,0.002 corresponding to Re = 10,100, 1000. Some experiments were
also performed for v = 0.01 (Re = 200).

Steady-state velocity solutions for different viscosity values are shown in Figure 6.7.
We note that we use v = 0.02 in most of the experiments, for example when investigating
mesh dependence. In such case, we choose the length of the channel behind the step
to be 8. However, it is important for the channel to be long enough such that the out-
flow boundary does not intersect any vortex, otherwise the do-nothing condition at the
outflow is not appropriate. Therefore, we double the channel length in the experiments
where lower viscosity values are included in the comparison.

(a) v = 0.2, Re = 10.

(b) v = 0.02, Re = 100.

(¢) v =0.01, Re = 200.

(d) v = 0.002, Re = 1000.

Figure 6.7: Streamlines and velocity magnitude of the steady-state solutions of the BFS-
2D problem for different values of viscosity.

The computational domain can be described as a union of three rectangles, i.e., it
can be represented as a multipatch consisting of three rectangular B-spline patches. As
already mentioned in Section 3.2, we consider conforming patches where it is possible
to identify the basis functions on both sides of the interface in order to connect the
individual patches. We discretize the BFS-2D problem using bases of degree k varying
from 1 to 4 for pressure with all possible orders of continuity. We compare four uniform
meshes denoted as M1 to M4, see Figure 6.8 where the mesh M1 is displayed on the
domain with channel length 8. The uniform meshes have a total of 272, 1088, 4352 and
17408 elements, respectively. The number of DOF's, the number of nonzeros and their
percentage in the matrix are summarized in Appendix A, Table A.2.

Note that the backward-facing step problem, similarly to the lid-driven cavity prob-
lem, has a singularity — the pressure tends to infinity at the non-convex corner. In
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Figure 6.8: Uniform mesh M1 for the BFS-2D problem.

practical computations, local refinement of the mesh in the vicinity of the corner is nec-
essary to resolve the singularity. Therefore, we also work with stretched meshes with
such ”local” refinement, where one row of elements around the corner is recursively
refined two, four and six times, denoted as SM1, SM2 and SM3, respectively.

BFS-3D

The three-dimensional BFS problem is analogous to the two-dimensional one. The com-
putational domain is only extended to the third dimension and periodic boundary con-
ditions are set on the sides of the 3D channel. The same parabolic inflow velocity with
maximum of one is considered.

We compare results for three values of viscosity, v = 0.1,0.05,0.01 corresponding to
Re = 20,40, 200. The steady-state velocity solution for Re = 200 is shown in Figure 6.9.

We consider discretizations of degree £ = 1,2,3 and various continuity on three
uniform meshes denoted as M1 to M3. Their number of elements is 144, 1152 and 9216,
respectively. The number of DOFs, the number of nonzeros and their percentage in the
matrix are summarized in Appendix A, Table A.4.

Figure 6.9: Streamlines and velocity magnitude of the steady-state solution of the BFS-
3D problem for v = 0.01 (Re = 200).

6.3.3 Water turbine runner wheel

The geometry of the third test problem represents a runner wheel of a water turbine.
In this case, the three-dimensional problem is primary and the two-dimensional one
originated as its simplification. We denote the two problems as TB-2D and TB-3D,
where ”TB” stands for ”turbine blade”.

TB-2D

The two-dimensional problem models flow in a row of 2D blade profiles obtained by
unfolding a cylindrical cross-section of the turbine runner wheel. The computational
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domain (see Figure 6.10) consists of three B-spline patches and represents a strip be-
tween two parts of a blade profile. The upper and lower boundary of the middle (blue)
patch form the blade profile and periodic boundary conditions are set at the upper and
lower boundaries of the remaining two patches. The left vertical boundary is an inflow
boundary, where we prescribe a constant velocity vector with a direction tangent to the
camber line of the profile at the leading point. The inflow velocity magnitude is approx-
imately 8.05. The right vertical boundary is an outflow with the do-nothing boundary
condition.

Figure 6.10: Computational domain for the Figure 6.11: Detail of the original
TB-2D problem consisting of three cubic B- cubic geometry (top) and its linear
spline patches with mesh M1. approximation (bottom).

The characteristic length scale L can be chosen as the chord length of the blade
profile and the reference velocity U as the inflow velocity magnitude. That is, in our
case, the Reynolds number is
UL 805-0.37

14 1%

Re (6.3)

We use viscosity values v = 0.1,0.01,0.001 in the experiments, which corresponds to
Reynolds numbers approximately 30, 298 and 2979, respectively. The steady-state ve-
locity solutions for » = 0.01 and v = 0.001 are shown in Figure 6.12.

The original geometry displayed in Figure 6.10 is described by B-spline surfaces of
degree k = 3 with C? continuity at the interior knots and their parametrization forms
a curvilinear mesh. As already mentioned, we cannot use discretizations of arbitrary
degree and continuity for such computational domain in IgA. Besides the discretization
4-3,C? on the exact domain, we consider a linear approximation of the domain with
discretizations 2-1,C° and 4-3,CY, see Figure 6.11 for illustration. For both domains,
we consider four meshes, the one shown in Figure 6.10 denoted as M1, and M2, M3 and
M4 that are obtained by one, two and three successive uniform refinements of M1. By
uniform refinement we mean inserting a knot in the middle of each knot span in the
parametric space. These ”uniform” meshes have 300, 1200, 4800 and 19200 elements,
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(a) v = 0.01, Re =~ 298. (b) ¥ =0.001, Re ~ 2979.

Figure 6.12: Streamlines and velocity magnitude of the steady-state solutions of the
TB-2D problem for two different values of viscosity.

respectively. Again, we summarize the number of DOFs, the number of nonzeros and
their percentage in the matrix in Appendix A, Table A.5. Similarly to the test problems
described above, we also consider stretched meshes obtained by recursively refining one
row of elements along the blade profile two, four and six times and denote them as SM1,
SM2 and SM3, respectively.

TB-3D

The last test problem is a flow in a domain representing the volume between two blades
of a Kaplan turbine runner wheel. An example of a geometry used for modeling the
flow in the turbine is shown in Figure 6.13 (left). It involves the stationary guide vanes
(blue) and the rotating runner blades (red). The fluid enters the turbine through the
left boundary and leaves through the right boundary. We consider the stationary and
rotating part of the turbine separately: a stationary flow is computed in the stationary
part first and the obtained velocity is used as a boundary condition for the rotating part.
Since both parts are radially periodic, the computational domain can be defined as a
strip between two guide vanes or runner blades, respectively, with periodic boundary
conditions on the boundaries in front of and behind the vane/blade. The runner wheel
computational domain is shown in Figure 6.13 (right), where the top and bottom bound-
aries correspond to the inflow and outflow, respectively, and the blades are displayed in
red color.

Note that we consider this example in order to test the preconditioners for a problem
with a real-world geometry, but our settings and parameters are far from the real-world
problem from industrial practice. First, we do not consider any rotation of the runner
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Figure 6.13: The Kaplan turbine geometry: stationary and rotating part (left), the
computational domain for the rotating part (right).

wheel and not even the periodic boundary conditions. Since the periodic sides are not
parallel and velocity is a vector quantity, the corresponding velocity vectors on the
periodic sides are not identical but rotated relative to each other. Thus, the periodic
boundary conditions introduce a coupling between velocity components. This results in
matrix F that is not block diagonal, which makes the solution more expensive, since the
linear systems with this matrix cannot be split into three smaller systems (each for one
velocity component). Therefore we define solid walls (homogeneous Dirichlet conditions)
instead of the periodic sides. Further, we consider coarse meshes and very high viscosity
values in comparison to the ones used in practice.

Figure 6.14 shows the computational domain consisting of three B-spline patches of
degree k = 3 with the coarsest considered mesh denoted as M1. We consider another two
meshes, M2 and M3, obtained from M1 by one and two successive uniform refinements
in the sense described for TB-2D. These meshes have 400, 3200 and 25600 elements,
respectively, and the numbers of DOFs and nonzeros and their percentage in the matrix
are summarized in Appendix A, Table A.6. For this problem, we perform the experiments
only for the discretization based on the original geometry representation 4-3, C?.

Figure 6.14: Computational domain for the TB-3D problem with mesh M1 (two different
views).

We consider two viscosity values, v = 0.1 and v = 0.05 for this test problem. The
inflow velocity is taken as the solution computed in the stationary part of the turbine
with the corresponding viscosity. The maximum of its magnitude is approximately 9 for
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v = 0.1 and 8.7 for v = 0.05. The steady-state velocity solution for v = 0.05 is shown in
Figure 6.15.

Figure 6.15: Streamlines and velocity magnitude of the steady-state solution of the
TB-3D problem for v = 0.05 (two different views).

6.4 Approximation of mass matrices

The velocity or pressure mass matrix arise in most of the block preconditioners used
in this chapter. In many cases, the inverse velocity mass matrix M, ' appears in a
product with other matrices (see the Schur complement approximations (5.35), (5.52) of
PCD and LSC and also the MSIMPLER preconditioner). In these expressions, the mass
matrix is usually replaced by a diagonal matrix to make the inverse easy to compute
and preserve sparsity of the resulting matrix.

The introduction of scaling matrices into the BFBt preconditioner to obtain the LSC
preconditioner has proven that such diagonal scaling can have a significant effect on the
performance of the preconditioner (see the comparisons in [35]). The diagonal mass
matrix approximation is typically chosen to be equal to the diagonal of M, itself, i.e.,
M, = diag(M,). It can be shown for some common standard finite elements that the
mass matrix and its diagonal are spectrally equivalent, see, e.g., [40, Chapter 4]. We
believe that particular choice of the diagonal scaling can play an important role and
deserves a bit of attention.

When it comes to diagonal approximation of the mass matrix, probably the first
method that comes to mind is the so-called mass lumping. It is widely used in some
areas of computational mathematics, for example in explicit time-stepping schemes. A
simple and probably the most popular mass lumping technique is the row-sum method.
Consider a given mass matrix M € RM*N and denote the row-sum lumped mass  matrix
as M. As the name of the method suggests, the diagonal entries of the matrix My, are
obtained by summing up the elements in the rows of M, that is

N
Mpii =Y My, i=1,..N. (6.4)
j=1

This method is not suitable for some higher-order standard finite elements, since it can
lead to negative values in M. However, positivity of all entries of M, is guaranteed in
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IgA thanks to the pointwise positivity of the basis functions. Moreover, it holds

N N N
ML,ii—;Mij—j;/ﬂQin—/QQi ;Qj —/QQz'7 (6.5)

where Q;,@Q); are the B-spline (or also NURBS) basis functions. This follows from the
partition of unity property of the isogeometric basis. Thus, the lumped mass matrix can
be obtained directly by integrating the N basis functions.

It is a known issue that when the lumped mass matrix is used in explicit methods with
higher-order IgA discretizations, the scheme becomes at most second-order accurate, see,

, [23, 24, 30]. To the best of our knowledge, finding a higher-order accurate mass
lumping method for IgA is still an open problem. However, this is not a problem in our
case, since we use the lumped mass matrix only in the preconditioning operator, which
is meant to be an approximation of the original problem.

In this section, we compare the block preconditioners with the two mentioned vari-
ants of diagonal mass matrix approximation and choose the superior variant for the
experiments in the rest of this chapter. The model problem for this comparison is the
BFS-2D problem with Re = 200 and A¢ = 0.01 in the time-dependent case.

6.4.1 M, in LSC and MSIMPLER

A diagonal approximation ﬁ of the velocity mass matrix M, appears several times in
both preconditioners. We compare the GMRES iteration counts with the two choices of
M., the diagonal of the consistent (full) mass matrix M, = diag(M,,) and the row-sum
lumped velocity mass matrix Mu = M% L-

Table 6.1 shows results for the steady-state problem. Generally, LSC and MSIM-
PLER give very similar iteration counts in all cases. Comparing the two mass matrix
approximations, there is not a significant difference in convergence for discretizations
with the maximum continuity. The same can be said about the coarsest mesh M1 in
general. However, with M,, = diag(M,,), the iteration counts increase quite signifi-
cantly with mesh refinement for discretizations with lower continuity, especially for the
CO cases. On the other hand, this does not happen with Mu = Mu7 L, where the it-
eration counts are more or less independent of the discretization degree and continuity
for all considered meshes. For the 2-1,C° discretization, the convergence seems even
independent of the mesh refinement. If we view this discretization as an analogy of the
standard Q2-Q1 finite element, these results indicate that mass lumping might improve
the properties of LSC and MSIMPLER also for standard low-order FEM discretizations.

Results for the time-dependent problem are displayed in Table 6.2. In this case, the
convergence is almost the same for both choices of the mass matrix approximation. The
variants with 1/\\/Iu 1, usually require one or two iterations less.

Based on the results presented in this section, we choose to use mass lumping for
LSC and MSIMPLER in all further experiments.

6.4.2 M, in PCD

A diagonal approximation of ﬁu is used only in the modified version of the PCD pre-
conditioner proposed by Elman and Tuminaro [41], where the pressure-Poisson matrix
A, is not assembled, but defined as A, = BM, !B instead. We will comment on using
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diag(M,) M1 M2 M3 M4 M,, M1 M2 M3 M4
2-1,C° 33 33 40 65 21,00 20 25 24 29
5-4,C0 28 33 56 113 54,00 29 29 33 40
54,03 28 24 28 36 54,03 28 25 30 38
(a) LSC with M, = diag(M.,,). (b) LSC with M, = M, ;.
diag(M,) M1 M2 M3 M4 M,;, M1 M2 M3 M4
2-1,C° 31 31 39 64 21,00 28 24 23 27
5-4,C° 26 32 56 114 5-4,C° 29 28 31 38
54,03 29 25 27 36 54,03 28 25 28 37
(¢) MSIMPLER with M, = diag(M,,). (d) MSIMPLER with M, = M, .

Table 6.1: Iteration counts of LSC and MSIMPLER, preconditioner with two variants
of mass matrix approximation for the steady-state BFS-2D problem with v = 0.01.
(Results for all discretizations in Appendix B, Table B.1.)

the two variants of ﬁu in PCD in Section 6.5 which is devoted to experiments with
various boundary conditions for PCD.

Note that we do not consider any explicit approximation of the pressure mass matrix
M, in the PCD Schur complement approximations.

6.4.3 M, in AL and MAL

In augmented Lagrangian approaches, an approximation Mp of the pressure mass matrix
appears in the inverse approximate Schur complement S7 1 (5.68). Moreover, we con-

sider W = ﬁp, thus, the mass matrix approximation is present also in the augmented
block F,.

We compare the AL and MAL preconditioners with the approximation ﬁp = diag(M,)
and the row-sum lumped variant ﬁp = ﬁp, 1, for the BFS-2D problem on mesh M1. We
have chosen three discretizations for the presentation of the results, one with the low-
est degree (2-1,C°), one with higher degree and C° continuity (4-3,C°) and the last
one with higher degree and maximum continuity (4-3,C?). Since the convergence of
these preconditioners depends on a parameter vy, we consider several values of 7y in this
comparison to see if the dependence on v differs for different choices of M,,.

Table 6.3 shows iteration counts of GMRES preconditioned with AL and MAL with
the two choices of mass matrix approximation for the steady-state problem. The iter-
ation count ”>300” means that the GMRES method reached the maximum number of
iterations that was set to 300. Results for the time-dependent problem are shown in
Table 6.4.

Generally, lumping does not seem to bring any advantage when used in the AL-based
preconditioners. On the contrary, the iteration counts are higher with lumping in many
cases or, at least, it seems that larger v is needed with M, ;, to reach similar convergence
as for diag(M,,), which is not desirable. Thus, we do not use lumping for AL and MAL
in the rest of the experiments.
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diag(M,) M1 M2 M3 M4 M,, M1 M2 M3 M4
2-1,C° 6 6 5 5 2-1,CY 5 5 4 4
5-4,C0 16 15 14 14 54,0 15 13 12 12
5-4,C3 8 7 6 7 5-4,C3 7 6 5 6
(a) LSC with M, = diag(M,,). (b) LSC with M, = M, ;.
diag(M,) M1 M2 M3 M4 M,;, M1 M2 M3 M4
2-1,C° 7 6 5 5 2-1,C° 6 5 5 5
5-4,C° 19 17 16 17 54,9 18 16 15 15
5-4,C3 10 8 7 8 5-4,C3 9 8 6 7
(¢) MSIMPLER with M, = diag(M,,). (d) MSIMPLER with M, = M, .

Table 6.2: Iteration counts of LSC and MSIMPLER preconditioner with two variants of
mass matrix approximation for the time-dependent BFS-2D problem with v = 0.01 and
At = 0.01. (Results for all discretizations in Appendix B, Table B.2.)

6.5 Boundary conditions for PCD

We have mentioned several possible choices of boundary conditions (BCs) for the discrete
operators on the pressure space A, and F, that can be found in the literature. In this
section, we compare different choices and choose the best variant to be used in further
experiments. Specifically, we consider the following choices and introduce their notation:

1. original PCD [67]: S = Sp%, defined in (5.40)
e A, and F, defined with Dirichlet BCs on 02, and Neumann BCs elsewhere,
e A, assembled using (5.36),
e denote as PCDObl;ilg ,
2. Elman, Tuminaro [41]: S = /S\gg% defined in (5.42)
e F, defined with Robin BCs on 9€);, and Neumann BCs elsewhere,
e A,=BM;!B7,
e denote as PCDEICOQd,
3. Elman, Tuminaro [41]: S = Sme{ defined in (5.42)

e F, defined with Robin BCs on 0€,, Dirichlet BCs on 06y, and Neumann
BCs on 0Qcpar,
e A,=BM;!B7,

e denote as PCDEL%d,
4. Blechta [9]: S = §§CD defined in (5.45)

e F, defined with Robin BCs on 02, Dirichlet on 0, and Neumann on
anharv
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v | 2-1,C% 43,C° 4-3,C? v |21,C° 43,C° 4-3,C?

0.01 107 210 190 0.01 135 >300 258

0.1 29 36 51 0.1 50 153 136

1 8 6 12 1 12 24 28

2 6 5 8 2 9 13 17

5 5 4 5 5 6 7 10

10 4 3 4 10 5 5 7

50 3 2 3 50 3 3 4

100 3 2 2 100 3 3 3
(a) AL with M, = diag(M,). (b) AL with M, = M, .

v |2-1,C° 4-3,C° 4-3,C? v |2-1,C° 4-3,C° 4-3,C?

0.01 111 218 195 0.01 151 >300  >300

0.1 28 40 50 0.1 49 153 137

1 51 119 64 1 30 40 31

2 75 174 93 2 47 62 39

5 104 267 138 5 78 111 66

10 114 >300 169 10 102 162 95

50 117 >300 187 50 117 >300 168

100 112 >300 180 100 116 >300 181
(¢) MAL with M, = diag(M,)). (d) MAL with M, = M,, /..

Table 6.3: Iteration counts of the AL-based preconditioners with two variants of mass
matrix approximation for the steady-state BFS-2D problem with v = 0.01.

e A, assembled using (5.36), defined with Dirichlet BCs on 0Qqy and Neumann
BCs elsewhere,

d
e denote as PCDy".

In addition, we experiment with two new variants of the Schur complement approxi-
mation. Recall that the elements of F), are given by the integral formula (5.37). Using the
formula (5.36) for the elements of A, the (steady-state) pressure convection-diffusion
matrix can be written as

F, = Ny(up) +vA,, (6.6)

where Np(u]fl) is a discretization of the linearized convective term on the pressure space.
Of course, it holds analogously in the time-dependent case using (5.38) instead of (5.37).
Inspired by [41], we use A, = Bﬁ; BT also in (6.6) for consistency. Adding the
boundary term corresponding to Robin boundary condition on 9, as in (5.44) leads
to a modification of PCD{)‘LOQd. Furthermore, we consider a variant with no boundary
modification at all, relying only on the boundary conditions defined implicitly through
A, = BM,'BT. In such case, the only new matrix to be assembled is Np(ufl) and even
the knowledge of the individual parts of the boundary is not needed. To summarize, we
propose the following variants:
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v | 2-1,C% 43,C° 4-3,C?

v |21,C° 43,C° 4-3,C?

0.01
0.1
1

2

)

10
50
100

28
31
33
30
29
22
13
10

47
46
40
32
30
23
13
10

40
40
39
32
30
23
13
10

(b) AL with M, = M, ;..

0.01 29 54 39
0.1 33 50 43
1 35 32 31
2 30 24 24
5 22 17 17
10 17 13 13
50 10 8 8
100 8 6 6
(a) AL with M, = diag(M,).
7| 2-1,6° 43,C° 4-3,C?
0.01 36 66 49
0.1 41 55 49
1 38 35 34
2 32 28 26
5 24 26 20
10 20 28 20
50 22 40 24
100 24 51 32

7| 2-1,6% 43,C° 4-3,C?

(¢) MAL with M, = diag(M,)).

0.01
0.1
1

2

)

10
50
100

35
38
37
32
31
25
20
21

o7
95
42
34
32
26
25
27

49
49
41
35
32
25
19
20

(d) MAL with M, = M,, ;..

91

Table 6.4: Iteration counts of the AL-based preconditioners with two variants of mass
matrix approximation for the time-dependent BFS-2D problem with v = 0.01 and At =

0.01.

1. PCDod:

o 8= Sp,

e A, = BM;!B7,

e F, = N,(u}) + vBM; BT + Robin BCs on 0%y,

2. PCDY:

Q __ Qorig
* S=Spcp

e A,=BM;!B7,

e F, = N,(ul) + vBM, 'BT.

The mass matrix approximation is ﬁu = diag(M,,), unless stated otherwise. Simi-
larly to Section 6.4, we use BFS-2D with Re = 200 (and At = 0.01 in the time-dependent
case) as the test problem.

6.5.1 Scaling of Dirichlet conditions

Recall that the Dirichlet boundary conditions for F, (and A,, if it is assembled using
(5.36)) are applied by modifying certain rows and columns of the matrix such that they
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contain only diagonal entries. It was also mentioned in Section 5.3.2 that the value
of these entries is arbitrary. Consider a constant diagonal value and denote it as a.
A straightforward choice would be o = 1, which is considered, e.g., by Blechta [9].
However, according to Elman and Tuminaro [41], the performance of PCD is sensitive
to the scale of the diagonal entries of F, (note that they do not deal with boundary
conditions for A,, since they use A, = BK\/I; IBT). They suggest taking the value equal
to the average of the diagonal values of F), not corresponding to the inflow and outflow
boundaries. We denote this choice as a = avayg.

If Dirichlet boundary conditions are defined also for the matrix A,, we treat it in
the same way as F),. That is, if @ = aayg is used for F),, the value of diagonal entries in
the modified rows of A, is obtained analogously as the average of appropriate diagonal
values of A,,.

We compare results with the two mentioned choices of a for two selected choices of
boundary conditions, PCDgillg and PCDE‘C(jld, where Dirichlet conditions are set for both
A, and Fj,. We present results for the same set of discretizations as in Section 6.4.3. The
results are shown in Table 6.5 for the steady-state problem and in Table 6.6 for the time-
dependent problem. In both cases, the iteration counts increase with mesh refinement
for & = 1, especially for the 4-3, CO discretization. When a = Qtavg 1s used, the mesh
dependence is eliminated (the iteration counts even decrease with mesh refinement in
the steady case) and the convergence seems generally more robust with respect to the
discretization. Thus, we set & = a,ye in all experiments.

PCDY™® M1 M2 M3 PCDY™ M1 M2 M3

2-1,C° 45 42 43 2-1,C° 47 39 31
4-3,C° 40 52 75 4-3,C° 32 30 28
4-3.C? 42 40 45 4-3,C? 44 35 29
PCDRod M1 M2 M3 PCDRod M1 M2 M3
2-1,C° 45 45 55 2-1,C° 39 30 23
4-3.C° 48 66 69 4-3,C° 25 23 22
4-3,C? 42 44 58 4-3,C? 31 23 22
(a) a=1. (b) a = aavg-

Table 6.5: Iteration counts of PCDgiilg and PCDglcid with two choices of diagonal value «
in the rows modified due to Dirichlet boundary conditions for the steady-state BFS-2D
problem with v = 0.01.

For illustration of convergence with the two values of «, we show the evolution of the
relative residual norm during the GMRES iterations until convergence in Figure 6.16
for PCDE&d. The graphs are shown for the steady-state and time-dependent BFS-2D
problem with 2-1,CY discretization. With o = 1, there is a phase of a staircase-like
convergence which expands with mesh refinement. This behavior is seen also for other
discretizations. Moreover, GMRES with PCD}\} almost stagnates at the beginning for
steady-state problems and this stagnation phase again expands with mesh refinement.
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PCD)"¢ M1 M2 M3 PCD)"¢ M1 M2 M3
2-1,C° 19 26 42 2-1,C° 19 27 37
4-3,C° 33 47 67 4-3,C° 32 42 52
4-3,C? 25 33 49 4-3,C? 25 31 39
PCDIo? M1 M2 M3 PCDRo! M1 M2 M3
2-1,C° 7 9 12 2-1,C° 7 6 7
4-3,C° 13 15 16 4-3,C° 8 7 7
4-3,C? 8 11 12 4-3,C? 8 8 7
(a) a=1. (b) @ = aravg-

Table 6.6: Iteration counts of PCDE?lg and PCDgﬁd with two choices of diagonal value
« in the rows modified due to Dirichlet boundary conditions for the time-dependent
BFS-2D problem with v = 0.01 and At = 0.01.

d.
PCDIY: a = 1 PCDpes™ @ = tavg
10° — Ml 10° — Ml
101 \ M2 101 \ M2
M3 \ \ M3
10 2 -2
10 \

1073 10-3
1074 104
103 10-5
10° 10-6

t ; ; ; - ! iter t ; ; y - ! iter

10 20 30 40 50 60 10 20 30 40 50 60

(a) The steady-state BFS-2D problem with v = 0.01.

mod. ,, _
PCDE}S‘d a=1 PCDbC4 a= Q’avg

10° MI 10 Ml
1071+ M2 10-! M2
o M3 102 M3
10- 2

10-3 10-3

10-4 1074

105 10-°

10-6 \ 106 \

iter iter
5 10 15 20 5 10 15 20

(b) The time-dependent BFS-2D problem with v = 0.01 and At = 0.01.

Figure 6.16: Convergence of PCD®9? with Dirichlet diagonal values o = 1 (left) and

Q= Qg (right) for the 2-1, C¥ discretization.

6.5.2 Comparison of different choices of BCs

In this section, we compare all variants of boundary conditions for PCD mentioned
above. Tables 6.7 and 6.8 contain GMRES iteration counts for various discretizations
and mesh refinements of the steady-state and time-dependent test problem, respectively.

According to these results, PCDgﬁd is clearly the best option. In the steady case, the

original version PCDE?{C’T is also a good choice, it is robust with respect to mesh refinement
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as well as the discretization degree and continuity. However, it shows mesh dependence in
the time-dependent case. In general, the convergence of all variants with A, = BM,, BT
is strongly dependent on the discretization degree and especially its continuity. _

In the steady case, the proposed variant with no boundary modification PCDy.5 is
obviously not applicable, since its convergence is slow and not robust with respect to
mesh refinement. All other variants, including PCDgﬁ%d, are more or less comparable
for the low degree discretization 2-1, C°. It indicates that PCDEI%d could be successfully
used also for the standard low-degree finite elements. Moreover, it seems that, unlike the
related variants PCDE“COQd and PCDglc%d, its convergence does not slow down with mesh
refinement and the iteration counts are generally lower.

In the time-dependent case, PCD{JHC‘ZLd is the only variant which is robust with respect
to both mesh refinement and discretization and it requires significantly less iterations
than the other variants. The iteration counts of PCDf)rCllg increase with mesh refinement
for all discretizations. The variants PCDgt:OQd and PCDEE%d known from the literature
seem mesh independent for the low-degree discretization 2-1, C?. There is only a mild
dependence for discretizations of the maximum continuity for the given degree, but the
mesh dependence gets stronger with decreasing continuity. On the contrary, the iteration
counts of PCD&%d and PCDEEIGg decrease with mesh refinement similarly to the steady
case. The convergence of these two variants is mostly very similar. It can be concluded
that the linear systems arising from time-dependent problems can be solved quite ef-

fectively without any boundary modification with PCDﬁiiGg, if the maximum continuity

discretization is used. The relative residual norm evolution for PCDgiilg and PCDE&% for
different uniform meshes is shown in Figure 6.17.

Figure 6.18 shows comparison of the relative residual norm evolution of all PCD
BCs variants for the steady-state and time-dependent problems. Again, the graphs are
presented for three selected discretizations 2-1, C?, 5-4, C° and 5-4, C® and the mesh M4.

PCDyF: 5-4, C3 PCDpog: 5-4, C3
Mi
M2
M3
— M4
"
10 20 30 40 50 iter 10 20 30 40 50 iter

Figure 6.17: Mesh dependence of the original PCD, PCD(];rCilg , and the proposed variant

with no boundary modification PCDgfg for the time-dependent BFS-2D problem with
5-4,C® discretization.

Computational time

Finally, we present the wall-clock time of the computation for the individual PCD vari-
ants, i.e., the computational time of the whole solution of the given linear system. The
total time is divided into two parts denoted as Tsetup and Tiolve- Tsetup is the setup time
of the preconditioner which involves factorization of the sub-blocks needed for direct
solution of the inner linear systems (in the case of ideal version of PCD, which is con-
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PCDY¢ M1 M2 M3 M4 PCDPY M1 M2 M3 M4
2-1,C° 47 39 31 29 2-1,C° 38 35 34 38
4-3,CY 32 30 28 27 4-3,CY 262 >300 >300 >300
4-3,C? 44 35 29 27 4-3,C? 66 69 75 79
5-4,C° 31 30 29 27 5-4,C°  >300 >300 >300 >300
5-4,C3 42 34 29 27 5-4,C3 98 99 109 114
PCDRod M1 M2 M3 M4 PCDRod M1 M2 M3 M4
2-1,C° 44 39 37 38 2-1,C° 39 30 23 22
4-3,C° 265 >300 >300 >300 4-3,C° 25 23 22 21
4-3,C? 68 70 72 75 4-3, C? 31 23 22 21
5-4,C°  >300 >300 >300 >300 5-4,C0 24 23 22 21
5-4,C3 100 102 103 106 5-4,C3 27 22 21 21
PCDied M1 M2 M3 M4 PCDY® M1 M2 M3 M4
2-1,C° 40 36 34 34 2-1,C° 106 >300 >300 >300
4-3,C° 213 238 198 136 4-3,C°  >300 >300 >300 >300
4-3,C? 50 51 50 49 4-3,C? 109 155 >300 >300
5-4,C%  >300 >300 >300 >300 5-4,0°  >300 >300 >300 >300
5-4,C3 68 63 60 57 5-4,C3 124 155 >300 >300

Table 6.7: Comparison of all considered variants of boundary conditions for PCD, steady-
state BFS-2D problem with » = 0.01. (Results for all discretizations in Appendix B,
Table B.3.)

sidered here). Tiove is the time of the actual GMRES iterations. Note that the time
of A, and F,, assembly is not included. Times for the steady-state and time-dependent
problem with the mesh M4 and selected discretizations are plotted in Figures 6.19 and
6.20, respectively. Tiolve is displayed only for the cases where GMRES converged to the
required tolerance.

Again, PCD{;&Cl appears as the most efficient variant of all. Only in a few cases,
PCD‘;S{C’T took less time than PCD®9!, but their differences are minimal. Note that
PCDglc%d and PCDEiiﬁg took the second and third lowest time in the time-dependent case
for the discretizations 2-1, C? and 5-4, C3.

6.5.3 Mass matrix approximation in A, = Bﬁ;lBT

As we have seen in the previous section, the convergence of the PCD variants with
A, =BM, IBT depends on the discretization degree and continuity. In the case of LSC
and MSIMPLER preconditioners, the situation was similar and using the lumped mass
matrix approximation M, j, instead of diag(M,,) helped with this issue.

In Table 6.9, we present a comparison of iteration counts for the relevant variants of
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PCDY¢ M1 M2 M3 M4 PCDPY M1 M2 M3 M4
2-1,C° 19 27 37 48 2-1,C° 12 12 11 11
4-3,C° 32 42 52 54 4-3,C° 98 112 118 131
4-3, C? 25 31 39 45 4-3,C? 24 23 23 26
5-4,C0 37 48 53 53 5-4,C° 232 >300 >300 >300
5-4,C3 27 33 41 46 5-4,C3 33 32 33 37
PCDRod M1 M2 M3 M4 PCDRod M1 M2 M3 M4
2-1,C° 17 19 19 16 2-1,C° 7 6 7 7
4-3,C° 122 149 158 160 4-3,C° 8 7 7 7
4-3,C? 32 35 37 39 4-3, C? 8 8 7 7
5-4,C° 284 >300 >300 >300 5-4,C° 8 7 7 7
5-4,C3 42 44 48 53 5-4,C3 9 8 7 7
PCDied M1 M2 M3 M4 PCDY® M1 M2 M3 M4
2-1,C° 12 12 11 11 2-1,C° 12 12 11 11
4-3,C° 83 71 53 36 4-3,C° 82 70 53 38
4-3,C? 23 21 16 14 4-3,C? 23 20 17 15
5-4,C"° 182 187 175 161 5-4,C"° 181 184 172 >300
5-4,C3 31 26 21 17 5-4,C3 30 26 21 17

Table 6.8: Comparison of all considered variants of boundary conditions for PCD, time-
dependent BFS-2D problem with v = 0.01 and At = 0.01. (Results for all discretizations
in Appendix B, Table B.4.)

PCD with M,, = diag(M,,) and M,, = M, , on the mesh M1. Unlike LSC and MSIM-
PLER, the convergence with the lumped mass matrix approximation is even slower than
with the diagonal of M,. Therefore, we include results with the exact mass matrix
inverse, i.e. A, = BM, BT into the comparison to see if a more accurate approxi-
mation of the mass matrix inverse could potentially lead to better results. Indeed, the
convergence is almost independent of the degree and continuity for all PCD variants in
the time-dependent case and for PCDEICOQd, PCDglc%d and PCDglc%d also in the steady case.
However, we were not able to find a suitable approximation of M ! that would lead to
degree-independent convergence. This could be a subject for future work.

6.5.4 Summary

Based on the results presented in this section, we recommend the following approach to
the PCD boundary conditions for solving linear systems arising from IgA discretizations:
the variant PCDgﬁd combined with appropriate scaling of diagonal elements in A, and
F, in the rows modified due to Dirichlet boundary conditions. For the sake of clarity,
we summarize this approach again:
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Figure 6.18: Comparison of different PCD BCs for three selected discretizations on the

mesh M4, steady-state problem (left) and time-dependent problem (right).
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Figure 6.19: Wall-clock time of the preconditioner setup (Tyetup) and the GMRES iter-
ations (Tyolve) for PCD with various BCs, steady-state BFS-2D problem with v = 0.01,

mesh M4.

e A, assembled using (5.36),

e F, defined with Robin BCs on 0%, see (5.44),

e Dirichlet BCs defined on 0, for both A, and Fyp, i.e., both matrices are modified
such that the rows and columns corresponding to the pressure DOFs on 00t

contain only diagonal entries,

e the value of these diagonal entries is determined as average of the diagonal entries
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Figure 6.20: Wall-clock time of the preconditioner setup (Zsctup) and the GMRES itera-
tions (Tyolve) for PCD with various BCs, time-dependent BFS-2D problem with v = 0.01

and At = 0.01, mesh M4.

steady unsteady

Mesh M1 21,00 54,00 54,03 21,00 54,00 54,C3

PCDI! 38 >300 98 12 232 33

M, = diag(M,) PCDpod 44 >300 100 17 284 42

u U

PCDpod 40 >300 68 12 182 31

PCD{"® 106 >300 124 12 181 30

PCDIg! 39 >300 101 12 274 38

M, = M, ; PCDpo 45 >300 107 14 284 46
u )

’ PCDIY! 41 >300 97 12 220 36

PCD}"® 95 >300 201 12 219 36

PCDpgd 35 28 28 4 5 5

M. = M PCDod 38 43 38 4 6 7
u u

PCDpod 35 24 26 4 5 5

PCD{"8 88 >300 83 4 6 6

Table 6.9: Comparison of different choices of ﬁu in PCD variants with A, = BM; BT

for BFS-2D with v = 0.01.

of the respective matrix not corresponding to the inflow and outflow boundaries,

e denote the resulting matrices as AP°" and Fm Dot

e the Schur complement approximation is given by S = -M,, <F

Rin,Dout -1 A Dout
p 14 .

This approach is a combination of one of the PCD variants formulated in [9] and the
scaling mentioned in [41], where it was considered for the diagonal entries corresponding
to Dirichlet BCs in F,. To our knowledge, using an analogous scaling also for the matrix

A, is new.

According to our results, it seems that the variant from [9] without the scaling
(PCD{?CT with & = 1) shows some mesh dependence for all discretizations. The vari-
ants from [41] seem to perform relatively well for the low-degree discretization 2-1,C?,
but the convergence slows down for higher-degree IgA discretizations, especially for the
C? continuity, which suggests that the performance may also worsen for higher-degree
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standard finite elements. Only the combination of PCDglC‘ZLd with the scaling (o = aavg)

leads to a method which is robust with respect to the discretization as well as mesh
refinement. We will use this combination in all further experiments, where we denote it
shortly as "PCD”.

Our experiments also indicate that if a suitable approximation of M, ! was found, the
variants with A, = BM, IBT could also give a fast and robust convergence, moreover,
without any boundary modification in the time-dependent case (PCDﬁfg). However, we
note that this choice of A, is denser and thus leads to higher memory requirements than

if A, is assembled as a discrete Poisson operator.

6.6 Comparison of ideal versions of block preconditioners

The main comparison of ideal versions of all considered block preconditioners for all test
problems is presented in this section. For each test problem, we limit ourselves to three
discretizations: 2-1,C° that can serve as an analogue of the standard low-degree finite
elements, and the discretizations of the highest degree k considered for the given test
problem with C° and C*~! continuity. As already mentioned, we refer to Appendix B
for complete results involving the discretizations omitted here. If a parameter was not
considered for a given problem, the corresponding position in the table is filled with a
dash (—).

First, we comment on the choice of the parameter v in the AL-based preconditioners
for the individual test problems. The rest of the section is divided into three parts:
the first two are devoted to the steady-state and time-dependent two-dimensional test
problems and the last one deals with the three-dimensional test problems. We focus on
the convergence behavior of the block preconditioners depending on different aspects:
uniform mesh refinement and viscosity value in both 2D and 3D and mesh stretching in
2D.

6.6.1 Parameter v for AL and MAL

From our experience, the convergence of AL depends on « in a straightforward way —
the larger the value of ~, the faster the convergence. For a large enough v, GMRES
preconditioned with AL usually converges in just a few iterations. However, due to the
ill-conditioning of the augmented matrix F, for large v and thus an increasing influence
of rounding errors, the obtained solution becomes useless for v too large. Therefore, we
choose a moderate value of the parameter such that the convergence is already fast and
the solution error is acceptable at the same time. (We assess the ”error” by comparing the
obtained solution with a direct solution of the non-augmented linear system.) Usually, a
larger ~y is needed for time-dependent problems to achieve a comparably fast convergence
as in the steady case.

The dependence of MAL convergence on « is not so straightforward. There is usually
some optimal value for which the iteration count is minimal and that can differ depending
on the problem at hand and its parameters, discretization, etc. We investigated the
optimal choice for IgA discretizations of the 2D backward facing step problem in [31]. It
appears that the optimal value of  is rather small (at least for the steady-state problem)
and it does not differ much for different IgA discretizations. Here we do not go into much
detail regarding the optimal choice of v for MAL.
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Based on a set of experiments for each 2D test problem, we have chosen the values of
~ for AL and MAL shown in Table 6.10 and we use the same value for the corresponding
3D test problems.

vy AL MAL
st. unst. st. unst.

LDC | 2 10 | 0.02 0.2
BFS 10| 0.1 10
TB 2 10| 0.1 0.1

\V)

Table 6.10: Values of 7 chosen for individual test problems (the same value used for 2D
and 3D).

6.6.2 Steady-state 2D test problems
Uniform mesh refinement

A comparison of iteration counts for the steady-state LDC-2D, BFS-2D and TB-2D
problems for various uniformly refined meshes M1 to M4 and a fixed viscosity is presented
in Table 6.11. Note that only three meshes, M1 to M3, were considered for the AL-based
preconditioners because of high computational and especially memory requirements of
their ideal version.

Generally, we observe the expected convergence properties for all discretizations of
the test problems. LSC and MSIMPLER preconditioners give very similar iteration
counts and it seems that their convergence depends on the mesh refinement roughly as
O(hfl/ 2). The convergence of PCD is independent of h, except for some deterioration
for TB-2D with coarse meshes, where the iteration counts decrease with mesh refinement
at first. In the case of lid-driven cavity problem, there seems to be a jump from approx-
imately 50 iterations to around 30 iterations at some point when the mesh is refined.
This is caused by a stagnation phase that occurs in a later iteration for finer meshes,
see Figure 6.21 for plots of convergence curves. From the iteration counts point of view,
the convergence of SIMPLE is significantly slower than the other preconditioners. Its
mesh dependence is of order O(h_l/ 2), except for the high-degree discretizations with
low continuity, where the iteration counts seem to be almost independent of h. The AL
preconditioner requires a very low number of iterations for all problems and is robust
with respect to the mesh refinement and discretization. The iteration counts of MAL are
significantly higher than for AL and they seem to increase with the discretization degree
and continuity. Of course, this can be caused by a non-optimal choice of the parameter
~v. At least it seems that it is possible to choose v such that the convergence of MAL is
independent (or almost independent) of h.

Interesting is the behavior of SIMPLER. For high-degree C° discretizations, the
iteration counts increase approximately as O(h~1), whereas for the other discretizations,
they are almost independent of the refinement at first and seem to tend to the order
O(h~'/?) or even decrease for the tested meshes considered for TB-2D. This is very
similar to the behavior of LSC and MSIMPLER without mass lumping investigated in
Section 6.4.1. Thus, a modification of the diagonal approximation D = diag(F) might be
needed. However, lumping is not suitable in this case (which our experiments confirmed).
Figures 6.22 and 6.23 show the convergence curves of SIMPLER for BFS-2D and TB-2D,
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Figure 6.21: PCD convergence curves (relative residual norm) for the steady-state LDC-
2D problem with v = 0.003 and selected discretizations, comparison of uniform meshes.

respectively. Apparently, the GMRES method stagnates at the beginning of the iteration
process. This is typical for the SIMPLER preconditioner, as mentioned for example in
[107]. The stagnation phase expands with mesh refinement and this expansion is by far
most significant in the 5-4, C° case for BFS-2D and 4-3, C° for TB-2D.
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Figure 6.22: SIMPLER convergence curves (relative residual norm) for the steady-state
BFS-2D problem with v = 0.02 and selected discretizations, comparison of uniform
meshes.
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Figure 6.23: SIMPLER convergence curves (relative residual norm) for the steady-state
TB-2D problem with v
meshes.

0.01 and selected discretizations, comparison of uniform

Also notice that the iteration counts of PCD depend quite significantly on the dis-
cretization for TB-2D with coarse meshes M1 and M2. Surprisingly, the fastest conver-
gence is obtained for the 4-3, CY discretization. The iteration counts for the remaining
discretizations decrease gradually with mesh refinement. The convergence curves are
plotted in Figure 6.24. We do not have a theoretical explanation for this behavior,
nevertheless, note that the discretizations 2-1, C°? and 4-3, C° correspond to a linearized
geometry. Thus, the computational domain of the underlying problem differs from that
with the 4-3, C? discretization and the finer the mesh, the closer the two domains are to
each other.

We present the computational time for all preconditioners for the BFS-2D problem
with the mesh M3 in Figure 6.25. Note that the performance of our codes is not optimized
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Figure 6.24: PCD convergence curves (relative residual norm) for the steady-state TB-
2D problem with v = 0.01 and selected discretizations, comparison of uniform meshes.

and the preconditioners can probably be implemented more efficiently. Yet, these graphs
are useful for a rough comparison of the individual methods. Obviously, the setup of the
ideal versions of AL and also MAL is significantly more expensive than of the rest of the
preconditioners, which is due to factorization of the augmented matrix F or its diagonal
blocks. Thus, efficient solution of these subproblems is really essential for efficiency of
these methods. On the other hand, the solution with the SIMPLE preconditioner takes
long due to many iterations needed for convergence leading to high Tyve. PCD seems
as the most efficient of the tested methods, but let us remind that the assembly of
A, and F, is not included in the displayed computational time. More comparisons of
computational time for all test problems with the finest uniform mesh M4 are included
in Appendix B.

M3, 2-1,C° M3, 5-4,C° M3, 5-4,C%
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Figure 6.25: Wall-clock time of the preconditioner setup (Tietup) and the GMRES iter-
ations (Tolve) for various preconditioners for selected discretizations of the steady-state
BFS-2D problem with v = 0.02 on the mesh M3.

Mesh stretching

We compare the iteration counts for the steady state 2D problems with stretched meshes
in Table 6.12. Let us denote the maximum aspect ratio of the elements in a given mesh
(in the parametric space) as rmax. Then rpax = 1 for the uniform mesh and . = 4, 16
and 64 for the stretched meshes SM1, SM2 and SM3, respectively.

The convergence slows down with increasing maximum aspect ratio for LSC, SIM-
PLE and MSIMPLER, and for both inflow/outflow problems also for SIMPLER. The
strongest dependence (approximately O(rrln/:’x) to O(rrln/aZX)) is observed for LSC and
MSIMPLER for the LDC-2D problem. On the other hand, SIMPLER gives conver-
gence almost independent of the aspect ratio when used for the LDC-2D problem. The
iteration counts of PCD and AL are independent of the aspect ratio. The results for MAL
indicate, that v can be chosen such that the convergence also does not depend on 7.
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LDC-2D BFS-2D TB-2D
LSC 2-1,C% 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C3%|2-1,C° 4-3,C° 4-3,C?
M1 26 43 27 18 25 19 43 22 31
M2 30 44 33 18 27 21 29 19 24
M3 32 47 40 21 31 28 21 24 22
M4 41 53 53 29 38 38 20 30 27
PCD |2-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 51 55 52 23 22 20 72 22 57
M2 53 57 53 21 20 19 52 19 40
M3 51 34 54 20 19 19 20 15 16
M4 52 33 32 19 18 18 18 15 16
SIMPLE |2-1,C% 5-4,C° 5-4,C%[2-1,C° 54,C° 5-4,C%]2-1,C° 4-3,C° 4-3,C?
M1 80  >300 88 69 271 91 85  >300 147
M2 118 >300 97 97 275 85 108 272 139
M3 152 >300 126 124 246 108 131 210 135
M4 206  >300 172 164 247 146 169 268 173
SIMPLER |2-1,C° 54,C° 54,C%]2-1,C° 54,C° 54,C%|2-1,C° 4-3,C° 4-3,C?
M1 24 34 22 18 28 16 62 30 46
M2 25 45 22 19 42 15 54 28 49
M3 26 80 23 26 81 18 32 49 37
M4 41 146 31 45 151 24 28 106 28
MSIMPLER | 2-1,C° 5-4,C° 5-4,C%|2-1,C° 54,C° 5-4,C%]2-1,C° 4-3,C° 4-3,C?
M1 24 42 25 17 25 18 49 28 33
M2 27 42 31 17 27 20 36 24 34
M3 29 45 38 20 31 27 27 27 31
M4 39 52 51 27 37 36 23 35 30
AL |2-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 5 6 8 6 5 7 6 4 5
M2 5 5 4 6 4 5 5 4 4
M3 5 5 3 6 4 4 5 4 4
MAL |2-1,0° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 29 252 128 24 85 77 43 56 56
M2 32 243 125 21 61 44 43 61 43
M3 36 129 121 20 41 29 44 61 50

Table 6.11: Comparison of block preconditioners for the steady-state two-dimensional
problems with uniform meshes. LDC-2D with v = 0.003 (Re ~ 333), BFS-2D with
v = 0.02 (Re = 100), TB-2D with v = 0.01 (Re ~ 298). (Results for all discretizations
of LDC-2D and BFS-2D in Appendix B, Tables B.5 and B.11, respectively.)
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LDC-2D BFS-2D TB-2D
LSC 2-1,C% 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C3%|2-1,C° 4-3,C° 4-3,C?
M1 26 43 27 18 25 19 43 22 31
SM1 38 51 42 20 42 24 52 37 39
SM2 62 80 71 24 66 34 68 58 59
SM3 88 101 100 30 72 48 80 79 73
PCD |2-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 51 55 52 23 22 20 72 22 57
SM1 54 33 55 22 21 20 73 22 57
SM2 53 31 31 22 21 19 73 22 58
SM3 31 25 28 22 21 19 73 22 58
SIMPLE |2-1,C% 5-4,C° 5-4,C%[2-1,C° 54,C° 5-4,C%]2-1,C° 4-3,C° 4-3,C?
M1 80  >300 88 69 271 91 85  >300 147
SM1 90  >300 80 89  >300 101 147 >300 201
SM2 106 >300 88 104 >300 128 192 >300 244
SM3 112 295 96 119 >300 146 225  >300 281
SIMPLER |2-1,C° 54,C° 54,C%]2-1,C° 54,C° 54,C%|2-1,C° 4-3,C° 4-3,C?
M1 24 34 22 18 28 16 62 30 46
SM1 24 32 20 20 51 22 69 39 58
SM2 23 37 20 30 78 31 78 51 65
SM3 22 36 20 40 94 37 81 59 67
MSIMPLER | 2-1,C° 5-4,C° 5-4,C%|2-1,C° 54,C° 5-4,C%]2-1,C° 4-3,C° 4-3,C?
M1 24 42 25 17 25 18 49 28 33
SM1 36 49 40 19 41 23 61 45 49
SM2 59 80 71 25 66 35 78 71 72
SM3 86 106 99 31 73 52 90 95 89
AL |2-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 5 6 8 6 5 7 6 4 5
SM1 5 5 3 6 5 6 6 4 5
SM2 3 3 3 6 5 6 6 4 5
MAL |2-1,0° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 29 252 128 24 85 77 43 56 56
SM1 30 116 117 23 51 39 43 60 52
SM2 31 75 46 23 34 32 43 60 53

Table 6.12: Comparison of block preconditioners for the steady-state two-dimensional
problems with stretched meshes. LDC-2D with v = 0.003 (Re ~ 333), BFS-2D with
v = 0.02 (Re = 100), TB-2D with v = 0.01 (Re ~ 298). (Results for all discretizations
of LDC-2D and BFS-2D in Appendix B, Tables B.6 and B.12, respectively.)
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Figure 6.26: LSC, PCD and SIMPLER convergence curves (relative residual norm)
for the steady-state TB-2D problem with the mesh M3 and selected discretizations,
comparison of different viscosity values.

Viscosity dependence

The comparison for various viscosity values on a fixed mesh (M3 for each test problem) is
presented in Table 6.13. The only preconditioner that gives v-independent convergence
is AL. From the results, it is not clear how to quantify the dependence on v for the
rest of the preconditioners. Interestingly, it seems to be somewhat weaker for the C
high-degree discretizations in many cases. For more insight, we show the convergence
curves for LSC, PCD and SIMPLER, for the TB-2D problem in Figure 6.26. For LSC
and PCD (it is true also for MSIMPLER), it can be seen that the convergence does
not differ much for different discretizations if the viscosity is large enough. However,
for the smallest viscosity, the convergence slows down dramatically or almost stagnates
from some iteration on. For the 4-3,C° discretization, this happens at a later iteration
compared to the other two discretizations. For SIMPLER, it seems that the initial stag-
nation phase tends to shorten with decreasing viscosity at first, but then the convergence
slows down.

If we look at the solution of the Navier—Stokes problem at the Picard iteration,
where the linear systems were obtained, we find the likely reason for this behavior. Fig-
ure 6.27 shows the pressure for the TB-2D problem with the selected discretizations.
The solutions obtained with discretizations 2-1, C? and 4-3, C? are polluted by spurious
oscillations. Apparently, the viscosity is too low for these discretizations on the consid-
ered mesh, and thus, the solution becomes unstable. The performance of the all tested
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LDC-2D BFS-2D TB-2D
LSC 2-1,0° 5-4,C° 5-4,0%]2-1,C° 5-4,C° 5-4,C°|2-1,C° 4-3,C% 4-3,C?
1 14 16 16 25 30 30 18 21 21
vy 18 22 22 24 34 31 21 24 22
s 32 47 40 68 49 64| >300 96  >300
Vs 184 142 137 — — — — — —
PCD |2-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
i 11 10 10 22 21 21 11 10 11
Vo 18 17 17 20 20 19 20 15 16
U3 51 34 54 80 44 58 | >300 42 >300
vy 262 137 213 — — — — — —
SIMPLE |2-1,C% 5-4,C° 5-4,C%[2-1,C° 54,C° 54,C%]2-1,C° 4-3,C° 4-3,C?
V1 67 118 54 90 143 84 100 147 91
Vs 72 127 59 165 297 141 131 210 135
s 152 >300 126 | >300 >300 >300| >300 >300 >300
vy | >300 >300 >300 — — — — — —
SIMPLER |2-1,C° 54,C° 54,C%]2-1,C° 54,C° 54,C%|2-1,C° 4-3,C° 4-3,C?
1 23 63 13 38 95 28 29 86 22
vy 25 66 15 31 106 21 32 49 37
s 26 80 23 88 91 73| >300 142 >300
vy 149 95 130 — — — — — —
MSIMPLER | 2-1,C° 5-4,C° 5-4,C%[2-1,C° 54,C° 54,C%]2-1,C° 4-3,C° 4-3,C?
v 18 23 23 26 33 32 22 26 25
vy 20 25 25 23 34 30 27 27 31
V3 29 45 38 69 48 65| >300 147 >300
vy 173 137 134 — — — — — —
AL |2-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
vy 5 27 18 9 — 7 5 3 4
vy 4 12 8 6 — 5 5 4 4
s 5 5 3 5 — 4 5 4 4
vy 5 3 3 — — — — — —
MAL 12-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
1 18 178 99 30 — 58 27 28 25
Vs 18 169 90 27 — 29 44 61 50
s 36 129 121 50 — 79 153 >300 200
vy 147 >300 265 — — — — — —

Table 6.13: Comparison of block preconditioners for the steady-state two-dimensional
problems with various viscosity values on the mesh M3. (Results for all discretizations
of LDC-2D and BFS-2D in Appendix B, Tables B.7 and B.13, respectively.)
LDC-2D: v; = 0.3, v2 = 0.03, v3 = 0.003, vy = 0.0003; BFS-2D: v1 = 0.2, vy = 0.02,
v3 = 0.002; TB-2D: v = 0.1, 1o = 0.01, v3 = 0.001.
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2-1,c°

Figure 6.27: Pressure solution for the TB-2D problem with v = 0.001 for different
discretizations on the mesh M3.

preconditioners except AL is obviously sensitive to such instability.

Summary

We have observed the expected behavior in the majority of cases for all considered IgA
discretizations. One of the exceptions is SIMPLER, which seems not suitable for higher-
degree C° discretizations due to relatively strong mesh dependence of its convergence.
This observation indicates, that it may not perform well also for the standard higher-
degree finite elements that are in some aspects similar to the C° IgA discretizations.

From the iteration count point of view, AL seems as an optimal preconditioner. GM-
RES with AL preconditioning converges in a few iterations independently of the problem
parameters and discretization. However, the setup of its ideal version is several times
more expensive compared to the other preconditioners and finding a fast approximate
solver for the augmented block F is not a trivial task. A disadvantage of the modified
AL approach (MAL) is its sensitivity to the parameter «, which is generally not very well
predictable. It seems that convergence independent of the problem parameters can be
achieved for MAL, but  really needs to be optimized and the convergence is significantly
slower than for AL even for v close to the optimal value.

Based on our results, we recommend using the variant of PCD described in 6.5.4 for
isogeometric discretizations of the steady-state Navier—Stokes equations. Its performance
is robust with respect to the uniform mesh refinement as well as the aspect ratio of the
elements. Moreover, PCD seems to be the most efficient of the tested preconditioners
from the computational time point of view.

Eigenvalues of the preconditioned matrix

Although we are aware that the spectrum of the preconditioned matrix does not deter-
mine the convergence of GMRES, it might be interesting to look at the eigenvalue plots.
We consider the steady-state BFS-2D problem with v = 0.01, three selected discretiza-
tions 2-1, C?, 4-3, C° and 4-3, C? and three meshes. These meshes are denoted as "ref0”,
”refl” and "ref2”. Note that ”ref0” and ”refl” are coarser than the meshes considered
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in other experiments and ”ref2”

preconditioners.

corresponds to M1.
For illustration, we display the eigenvalues for two preconditioners, PCD and SIM-
PLE, and refer to Appendix B, Figures B.5 to B.9 for eigenvalue plots for the other
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We have chosen these two preconditioners for presentation, because

the convergence of PCD is robust with respect to the mesh refinement as well as the
discretization and, on the other hand, SIMPLE gives convergence dependent on both.
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Figure 6.28: Eigenvalues of the preconditioned matrix (PCD), steady-state BFS-2D.

6.6.3 Time-dependent 2D test problems

Uniform mesh refinement

Table 6.14 shows the comparison of iteration counts for the time-dependent 2D problems
with uniform meshes. Obviously, the convergence is generally faster than for the steady-
state problems, which can be expected due to the presence of the velocity mass matrix
in the block F.
The performance of all preconditioners except SIMPLE is essentially independent of
the mesh parameter (the convergence of MAL could be improved by tuning the parameter
~y) for all discretizations of the LDC-2D and BFS-2D problems. Their iteration counts are
usually comparable for the discretizations of maximum continuity and slightly increase
with decreasing continuity for discretizations of a given degree. This does not happen
only for AL and PCD. The iteration counts of SIMPLE decrease with mesh refinement

for these two test problems.
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Figure 6.29: Eigenvalues of the preconditioned matrix (SIMPLE), steady-state BFS-2D.

The situation is a bit different for the TB-2D problem. The iteration counts are
generally higher than for the two academic problems (except for AL) and mesh depen-
dence is observed for LSC and SIMPLE-type preconditioners for some discretizations,
most significantly when SIMPLER is used for the 4-3, CY discretization. As can be ex-
pected, the convergence accelerates with decreasing time step size. However, the mesh
dependence is still evident.

We present computational times for the time-dependent BFS-2D problem with the
mesh M3 in Figure 6.30. Again, PCD comes out as the most effective, especially for
higher-degree discretizations. For the high-degree discretizations with maximum conti-
nuity, SIMPLER and MSIMPLER seem also as a good choice. More computational time
comparisons are presented in Appendix B.

Mesh stretching and viscosity dependence

See Table 6.15 for comparison of the time-dependent 2D test problems with stretched
meshes. In this case, we observe similar behavior as for the steady-state problems.

Results for various values of viscosity are contained in Table 6.16. Again, the iteration
counts for all preconditioners except SIMPLE and MAL seem almost independent of v
for the LDC-2D and BFS-2D test problems. In the case of TB-2D, the behavior is similar
to the steady-state problem, probably for the same reason.
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LDC-2D BFS-2D TB-2D
LSC 2-1,C9 5-4,C° 5-4,C%]2-1,C° 5-4,0° 5-4,C°|2-1,0° 4-3,C° 4-3,C?
M1 5 14 6 5 14 7 26 16 18
M2 5 13 5 5 12 6 20 16 17
M3 4 13 5 4 12 6 15 20 18
M4 5 13 6 4 13 6 17 25 22
PCD |2-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 8 11 8 7 8 8 44 16 31
M2 8 12 9 6 7 7 31 15 20
M3 10 13 10 7 7 6 15 13 13
M4 11 13 11 7 7 7 14 12 13
SIMPLE 12-1,C% 5-4,C° 54,0 [2-1,C° 54,C° 54,03 |2-1,C° 4-3,C° 4-3,C?
M1 11 183 28 8 140 26 58 239 88
M2 10 162 25 7 112 20 80 217 98
M3 7 118 19 5 74 15 101 172 107
M4 12 105 15 4 61 10 137 224 143
SIMPLER | 2-1,C° 5-4,C° 54,C%|2-1,C° 54,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 5 20 7 6 19 9 34 26 31
M2 5 19 7 5 17 7 35 22 29
M3 4 19 7 4 16 7 27 36 30
M4 4 19 6 4 17 7 22 83 25
MSIMPLER | 2-1,C° 5-4,C° 5-4,C%|2-1,C° 54,C° 5-4,C%]2-1,C° 4-3,C° 4-3,C?
M1 5 17 7 6 18 9 30 23 24
M2 5 15 7 5 16 7 27 20 27
M3 5 15 6 4 15 6 24 23 27
M4 5 16 7 4 16 7 19 29 25
AL 12-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 5 3 4 17 12 12 5 4 4
M2 5 3 3 17 11 12 4 3 4
M3 4 3 3 17 9 12 4 3 3
MAL 12-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 28 32 32 20 30 20 40 55 54
M2 30 39 18 25 42 25 39 53 43
M3 34 54 21 31 54 31 42 56 43

Table 6.14: Comparison of block preconditioners for the time-dependent two-dimensional
problems with uniform meshes. LDC-2D with v = 0.003 (Re ~ 333), BFS-2D with
v = 0.02 (Re = 100), TB-2D with v = 0.01 (Re ~ 298), time step At = 0.01 for
all problems. (Results for all discretizations of LDC-2D and BFS-2D in Appendix B,
Tables B.8 and B.14, respectively.)
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LDC-2D BFS-2D TB-2D
LSC 2-1,C9 5-4,C° 5-4,C%]2-1,C° 5-4,0° 5-4,C°|2-1,0° 4-3,C° 4-3,C?
M1 5 14 6 5 14 7 26 16 18
SM1 4 12 5 5 23 8 30 28 24
SM2 6 16 7 5 36 9 41 42 40
SM3 9 18 11 8 40 13 53 60 52
PCD |2-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 8 11 8 7 8 8 44 16 31
SM1 9 11 9 6 6 7 43 16 33
SM2 10 11 9 6 6 6 43 17 33
SM3 10 10 9 6 6 6 43 17 33
SIMPLE 12-1,C% 5-4,C° 54,0 [2-1,C° 54,C° 54,03 |2-1,C° 4-3,C° 4-3,C?
M1 11 183 28 8 140 26 58 239 88
SM1 10 165 22 8 137 23 101 290 116
SM2 17 160 20 12 141 24 138 >300 154
SM3 27 172 25 22 159 30 163 >300 181
SIMPLER | 2-1,C° 5-4,C° 54,C%|2-1,C° 54,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 5 20 7 6 19 9 34 26 31
SM1 4 16 5 6 30 9 43 33 41
SM2 5 21 5 8 40 11 51 44 49
SM3 6 24 5 19 51 23 55 51 52
MSIMPLER | 2-1,C° 5-4,C° 5-4,C%|2-1,C° 54,C° 5-4,C%]2-1,C° 4-3,C° 4-3,C?
M1 5 17 7 6 18 9 30 23 24
SM1 5 14 5 5 28 9 37 34 30
SM2 7 22 9 6 44 11 49 52 51
SM3 12 35 17 10 48 16 61 73 66
AL 12-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 5 3 4 17 12 12 5 4 4
SM1 4 3 3 18 12 12 5 4 4
SM2 4 2 3 18 12 12 5 4 4
MAL 12-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
M1 28 32 32 20 30 20 40 55 54
SM1 30 40 16 30 59 30 42 57 51
SM2 22 55 17 41 78 42 43 58 51

Table 6.15: Comparison of block preconditioners for the time-dependent two-dimensional
problems with stretched meshes. LDC-2D with v = 0.003 (Re ~ 333), BFS-2D with
v = 0.02 (Re = 100), TB-2D with » = 0.01 (Re ~ 298), time step At = 0.01 for
all problems. (Results for all discretizations of LDC-2D and BFS-2D in Appendix B,
Tables B.9 and B.15, respectively.)
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LDC-2D BFS-2D TB-2D
LSC 2-1,0° 5-4,C° 5-4,0%]2-1,C° 5-4,C° 5-4,C°|2-1,C° 4-3,C% 4-3,C?
1 7 11 9 5 13 7 15 18 17
vy 5 13 6 4 12 6 15 20 18
s 4 13 5 5 14 6 294 40 148
vy 10 28 8 — — — — — —
PCD |2-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
v 9 9 9 8 8 7 10 9 9
Vo 10 11 10 7 7 6 15 13 13
U3 10 13 10 6 7 9| >300 24 >300
vy 12 15 11 — — — — — —
SIMPLE |2-1,C% 5-4,C° 5-4,C%[2-1,C° 54,C° 54,C%]2-1,C° 4-3,C° 4-3,C?
V1 45 98 35 8 72 14 87 132 78
Vs 16 97 14 5 74 15 101 172 107
s 7 118 19 7 234 22| >300 >300 >300
vy 12 >300 38 — — — — — —
SIMPLER |2-1,C° 54,C° 54,C%]2-1,C° 54,C° 54,C%|2-1,C° 4-3,C° 4-3,C?
n 11 42 7 5 19 7 23 75 17
vy 6 19 6 4 16 7 27 36 30
s 4 19 7 6 20 8| >300 108 >300
vy 8 39 11 — — — — — —
MSIMPLER | 2-1,C° 5-4,C° 5-4,C%[2-1,C° 54,C° 54,C%]2-1,C° 4-3,C° 4-3,C?
v 10 18 13 5 17 8 18 23 21
vy 6 17 8 4 15 6 24 23 27
V3 5 15 6 5 16 7| >300 111 238
vy 9 32 9 — — — — — —
AL |2-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
vy 4 7 7 13 8 11 4 3 3
vy 4 3 3 17 9 12 4 3 3
s 4 3 3 17 10 12 4 3 3
vy 4 3 3 — — — — —
MAL 12-1,C° 5-4,C° 5-4,C%|2-1,C° 5-4,C° 5-4,C%|2-1,C° 4-3,C° 4-3,C?
1 19 95 56 20 35 22 32 29 27
Vs 20 61 31 31 54 31 42 56 43
s 34 54 21 32 86 38 107 268 131
vy 39 145 39 — — — — — —

Table 6.16: Comparison of block preconditioners for the time-dependent two-dimensional
problems with various viscosity values on the mesh M3. (Results for all discretizations
of LDC-2D and BFS-2D in Appendix B, Tables B.10 and B.16, respectively.)
LDC-2D: v; = 0.3, v2 = 0.03, v3 = 0.003, vy = 0.0003; BFS-2D: v1 = 0.2, vy = 0.02,
v3 = 0.002; TB-2D: v = 0.1, 1o = 0.01, v3 = 0.001.
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Figure 6.30: Wall-clock time of the preconditioner setup (Zsetup) and the GMRES itera-
tions (Tove) for various preconditioners for selected discretizations of the time-dependent
BFS-2D problem with v = 0.02 and At = 0.01 on the mesh M3.

Summary

In the time-dependent case, the same conclusions regarding AL can be drawn as for the
steady case.

Thanks to the robustness with respect to the problem parameters for time-dependent
problems, there are more preconditioners that can be recommended in this case, includ-
ing LSC, PCD, SIMPLER and MSIMPLER, especially for the low-degree discretization
2-1,CY and higher-degree discretizations of maximum continuity. For the inflow /outflow
problems, PCD is the only one of them which is also robust with respect to the continuity
(for fine enough meshes in the case of TB-2D) and outperforms the other precondition-
ers. It is also the only one which is robust with respect to the aspect ratio for all
discretizations.

6.6.4 3D test problems

In this section, we present results for the 3D test problems and very briefly comment on
both steady-state and time-dependent problems together. We do not divide the section
into parts devoted to individual aspects, since there is nothing fundamentally different
from what was stated above for the 2D test problems.

A comparison of iteration counts for the steady-state problems with uniform meshes is
in Table 6.17 and Table 6.18 compares various viscosity values. The corresponding results
for the time-dependent problems are summarized in Tables 6.19 and 6.20. Some entries
of the tables are missing, either because the corresponding parameter or discretization
were not, considered or the computation failed due to lack of computer memory. Again,
we refer to Appendix B for results including all considered discretizations.

The convergence of LSC and SIMPLE-type preconditioners may seem independent
of the uniform mesh refinement for the steady-state problems in some cases, but that
is probably because the meshes considered for the 3D problems are too coarse and the
mesh dependence is not manifested yet.

The computational times for the steady-state and time-dependent BFS-3D problem
are shown in Figure 6.31 and 6.32, respectively. We have chosen the mesh M2 for
this comparison, since the results for BFS-3D on the finest mesh M3 are missing for
the discretization 4-3, C°. The computational time comparison for LDC-3D on M3 is
presented in Appendix B, Figures B.10 and B.11.



CHAPTER 6. NUMERICAL RESULTS

LDC-3D BFS-3D TB-3D

LSC 2-1,C0° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C%| 4-3,C?
M1 10 22 12 22 28 23 23

M2 13 23 15 27 22 26 25

M3 16 23 19 26 — 27 35

PCD |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C%| 4-3,C?
M1 43 62 52 31 28 28 23

M2 49 34 58 35 25 29 22

M3 56 33 31 30 — 24 20
SIMPLE |2-1,0° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C?%| 4-3,C?
M1 18 190 53 51 >300 229 174

M2 29 235 55 93  >300 185 175

M3 49 227 55 133 — 137 218
SIMPLER | 2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C%| 4-3,C?
M1 8 20 11 23 28 27 24

M2 11 20 12 28 21 24 28

M3 15 29 12 28 — 22 34
MSIMPLER | 2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C?| 4-3,C?
M1 9 23 12 22 29 24 28

M2 11 21 13 26 22 25 31

M3 14 21 17 24 — 25 40

AL |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C%| 4-3,C?
M1 9 45 31 8 29 24 44

M2 9 30 16 8 — 18 —

MAL |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C%| 4-3,C?
M1 56 >300 >300 36 181 102 253

M2 68  >300 230 40 — 104 —
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Table 6.17: Comparison of block preconditioners for the steady-state three-dimensional
problems with uniform meshes. LDC-3D and BFS-3D with v = 0.01, TB-3D with v =
0.1. (Results for all discretizations of LDC-3D and BFS-3D in Appendix B, Tables B.17
and B.21, respectively.)
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Figure 6.31: Wall-clock time of the preconditioner setup (Tietup) and the GMRES iter-
ations (Tove) for various preconditioners for selected discretizations of the steady-state
BFS-3D problem with v = 0.01 on the mesh M2.
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LDC-3D BFS-3D TB-3D
LSC 2-1,C° 4-3,C° 4-3,0%|2-1,C° 4-3,C° 4-3,C?%| 4-3,C?
v=0.1 9 14 10 12 17 14 35
v =0.05 9 15 11 12 18 14 36
v =0.01 13 23 15 27 22 26 —
v = 0.005 17 28 18 — — — —
PCD |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C%| 4-3,C?
v=0.1 36 21 19 17 17 17 20
v =0.05 40 24 22 18 19 17 22
v =0.01 49 34 58 35 25 29 —
v = 0.005 59 40 67 — — — —
SIMPLE |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C7%| 4-3,C?
v=0.1 18 135 29 28 131 43 218
v =0.05 19 142 32 34 179 60| >300
v =0.01 29 235 55 93  >300 185 —
v = 0.005 40 >300 84 — — — —
SIMPLER |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C?| 4-3,C?
v=0.1 8 18 8 13 22 12 34
v =0.05 9 18 8 13 20 12 38
v =0.01 11 20 12 28 21 24 —
v = 0.005 15 22 16 — — — —
MSIMPLER | 2-1,C° 4-3,C° 4-3,C?|2-1,C° 4-3,C° 4-3,C?| 4-3,C?
v=0.1 8 16 10 12 17 14 40
v =0.05 8 16 10 11 17 13 43
v =0.01 11 21 13 26 22 25 —
v = 0.005 15 26 16 — — — —
AL |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C%| 4-3,C?
v=0.1 17 79 36 8 — 22 —
v =0.05 8 60 28 7 — 17 —
v =0.01 9 30 16 8 — 18 —
v = 0.005 8 23 14 — — —
MAL |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C?%| 4-3,C?
v=0.1 75 >300 141 29 — 92 —
v =0.05 76 >300 156 29 — 89 —
v =0.01 68  >300 230 40 — 104 —
v = 0.005 64 >300 >300 — — —

Table 6.18: Comparison of block preconditioners for the steady-state three-dimensional
problems with various viscosity values on the mesh M2 for LDC-3D and BFS-3D, mesh
M3 for TB-3D. (Results for all discretizations of LDC-3D and BFS-3D in Appendix B,
Tables B.18 and B.22, respectively.)
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LDC-3D BFS-3D TB-3D
LSC 2-1,C° 4-3,C° 4-3,02%[2-1,C° 4-3,C° 4-3,C?| 4-3,C?
M1 5 13 8 6 13 10 18
M2 5 12 7 5 11 8 21
M3 5 11 6 5 — 6 29
PCD |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C%| 4-3,C?
M1 9 10 8 9 11 14 17
M2 9 12 9 9 10 11 17
M3 10 13 10 8 — 11 17
SIMPLE |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C%| 4-3,C?
M1 16 220 50 9 175 45 137
M2 17 237 48 9 205 36 152
M3 14 184 40 8 — 30 197
SIMPLER | 2-1,C% 4-3,C° 4-3,C?|2-1,C° 4-3,C° 4-3,C*| 4-3,C?
M1 6 18 9 7 17 12 20
M2 5 16 9 7 15 9 24
M3 4 15 7 6 — 8 30
MSIMPLER | 2-1,C° 4-3,C° 4-3,C?|2-1,C° 4-3,C° 4-3,C?| 4-3,C?
M1 6 16 9 7 18 11 24
M2 6 15 8 6 15 9 27
M3 5 13 7 6 — 7 35
AL |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C%| 4-3,C?
M1 7 11 9 14 18 18 11
M2 6 8 7 16 — 17 —
MAL |2-1,C° 4-3,C° 4-3,C% | 2-1,C° 4-3,C° 4-3,C? | 4-3,C?
M1 13 58 32 16 21 20 179
M2 17 64 32 18 — 19 —
Table 6.19: Comparison of block preconditioners for the time-dependent three-

dimensional problems with uniform meshes and At = 0.01. LDC-3D and BFS-3D with
v = 0.01, TB-3D with v = 0.1. (Results for all discretizations of LDC-3D and BFS-3D
in Appendix B, Tables B.19 and B.23, respectively.)
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Figure 6.32: Wall-clock time of the preconditioner setup (Zsetup) and the GMRES itera-
tions (Tyolve) for various preconditioners for selected discretizations of the time-dependent
BFS-3D problem with v = 0.01 and At = 0.01 on the mesh M2.
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LDC-3D BFS-3D TB-3D
LSC 2-1,C° 4-3,C° 4-3,0%|2-1,C° 4-3,C° 4-3,C?%| 4-3,C?
v=0.1 4 11 6 5 10 6 29
v =0.05 4 11 6 5 10 6 30
v =0.01 5 12 7 5 11 8 —
v = 0.005 5 12 8 — — — —
PCD |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C%| 4-3,C?
v=0.1 10 13 11 8 8 9 17
v =0.05 10 13 10 8 9 10 17
v =0.01 9 12 9 9 10 11 —
v = 0.005 9 11 8 — — — —
SIMPLE |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C7%| 4-3,C?
v=0.1 11 145 37 9 125 32 197
v =0.05 14 160 41 9 148 34 279
v =0.01 17 237 48 9 205 36 —
v = 0.005 17 273 50 — — — —
SIMPLER |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C?| 4-3,C?
v=0.1 4 16 7 6 13 7 30
v =0.05 4 16 8 6 13 8 32
v =0.01 5 16 9 7 15 9 —
v = 0.005 5 17 9 — — — —
MSIMPLER | 2-1,C° 4-3,C° 4-3,C?|2-1,C° 4-3,C° 4-3,C?| 4-3,C?
v=0.1 5 14 7 5 13 7 35
v =0.05 5 14 7 5 13 8 37
v =0.01 6 15 8 6 15 9 —
v = 0.005 6 15 8 — — — —
AL |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C%| 4-3,C?
v=0.1 7 22 11 16 — 17 —
v =0.05 7 16 9 16 — 17 —
v =0.01 6 8 7 16 — 17 —
v = 0.005 6 7 7 — — — —
MAL |2-1,C° 4-3,C° 4-3,C%|2-1,C° 4-3,C° 4-3,C?%| 4-3,C?
v=0.1 21 147 56 18 — 19 —
v =0.05 20 117 48 18 — 19 —
v =0.01 17 64 32 18 — 19 —
v = 0.005 20 50 29 — — — —

Table 6.20: Comparison of block preconditioners for the time-dependent three-
dimensional problems with At = 0.01 and various viscosity values on the mesh M2 for
LDC-3D and BFS-3D, mesh M3 for TB-3D. (Results for all discretizations of LDC-3D
and BFS-3D in Appendix B, Tables B.20 and B.24, respectively.)
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Conclusions

This thesis focused on an important part of incompressible fluid flow simulation — an
efficient solution of the saddle-point linear systems that arise from discretization of the
incompressible Navier—Stokes equations. We are interested in a specific discretization
approach, isogeometric analysis. As mentioned in the introduction of this work, it is
believed that IgA can provide solutions of comparable quality to the widely used dis-
cretization methods (FEM, FVM), but with significantly less degrees of freedom and
thus, hopefully, with less effort.

Solution of the linear systems represents one of the main bottlenecks of the numerical
flow simulation. We consider the state-of-the-art techniques based on iterative solution
with preconditioned Krylov subspace methods, using specialized block preconditioners.
These methods are usually developed for and applied to linear systems resulting from
finite element or finite volume discretizations, but, to the best of our knowledge, they
have not yet been tested for isogeometric discretizations of the Navier—Stokes equations.

We presented results of extensive numerical experiments comparing the performance
of selected preconditioners for several test problems. Namely, the following precon-
ditioners were involved in the comparison: LSC, PCD, AL, modified AL (MAL) and
several SIMPLE-type preconditioners (SIMPLE, SIMPLER, MSIMPLER). Two well
known benchmark problems were chosen as test problems: the lid-driven cavity flow (as
a representative of enclosed flow) and the backward facing step problem, both in two
and three dimensions. Additionally, a problem originating from industrial practice was
considered, also in 2D and 3D.

The first set of experiments was devoted to the question of mass matrix approxima-
tion. The mass matrix (either for velocity or pressure) appears in most of the precondi-
tioners and it is usually approximated by its main diagonal. However, our experiments
show that this choice is not ideal for some IgA discretizations. For LSC and MSIMPLER,
it leads to a relatively strong mesh dependence of the convergence for discretizations of
low continuity. Thanks to the properties of B-spline basis functions, the isogeometric
mass matrices are suitable for row-sum lumping, which yields a different diagonal approx-
imation of the mass matrix. It turns out that using the lumped mass matrix instead of
the diagonal approximation leads to improved behavior of LSC and MSIMPLER for the
low-continuity discretizations, including the low-degree discretization 2-1, C? with linear
basis for pressure and quadratic basis for velocity. The convergence for discretizations
of maximum continuity remains almost unchanged.

Another topic we addressed in the numerical section was the choice of boundary
conditions for the discrete operators that have to be defined in order to construct the
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PCD preconditioner. We considered several variants known from the literature and,
inspired by some of them, we proposed additional two. In some of the variants (including
the newly proposed ones), the mass matrix approximation also plays a role. They are not
universally applicable to IgA discretizations, because their convergence gets worse with
increasing discretization degree and more so for low-continuity bases. Lumping does
not help in this case, however, it seems that some ”better” mass matrix approximation
might result in discretization-independent convergence. Without it, these variants are
useful only for the low-degree discretization 2-1, C°. An advantage of one of the proposed
variants is that it does not require the knowledge of individual parts of the boundary
(inflow, outflow, solid wall). It does not work for steady-state problems, but it performs
well for time-dependent problems with the 2-1, C? discretization and also higher-degree
discretizations of maximum continuity.

Based on our experiments, we have identified suitable choices for the treatment of
PCD boundary conditions and described the construction of the preconditioner in detail.
It is a combination of ideas from the literature and it leads to convergence robust with
respect to the mesh refinement as well as the discretization degree and continuity.

We used the mentioned modifications of LSC, MSIMPLER and PCD in the main
comparison of all preconditioners. Our observations suggest that LSC, PCD, MSIM-
PLER and the AL-based preconditioners behave as expected for all IgA discretizations.
SIMPLE and SIMPLER seem to be not suitable for higher-degree low-continuity dis-
cretizations. Overall, the considered variant of the PCD preconditioner appears as the
best choice due to its robustness with respect to uniform mesh refinement, mesh aspect
ratio and discretization and also due to its computational costs.

It is important to emphasize that we investigated only the ideal versions of the
preconditioners in this work. It means that all subsystems were solved with a direct
solver, which is, of course, not practical. For an efficient preconditioner, it is necessary
to employ suitable approximate solvers for the subsystems. The quality of these inner
solvers can have a major impact on the performance of the block preconditioners. The
subsystems are typically of Poisson and convection—diffusion type. Thus, investigation
of efficient solvers for such problems should be the next research direction. Usually,
multigrid is the method of choice. However, development of multigrid methods suitable
for IgA is still an evolving field.

Another challenging task for future research is the approximate solution of the aug-
mented (1,1) block of the AL preconditioner. If we were able to solve this subsystem
efficiently, AL would be a very good preconditioner. To our knowledge, this is not
completely resolved even for general standard finite element discretizations.
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Appendix A

Test problems: DOFs and
Nnonzeros

M1 DOFs nnz nnz [%] M2 DOFs nnz nnz [%]
2-1,C° 2210 52022 1.07 2-1,C° 9026 220598 0.27
3-2,0° 5506 219986 0.73 3-2,C° 22274 917778 0.18
3-2,C1t 2371 129716 2.31 3-2,C1t 9347 537780 0.62
4-3,C° 10338 622150 0.58 4-3,C° 41666 2572742 0.15
4-3,C1 5763 461 320 1.39 4-3,Ct 22787 1898120 0.37
4-3,C? 2538 247270 3.84 4-3,C? 9674 1004390 1.07
5-4,C° 16706 1409042 0.50 5-4,C° 67202 5793746 0.13
5-4,Ct 10691 1160372 1.02 5-4,C' 42371 4753076 0.26
5-4,C? 6026 799922 2.20 5-4,C% 23306 3249266 0.60
5-4,C3 2711 408 692 5.56 5-4,C% 10007 1628276 1.63
(a) Mesh with 16 x 16 elements (M1). (b) Mesh with 32 x 32 elements (M2).
M3 DOFs nnz nnz [%)] M4 DOFs nnz nnz [%]
2-1,C° 36482 907958 0.068 2-1,C° 146 690 3683510 0.017
3-2,C° 89602 3747986 0.057 3-2,C° 359426 15146 898 0.012
3-2,C1 37123 2189492 0.159 3-2,C1 147971 8835252 0.040
4-3,0° 167298 10461382 0.037 4-3,0° 670466 42188486 0.009
4-3,C1 90627 7699336 0.094 4-3,C* 361475 31012232 0.024
4-3,0% 37770 4048486 0.284 4-3,C? 149258 16256 102 0.073
5-4,C° 269570 23493458 0.032 5-4,C° 1079810 94614098 0.008
5-4,C' 168707 19237556 0.068 5-4,C1 673283 77402804 0.017
5-4,C% 91658 13096946 0.156 5-4,C? 363530 52588274 0.040
5-4,C3 38423 6500468 0.440 5-4,C3 150551 25976948 0.115
(¢) Mesh with 64 x 64 elements (M3). (d) Mesh with 128 x 128 elements (M4).

Table A.1: LDC-2D number of degrees of freedom (DOFs), number of nonzero elements
(nnz) in the sparse matrix and their percentage for all uniform meshes.
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M1 DOFs nnz nnz [%)]
2-1,C° 2349 54100 0.98
3-2,C9 5857 230176 0.67
3-2,C1t 2758 142750 1.88
4-3.C° 10997 653 108 0.54
43,C1 6506 497858 1.18
4-3,C? 3185 285908 2.82
5-4,C° 17769 1482256 0.47
5-4,C' 11886 1242478 0.88
54,02 7173 889648 1.73
5-4,C3 3630 493 966 3.75

(a) Uniform mesh with 272 elements (M1).
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M2 DOFs nnz nnz [%]
2-1,C° 9593 232132 0.25
3-2,C° 23681 968216 0.17
3-2,C' 10402 581438 0.54
4-3,C° 44297 2718020 0.14
4-3,C' 24970 2032538 0.33
4-3,0% 11229 1113508 0.88
5-4,C° 71441 6126664 0.12
5-4,C' 46066 5069902 0.24
5-4,C% 26277 3532072 0.51
5-4,C% 12074 1848334 1.27

(b) Uniform mesh with 1088 elements (M2).

M3 DOFs nnz nnz [%)] M4 DOFs nnz nnz [%]
2-1,C° 38769 960 292 0.064 2-1,0° 155873 3904 996 0.016
3-2,C° 95233 3968584 0.044 3-2,C° 381953 16066 472 0.011
3-2,Ct 40378 2346622 0.144 3-2,C1 159 082 9428222 0.037
4-3,C° 177809 11084516 0.035 4-3,0° 712481 44764196 0.009
4-3,C' 97802 8212490 0.086 4-3,C1 387082 33014762 0.022
4-3,C? 42005 4394180 0.249 4-3,C? 162 309 17457412 0.066
5-4,C% 286497 24903928 0.030 5-4,C% 1147457 100412248 0.008
5-4,C' 181338 20480014 0.062 5-4,C1 719530 82321294 0.016
5-4,C% 100389 14075224 0.140 5-4,C? 392229 56194744 0.037
5-4,C% 43650 7142158 0.375 5-4,C3 165554 28070158 0.102

(¢) Uniform mesh with 4352 elements (M3).

(d) Uniform mesh with 17408 elements (M4).

Table A.2: BFS-2D number of degrees of freedom (DOFs), number of nonzero elements
(nnz) in the sparse matrix and their percentage for all uniform meshes.
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M1 DOFs nnz nnz [%] M2 DOFs nnz nnz [%]
2-1,C° 1153 65931 4.96 2-1,C0° 10853 802995 0.68
3-2,C° 4721 667221 2.99 3-2,CY% 41413 7105689 0.41
3-2,C1 1751 326454 10.65 3-2,C1 13287 3337974 1.89
4-3,0° 12321 3449787 2.27 4-3,C° 104997 34369491 0.31
4-3,C* 6183 2324616 6.08 4-3,C1 47303 22396 152 1.00
4-3,C? 2529 1045491 16.35 4-3,C? 16069 9284907 3.59

(a) Mesh with 4 x 4 x 4 elements (M1).

(b) Mesh with 8 x 8 x 8 elements (M2).

M3 DOFs nnz nnz [%]
2-1,C° 94 285 7794627 0.09
3-2, CO 347405 65092 353 0.05
3-2, cl 104135 30087 798 0.28
4-3,C° 867789 305480643 0.04
4-3,CY 371079 196176408 0.14
4-3,C% 114669 78478683 0.60

(¢) Mesh with 16 x 16 x 16 elements (M3).

Table A.3: LDC-3D number of degrees of freedom (DOF's), number of nonzero elements
(nnz) in the sparse matrix and their percentage for all uniform meshes.

M1 DOFs nnz nnz [%] M2 DOFs nnz nnz [%]
2-1,C° 3180 231960 2.29 2-1,C° 27112 2235408 0.30
3-2,C% 11968 2043672 1.43 3-2,C% 99120 18566784 0.19
3-2,C1 5081 1150287 4.46 3-2,C1 34335 9369639 0.79
4-3,C° 30132 9849432 1.08 4-3,CY 246648 86874384 0.14
4-3,C' 16365 7078539 2.64 4-3,C' 116087 58513809 0.43
4-3,C? 7554 3666870 6.43 4-3,C% 42634 26354304 1.45

(a) Mesh with 144 elements (M1).

(b) Mesh with 1152 elements (M2).

M3 DOFs nnz nnz [%)]
2—1,00 223632 19457184 0.04
3-2,C% 806560 157642944 0.02
3-2,C' 251795 75548 247 0.12
4-3,00 — —

4—3,01 873219 475407813 0.06
4-3, C? 282042 198592848 0.25

(¢) Mesh with 9216 elements (M3).

Table A.4: BFS-3D number of degrees of freedom (DOFs), number of nonzero elements
(nnz) in the sparse matrix and their percentage for all uniform meshes.
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M1 DOFs nnz  nnz [%)]
2-1,0° 2677 65386 0.92
43,09 12277 758682 0.50
43,02 3313 322794 2.94

(a) Uniform mesh with 300 elements (M1).

132
M2 DOFs nnz nnz [%]
2-1,C° 10757 267706 0.23
4-3,0° 49157 3075482 0.12
4-3,C% 11993 1243274 0.86

(b) Uniform mesh with 1200 elements (M2).

M3

DOFs nnz nnz [%] M4 DOFs nnz nnz [%]
2-1,C° 43117 1082746 0.058 2-1,C° 172637 4354426 0.015
4-3, C% 196717 12381882 0.032 4-3, C° 787037 49685882 0.008
4-3, C? 45553 4877034 0.235 4-3, C? 177473 19315754 0.061

(¢) Uniform mesh with 4800 elements (M3).

(d) Uniform mesh with 19200 elements (M4).

Table A.5: TB-2D number of degrees of freedom (DOFSs), number of nonzero elements
(nnz) in the sparse matrix and their percentage for all ”uniform” meshes.

DOFs nnz nnz (%]
M1 15174 7580160 3.29
M2 98827 62688306 0.64
M3 711813 510130998 0.10

Table A.6: TB-3D number of degrees of freedom (DOFs), number of nonzero elements
(nnz) in the sparse matrix and their percentage for all meshes, 4-3, C? discretization.
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Complete results

B.1 Mass matrix approximation

LSC 2-1,093-2,C° 3-2,C"|4-3,C° 4-3,C" 4-3,C2|5-4,C° 5-4,C" 5-4,C% 54,03
~ Ml 33 25 31 21 25 27 28 24 2 28
S M2 33 31 28 26 22 25 33 24 25 24
® M3 40 53 28 48 29 27 56 36 28 28
5 M4 65| 104 32 95 45 37 113 65 37 36

M1 29 21 31 22 24 29 29 25 25 28
3 M2 25 17 28 22 20 26 29 23 23 25
(5 M3 24 22 29 2% 25 29 33 28 28 30

M4 29 32 34 35 35 36 40 39 38 38
MSIMPLER | 2-1,C° 32,00 3-2,0"[4-3,C° 4-3,C' 4-3,C2|5-4,C° 5-4,C' 5-4,C? 5-4,C3
~ Ml 31 2 31 20 28 27 2 24 28 29
S M2 31 31 28 24 23 25 32 22 24 25
@ M3 39 52 27 47 28 26 56 35 27 27
5 M4 64| 103 31 96 44 36| 114 65 37 36

M1 28 22 30 21 27 28 29 25 28 28
3 M2 24 18 927 21 21 2 28 22 23 25
(5 M3 23 20 27 24 24 28 31 27 27 28

M4 27 30 32 33 33 35 38 37 36 37

Table B.1: Iteration counts of LSC and MSIMPLER preconditioner with two variants
of mass matrix approximation for the steady-state BFS-2D problem with v = 0.01.
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LSC |2-1,0°3-2,C° 3-2,C'[4-3,C° 4-3,C* 4-3,C*|5-4,C° 5-4,C" 54,02 5-4,C°
~ Ml 6 9 7 12 10 7 16 14 11 8
S M2 6 9 6 11 9 7 15 12 10 7
= M3 5 9 6 10 8 6 14 11 9 6
5 M4 5 8 5 10 8 6 14 11 9 7

M1 5 8 6 11 9 7 15 12 11 7
3 M2 5 8 6 10 8 6 13 10 9 6
(S M3 4 7 5 9 7 5 12 9 8 5

M4 4 7 5 9 6 5 12 9 8 6
MSIMPLER |2-1,C%|3-2,C° 3-2,C1[4-3,C° 4-3,C' 4-3,02|5-4,C° 5-4,C' 5-4,C% 5-4,C3
~ Ml 7 10 8 14 12 9 19 16 14 10
S M2 6 10 7 12 11 8 17 14 11 8
M3 5 10 7 12 9 7 16 12 11 7
5 M4 5 9 6 12 9 7 17 12 10 8

M1 6 9 7 13 11 8 18 15 13 9
3 M2 5 9 6 12 9 7 16 12 11 8
(S M3 5 8 6 11 8 6 15 11 9 6

M4 5 8 5 11 7 6 15 10 9 7

Table B.2: Iteration counts of LSC and MSIMPLER preconditioner with two variants
of mass matrix approximation for the time-dependent BFS-2D problem with v = 0.01
and At = 0.01.
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B.2 PCD boundary conditions

135

92-1,00[3-2,C0 3-2,01[4-3,00 4-3,C" 4-3,02|5-4,00 5-4,C' 54,02 5-4,C3
e M1 47 36 45 32 36 44 31 31 36 42
Sdl M2 39 31 37 30 30 35 30 29 30 34
o M3 31 29 30 28 28 29 29 28 28 29
A M4 29 27 28 27 27 27 27 27 27 27
9o Ml 38 95 49 262 142 66| >300 >300 211 98
EQ—S M2 35 112 491 >300 167 69| >300 >300 256 99
o M3 34 117 53| >300 194 75| >300 >300 >300 109
A M4 38 128 57| >300 206 791 >300 >300 >300 114
T M1 44 98 53 265 144 68| >300 >300 213 100
EQE M2 39 114 50| >300 170 70| >300 >300 260 102
o M3 37 120 52| >300 186 72| >300 >300 >300 103
A M4 38 128 55| >300 192 75| >300 >300 >300 106
2w M1 39 27 35 25 24 31 24 24 23 27
EQB M2 30 23 27 23 22 23 23 22 22 22
o M3 23 22 22 22 22 22 22 21 21 21
A M4 22 22 22 21 21 21 21 21 21 21
=" M1 40 68 42 213 103 501 >300 >300 154 68
EQE M2 36 69 42 238 105 51| >300 >300 169 63
o M3 34 59 42 198 89 50| >300 >300 153 60
A M4 34 50 42 136 69 491 >300 >300 116 57
oo M1 106 171 111 >300 221 109 >300 >300 260 124
Sdg M2| >300, >300 >300| >300 >300 155 >300 >300 >300 155
o M3| >300f >300 >300f >300 >300 >300| >300 >300 >300 >300
A M4| >300| >300 >300| >300 >300 >300| >300 >300 >300 >300

Table B.3: Comparison of all considered variants of boundary conditions for PCD,

steady-state BFS-2D problem with v = 0.01.
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2-1,C93-2,C° 3-2,C"|4-3,C° 4-3,C" 4-3,C2|5-4,C° 5-4,C" 54,02 54,03

0o Ml 19 26 21 32 27 25 37 31 30 27
SQB’ M2 27 35 27 42 34 31 48 41 37 33
O M3 37 47 36 52 46 39 53 50 45 41
A M4 48 53 46 54 50 45 53 51 50 46
<, Ml 12 33 17 98 51 24| 232 144 76 33
E2 M2 12 35 7] 112 53 23| >300 174 86 32
8 M3 11 36 16| 118 57 23| >300 195 97 33
& M4 11 39 16| 131 64 26| >300 222 111 37
<, Ml 17 44 24| 122 65 32| 284 173 93 42
E2 M2 19 50 27| 149 71 35 >300 220 108 44
8 M3 19 55 20| 158 78 37| >300 247 122 48
& M4 16 59 26| 160 85 39 >300 267 139 53
<, Ml 7 7 8 8 7 8 8 8 8 9
EE M2 6 7 8 7 7 8 7 7 7 8
8 M3 7 7 6 7 7 7 7 7 6 7
&~ M4 7 7 7 7 7 7 7 7 7 7
<, Ml 12 31 17 83 46 23| 182 124 68 31
E2 M2 12 28 16 71 41 21| 187 114 61 26
8 M3 11 23 14 53 31 16| 175 94 48 21
& M4 11 18 13 36 23 14| 161 76 38 17
we Ml 12 31 16 82 46 23| 181 124 68 30
‘o*mﬁ M2 12 28 16 70 41 20| 184 113 61 26
O M3 11 23 14 53 31 17| 172 94 48 21
A M4 11 19 13 38 24 15| >300 105 62 17

Table B.4: Comparison of all considered variants of boundary conditions for PCD, time-
dependent BFS-2D problem with v = 0.01 and At = 0.01.
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B.3 Comparison of ideal versions

B.3.1 Lid-driven cavity 2D

137

2-1,C°(3-2,C0 3-2,C" |4-3,0° 4-3,C" 4-3,C2|5-4,C° 5-4,C" 54,C 54,03

M1 26 25 27 33 29 27 43 33 31 27

O M2 30 27 30 34 30 31 44 33 32 33

(,3 M3 32 35 35 39 37 38 47 40 40 40

M4 41 45 45 49 49 50 53 52 52 53

M1 51 54 51 54 53 52 95 54 53 52

a M2 53 53 53 55 53 54 57 55 54 53

8 M3 51 54 53 33 53 54 34 32 33 54

M4 52 33 34 33 32 33 33 32 32 32

M1 80 96 81 168 119 82| >300 233 146 88

= M2 118 124 118 164 125 103 | >300 229 147 97

(n;) M3 152 170 148 194 158 133 >300 215 158 126

M4 206 241 199 277 221 182 >300 247 212 172

M1 24 23 22 26 27 22 34 30 29 22

E M2 25 33 24 36 26 22 45 25 26 22

(ﬂ;} M3 26 57 25 63 26 24 80 32 26 23

M4 41 106 35 117 33 29 146 54 31 31

g Ml 24 24 25 30 28 25 42 32 30 25

E M2 27 26 28 32 28 28 42 32 31 31

nn M3 29 33 32 37 36 36 45 39 39 38

= M4 39 44 43 48 47 47 52 51 51 51

M1 5 6 5 5 6 6 6 5 5 8

= M2 5 4 5 4 4 4 5 4 4 4

< - M3 5 3 3 4 3 3 5 3 3 3

oo M1 29 49 37 113 79 64 252 176 143 128

< S M2 32 48 37 105 75 63 243 167 139 125

= ! M3 36 52 43 59 74 63 120 87 72 121
Table B.5: Comparison of block preconditioners for the steady-state LDC-2D problem

with v = 0.003, uniform meshes. (The abbreviations "SPL”, ”SPLR” and "MSPLR”
stand for the corresponding SIMPLE-type preconditioners.)

M4, 2-1,C°

wall-clock time [s]

@

BN

[ D
Lsc

PCD

SIMPLE ~ SIMPLER MSIMPLER

wall-clock time [s]

M4, 5-4,C°

M4, 5-4,C°

600

—

200

100

0
Lsc

PCD

SIMPLE ~ SIMPLER MSIMPLER

wall-clock time [s]

pl

30

20

10

0
LsC

PCD SIMPLE ~ SIMPLER MSIMPLER

Figure B.1: Wall-clock time of the preconditioner setup (Zietup) and the GMRES iter-
ations (Tove) for various preconditioners for selected discretizations of the steady-state
LDC-2D problem with v = 0.003 on the mesh M4.
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|2-1,C°|3-2,C0 3-2,C" |4-3,C°

4-3,C" 4-3,C%|5-4,C° 5-4,C 5-4,C* 5-4,C°

M1 26| 25 27| 33 29 27| 43 33 31 27
O SM1| 38| 36 40| 42 40 40| 51 41 43 42
@ om2| 62| 60 67| 6 67 69 s 70 70 71
sM3| 88| 100 93| 107 106 95| 101 101 105 100
M1 51| 54 51| 54 53 52| 55 54 53 52
o sMmi 54| 54 sal 52 55 55| 33 32 33 55
 sm2| 53 31 33| 31 31 32| 31 30 30 31
smM3| 31| 28 29| 28 28 28] 25 25 25 98
M1 80| 96 81| 168 119 82| =300 233 146 S8
= SM1| 90| 99 87| 154 105 81| =300 207 126 80
&  gMm2| 106|123 102 188 126 90| =300 213 140 88
sM3| 112 146 109 235 148 96| 295 189 127 96
M1 o4 923 22| 26 27 92| 34 30 20 922
2 sMi o4 24 22| 25 24 21| 32 24 23 20
B osm2| 23| 24 20 26 23 21| 37 23 24 2
sM3| 22| 24 21 %6 22 20| 36 20 21 20
© Ml o4 24 25| 30 28 95| 42 32 30 92
= sMI| 36| 35 38| 40 38 38| 49 39 41 40
& sm2| 59| 59 66| 67 65 67| s 69 71 71
= sm3| 8| 100 91| 108 107 94| 106 105 107 99
M1 5 6 5 5 6 6 6 5 5 8
3T sMI 5 3 5 1 3 3 5 3 3 3
< - SM2 3 3 3 3 3 3 3 3 3 3
La Ml 29 49 37| 113 79 64| 252 176 143 128
=S SM1| 30| 43 35 95 74 60| 116 84 132 117
S 0osm2| 31| 22 18| 39 29 26| 75 56 46 46

Table B.6: Comparison of block preconditioners for the steady-state LDC-2D problem
with v = 0.003, stretched meshes. (The abbreviations ”SPL”, ?SPLR” and "MSPLR”

stand for the corresponding SIMPLE-type preconditioners.)
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12-1,C°]3-2,C° 3-2,C*|4-3,C° 4-3,C* 4-3,C%|5-4,C° 5-4,C* 5-4,C% 54,03

v=0.3 14 15 15 16 16 16 16 16 16 16

Q v =0.03 18 20 20 21 21 21 22 22 22 22
(,3 v = 0.003 32 35 35 39 37 38 47 40 40 40
v = 0.0003 184 116 188 118 142 160 142 141 146 137

v=0.3 11 10 10 10 10 10 10 10 10 10

A v =0.03 18 18 18 17 17 18 17 17 17 17
%3 v = 0.003 51 54 53 33 53 54 34 32 33 54
v = 0.0003 262 186 255 153 190 233 137 155 182 213

v=0.3 67 84 64 99 75 57 118 86 72 54

= v =0.03 72 90 70 105 80 62 127 93 7 59
5"3 v = 0.003 152 170 148 194 158 133 >300 215 158 126
v=0.0003| >300| >300 >300| >300 >300 >300| >300 >300 >300 >300

v=0.3 23 45 15 52 20 15 63 29 19 13

ﬁ v =0.03 25 49 18 55 21 17 66 31 20 15
53 v = 0.003 26 57 25 63 26 24 80 32 26 23
v = 0.0003 149 87 173 86 135 144 95 101 135 130

ot v=0.3 18 20 19 22 21 21 23 23 23 23
E v =0.03 20 22 22 24 24 23 25 25 25 25
) v = 0.003 29 33 32 37 36 36 45 39 39 38
E v = 0.0003 173 113 179 114 138 152 137 138 143 134
v=0.3 5 9 7 17 13 11 27 23 20 18

- | v=003 4 5 4 7 5 5 12 9 8 8
© v =0.003 5 3 3 4 3 3 5 3 3 3

v = 0.0003 5 5 5 3 3 5 3 3 3 3
- 0.3 18 43 32 95 70 57 178 138 112 99
< S v=003 18 36 28 79 59 50 169 121 101 90
= 1 v=0003 36 52 43 59 74 63| 129 &7 72 121
v = 0.0003 147 245 191 >300 296 231 >300 >300 >300 265

Table B.7: Comparison of block preconditioners for the steady-state LDC-2D problem
on the mesh M3, various viscosity values.

(The abbreviations ”SPL”, ”SPLR” and
"MSPLR” stand for the corresponding SIMPLE-type preconditioners.)
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2-1,0°|3-2,C°0 3-2,C"|4-3,C° 4-3,C" 4-3,C2|5-4,C° 5-4,C" 54,02 54,03

M1 5 8 5 10 8 6 14 10 9 6

O M2 5 7 5 10 7 5 13 9 8 5
“oM3 4 7 5 10 7 5 13 9 8 5
M4 5 7 5 10 7 5 13 9 7 6

M1 8 9 8 10 9 7 11 9 9 8

a M2 8 10 9 11 10 9 12 11 10 9
© M3 10 11 10 12 11 10 13 12 11 10
M4 11 12 11 13 12 11 13 12 12 11

M1 11 31 16 82 48 21| 183 124 68 28

= M2 10 23 15 63 40 19/ 162 108 61 25
S M3 7 17 12 43 28 14 118 73 43 19
M4 12 17 11 39 24 12| 105 63 36 15

M1 5 10 6 14 12 7 20 16 13 7
IRYC 5 11 6 13 12 7 19 14 12 7
B M3 4 9 6 13 10 6 19 12 10 7
M4 4 8 5 13 9 5 19 11 9 6

e Ml 5 9 6 12 10 7 17 12 12 7
= M2 5 10 6 11 9 6 15 10 11 7
w M3 5 8 5 11 8 6 15 10 9 6
= M4 5 8 5 12 8 6 16 11 9 7
_ Ml 5 4 4 4 4 4 3 4 4 4
Q7 M2 5 4 4 3 3 4 3 3 3 3

Il

<l M3 4 3 3 3 3 3 3 3 3 3
L M 28 26 25 19 16 24 32 22 19 32
< < M2 30 22 27 28 20 16 39 28 20 18
S . M3 34 30 22 42 31 20 54 43 33 21

Table B.8: Comparison of block preconditioners for the time-dependent LDC-2D prob-
lem with v = 0.003 and At = 0.01, uniform meshes. (The abbreviations ”SPL”, ”SPLR”
and "MSPLR” stand for the corresponding SIMPLE-type preconditioners.)

M4, 2-1,C°

wall-clock time [s]
o o o e
25 & - &

o
N

o

Lsc PCD SIMPLE ~ SIMPLER MSIMPLER

M4, 5-4,C°

M4, 5-4,C°

wall-clock time [s]

Lsc PCD SIMPLE  SIMPLER MSIMPLER

wall-clock time [s]

LsC PCD SIMPLE  SIMPLER MSIMPLER

Figure B.2: Wall-clock time of the preconditioner setup (Tsetup) and the GMRES itera-
tions (Tolve) for various preconditioners for selected discretizations of the time-dependent
LDC-2D problem with v = 0.003 and At = 0.01 on the mesh M4.
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|2-1,C°|3-2,C0 3-2,C" |4-3,C°

4-3,C" 4-3,C%|5-4,C° 5-4,C 5-4,C* 5-4,C°

M1 5 8 5 10 8 6 14 10 9 6

O SMI 4 6 4 8 6 4 12 8 6 5
% sM2 6 8 6 12 7 6 16 8 7 7
SM3 9 11 10 14 11 10 18 12 13 11

M1 8 9 8 10 9 7 11 9 9 8

A sMmi 9 11 9 11 10 9 11 10 10 9
2 sm2 10 10 10 10 10 9 11 10 10 9
SM3 10 10 10 10 10 9 10 10 9 9

M1 11 31 16 82 48 21| 183 124 68 28

2 SMI 10 28 14 72 38 17| 165 109 55 22
S sMm2 7] 34 17 72 38 17| 160 101 50 20
SM3 27| 52 21 94 55 24| 172 107 60 25

M1 5 10 6 14 12 7 20 16 13 7

A sMi 4 8 5| 11 9 5| 16 12 9 5
& sw 5 9 5 13 9 5 21 11 9 5
SM3 6 10 6 14 9 5 24 11 9 5

e Ml 5 9 6 12 10 7 17 12 12 7
= sMl1 5 8 5 10 8 5 14 9 8 5
®  SM2 7 11 7 16 9 8 22 11 11 9
=  SM3 12 16 15 24 17 16 35 20 21 17
_ M1 5 4 4 4 4 4 3 4 4 4
Q= SM1 4 4 4 3 3 4 3 3 3 3

Il

< 1 sw2 4 3 3 3 3 3 2 2 3 3
L M 28 2% 25 19 16 24 32 22 19 32
<< sml 30 21 17 30 21 16 40 31 29 16
s 1 oswe ) 30 20 42 31 18 55 42 30 17

Table B.9: Comparison of block preconditioners for the time-dependent LDC-2D prob-
(The abbreviations ”SPL”,
”"SPLR” and "MSPLR” stand for the corresponding SIMPLE-type preconditioners.)

lem with v = 0.003 and At = 0.01, stretched meshes.
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12-1,C°]3-2,C° 3-2,C*|4-3,C° 4-3,C* 4-3,C%|5-4,C° 5-4,C* 5-4,C% 54,03

v =03 7 8 8 9 8 8 11 9 9 9
O v=003 5 7 5 10 6 6 13 8 7 6
&L =0003 4 7 5 10 7 5 13 9 8 5

v = 0.0003 10 20 9 18 13 8 28 21 14 8
v =03 9 9 9 9 9 9 9 9 9 9
A ,—003 10 11 10 11 10 10 11 10 10 10
E v = 0.003 10 11 10 12 11 10 13 12 11 10
v = 0.0003 12 16 12 16 15 12 15 15 14 11
v =03 45 61 43 76 53 37 98 65 50 35
=S v =003 16 23 15 37 23 13 97 59 33 14
& 0003 7 17 12 43 28 14 118 73 43 19
v = 0.0003 12 48 20| 213 91 271 >300 >300 149 38
v =03 11 28 8 32 10 8 42 15 11 7
5 v =0.03 6 10 5 14 9 5 19 12 9 6
53 v = 0.003 4 9 6 13 10 6 19 12 10 7
v = 0.0003 8 25 10 32 28 10 39 30 25 11
e v=03 10 12 11 13 13 12 18 13 13 13
= =003 6 9 6 13 8 7 17 11 10 8
) v = 0.003 5 8 5 11 8 6 15 10 9 6
S L= 00003 9 24 9 29 19 9 32 28 23 9
_ v=03 4 4 4 7 5 5 7 7 7 7
B L =003 4 3 4 3 3 3 3 3 3 3
Il

= v =20.003
< 4 3 3 3 3 3 3 3 3 3
v = 0.0003 4 3 3 3 3 3 3 3 3 3

S v=03 19 29 22 56 42 35 95 76 63 56

<= v=o003 20 20 17 31 22 18 61 43 35 31

S~ v=0003 34 30 22 42 31 20 54 43 33 21

v = 0.0003 39 76 39| 101 60 39| 145 103 66 39

Table B.10: Comparison of block preconditioners for the time-dependent LDC-2D prob-
lem with At = 0.01 on the mesh M3, various viscosity values. (The abbreviations ”SPL”,
"SPLR” and "MSPLR” stand for the corresponding SIMPLE-type preconditioners.)
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B.3.2 Backward-facing step 2D

143

12-1,C°]3-2,C° 3-2,C*[4-3,C° 4-3,C* 4-3,C%|5-4,C° 5-4,C* 5-4,C? 5-4,C3

M1 18 14 19 18 16 18 25 21 18 19
O M2 18 17 21 21 19 21 27 22 21 21
23 21 23 25 2 2 27 31 29 28 28
M4 29 32 32 35 35 35 38 38 38 38
M1 23 21 22 22 20 20 22 21 20 20
a M2 21 21 20 21 20 19 20 20 20 19
© M3 20 20 19 19 19 19 19 19 19 19
M4 19 19 19 19 18 19 18 18 18 18
M1 69 80 77] 138 108 7] 2Tl 214 141 91
S M2 97 98 93| 130 105 84| 275 203 133 85
& M3| 124 134 120| 153 130  112| 246 178 132 108
M4| 164 187 159|217 178 151| 247 196 171 146
M1 18 20 16 20 16 16 28 18 18 16
P 19 30 17 32 17 16 42 22 19 15
& M3 2% 57 20 64 23 19 81 35 22 18
M4 45 110 28| 122 38 28| 151 62 37 24
e Ml 17 14 18 18 16 18 25 20 19 18
= M2 17 16 20 20 18 20 27 22 21 20
w M3 20 22 24 25 25 2% 31 28 27 27
S M4 27 31 31 34 34 34 37 37 37 36
M1 6 6 6 5 5 7 5 5 5 7
= M2 6 5 5 5 5 5 4 4 5 5
< - M3 6 5 5 1 1 5 4 4 4 4
I s 24 2 28 41 37 42 85 70 67 77
2 ° M2 21 23 20 34 28 27 61 48 44 44
s w3 20 22 19 29 24 21 41 36 35 29

Table B.11: Comparison of block preconditioners for the steady-state BFS-2D problem
with » = 0.02, uniform meshes. (The abbreviations "SPL”, "SPLR” and "MSPLR”
stand for the corresponding SIMPLE-type preconditioners.)
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Figure B.3: Wall-clock time of the preconditioner setup (Tyetup) and the GMRES iter-
ations (Tve) for various preconditioners for selected discretizations of the steady-state

BFS-2D problem with v = 0.02 on the mesh M4.
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|2-1,C°|3-2,C0 3-2,C" |4-3,C°

4-3,C" 4-3,C%|5-4,C° 5-4,C 5-4,C* 5-4,C°

M1 18] 14 19 18 16 18| 25 21 18 19
O SMl 20 20 21 31 21 21| 42 31 24 24
@ oMm2| 24| 28 26| 40 28 27| 66 45 32 34
sM3| 30| 36 31| 48 38 35 72 47 41 48
M1 23 21 22| 22 20 20| 22 21 20 20
o sMmi 22 21 20| 21 20 20| 21 21 2 20
O sm2| 22 21 20 2 2 20 2 20 20 19
sM3| 22| 21 20| 21 20 20 21 2 20 19
M1 69| 80 77| 138 108 77| 271 214 141 91
= SM1| 89| 111 95| 170 130 95| =300 244 159 101
& oMm2| 104 161 116 246 175 122| =300 201 197 128
SM3| 119 191 135| >300 207  139| >300 =300 227 146
M1 18] 20 16| 20 16 16| 28 18 18 16
2 sMi 20| 24 22| 33 2 92 51 30 25 922
& oSm2| 0| 32 31| 45 31 3l 78 41 36 31
smM3| 40| 36 39| 53 38 36| 94 50 43 37
© Ml w7l 14 18 18 16 18| 925 20 19 18
= sMI 19l 20 20 30 2 92| 41 31 2 923
& sMm2| 25| 28 26| 40 28 27| 66 44 34 35
= swm3| 31| 37 32| 48 39 36| 73 48 43 52
M1 6 6 6 5 5 7 5 5 5 7
37 SM1 6 6 6 5 5 6 5 5 5 6
< - SM2 6 6 6 5 5 6 5 5 5 6
L. M 24| 26 28| 41 37 42| 85 w0 67 77
=S SMl 93| 95 26| 31 32 31 51 43 54 39
S osm2| 23] 25 24| 28 32 28| 34 29 53 32

Table B.12: Comparison of block preconditioners for the steady-state BFS-2D problem
with v = 0.02, stretched meshes. (The abbreviations ”SPL”, ”SPLR” and "MSPLR”
stand for the corresponding SIMPLE-type preconditioners.)
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2-1,C°3-2,C0 3-2,C" |4-3,C° 4-3,C" 4-3,C2|5-4,C° 5-4,C" 54,02 5-4,C%

o V=02 25 26 27 28 29 29 30 29 30 30
n v=002 24 25 28 28 28 30 34 31 31 31
== 0.002 68 45 80 40 53 71 49 44 50 64
n v=02 292 21 22 21 21 292 21 21 21 21
O v=002 20 20 20 20 20 19 20 19 19 19
A L —=0.002 80 51 74 45 47 64 44 44 44 58
o v=02 90 110 91 129 104 87 143 115 101 84
A =002 165 179 159 207 174 147 297 217 172 141
0 v=0.002 >300] >300 >300| >300 >300 >300| >300 >300 >300 >300
g v=02 38 73 29 80 34 29 95 49 34 28
E v =0.02 31 73 23 81 26 22 106 43 26 21
W v =0.002 88 117 83 67 71 75 91 45 73 73
5 v =0.2 26 29 28 31 31 31 33 33 33 32
& v=0.02 23 24 27 28 27 28 34 31 30 30

v = 0.002
§ 69 52 78 39 63 71 48 43 56 65
N v=02 9 8 8 7 7 7 — 7 7 7
j I v=0.02 6 5 6 4 4 5 — 4 5 5
T v =0.002 5 4 5 4 4 5 — 4 4 4

o = v=02 30 42 34 50 44 39 — 65 75 58

<5 v=o002 27 26 24 29 25 23 — 37 41 29

2 =y =0002 50 74 62 100 85 71 — 109 96 79

Table B.13: Comparison of block preconditioners for the steady-state BFS-2D problem
on the mesh M3, various viscosity values.
"MSPLR” stand for the corresponding SIMPLE-type preconditioners.)

(The abbreviations ”"SPL”, ”SPLR” and
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2-1,0°|3-2,C°0 3-2,C"|4-3,C° 4-3,C" 4-3,C2|5-4,C° 5-4,C" 54,02 54,03

M1 5 8 6 11 9 7 14 11 11 7

O M2 5 7 5 9 7 5 12 9 8 6
“oM3 4 7 5 9 6 5 12 9 8 6
M4 4 7 5 9 6 5 13 9 8 6

M1 7 7 8 8 7 8 8 7 8 8

A M2 6 7 7 7 6 7 7 6 7 7
© M3 7 7 6 7 7 6 7 7 7 6
M4 7 7 7 7 7 7 7 7 7 7

M1 8 23 12 61 36 18] 140 97 56 2

S M2 7 18 11 45 29 15 112 76 45 20
& M3 5 11 8 28 18 10 74 48 29 15
M4 4 9 6 22 14 8 61 37 22 10

M1 6 10 7 14 12 8 19 15 13 9

ﬁ M2 5 9 7 12 10 7 17 13 11 7
& M3 4 8 6 11 9 6 16 12 10 7
M4 4 7 5 11 8 6 17 10 9 7

e Ml 6 9 7 13 11 8 18 14 13 9
= M2 5 8 6 12 9 6 16 11 10 7
w M3 4 8 5 11 7 6 15 10 9 6
= M4 4 8 5 11 7 6 16 11 9 7
_ Ml 17 14 15 13 13 13 12 12 12 12
25 M2 17 14 15 13 12 13 11 11 12 12
= M3 17 13 14 12 12 13 9 9 11 12
Lo M 20 23 19 28 23 20 30 28 25 20
<7 M2 25 31 2 35 28 25 42 36 31 25
S « M3 31 37 28 47 38 29 54 49 42 31

Table B.14: Comparison of block preconditioners for the time-dependent BFS-2D prob-
lem with v = 0.02 and At = 0.01, uniform meshes. (The abbreviations ”SPL”, ”SPLR”
and "MSPLR” stand for the corresponding SIMPLE-type preconditioners.)

M4, 2-1,C° M4, 5-4,C° M4, 5-4,C3

®

o

wall-clock time [s]
I

wall-clock time [s]
wall-clock time [s]

~

Lsc PCD SIMPLE ~ SIMPLER MSIMPLER Lsc PCD SIMPLE  SIMPLER MSIMPLER LsC PCD SIMPLE  SIMPLER MSIMPLER

Figure B.4: Wall-clock time of the preconditioner setup (Tsetup) and the GMRES itera-
tions (Tolve) for various preconditioners for selected discretizations of the time-dependent
BFS-2D problem with v = 0.02 on the mesh M4.
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|2-1,C°|3-2,C0 3-2,C" |4-3,C°

4-3,C" 4-3,C%|5-4,C° 5-4,C 5-4,C* 5-4,C°

M1 5 8 6 11 9 7 14 11 11 7

O SM1 ) 9 5 16 9 6 23 16 12 8
(,3 SM2 ) 9 6 18 10 7 36 21 14 9
SM3 8 13 11 21 12 12 40 21 15 13

M1 7 7 8 8 7 8 8 7 8 8

A SM1 6 7 7 6 6 6 6 6 6 7
2 sm2 6 6 6 6 6 6 6 6 6 6
SM3 6 6 6 6 6 6 6 6 6 6

M1 8 23 12 61 36 18 140 97 56 26

= SMI1 8 21 12 58 33 16 137 90 51 23
5"3 SM2 12 24 13 59 34 17 141 90 51 24
SM3 22 41 23 77 46 25 159 100 58 30

M1 6 10 7 14 12 8 19 15 13 9

5 SM1 6 10 7 18 12 8 30 20 15 9
5-13 SM2 8 12 9 21 13 9 40 24 16 11
SM3 19 24 20 30 24 21 51 30 24 23

g Ml 6 9 7 13 11 8 18 14 13 9
E SM1 5 11 6 19 12 8 28 20 14 9
wm  SM2 6 11 7 22 13 9 44 26 17 11
= SM3 10 16 12 26 14 13 48 26 18 16
- M1 17 14 15 13 13 13 12 12 12 12

—= W SM1 18 15 15 13 13 13 12 12 12 12
< = SM2 18 15 15 13 13 13 12 12 12 12
3 o M1 20 23 19 28 23 20 30 28 25 20
< ] SM1 30 37 31 51 38 31 59 52 42 30
= « SM2 41 55 40 68 58 41 78 69 60 42
Table B.15: Comparison of block preconditioners for the time-dependent BFS-2D prob-

lem with v = 0.02 and At = 0.01, stretched meshes. (The abbreviations ”SPL”, ”SPLR”

and "MSPLR” stand for the corresponding SIMPLE-type preconditioners.)
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12-1,C°]3-2,C° 3-2,C*|4-3,C° 4-3,C* 4-3,C%|5-4,C° 5-4,C* 5-4,C% 54,03

v =02 5 7 5 9 7 6 13 9 8 7

O =002 4 7 5 9 6 5 12 9 8 6
B =0002 5 8 6 10 9 6 14 11 10 6
v = 0.0002 5 8 6 12 10 7 17 13 12 7

v =02 8 8 7 8 7 7 8 7 7 7

A L=002 7 7 6 7 7 6 7 7 7 6
2 v=o00 6 7 8 7 7 9 7 7 8 9
v = 0.0002 6 8 9 10 7 9 10 8 10 11

v =02 8 11 8 27 17 10 72 46 27 14

= »=0.02 5 11 8 28 18 10 74 48 29 15
L0002 7 21 10 75 36 14 234 132 59 22
v = 0.0002 7 25 10 130 44 16| >300 223 77 24

v =02 5 9 5 13 9 6 19 12 10 7
00 4 8 6| 11 9 6| 16 12 10 7
53 v = 0.002 6 12 7 13 13 8 20 16 13 8
v = 0.0002 6 14 8 16 15 9 34 23 16 9

g v=02 5 9 6 12 9 7 17 12 11 8
E v = 0.02 4 8 5 11 7 6 15 10 9 6
o v=0002 5 9 6 12 9 7 16 12 12 7
S »=0.0002 6 11 7 13 11 7 21 14 14 8
v =02 13 10 14 9 9 12 8 8 9 11

a2 v=002 17 13 14 12 12 13 9 9 11 12
< ' v=o0.002 17 13 14 12 12 13 10 10 11 12
v = 0.0002 17 13 14 12 12 13 10 10 11 12

v =02 20 25 20 30 25 21 35 30 27 22

j S v=002 31 37 28 47 38 29 54 49 42 31
S I v =0.002 32 45 31 65 49 35 86 70 55 38
v = 0.0002 33 48 32 74 53 36 107 81 61 40

Table B.16: Comparison of block preconditioners for the time-dependent BFS-2D prob-
lem on the mesh M3, various viscosity values. (The abbreviations ”SPL”, ”SPLR” and
"MSPLR” stand for the corresponding SIMPLE-type preconditioners.)
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B.3.3 BFS-2D: eigenvalues of preconditioned
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Figure B.5: LSC, steady-state BFS-2D, v = 0.01.
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Figure B.7: MSIMPLER, steady-state BFS-2D, v = 0.01.
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B.3.4 Lid-driven cavity 3D

12-1,0°(3-2,C° 3-2,C"|4-3,C° 4-3,C' 4-3,C?

M1 10 15 11 22 18 12

LSC M2 13 15 13 23 17 15
M3 16 17 17 23 19 19

M1 43 %) 46 62 99 92

PCD M2 49 62 %) 34 33 o8
M3 56 33 31 33 32 31

M1 18 59 31 190 116 53

SIMPLE M2 29 69 38 235 141 95
M3 49 70 50 227 137 95

M1 8 13 10 20 18 11

SIMPLER M2 11 14 11 20 18 12
M3 15 24 12 29 16 12

M1 9 14 10 23 18 12

MSIMPLER M2 11 13 12 21 16 13
M3 14 15 15 21 17 17

AL M1 9 18 17 45 30 31
y=2 M2 9 13 9 30 22 16
MAL M1 56 287 133| >300 >300 >300

v =0.02 M2 68 187 164| >300 >300 230

152

Table B.17: Comparison of block preconditioners for the steady-state LDC-3D problem
with v = 0.01, uniform meshes.

M3, 2-1,C°

wall-clock time [s]
wall-clock time [s]

Lsc PCD SIMPLE ~ SIMPLER MSIMPLER

1400

1200
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M3, 4-3,C°

M3, 4-3,C?

Lsc

PCD SIMPLE  SIMPLER MSIMPLER

wall-clock time [s]
PR

LsC PCD

SIMPLE  SIMPLER MSIMPLER

Figure B.10: Wall-clock time of the preconditioner setup (Zietup) and the GMRES iter-
ations (Tove) for various preconditioners for selected discretizations of the steady-state

LDC-3D problem with » = 0.01 on the mesh M3.
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2-1,09]3-2,C° 3-2,C"|4-3,C° 4-3,C" 4-3,C?

v=20.1 9 10 9 14 11 10

v =0.05 9 11 10 15 11 11

LSC v =0.01 13 15 13 23 17 15

v = 0.005 17 19 17 28 24 18

v=20.1 36 21 20 21 20 19

v =0.05 40 24 41 24 23 22

PCD v =0.01 49 62 95 34 33 58

v = 0.005 59 72 63 40 38 67

v=20.1 18 39 20 135 79 29

v =0.05 19 41 21 142 83 32

SIMPLE v =0.01 29 69 38 235 141 95
v = 0.005 40 111 56| >300 218 84

v=20.1 8 13 7 18 13 8

v =0.05 9 13 7 18 13 8

SIMPLER v =0.01 11 14 11 20 18 12
v = 0.005 15 17 15 22 24 16

v=20.1 8 11 9 16 12 10

v =0.05 8 11 9 16 12 10
MSIMPLER v =20.01 11 13 12 21 16 13
v = 0.005 15 17 15 26 23 16

v=20.1 17 36 21 79 60 36

AL v =0.05 8 27 16 60 46 28
=2 v =0.01 9 13 9 30 22 16

v =0.005 8 10 13 23 17 14

v=20.1 75 171 86| >300 282 141

MAL v =0.05 76 181 89| >300 >300 156

v =0.02 v =0.01 68 187 164| >300 >300 230
v = 0.005 64| >300 160 >300 >300 >300

153

Table B.18: Comparison of block preconditioners for the steady-state LDC-3D problem

on the mesh M2, various viscosity values.
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21,00 32,00 32,01 [4-3,C° 4-3,C' 4-3,C2
M1 5 9 6 13 11 8
LSC M2 5 8 6 12 10 7
M3 5 8 6 11 8 6
M1 9 9 9 10 8 8
PCD M2 9 11 9 12 11 9
M3 10 12 10 13 11 10
M1 16 70 28] 220 123 50
SIMPLE M2 17 70 31| 237 138 48
M3 14 52 25| 184 119 40
M1 6 11 7 18 16 9
SIMPLER M2 5 10 7 16 14 9
M3 4 10 6 15 12 7
M1 6 10 8 16 14 9
MSIMPLER M2 6 10 7 15 11 8
M3 5 9 6 13 9 7
AL M1 7 8 8 11 9 9
=10 M2 6 6 7 8 6 7
MAL M1 13 31 21 58 41 32
y =02 M2 17 35 22 64 44 32
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Table B.19: Comparison of block preconditioners for the time-dependent LDC-3D prob-
lem with v = 0.01 and At = 0.01, uniform meshes.

M3, 2-1,C°

wall-clock time [s]

Lsc PCD SIMPLE ~ SIMPLER MSIMPLER

wall-clock time [s]

1000

800

600

400

200

M3, 4-3,C°

M3, 4-3,C?

Lsc PCD SIMPLE  SIMPLER MSIMPLER

wall-clock time [s]

LsC PCD SIMPLE  SIMPLER MSIMPLER

Figure B.11: Wall-clock time of the preconditioner setup (Tsetup) and the GMRES itera-
tions (Tove) for various preconditioners for selected discretizations of the time-dependent
LDC-3D problem with v = 0.01 and At = 0.01 on the mesh Ma3.
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2-1,09]3-2,C° 3-2,C"|4-3,C° 4-3,C" 4-3,C?

v=20.1 4 8 5 11 8 6

v =0.05 4 8 6 11 8 6

LSC v =0.01 5 8 6 12 10 7

v = 0.005 5 9 7 12 10 8

v=20.1 10 12 10 13 12 11

v =0.05 10 12 10 13 11 10

PCD v =0.01 9 11 9 12 11 9

v = 0.005 9 9 8 11 9 8

v=20.1 11 42 22 145 88 37

v =0.05 14 49 26 160 102 41

SIMPLE v =10.01 17 70 31 237 138 48
v = 0.005 17 78 32 273 148 50

v=20.1 4 10 6 16 12 7

v =0.05 4 10 7 16 13 8

SIMPLER v =0.01 ) 10 7 16 14 9
v = 0.005 ) 10 7 17 15 9

v=20.1 5 10 7 14 11 7

v =0.05 ) 9 7 14 10 7
MSIMPLER v =0.01 6 10 7 15 11 8
v = 0.005 6 10 8 15 12 8

v=0.1 7 13 8 22 16 11

AL v =0.05 7 10 7 16 12 9
v=10 v =0.01 6 6 7 8 6 7

v =0.005 6 6 7 7 6 7

v=20.1 21 74 40 147 97 56

MAL v =0.05 20 58 34 117 78 48
v =02 v =0.01 17 35 22 64 44 32
v = 0.005 20 29 21 50 33 29

Table B.20: Comparison of block preconditioners for the time-dependent LDC-3D prob-
lem with At = 0.01 on the mesh M2, various viscosity values.



APPENDIX B. COMPLETE RESULTS 156

B.3.5 Backward-facing step 3D

|2-1,C° | 3-2,C° 3-2,C'|4-3,C° 4-3,C" 4-3,C°

M1 22 25 23 28 32 23

LSC M2 27 21 27 22 25 26
M3 26 17 29 — 20 27

M1 31 34 31 28 30 28

PCD M2 35 27 32 25 24 29
M3 30 24 27 — 22 24

M1 51 212 129 >300 >300 229

SIMPLE M2 93 178 148 >300 >300 185
M3 133 140 133 — 299 137

M1 23 26 27 28 36 27

SIMPLER M2 28 26 28 21 31 24
M3 28 31 25 — 24 22

M1 22 25 21 29 34 24

MSIMPLER M2 26 21 26 22 28 25
M3 24 17 27 — 21 25

AL M1 8 13 12 29 23 24
y=2 M2 8 8 11 — — 18
MAL M1 36 68 53 181 128 102
~=0.1 M2 40 61 56 — — 104

Table B.21: Comparison of block preconditioners for the steady-state BFS-3D problem
with v = 0.01, uniform meshes.

|2-1,C° | 3-2,C° 3-2,C" | 4-3,C° 4-3,C" 4-3,C7

v=0.1 12 13 13 17 14 14
LSC v =005 12 13 14 18 15 14

v =0.01 27 21 27 22 25 2

v =01 17 17 17 17 17 17

PCD v =005 18 19 17 19 18 17

v =0.01 35 27 32 25 24 29

v=0.1 28 44 32 131 92 43

SIMPLE v =0.05 34 60 43 179 123 60
v =0.01 93 178 148 | >300  >300 185

v=0.1 13 18 11 22 16 12

SIMPLER v =0.05 13 17 11 20 16 12
v =0.01 28 2 28 21 31 2

v=0.1 12 13 13 17 14 14

MSIMPLER v = 0.05 11 13 13 17 14 13
v =0.01 2 21 26 22 28 25

v=0.1 8 13 11 - - 22

AL v =0.05 7 12 9 _ _ 17
=2 v =0.01 8 8 11 — — 18
v=0.1 29 61 45 - — 92

MAL v =0.05 29 61 45 - - 89
7=01 v =0.01 40 61 56 — — 104

Table B.22: Comparison of block preconditioners for the steady-state BFS-3D problem
on the mesh M2, various viscosity values.
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|2-1,C° | 3-2,C° 3-2,C'|4-3,C° 4-3,C" 4-3,C7

M1 6 9 7 13 12 10

LSC M2 5 9 6 11 10 8
M3 5 8 6 — 8 6

M1 9 11 11 11 13 14

PCD M2 9 10 10 10 9 11
M3 8 9 10 — 9 11

M1 9 50 22 175 98 45

SIMPLE M2 9 54 21| 205 107 36
M3 8 45 19 — 98 30

M1 7 12 10 17 15 12

SIMPLER M2 7 11 8 15 14 9
M3 6 11 7 — 12 8

M1 7 11 9 18 15 11
MSIMPLER M2 6 10 8 15 12 9
M3 6 9 6 — 10 7

AL M1 14 15 16 17 17 18
v=10 M2 16 17 16 — — 17
MAL M1 16 17 18 20 19 20
=10 M2 18 19 18 — — 19
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Table B.23: Comparison of block preconditioners for the time-dependent BFS-3D prob-
lem with v = 0.01 and At = 0.01, uniform meshes.

|2-1,C° | 3-2,C° 3-2,C' |4-3,C° 4-3,C" 4-3,C

v=0.1 5 7 5 10 8 6

LSC v =0.05 5 7 6 10 8 6

v =0.01 5 9 6 11 10 8

v=0.1 8 9 10 8 8 9

PCD v =0.05 8 9 10 9 8 10

v =0.01 9 10 10 10 9 11

v=0.1 9 38 20| 125 82 32

SIMPLE v =0.05 9 44 21| 148 92 34
v =0.01 9 54 21| 205 107 36

v=0.1 6 10 7 13 11 7

SIMPLER v =0.05 6 10 8 13 12 8
v =0.01 7 11 8 15 14 9

v=0.1 5 9 6 13 10 7
MSIMPLER v = 0.05 5 9 6 13 10 8
v =0.01 6 10 8 15 12 9

v=0.1 16 16 16 — — 17

‘iLm v =0.05 16 16 16 — — 17
= v =0.01 16 17 16 — — 17
v=0.1 18 19 19 — — 19

M_AlLO v =0.05 18 19 19 — — 19
= v =0.01 18 19 18 — — 19

Table B.24: Comparison of block preconditioners for the time-dependent BFS-3D prob-
lem on the mesh M2 with At = 0.01, various viscosity values.
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Figure B.12: Wall-clock time of the preconditioner setup (Tsetup) and the GMRES iter-
ations (Tve) for various preconditioners for selected discretizations of the steady-state
TB-2D problem with v = 0.01 on the mesh M4.
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Figure B.13: Wall-clock time of the preconditioner setup (Tsctup) and the GMRES itera-
tions (Tyolve) for various preconditioners for selected discretizations of the time-dependent
TB-2D problem with v = 0.01 on the mesh M4.
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(a) Steady-state TB-3D.
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Figure B.14: Wall-clock time of the preconditioner setup (Tsctup) and the GMRES iter-

ations (Tyolve) for various preconditioners for the TB-3D problem with ¥ = 0.1 on the
mesh M3.
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