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A widely used technique for predicting traffic flows in individual roads of a road traffic network is the
user-equilibrium (UE) traffic assignment (TA). This technique assigns trips from origins to destinations
in a road traffic network so that all trips use the cheapest path. The cost of the path, which consists of
roads (edges), is the sum of the roads costs. These costs increase with increasing flow in these roads.
In this paper, we describe the parallelization of the B algorithm – a relatively new TA algorithm with a
fast convergence to a solution. Since the nature of the algorithm and the nature of its fast convergence
complicate the parallelization itself, we considered and implemented three parallel variants and tested
them on real road traffic networks to investigate their convergence, usability, and speed. The paralleliza-
tion is intended for a shared memory parallel computing environment. The description of the paralleliza-
tion along with the performed tests is the main contribution of this paper.
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1. Introduction

The traffic volume in road traffic networks is steadily increas-
ing, which necessitates careful management of existing networks
and planning of their future improvements. One of the important
tools for these purposes is the traffic modeling. The general pur-
pose of traffic modeling is to predict the traffic flows in individual
roads of the modeled road traffic network based on the often
incomplete input data. Traffic modeling incorporates wide range
of techniques from deterministic graph-based algorithms consid-
ering only flows in roads to stochastic simulations considering
every single vehicle in the road traffic network. One of the oldest
[1] and still widely used technique is the user-equilibrium (UE)
traffic assignment (TA). This technique assigns trips from origins
to destinations in a road traffic network so that all trips use the
cheapest path. The cost of the path, which consists of roads (edges),
is the sum of roads costs. These costs increase with increasing flow
in these roads [2].
Since the TA problem is here for more than half a century, there
are several algorithms capable to solve it. The algorithms are in
most cases sequential, so they do not exploit the mutli-core pro-
cessors of nowadays computers. Despite of this setback, running
on a standard desktop computer, some of these algorithms are able
to find solution for quite large road traffic networks (large cities or
entire states) in reasonable time of several seconds to several hours
(depending on the road traffic network, the algorithm used, and
other features). Still, this time can be far too high. In some cases,
the TA of multiple scenarios must be completed (e.g., during a care-
ful planning of a closure), in other cases, it is important to get the
results as quickly as possible (e.g., during the planning of alternate
routes immediately after a major accident). Even if there is enough
time, the lower amount of waiting time always improves the user
comfort.

A way, how to speedup a TA algorithm, is to use the parallel
computing environment. Since the multi-core processors are incor-
porated virtually in all common desktop computers, the paral-
lelization of a TA algorithm can be exploited by a wide variety of
users. In this paper, we describe the parallelization of the B algo-
rithm – a relatively new TA algorithm with a fast convergence to
a solution [2]. Since the nature of the algorithm and the nature
of its fast convergence complicate the parallelization itself, we con-
sidered and implemented three parallel variants and tested them
on real road traffic networks to investigate their convergence,
usability, and speed. The parallelization is intended for a shared
memory parallel computing environment. The description of the
parallelization along with the performed tests is the main contri-
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bution of this paper. We were unable to find any parallelization of
the B algorithm in existing literature.

The remainder of this paper is structured as follows. Section 2
discusses the related work. In Section 3, the B algorithm and its
sequential implementation are described. In Section 4, the three
parallel variants of the B algorithm, which we developed, are
described in detail. The testing and its results are summarized in
Section 5. The paper is concluded and our future work is described
in Section 6.
2. Related work

This paper deals with a classical static traffic assignment (STA)
based on the user equilibrium. These models are not time-
dependent (unlike their dynamic traffic assignment counterparts)
[3] and they are usually constructed for rush hours or for a daily
average. The dynamic traffic assignment is a more precise assign-
ment model, but is also more demanding and it is more difficult
to obtain the result within reasonable computation time for real-
size road traffic networks. Nowadays, static models are still widely
used in practice [25]. In STA, there is only one time-independent
origin–destination matrix (ODM) describing the numbers of vehi-
cles driving among the zones. The zones are areas in the road traffic
network, which act as origins (i.e., sources of vehicles) and/or des-
tinations (i.e., sinks of vehicles). Each number in the ODM repre-
sents a single origin–destination pair (OD pair). From a single
origin, the vehicles drive to multiple destinations. The road traffic
network is then an edge-labeled oriented graph with nodes acting
as crossroads and oriented edges acting as one-way roads (most
neighboring nodes are interconnected with two edges for both tra-
vel directions). The label of each edge consists of its cost, capacity,
and flow. The capacities of edges are constant while their costs
increase with their increasing flows based on a cost function. The
capacities and the initial costs are given. The flows of all edges
are to be determined by a STA algorithm. Usually, the edges flows
are loaded based on the OD pairs and then equalized [4].
2.1. Static traffic assignment algorithms

There are three classes of the algorithms solving the STA prob-
lem – the link-based, the path-based, and the bush-based [5,6].
Many of the algorithms (regardless their class) are iterative in nat-
ure and use the all-or-nothing (AON) assignment model to deter-
mine an initial solution. That means that, for each OD pair, the
shortest path in the road traffic network is found and the flow of
the OD pair is assigned to all edges of this path. So, the flow on
an edge is equal to the sum of flows of all paths using this edge.

The link-based algorithms are the first algorithms developed.
The well-known Frank-Wolfe (FW) algorithm and its modifications
fall in this class [5,20]. They use the AON for initial assignment of
OD pair flows to the road traffic network. They operate in link
(edge) space. So, during individual iterations, the flows are moved
between links. Their memory requirements are relatively low [6].
Nevertheless, their convergence to the high precision solution
(i.e., UE) is slow [5,7]. In case of low precision results, their perfor-
mance is good enough [5,20].

The path-based algorithms utilize the OD pairs separability of
the STA problem. Again, they use the AON for initialization, but
operate in path flows space. In each iteration, the flows are moved
within one OD pair only (other pairs are fixed). For this purpose, all
the paths and path flows must be stored [5], which increases the
memory requirements. Compared to link-based algorithms, the
path-based algorithms show faster convergence to a solution [6].
For example, the representatives are [21,22,23].
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The bush-based algorithms utilize the OD pairs separability of
the STA problem as well. However, the problem is decomposed
to individual origins instead of individual OD pairs. In each itera-
tion, the flows are moved within so-called bush, which is a directed
connected acyclic sub-graph of the original graph (i.e., the road
traffic network). The number of bushes corresponds to the number
of origins. So, each bush contains paths from one origin to all its
destinations. Each bush is usually initialized using the AON [5].
The bush-based algorithms are fast converging and memory-
efficient making them a good choice for large road traffic networks
[5,6,24]. After post-processing, algorithms from this group also
provide the solution in path flow space, which is an advantage
for ODM estimation and some engineering applications. The B
algorithm, whose parallelization is the theme of this paper, is a
bush-based algorithm (see Section 3).

2.2. Static traffic assignment algorithms parallelization

As stated in Section 1, we were unable to find any work describ-
ing the parallelization of the B algorithm. However, there are works
describing or mentioning parallelization of other STA algorithm for
a parallel (i.e., with shared memory present) or a distributed (with-
out shared memory and with message passing as a standard form
of inter-process communication) computing environment. Some of
them are briefly described in this section.

One of the earliest works considering the parallelization of a
STA algorithm is [8]. The paper considers distributed computing
environment and two variants of decomposition of the STA prob-
lem into parallel sub-problems – one utilizing periodical state
updates from other sub-problems and the other not utilizing such
updates. While the second variant shows high level of parallelism,
it converges slower than the first variant and also than the sequen-
tial variant. The first variant exhibits higher rate of convergence
than the second variant due to the updates passed among the par-
allel sub-problems. The transfer of updates is performed concur-
rently along with the sub-problems computation to efficiently
utilize the parallel or distributed computing environment and to
minimize the waiting times [8].

In [9], the parallelization of STA using distributed disaggregated
simplicial decomposition for a distributed computing environment
is described in detail. The parallel algorithm shows the same con-
vergence as its sequential counterpart. All processes contain the
entire road traffic network, which enables them to perform short-
est path searches without any inter-process communication. The
working processes process sets of OD pairs. The inter-process com-
munication is necessary to calculate the sums of flows in all edges
of the road traffic network. There is also a load-balancing transfer-
ring OD pairs between the working processes based on their com-
putation times. The implementation utilizes the single program
multiple data (SPMD) paradigm and the PVM for the inter-
process communication. The tests were performed using three real
test cases with varying numbers of nodes (ca. thousands), edges,
and OD pairs. It was observed that the increasing number of OD
pairs positively influence the speedup, because the communication
forms a decreasing portion of the computation time [9].

In [10], the parallelization possibilities are only mentioned. It is
noted that the finding shortest path can be done concurrently
without inter-process communication as long as each process con-
tains the entire road traffic network. It is further stated that the
STA algorithm can be parallelized by division of the OD pairs
among working processes [10]. This approach would be useful
for path-based class of the STA algorithms. No parallelization
experiments are described, but there is the computation of possi-
ble speedup using Amdhal Law [10]. The parallelization of STA is
only marginally mentioned in [3], which is focused mainly on the
Disaggregated Simplicial Decomposition for the STA. The imple-
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mentation for an efficient Matlab vector computation is described
[3].

In [11], the speedup of the STA is achieved primarily using cus-
tomizable contraction hierarchies. The main idea is to speedup the
shortest path searching by employing a relatively slow preprocess-
ing phase and a fast query phase. The shortest path searching is
performed in all three types of the STA algorithms. However, the
results are shown on the link-based conjugate Frank-Wolfe algo-
rithm. The paper focuses on optimization of both phases for both
sequential and parallel computing environments including order-
ing of OD pairs to optimize cache utilization. The tests were per-
formed using three real test cases with varying numbers of nodes
(ca. hundred thousands), edges, and OD pairs [11].

In [12], a framework for the STA computation designed for clus-
ters is described. The paper proclaims the advantages of the dis-
tributed environment and the decomposition based on origins
rather than road traffic network division (i.e., spatial decomposi-
tion). This approach requires less intense inter-process communi-
cation [12]. Parallelization of two algorithms – the Frank-Wolfe
and a gradient-projection algorithm [7] – is described using map-
reduce primitives and resilient distributed datasets to provide fault
tolerance and scalability. The tests were performed using 8 various
networks ranging from very small (24 nodes) to relatively large (ca.
14,000 nodes) [12].

The road traffic network division approach for a distributed
computing environment is utilized in [6] and [13]. The entire road
traffic network is divided into several interconnected regions and
each region is solved separately. To ensure consistency of the
entire road traffic network, there is a control process with a simpli-
fied model of the entire network, where the cities are replaced by
artificial edges connecting their border nodes. The entire approach
is iterative with alternating solving of the regions and of the sim-
plified entire road traffic network [6]. A path-based STA algorithm
is employed [13]. It is reported that the distributed approach con-
verges to the same result as the STA of the entire original road traf-
fic network [6]. The tests were performed on a road traffic network
with thousands of nodes divided into two regions [13].
3. B algorithm description

Our implementation of the B algorithm is based on the original
description in [2] with several modifications based on [14].
3.1. General algorithm description

The B algorithm is a bush-based user equilibrium (UE) static
traffic assignment (STA) algorithm. As with the majority of the
STA algorithms, the inputs of the algorithm are the road traffic net-
work (an oriented graph) and the origin–destination matrix
(ODM). The output is the equalized flows in individual roads (edges
of the oriented graph). The algorithm is deterministic, no pseudo-
random numbers are employed.

The entire computation is based on a set of bushes. As it was
stated in Section 2, a bush is a connected acyclic sub-graph of
the original graph. It contains all the nodes of the original graph,
but only a subset of its edges. Each bush starts in a single origin
and its edges carry flows from this origin to all its destinations. Ini-
tial bushes are formed using the minimal cost tree constructed
from the original graph with its root in the origin of the bush. Only
the edges, whose end node is further away from the origin than the
start node, are added to the bush. The bush is then loaded with the
flows from its origin to all its destinations using the minimal paths
(i.e., the AON approach) [2]. The total flow in each edge of the
graph (i.e., the road traffic network) is calculated as the sum of
the flows in the corresponding edges in all the bushes.
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Once all the bushes are created and loaded, the main iterative
part of the algorithm begins. For each bush, the minimal cost
tree and the maximal cost tree connecting the origin of the bush
with all its nodes are constructed. Then, for each node, the flows
are shifted from the maximal path to the minimal path to min-
imize their cost differences using the Newton’s method. This
way, the bush is equalized [2]. The current total flow in each
edge of the graph is taken into account and updated during this
process.

If the bush is not optimal, the bush is topologically improved
(by adding and/or removing some edges) to contain some cheaper
paths. Once the last bush is equalized, the overall convergence cri-
terion (usually the relative gap [15] – see Section 3.2) is checked
and a new iteration starts if needed [2,14].

3.2. Mathematical background

Let G = (V, E) is a directed graph with set of nodes V and set of
edges E. The set of zones is denoted as Z and the set of OD pairs is
denoted as W = Z � Z. The flow corresponding to OD pair wij 2 W is
Qij. The origin–destination matrix (ODM) is denoted as Q. Further,
the set of all used paths is denoted as P and the set Pij � P is subset
of paths from zone i to zone j. Finally, xe represents the total flow
on the edge e 2 E.

The UE can be mathematically defined as a variational inequal-
ity (VI) [16,17]. The optimal solution x* must meet the following
VI:X
p2P

cp x�p
� �

xp � x�p
� �

P 08x 2 K ð1Þ

where cp represents the cost function of the path p 2 P, x = (xp: p 2 P)
is a vector of path flows and K is a set of feasible flows defined as:

K ¼ x P 0 :
X
p2Pij

xp ¼ Qij 8 i; jð Þ 2 W

8<
:

9=
; ð2Þ

This definition is the classical path-based definition with expli-
cit path enumeration, but the B algorithm uses the implicit path
enumeration provided by bushes. The bush-based formulation of
the equilibrium is formulated in [18]. The equilibrium can be also
defined in local form using alternatives [19]. The alternatives are
the set of path from node n to nodem. Then, the equilibrium occurs
if:

ca
¼ cmn if xa > 0
> cmn if xa ¼ 0

�
ð3Þ

for all n 2 V and m 2 V, where cmn is the minimal cost from
node n to node m, ca is the cost of alternative a and xa is the
flow on alternative a. Equation (3) expresses the first Wardrop’s
principle [1].

During the bush equilibration, the B algorithm finds the costli-
est and the cheapest alternatives for everym and n in the bush. The
flow from the costliest alternative should be shifted to the cheapest
alternative. This shift reduces the objective function [2]. The prob-
lem is to find Dx such that:

c xþ Dxð Þ ¼ c
�

x
��Dx
� �

ð4Þ

0 6 Dx 6 l ð5Þ
where c (c

�
) is cost function of the cheapest (costliest) alternative

and x (x
�
) represents current flow on the cheapest (costliest) alterna-

tive. The flow shift Dx must be positive and smaller then:

l ¼ min xoe : e 2 p
�n o

ð6Þ
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where p
�
is the costliest path and xoe is the flow from the origin o 2 Z

on the edge e 2 E. Condition (5) ensures that the flow on the bush is
positive.

Equation (4) can be approximately solved using Newton
method, which requires the path cost function and its derivative.
The cost function and its derivative are:

cp ¼
X
e2p

ce ð7Þ

c0p ¼
X
e2p

c0e ð8Þ

where cp is the cost of the path and ce is the cost of edge e forming
the path. In case that the cost function has shape of:

c ¼ c0 1þ a
x
C

� �b� �
ð9Þ

and ce in (7) is substituted by (9), the derivative of path cost func-
tion with respect to flow is:

c0p ¼
X
e2p

abc0e
xb�1
e

Cb
e

ð10Þ

where c0 is the free flow cost and Ce is the capacity of edge e forming
the path p. Now, the Newton method [2] can be applied. Then, the
flow shift (flow difference) is:

Dxi ¼ Dxi�1 þ c
��c

c0
� þc0

ð11Þ

where Dx0 = 0. The computation is iterative. In original version of
the B algorithm [2], the number of iterations is set to 1.

If the bush is equilibrated, but the error is still too high, the
topology of the bush must be improved to further decrease the rel-
ative gap. This topology improvement was implemented by [14].
The aim is to add links to the bush such that there is a chance to
reduce the relative gap assuming that acyclicity is maintained.
For this purpose, the topological distance is defined. The topologi-
cal distance Ui of the node i is the maximum cost distance from the
origin of the bush [14]. All edges with zero flow from the origin xoe
(unused edges) are removed from the bush and all edges eij 2 E that
meet condition:

Ui < Uj ð12Þ
are added to the bush. This improved bush can be further equili-
brated. The proofs of theorems described above can be found in
[2,14], and [18].

To determine, whether the obtained solution is close enough to
the optimal solution, or a new iteration is required, the relative gap
is usually used [15]. The relative gap at kth iteration rg(k) can be
calculated using the gap at kth iteration g(k) and the objective
function at kth iteration of(k). The gap can be expressed as:

g kð Þ ¼
X
e2E

ce xe kð Þð Þ � ye kð Þ � xe kð Þð Þ 6 0 ð13Þ

where ce(xe(k)) is the cost of the edge e with total flow xe(k), xe(k) is
the total flow on edge e in kth iteration, and ye(k) is the total flow on
edge e given by the AON assignment based on costs in kth iteration
{ce(xe(k))}. The objective function can be expressed as:

of kð Þ ¼
X
e2E

Z xe kð Þ

0
ce tð Þdt ð14Þ

The lower bound of the objective function at kth iteration lb(k)
can be then expressed using the objective function at kth iteration
lb(k) and the gap at kth iteration g(k) as:

lb kð Þ ¼ of ðkÞ þ gðkÞ ð15Þ

4

After the substitution of (13) and (14) into (15), the expression
has the form of:

lb kð Þ ¼
X
e2E

Z xe kð Þ

0
ce tð Þdt þ

X
e2E

ce xe kð Þð Þ � ye kð Þ � xe kð Þð Þ ð16Þ

and the relative gap is expressed as:

rg kð Þ ¼ �gðkÞ
maxk lb kð Þð Þj j P 0 ð17Þ

where maxk(lb(k)) is the maximum of lower bounds calculated from
the start to the kth iteration [15].

3.3. Sequential implementation description

Our implementation, which was used for the testing, was writ-
ten in Java. It follows the general description in Section 3.1. The
algorithm consists of the initialization phase and the iterative
phase. The scheme of the entire algorithm including the persistent
data structures used during the entire computation is depicted in
Fig. 1 with 16 nodes, 48 edges, 8 zones, 32 OD pairs, and 8 bushes.

The bushes are created in the initialization phase using the set
of all edges E of the graph G and the set of all origins. For each ori-
gin, which coincides with a single node of the graph, a new bush is
formed as follows. The distances to all nodes are determined using
the Dijkstra shortest path algorithm. Then, the list of all edges is
explored and the edges, whose end node is further away from
the origin than its start node is added to the bush. Once all the
bushes are formed, they are loaded with the flows using the
ODM. For each bush, the minimal cost tree is constructed using a
modified breadth-first search on its edges. Then, the flows of the
OD pairs with the origin of the bush are added to the edges of
the minimal paths to their destinations. The resulting set of bushes
is designated as B.

Once all the bushes are loaded with the flows, the total flows of
all the graph edges are calculated as the sum of the flows over all
the bushes. The current total flow xe of the edge e is calculated as:

xe ¼
X
i2B

xei ð18Þ

where xei is the total flow of edge e in ith bush. The current costs are
calculated from these total flows and the initial (free flow) costs for
all the edges using the cost function expressed as [2] (coefficients a
and b inserted into (9)):

ce xeð Þ ¼ c0e 1þ 0:15
xe
Ce

� �4
 !

ð19Þ

where ce(xe) is the current cost, c0e is the initial (free flow) cost, xe is
the current total flow, and Ce is the capacity of edge e. The relative
gap is initialized to infinity.

The iterative phase is then performed. It is stopped when rela-
tive gap at kth iteration rg(k) decreases under the preset target
value rgmax or the number of completed iterations k reaches the
preset maximal number of iterations kmax. In each iteration, all
the bushes are processed sequentially and, for each bush, several
steps are performed (see Fig. 1).

First, the bush is topologically improved by adding some links
while maintaining acyclicity (see Section 3.2). Then, the minimal
cost tree and the maximal cost tree are constructed with their
roots in the origin of the bush using a modified breadth-first search
and the current edges costs. The flows shift then follows. Using the
constructed trees, for each node of the graph (and of the bush)
other then the origin of the bush, the minimal cost path and the
maximal cost path to the origin are explored and the different seg-
ments of these paths are found. The iterative Newton method (see
Section 3.2) is then used to partially shift flow from the maximal



Fig. 1. The scheme of the entire B algorithm.
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cost path segment to the minimal cost path segment to equalize
flows of both segments. The maximal Newton method iterations
count is set to 100. However, only a few iterations (ca. 4) are usu-
ally required to achieve equality of flows in order of 10�10. The
flows differences used to equalize the maximal and minimal flows
are added not only to the flows of the bush, but also to the total
flows of the graph edges. Once the flows shift is completed for all
nodes of the bush, the unused (i.e., with zero flow) edges of the
bush are removed. Finally, the current costs of the graph edges
are recalculated using (19) and the current total flows of the graph
edges. The algorithm then proceeds with the next bush.

Once all the bushes are processed, the current iteration contin-
ues with the computation of the relative gap rg(k). For this purpose,
the objective function at kth iteration of(k) is calculated from the
current total flows of the graph edges as (the integral expressed
and the utilized values of the coefficients a and b inserted into
(14)):

of kð Þ ¼
X
e2E

c0e xe kð Þ þ 0:15 � x
5
e kð Þ
5C4

e

 !
ð20Þ

where xe(k) is the current total flow at kth iteration, c0e is the initial
(free flow) cost, and Ce is the capacity of the edge e. Then, the AON
assignment is performed with the current costs of the graph edges.
For each OD pair w (w 2 W), the shortest path pwis found using the
Dijkstra shortest path algorithm and the flow of the OD pair Qw is
added to all the edges forming this path. So, the resulting AON total
flow of edge e at kth iteration ye(k) can be expressed as:

ye kð Þ ¼
X

w2W ; e2pw
Qw ð21Þ

The AON total flows of the graph edges together with the cur-
rent total flows of the graph edges are used to calculate the gap
g(k) using (13). The lower bound of the objective function lb(k) is
calculated using (15) and if this value is higher then the values cal-
culated in previous iterations, it is stored as the maximum. This
maximum is used for the calculation of the relative gap using
(17). If the relative gap rg(k) decreases under the target rgmax, the
5

required fidelity was achieved, and the B algorithm ends. Other-
wise, if the maximal number of iterations kmax was not reached,
the next iteration starts.

The output of the algorithm is the equalized flows in the indi-
vidual graph edges (i.e., in roads of the road traffic network). Since
the algorithm is deterministic, the output is always the same for
the same input.
4. B algorithm parallelization

In order to improve the speed of the B algorithm, we paral-
lelized it for a shared-memory parallel computing environment.
An example of this environment is a standard desktop computer
with a multi-core processor, which is nowadays available to a wide
variety of users. The description of the parallelization of the B algo-
rithm along with the performed test is the main contribution of
this paper.

4.1. B algorithm parallelization issues and main idea

In order to achieve a good speedup of a parallel computation,
the overhead associated with the parallel execution must be min-
imized. The overhead is generally caused by the interactions (i.e.,
the synchronization and writing and reading to and from the
shared memory) among the individual threads of the computation.
So, it is important to divide the computation among the threads in
a way that the number of their interactions is low.

The natural division seems to be based on bushes – each thread
could process an assigned subset of bushes. However, the compu-
tations performed on individual bushes are not independent. Dur-
ing the processing of a bush, the total flows and costs of the graph
edges changes (see Section 3.3). These changes influence the pro-
cessing of the next bush, its processing influence the next one,
and so on. For this reason, it is difficult to parallelize the B algo-
rithm and to preserve its exact behavior and its fast convergence.

Of course, it would be possible to synchronize the threads after
each bush to maintain the total edge flows and costs up-to-date.
This would still change the behavior of the B algorithm, since the
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order of the processing of the bushes would not be kept, but it is
reasonable to expect that the influence on the convergence of the
algorithm would be minimal. The major problem is that the num-
ber of bushes usually ranges in thousands meaning that there
would be thousands of threads synchronizations per thread per
iteration. The total overhead (i.e., waiting) associated with the syn-
chronization would negate any speedup gained by the utilization
of multiple threads.

A way how to implement the parallelization efficiently is to
slightly modify the B algorithm to enable partially independent
processing of the bushes. One possible modification is to recalcu-
late the costs of the graph edges only once per iteration, not after
each bush. Another possible modification is to recalculate the total
flows of the graph edges once per iteration, not after each change
in a bush. Both modifications are expected to negatively influence
the convergence of the B algorithm. We implemented three vari-
ants, which are described in following sections in detail, and per-
formed thorough tests to determine their efficiency and
convergence (see Section 6). The parallel variant 1 (main parallel
variant) utilizes only the former modification. The parallel variants
2 and 3 utilize both the former and the latter modifications and
mutually differ in the implementation of the latter modification
(i.e., the recalculation of the total flows of the graph edges).
4.2. B algorithm parallel implementation description

Our parallel implementation of the B algorithm is written in
Java and utilizes standard Java threads. We implemented three
variants, which differ only in the flows shift part. The main variant
(parallel variant 1), which gives best results, is described in this
section, the other two (parallel variants 2 and 3) are described in
Sections 4.3 and 4.4.

The entire computation is divided into T (T � 2) working
threads. One working thread also serves as the control thread. All
the threads have the access to the data structures in shared mem-
ory. All the threads are being synchronized using a barrier and all
potentially conflicting writing to the data structures are performed
solely by the control thread during the synchronization. The con-
trol thread also performs any sequential parts of the computation.
Between the synchronizations, the working threads can write only
to parts of the data structures, which are exclusively assigned to
them. The load is divided uniformly among the working threads,
since we presume a homogeneous computing environment (i.e.,
all the processor cores with the same computing power).

As arise from Section 4.1, our parallelization is based on the par-
allel processing of bushes. However, there are also other computa-
tions on the entire graph (more specifically its edges), which can be
parallelized as well, but cannot be conveniently divided using
bushes (e.g., the calculation of total flows and costs of the graph
edges). For this reason, ith thread has assigned not only a subset
of bushes Bi (Bi � B), but also a subset of edges of the entire graph
Ei (Ei � E). These subsets are constant during the entire
computation.

The entire parallel computation including the persistent data
structures used during the entire computation is depicted in
Fig. 2 with 16 nodes, 48 edges, 8 zones, 32 origin–destination pairs,
and 8 bushes. At the start, the bushes and edges of the entire graph
are divided into subsets assigned to individual working threads.
The threads then proceed with the initialization phase. They create
the assigned bushes and fill them with flows based on the ODM
(ith thread creates the subset of bushes Bi) the same way as in
the sequential computation (see Section 3.3). Then, the barrier syn-
chronization is performed to ensure that all threads completed
their parts. The threads then continue with the calculation of total
flows and costs of the edges (ith thread handles its set of edges Ei).
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The initialization phase is ended by the barrier synchronization
and the iterative phase begins.

The iterative phase is, similarly to the sequential version,
stopped when the relative gap at kth iteration rg(k) decreases
under preset target value rgmax or the number of completed itera-
tions k reaches the preset maximal number of iterations kmax. This
is checked by all the working threads. In each iteration, the work-
ing threads topologically improve all their bushes first. Then, each
working thread constructs and stores the minimal and the maxi-
mal cost trees for each bush of its subset Bi using the current edges
costs. The edges cost are the same for all the bushes. This is a dif-
ference in comparison to the sequential version, where the edges
costs are updated along with the edges flows after processing of
each bush. So, the constructed cost trees may slightly differ from
the cost trees of the sequential version. In the main parallel variant,
this is the only difference influencing the convergence in compar-
ison to the sequential version. After the trees construction, the
threads perform the barrier synchronization.

The flows shift is performed sequentially by the control thread
in the same manner as in the sequential version. The flows differ-
ences used to equalize the maximal and minimal flows are added
to the total flows of the graph edges immediately after each mini-
mal/maximal cost path pair flow shift is completed as in the
sequential version. This is important for the convergence, because
all minimal/maximal cost path pair flow shifts performed prior to
the currently processed shift are taken into account across all the
bushes. The pseudocode for the flows shift part of the main parallel
variant is depicted in Fig. 3. This flows shift part of the B algorithm
is the only difference of the three implemented parallel variants. It
ends with the barrier synchronization.

After the flows shift, the unused edges of the bushes (i.e., edges
with zero flow) are removed. Each working thread processes its
subset of bushes Bi. Then, the current costs of the graph edges
are recalculated using (19) and the current total flows of the graph
edges updated during the flows shift. Each working thread pro-
cesses its subset of edges Ei. It should be noted that there is no syn-
chronization between the unused edge removal and the costs
recalculation. The reason is that the edges removed from individual
bushes have no effect on the cost recalculation. Hence, the syn-
chronization is performed only after the costs recalculation.

Each iteration is finished with the parallel computation of the
relative gap rg(k). First, the objective function at kth iteration of
(k) is calculated from current total flows of edges. Each thread cal-
culates its part of the objective function ofi(k) from its subset of
edges Ei as:

of i kð Þ ¼
X
e2Ei

c0e xe kð Þ þ 0:15 � x
5
e kð Þ
5C4

e

 !
ð22Þ

where xe(k) is the current total flow at kth iteration, c0e is the initial
(free flow) cost, and Ce is the capacity of the edge e. Equation (22) is
based on (20), but only for a subset of the graph edges Ei. Once the
working threads finish the calculation of their parts of the objective
function ofi(k), they perform the barrier synchronization. The total
objective function at kth iteration of(k) is then calculated by the
control thread as:

of kð Þ ¼
XT
i¼1

of i kð Þ ð23Þ

where T is the number of working threads and the ofi(k) is the part
of the objective function in kth iteration calculated by ith thread.
Then, another barrier synchronization follows and the parallel
AON is performed. The AON can be performed in parallel easily,
since multiple shortest path searches can be performed concur-
rently. Each working thread processes a subset of origin–destina-



Fig. 2. The scheme of the entire parallel B algorithm.
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tion pairsWi. This subset corresponds to its subset of bushes Bi – the
Wi subset contains all OD pairs with the same origins as the bushes
in the Bi subset. To avoid the concurrent writing to the total flows of
the graph edges during the adding of an OD pair flow, each working
thread has its own set of AON partial flows of the graph edges. So,
the resulting partial flow of the edge e at kth iteration in ith thread
yei(k) can be expressed as:

yei kð Þ ¼
X

w2Wi ; e2pw
Qw ð24Þ

wherew (w 2Wi) is the OD pair, pw(e 2 pw) is the shortest path from
the origin to the destination, and Qw is the flow of the OD pair w.
Once the working threads process their subsets of OD pairs Wi,
the threads perform the barrier synchronization and the partial
Fig. 3. Pseudocode for the flows shift part of th
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flows of the graph edges in these threads should have values corre-
sponding to (24). The resulting AON total flow of each edge is then
calculated by the control thread as:
ye kð Þ ¼
XT
i¼1

yei kð Þ ð25Þ
where T is the number of working threads. The control thread then
finishes the computation of the relative gap rg(k) (including the cal-
culation of lower bound) in the same way as in the sequential ver-
sion (see Section 3.3). Then, the last barrier synchronization in the
current iteration is performed. Again, if the relative gap decreases
under the target value rgmax, the required fidelity was achieved,
e main parallel variant (parallel variant 1).
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and the parallel B algorithm ends. Otherwise, if the maximal num-
ber of iterations kmax was not reached, the next iteration starts.

The main parallel variant described above has a potential for a
high speedup in comparison to the sequential version, since there
is a low number of barrier synchronizations. There are only two
barrier synchronizations in the initiation phase and only seven bar-
rier synchronizations per iteration in the iterative phase (see
Fig. 2). It should be also noted that the number of iterations is
low and ranges from one to several tens even for very large road
traffic networks (see Section 5.2). On the other hand, there are
sequential parts performed by the control thread, which negatively
influence the speedup – the entire flows shift part and the sums
performed during the computation of the relative gap (see above).
Also, since the main parallel variant is a slightly different algorithm
in comparison to the sequential version (see above), it was
expected that its convergence will be slower. Nevertheless, the
performed tests confirmed, that the convergence is fast enough
to achieve a good speedup while achieving similar relative gap to
the sequential version (see Sections 5.2 and 5.3).

The described main parallel variant (parallel variant 1) is deter-
ministic and, for the same input, gives the same output regardless
of the number of working threads. There are negligible differences
caused by the limited fidelity of the double type (see Section 5.2 for
details).
4.3. Parallel flows shift with Bush-based edge flows differences

In addition to the main parallel variant described in previous
section (parallel variant 1), we experimented with the parallel
flows shift to achieve additional speedup of the computation.
Two variants of the parallel flows shift were implement and tested
– with bush-based edge flows differences (parallel variant 2),
which is described here, and with thread-based edge flows differ-
ences (parallel variant 3), which is described in Section 4.4. Both
variants differ from the main variant only in the flows shift part,
the other parts of all three variants are identical.

In the variant with bush-based edge flow differences, each
working thread performs the flows shift for its subset of bushes
Bi. The required minimal and maximal costs trees for all the bushes
are already constructed before the flows shift part begins (see Sec-
tion 4.2). For each bush, the maximal and minimal cost paths are
explored for each node other than the origin of the bush and the
different segments of these paths are found. Using the iterative
Newton method, the flows differences are calculated, which are
used to equalize flows on these segments. This is very similar to
the main parallel variant and the sequential version of the B algo-
rithm. However, one important difference is that the total flows of
the graph edges are not changed during the entire flows shift. The
calculated flows differences are added to the corresponding bush
and are also stored for each bush in a separate data structure.
These stored differences are taken into account during the process-
ing of the current bush, but not the other bushes assigned to the
working thread. Once the flows shift is finished for all the bushes,
the working threads perform the barrier synchronization. Only
then, the control thread adds the stored flow differences to the
total flows of the graph edges. So, the total flow of edge e in
(k + 1)th iteration xe(k + 1) is calculated using following expression:

xe kþ 1ð Þ ¼ xe kð Þ þ
X
i2B

Dxei kð Þ ð26Þ

where xe(k) is the total flow of edge e in kth iteration, and Dxei(k) is
the flow difference of edge e from ith bush from the set of all bushes
B. Then, the control thread performs the barrier synchronization.
The pseudocode for the flows shift part of the parallel variant 2 is
depicted in Fig. 4.
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The immutability of the total flows of the graph edges during
the parallel flows shift is necessary in order to avoid their concur-
rent modification. The obvious consequence is that, in one itera-
tion, a flows equalization performed in a bush influences the
following flows equalizations in the same bush, but not the flows
equalizations in the other bushes (of the same thread or of the
other threads). The other bushes are influenced via the total flows
of the graph edges only in the following iteration.

It was expected that the features of this variant described above
will lead to a slight additional speedup of the entire computation,
since all the parts of the computation are now parallel, but for the
price of a slower convergence. However, the performed tests indi-
cate that there is negligible additional speedup and the conver-
gence is affected up to the point of unusability in most cases (see
Section 5.2). Similarly to the main parallel variant, this variant is
deterministic and, for the same input, gives the same output
regardless of the number of working threads (see Section 5.2).

4.4. Parallel flows shift with Thread-based flows differences

The variant with thread-based flow differences (parallel variant
3) is very similar to its bush-based counterpart (parallel variant 2)
described in Section 4.3. The total flows of the graph edges remain
immutable during the parallel flows shift. The only difference is
that there is a separate data structure for the storing of the calcu-
lated flows differences not for each bush, but rather for each
thread. So, in each working thread, the stored flows differences
are taken into account across all the bushes Bi assigned to the
working thread. Again, the control thread adds the stored flow dif-
ferences to the total flows of the graph edges once the flows shift is
finished for all the bushes and the working threads performed the
barrier synchronization. However, the total flow of edge e in (k + 1)
th iteration xe(k + 1) is calculated using the following expression:

xe kþ 1ð Þ ¼ xe kð Þ þ
XT
i¼1

Dxei kð Þ ð27Þ

where xe(k) is the total flow of edge e in kth iteration, T is the num-
ber of working threads, and Dxei(k) is the flow difference of edge e
from ith thread. Expression (27) should be calculated faster than
(26) since there is a far lower number of addends (corresponding
to the number of working threads) than in (26), where the number
of addends corresponds to the number of bushes. The pseudocode
for the flows shift part of the parallel variant 3 is depicted in Fig. 5.

The obvious consequence is that, in one iteration, a flows equal-
ization performed in a bush influences the following flows equal-
ization both in the same bush and in the other bushes assigned
to the same working thread. The bushes of the other working
threads are influenced via the total flows of edges only in the fol-
lowing iteration. Another consequence is that the convergence is,
unlike parallel variant 1 and 2, dependent on the number of work-
ing threads. With the growing number of threads a worse conver-
gence can be expected. This is not a desired behavior. Still, it was
expected that the features of this parallel variant 3 improve its
convergence in comparison to the parallel variant 2 while preserv-
ing similar speed. The performed tests indicate that the conver-
gence of the parallel variant 3 is indeed superior to the
convergence of the parallel variant 2 (but inferior to that of the
main parallel variant) and its speed is slightly higher as well. The
details are described in Sections 5.2 and 5.3. The summary of all
the parallel variants differences is provided in Table 1.

5. Tests and results

All the described parallel variants were thoroughly tested and
compared with each other and with the sequential version. The



Fig. 4. Pseudocode for the flows shift part of the parallel variant 2.
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tests were focused on the convergence of the variants (see Sec-
tion 5.2) and on their computation time (see Section 5.3). The test-
ing environment and the course of testing are described in
Section 5.1.
5.1. Testing environment and course of testing

The testing was performed on two desktop computers desig-
nated as HW1 and HW2. The HW1 incorporates Intel Core i7-
4770 CPU at 3.40 GHz with 4 physical cores with Hyperthreading
(8 logical cores) and 16 GB of RAM. It uses Windows 7 Pro 64 bit
operating system and Java 8. The HW2 incorporates Intel Xeon
E5-2630 v2 CPU at 2.60 GHz with 6 physical cores with Hyper-
threading (12 logical cores) and 16 GB of RAM. It uses Windows
10 Pro 64 bit operating system and Java 11.

For the testing, one small and two large real road traffic net-
works were used. The small road traffic network designated as net-
work 1 is the road traffic network of Pilsen, fourth largest city in
Czech Republic. It incorporates 3 727 nodes, 9 036 edges, and 67
043 OD pairs. The large road traffic network designated as network
2 is the road traffic network around Antwerp in Belgium, incorpo-
rating 15 996 nodes, 35 930 edges, and 433 614 OD pairs. The large
road traffic network designated as network 3 is the road traffic net-
work of Birmingham incorporating 14 639 nodes, 33 937 edges,
and 471 637 OD pairs. This network was downloaded from the
publicly available repository of road traffic networks [26].

The sequential version and all three parallel variants of the B
algorithm were tested using both computers and both road traffic
networks. There were three values of the target relative gap rgmax –
0.01, 0.001, and 0.0001. In many comparison works, the target rel-
9

ative gaps are set to smaller values between 10�8 and 10�14, but
these precision levels are unnecessarily high for most applications.
Boyce et al [15] suggested that the relative gap 0.0001 is enough.
Also, Mitradjieva et al [20] used this value as a target relative
gap. For example, we use the parallel B algorithm as a part of the
computing engine that provides the UE for the interactive applica-
tion where speed is more important than precision. The maximal
number of iterations kmax was set to 10 for the networks 1 and 3
and 75 for the network 2. These values were set based on prelim-
inary testing according to the number of iterations required by the
sequential version and the main parallel variant of the B algorithm.

The observed parameters were the relative gap rg in each itera-
tion, the relative gap rgf achieved in the last iteration kf, and the
computation time sf. Since all the tested algorithms are determin-
istic, it would be sufficient to perform one run for each inputs set-
ting to determine the relative gap and the iteration. However, for
the computation time, multiple runs are required to mitigate the
influence of other essential system processes running by the oper-
ating system. All unessential processes where shut down before
the testing. So, 12 runs were performed for each inputs setting.
Two runs with the highest measured computation time were dis-
carded and the remaining ten values were averaged. The loading
of the road traffic network and of the origin–destination matrix
to memory was not included to the observed computation time.

The parallel variants of the B algorithm were tested for various
numbers of working threads ranging from 2 to 8 on the HW1 and
from 2 to 12 on the HW2. The maximal values correspond to the
number of logical cores of both computers. Only the main parallel
variant, which gives by far the best results, was tested on both the
HW1 and HW2. The remaining two variants were tested on the



Fig. 5. Pseudocode for the flows shift part of the parallel variant 3.
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HW1 only, since these tests adequately showed their issues. Also,
only the computation time was observed on the HW2, since the
utilized computer has no effect on the convergence of the algo-
rithm. All the performed tests are summarized in Table 2.
Table 1
Summary of all the parallel variant differences.

Feature Parallel
variant
1

Parallel
variant
2

Parallel variant
3

Parallel flows shift No Yes Yes
Additional structure to store flow

differences
No Yes Yes

Additional structure size N/A |B| � |E| T � |E|
Flows shift in a bush influencing

further bushes in the same
iteration

Yes No Only bushes of
the same thread

Result dependent on the number of
threads (T)

No No Yes

Sufficient convergence Yes No No
5.2. Convergence results

The convergence of the parallel variants of the B algorithm was
expected to be worse than of its sequential version. It was investi-
gated using the trend of the relative gap in individual iterations
including the last one. The tests were performed only using the
HW1. The relative gaps (rgf) achieved in last iteration (kf) for the
network 1 (small) are summarized in Table 3 for the sequential
version and in Table 4 for all the parallel variants (the main variant
is emphasized by a bold font).

For the network 1 (small), the sequential version and all the
parallel variants required only one iteration to achieve target rela-
tive gap rgmax of 0.01 and 0.001. The relative gap rgmax of 0.0001 is
achieved only by the sequential version and the parallel variant 1
(main) in two iterations. The remaining two parallel variants were
unable to reach this value in the preset maximum of 10 iterations.
Instead, the achieved relative gap oscillated and did not converge
to the target relative gap. In fact, both parallel variant 2 and 3
achieved best values of relative gap in first iteration with the
exception of variant 3 with two working threads, which achieved
the best value in second iteration (see Fig. 6a). Although it would
be possible to allow more iterations to be performed, there is no
point, since the significantly higher number of iterations hampers
any possible speedup in comparison to the sequential version. On
10
the other hand, the main parallel variant gives only slightly worse
results then the sequential version and requires the same numbers
of iterations (see Fig. 6b).

It should be noted that the parallel variants 1 and 2 give the
same results regardless the number of working threads as
expected. The results of the parallel variant 3 depend on the num-
ber of threads – this is the reason why there are four curves for the
parallel variant 3 in Fig. 6. This is an expected behavior (see Sec-
tion 4.4). However, we can observe in Table 4 that the achieved rel-
ative gap rgf is not steadily increasing with the increasing number
of threads as expected – the highest (i.e., worst) rgf is achieved for 4
working threads, not for 8. Nevertheless, the trend of relative gaps
from the entire computation depicted in Fig. 3a shows that the rel-
ative gap values for 4, 6, and 8 threads significantly oscillates and



Table 2
Summary of performed tests.

Computer Traffic network rgmax Algorithm Threads (T) Observed parameters

HW1 Network 1 (small) 0.01 Sequential 1 Computation time (sf) & relative gap (rg, rgf)
Parallel variant 1 2, 4, 6, 8
Parallel variant 2
Parallel variant 3

0.001 Sequential 1
Parallel variant 1 2, 4, 6, 8
Parallel variant 2
Parallel variant 3

0.0001 Sequential 1
Parallel variant 1 2, 4, 6, 8
Parallel variant 2
Parallel variant 3

Network 2 (large) 0.01 Sequential 1
Parallel variant 1 2, 4, 6, 8
Parallel variant 2
Parallel variant 3

0.001 Sequential 1
Parallel variant 1 2, 4, 6, 8
Parallel variant 2
Parallel variant 3

0.0001 Sequential 1
Parallel variant 1 2, 4, 6, 8
Parallel variant 2
Parallel variant 3

HW2 Network 1 (small) 0.01 Sequential 1 Computation time (sf)
Parallel variant 1 2, 4, 6, 8, 10, 12

0.001 Sequential 1
Parallel variant 1 2, 4, 6, 8, 10, 12

0.0001 Sequential 1
Parallel variant 1 2, 4, 6, 8, 10, 12

Network 2 (large) 0.01 Sequential 1
Parallel variant 1 2, 4, 6, 8, 10, 12

0.001 Sequential 1
Parallel variant 1 2, 4, 6, 8, 10, 12

0.0001 Sequential 1
Parallel variant 1 2, 4, 6, 8, 10, 12

Network 3 (large) 0.01 Sequential 1
Parallel variant 1 2, 4, 6, 8, 10, 12

0.001 Sequential 1
Parallel variant 1 2, 4, 6, 8, 10, 12

0.0001 Sequential 1
Parallel variant 1 2, 4, 6, 8, 10, 12

Table 4
Relative gap (rgf) in last iteration kf for network 1 (small) for the parallel variants.

rgmax Threads (T) Variant 1 (main)

kf rgf

0.01 2 1 2.33 ∙ 10�4

4 1 2.33 ∙ 10�4

6 1 2.33 ∙ 10�4

8 1 2.33 ∙ 10�4

0.001 2 1 2.33 ∙ 10�4

4 1 2.33 ∙ 10�4

6 1 2.33 ∙ 10�4

8 1 2.33 ∙ 10�4

0.0001 2 2 3.31 ∙ 10�5

4 2 3.31 ∙ 10�5

6 2 3.31 ∙ 10�5

8 2 3.31 ∙ 10�5

Table 3
Relative gap (rgf) in last iteration (kf) for network 1 (small) for the sequential version.

rgmax kf rgf

0.01 (10�2) 1 2.31 ∙ 10�4

0.001 (10�3) 1 2.31 ∙ 10�4

0.0001 (10�4) 2 6.70 ∙ 10�6

T. Potuzak and F. Kolovsky Ain Shams Engineering Journal 13 (2022) 101576

11
the achieved relative gap rgf highly depends on the maximal num-
ber of iterations kmax, which was set to 10. The relative gap for 4
working threads is indeed better than for 6 and 8 working threads
in all the iterations except the last one. With kmax set for example
to 8, the values of rgf for 2, 4, 6, and 8 threads would be steadily
increasing as expected (see Fig. 6a). The exact nature of the oscilla-
tion depicted in Fig. 6 is highly network-dependent – the individ-
ual trends are quite different for the large road traffic network
(network 2 – see Fig. 7).
Variant 2 Variant 3

kf rgf kf rgf

1 9.42 ∙ 10�4 1 8.68 ∙ 10�4

1 9.42 ∙ 10�4 1 8.89 ∙ 10�4

1 9.42 ∙ 10�4 1 9.11 ∙ 10�4

1 9.42 ∙ 10�4 1 8.92 ∙ 10�4

1 9.42 ∙ 10�4 1 8.68 ∙ 10�4

1 9.42 ∙ 10�4 1 8.89 ∙ 10�4

1 9.42 ∙ 10�4 1 9.11 ∙ 10�4

1 9.42 ∙ 10�4 1 8.92 ∙ 10�4

10 3.67 ∙ 10�3 10 1.59 ∙ 10�3

10 3.67 ∙ 10�3 10 5.12 ∙ 10�3

10 3.67 ∙ 10�3 10 2.54 ∙ 10�3

10 3.67 ∙ 10�3 10 3.39 ∙ 10�3



Table 5
Differences of relative gaps achieved by the parallel variant 1 (main) for various
threads counts.

rgmax Threads (T) kf rgf

0.0001 2 2 0.0000331180381322366
4 2 0.0000331180381331401
6 2 0.0000331180381333739
8 2 0.0000331180381338167

Table 6
Relative gap (rgf) in last iteration (kf) for network 2 (large) for the sequential version.

rgmax kf rgf

0.01 (10�2) 6 9.38 ∙ 10�3

0.001 (10�3) 13 6.59 ∙ 10�4

0.0001 (10�4) 27 9.48 ∙ 10�5

Fig. 6. The trend of the relative gap for network 1 (small) and the target relative gap rgmax of 0.0001.
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It should be also noted that the relative gaps achieved by the
parallel variant 1 (main) and 2 are not completely identical for
the same inputs but various numbers of working threads. A closer
look on the values for the main parallel variant and the target rel-
ative gap of 0.0001 reveals that there are slight differences in order
of 10�15 (see Table 5). These differences are caused by a limited
precision of the double data type used for the computations.
The sums of the objective function parts and of the AON flows parts
(see Fig. 2) are calculated from different number of summands
depending on the number of working threads. These sums should
be mathematically identical, but the rounding errors due to the
limited precision cause these slight differences. Since they are 10
orders of magnitude lower than the lowest target relative gap, they
are completely negligible.

The achieved relative gaps for the network 2 (large) are summa-
rized in Table 6 for the sequential version and in Table 7 for all the
parallel variants. We can observe that the slower convergence of
the main parallel variant in comparison to the sequential version
is more prominent (see Fig. 4b and Tables 6 and 7) – it requires
more iterations to achieve similar results. The ratio of the parallel
iterations count to the sequential iterations count increases with
the decreasing target relative gap rgmax. It is 1.50 for rgmax of
0.01, 1.69 for rgmax of 0.001, and 2.75 for rgmax of 0.0001. This trend
is not desirable, but since the rgmax of 0.0001 is considered suffi-
cient for many applications [15,20], it is not so problematic. Even
with the additional iterations, the main parallel variant reaches
significant speedup (see Section 5.3). As expected, the number of
working threads does not influence the results (see Table 7), simi-
larly to the network 1 (small).

The remaining two parallel variants were unable to reach even
the highest target relative gap rgmax of 0.01. Thus, the preset
maximum of 75 iterations was always performed and the
Fig. 7. The trend of the relative gap for network 2 (la
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computations with the same input settings were identical regard-
less of the rgmax value. For the parallel variant 2, the relative gap
oscillates and the best value is achieved in first iteration similarly
to the small road traffic network (see Fig. 7a). Again, the number of
working threads does not influence the results (see Table 7). On the
other hand, for the parallel variant 3, the achieved relative gap rgf
depends on the number of working threads. The best value is
achieved for two working threads (see Table 7), similarly to the
network 1 (see above). Unlike the network 1 (small), the achieved
relative gap consistently increases with the increasing number of
working threads, which is an expected behavior. As can be seen
in Fig. 7, the relative gap oscillates similarly to the parallel variant
2, but the iteration, in which the best value of relative gap is
achieved, varies with the varying number of working threads.
rge) and the target relative gap rgmax of 0.0001.



Table 7
Relative gap (rgf) in last iteration kf for network 2 (large) for the parallel variants.

rgmax Threads (T) Variant 1 (main) Variant 2 Variant 3

kf rgf kf rgf kf rgf

0.01 2 9 7.48 ∙ 10�3 75 5.46 75 4.50 ∙ 10�2

4 9 7.48 ∙ 10�3 75 5.46 75 1.24 ∙ 10�1

6 9 7.48 ∙ 10�3 75 5.46 75 1.36 ∙ 10�1

8 9 7.48 ∙ 10�3 75 5.46 75 4.56 ∙ 10�1

0.001 2 22 9.14 ∙ 10�4 75 5.46 75 4.50 ∙ 10�2

4 22 9.14 ∙ 10�4 75 5.46 75 1.24 ∙ 10�1

6 22 9.14 ∙ 10�4 75 5.46 75 1.36 ∙ 10�1

8 22 9.14 ∙ 10�4 75 5.46 75 4.56 ∙ 10�1

0.0001 2 74 9.05 ∙ 10�5 75 5.46 75 4.50 ∙ 10�2

4 74 9.05 ∙ 10�5 75 5.46 75 1.24 ∙ 10�1

6 74 9.05 ∙ 10�5 75 5.46 75 1.36 ∙ 10�1

8 74 9.05 ∙ 10�5 75 5.46 75 4.56 ∙ 10�1
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Although the parallel variant 3 achieves significantly better results
than the parallel variant 2 (see Fig. 7), it is still significantly worse
than the main parallel variant. Hence, we can conclude that, from
the precision point of view, the parallel variants 2 and 3 are not
practically utilizable.
5.3. Computation time results

Since the main goal of the parallelization of the B algorithm was
to speed up the computation, the resulting computation time sf is
the vital parameter. To determine the computation times, the test
were performed on both computers – the HW1 and HW2. For the
network 1 (small) on the HW1, the results are summarized in
Table 8 for the sequential version and in Table 9 for all the parallel
variants. The breakdown of the computation time into parallel
time, sequential time, and time spent on barrier is summarized
in Table 10.

The main parallel variant is significantly faster than the sequen-
tial version for 2 working threads (speedup up to 1.62) and even
faster for 4 working threads (speedup up to 2.25). However, there
is only a little additional speedup for 6 working threads (speedup
up to 2.38) and no additional speedup for 8 working threads. The
reason is that the overhead associated with the interactions of
the threads is increasing with the increasing number of threads.
Each barrier synchronization can potentially last longer with a
higher number of synchronized threads and the sums of the objec-
tive function parts and of the AON flows parts (see Fig. 2) are cal-
culated from a larger number of summands. The increase of the
time per barrier synchronization can be observed in Table 10. Since
the computation for the small road traffic network is relatively fast,
this overhead makes a non-negligible part of the computation time
(from 10 % to 26 % – see Table 10), which partially compensates the
speedup gained by using 6 and 8 threads. Another possible influ-
ence could be that the HW1 has 8 logical cores due to the Hyper-
threading, but only 4 physical cores. Hence, the same computing
power as if there were 8 physical cores cannot be expected. Indeed,
the parallel time for 6 and 8 working threads is only slightly lower
than for 4 working threads (see Table 10). Moreover, the tests per-
formed for the small road traffic network on the HW2 show similar
results to the HW1, although there is 6 physical cores (see bellow).
So, the major influence can be attributed to the overhead described
Table 8
Computation time for network 1 (small) for the sequential version on HW1.

rgmax kf Time (sf) [ms]

0.01 (10�2) 1 1 713
0.001 (10�3) 1 1 691
0.0001 (10�4) 2 2 671
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above. Nevertheless, the tests performed for the network 2 (large)
on the HW1 show noticeable additional speedup for 6 and 8 work-
ing threads (see below).

The remaining parallel variants 2 and 3 were unable to reach
the target relative gap rgmax of 0.0001 (see Section 5.2). So, the
computation was stopped when the maximal number of iteration
kmax of 10 was reached. Hence, their computation times were
worse then the computation time of the sequential version even
for 8 threads. So, the variants 2 and 3 are unusable for rgmax of
0.0001 even for the small road traffic network. On the other hand,
the variants 2 and 3 were able to reach the target relative gaps
rgmax of 0.01 and 0.001 with the same number of iterations as
the main parallel variant. They also achieved very similar compu-
tation times. Nevertheless, since the parallel flows shift employed
in variant 2 and 3 was intended to reduce the computation time, a
slight speedup in comparison to the main parallel variant was
expected, but was virtually not observed.

Table 10 shows that the variants 2 and 3 spent much less time
on sequential computations and barrier synchronizations than the
variant 1, but their parallel time is higher. For variant 1, the time of
sequential computation makes 13 % of the total computation time
on average. For variants 2 and 3, it is less than 1 %. The barrier syn-
chronization makes from 10 % to 26 % of the total computation
time for the variant 1 and 3 % to 16 % for the variants 2 and 3.
Yet, the increment of the parallel time in the variants 2 and 3
nearly compensates the decrement of the sequential time and of
the barrier synchronization.

A possible reason for this observation is that both the parallel
flows shifts in variant 2 and 3 employ additional storing of edge
flow additions to local data structures – for individual bushes (vari-
ant 2) or for individual threads (variant 3). These additions are
used by the Newton method (see Figs. 4 and 5), bringing additional
arithmetic operations, which are not present in the main parallel
variant. Additionally, the parallel flows shift in variant 2 and 3
incorporate sequential phase for adding of these stored edge flow
additions to the total flows of the graph edges (see Sections 4.3
and 4.4). Again, this phase is not present in the main parallel vari-
ant. This phase is more time consuming in the parallel variant 2,
since there are more addends to the sum (corresponding to the
number of bushes for each edge) than in the parallel variant 3 (cor-
responding to the number of threads for each edge). Hence, the
parallel variant 3 should be faster than the parallel variant 2. For
the network 1 (small), this is barely observable, but the difference
is more pronounced for the network 2 (large – see below) for all
values of rgmax.

As it was stated above and can be observed in Table 10, the bar-
rier synchronization makes from 10 % to 26 % of the total compu-
tation time of the main parallel variant. The sequential part makes
consistently ca. 13 % of the computation time and do not increases



Table 9
Computation time for network 1 (small) for the parallel variants on HW1.

rgmax Threads (T) Variant 1 (main) Variant 2 Variant 3

kf Time (sf) [ms] kf Time (sf) [ms] kf Time (sf) [ms]

0.01 2 1 1 124 1 1 129 1 1 107
4 1 886 1 892 1 886
6 1 854 1 849 1 871
8 1 908 1 855 1 873

0.001 2 1 1 126 1 1 132 1 1 124
4 1 889 1 914 1 889
6 1 861 1 858 1 893
8 1 895 1 870 1 855

0.0001 2 2 1 644 10 5 831 10 5 756
4 2 1 186 10 3 738 10 3 616
6 2 1 123 10 3 232 10 3 114
8 2 1 129 10 2 827 10 2 720
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with increasing number of threads. Hence, in an ideal parallel com-
puting environment, without considering the synchronization
time, the computation time of the main parallel variant would be
by up to 26 % lower than in a real environment. This estimate is
not based solely on the network 1 results. For the network 2, the
results are very similar.

The dependency of the speedup achieved by the individual par-
allel variants in comparison to the sequential version on rgmax and
the number of threads for the network 1 (small) is depicted in
Fig. 8. The speedup below 1.0 for the parallel variants 2 and 3 in
Fig. 8b and 8c shows the unusability of these variants for rgmax of
0.0001.
Table 10
Breakout of the computation times for network 1 (small) for the parallel variants on HW1

Variant rgmax Threads (T) Time [ms]

Parallel Seq

1 (main) 0.01 2 886 117
4 584 127
6 545 125
8 572 119

0.001 2 884 120
4 623 119
6 569 120
8 539 122

0.0001 2 1327 154
4 820 157
6 728 152
8 683 155

2 0.01 2 1088 9
4 825 10
6 772 10
8 747 11

0.001 2 1093 9
4 858 10
6 785 10
8 780 11

0.0001 2 5490 42
4 3252 45
6 2736 42
8 2327 42

3 0.01 2 1077 2
4 825 3
6 808 4
8 754 5

0.001 2 1085 2
4 833 3
6 822 4
8 779 5

0.0001 2 5438 13
4 3255 12
6 2716 12
8 2337 13
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For the large road traffic network (network 2) on the HW1, the
results are summarized in Table 11 for the sequential version and
in Table 12 for all the parallel variants.

The parallel variants 2 and 3 were unable to reach even the
highest target relative gap rgmax of 0.01 (see Section 5.2). So, the
computation was stopped when the maximal number of iteration
kmax of 75 was reached. Hence, their computation times were
worse then the computation time of the sequential version in all
instances making them (together with insufficient achieved rela-
tive gab) unusable for the large road traffic network. Nevertheless,
we can observe that the parallel variant 3 is noticeably faster than
the parallel variant 2 in all instances. This is caused by a more time
.

Barriers count

uential Barrier total Per barrier

121 13 9
175 19 9
185 21 9
217 24 9
122 14 9
147 16 9
172 19 9
234 26 9
163 10 16
209 13 16
243 15 16
291 18 16
32 4 9
57 6 9
67 7 9
97 11 9
30 3 9
46 5 9
63 7 9
79 9 9
299 4 72
441 6 72
454 6 72
458 6 72
29 3 9
58 6 9
59 7 9
115 13 9
37 4 9
53 6 9
67 7 9
71 8 9
305 4 72
349 5 72
386 5 72
370 5 72



Fig. 8. Speedups of the parallel variants in comparison to the sequential version for network 1 on HW1.

Table 11
Computation time for network 2 (large) for the sequential version on HW1.

rgmax kf Time (sf) [ms]

0.01 6 531 777
0.001 13 1 097 883
0.0001 27 2 232 585

Fig. 9. Speedups of the main parallel variant in comparison to the sequential
version for network 2 on HW1.
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consuming sequential phase for adding of edge flow differences to
the total flows of the graph edges in the parallel variant 2 (see
above).

Unlike the parallel variants 2 and 3, the main parallel variant
was able to reach even the lowest target relative gap rgmax of
0.0001, but required higher number of iterations than the sequen-
tial version (see Section 5.2). Despite of this, it is faster than the
sequential version in almost all instances, with only one exception
– rgmax of 0.0001 and 2 working threads. In this case, the sequential
version is faster, so the speedup is below 1.0. In all other instances,
the speedup is above 1.0 and increases with the increasing number
of working threads (see Fig. 9), which is a desired behavior. It
should be also noted that, unlike the small road traffic network,
utilization of 6 and 8 working threads brings noticeable additional
speedup in comparison to 4 working threads, although there are
only 4 physical cores. This confirms that a little or no additional
speedup observed for the small road traffic network for 6 and 8
working threads were caused by the increasing overhead associ-
ated with the interactions of the threads. This effect is of course
present for the large road traffic network as well. However, since
the computation of the large road traffic network lasts compara-
tively very long, this overhead makes a substantially smaller part
of the computation time than for the small road traffic network.
Table 12
Computation time for network 2 (large) for the parallel variants on HW1.

rgmax Threads Variant 1 (main)

kf Time [ms]

0.01 2 9 418 588
4 9 258 598
6 9 207 473
8 9 181 937

0.001 2 22 964 403
4 22 579 529
6 22 457 652
8 22 396 787

0.0001 2 74 314 3022
4 74 1 855 870
6 74 1 455 223
8 74 1 253 008
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Hence, the effect is not so pronounced. The speedup achieved using
8 threads is 2.92 for rgmax of 0.01, 2.77 for rgmax of 0.001, and 1.78
for rgmax of 0.0001 (see Fig. 9).

The tests on the HW2 were performed only for the sequential
version and the main parallel variant. The tests performed on the
HW1 showed that the parallel variants 2 and 3 show insufficient
convergence in most instances and worse or similar speedup as
the main parallel variant in all instances. So, there is no reason to
use them instead of the main parallel variant. The results for all
three road traffic networks on the HW2 are summarized in Table 13
for the sequential version and in Table 14 for the main parallel
variant.
Variant 2 Variant 3

kf Time [ms] kf Time [ms]

75 3 678 970 75 3 182 508
75 2 134 622 75 1 874 399
75 1 783 638 75 1 573 132
75 1 700 040 75 1 500 301
75 3 683 239 75 3 186 456
75 2 134 697 75 1 876 210
75 1 784 140 75 1 572 461
75 1 702 769 75 1 499 138
75 3 690 537 75 3 189 929
75 2 116 782 75 1 876 648
75 1 743 547 75 1 578 967
75 1 701 799 75 1 500 270



Table 13
Computation time for both networks for the sequential version on HW2.

Network rgf kf Time (sf) [ms]

Network 1 (small) 0.01 1 2 906
0.001 1 2 930
0.0001 2 4 294

Network 2 (large) 0.01 6 621 952
0.001 13 1 260 125
0.0001 27 2 538 783

Network 3 (large) 0.01 1 41 192
0.001 2 70 223
0.0001 5 153 366
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The results on the HW2 are similar to the HW1. For the network
1 (small), the main parallel variant is faster than the sequential
version in all instances. Similarly to the HW1, the maximal
Table 14
Computation time for all three networks for the main parallel variant on HW2.

Network rgf Thre

Network 1 (small) 0.01 2
4
6
8
10
12

0.001 2
4
6
8
10
12

0.0001 2
4
6
8
10
12

Network 2 (large) 0.01 2
4
6
8
10
12

0.001 2
4
6
8
10
12

0.0001 2
4
6
8
10
12

Network 3 (large) 0.01 2
4
6
8
10
12

0.001 2
4
6
8
10
12

0.0001 2
4
6
8
10
12
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speedup is achieved for 6 working threads (speedup up to 2.49),
but there is only a little difference between 4 and 6 threads and
there is no additional speedup for 8, 10, and 12 threads (see
Fig. 10). This again confirms that the main cause is the increasing
overhead associated with the interactions of the threads.

For the network 2 (large), the main parallel variant is faster than
the sequential version in almost all instances, with only one excep-
tion – rgmax of 0.0001 and 2 working threads, similarly to the HW1.
In all other instances, the speedup is above 1.0 and increases with
the increasing number of working threads (see Fig. 11). The maxi-
mal achieved speedup is for 12 working threads (up to 3.53).

The network 3 (large) was not tested on the HW1. On the HW2,
its speedup in comparison to the sequential version is always
above 1.0 and increases with the increasing number of working
threads (see Fig. 12). The maximal achieved speedup is for 12
working threads, similar to networks 2 (up to 4.32).
ads (T) kf Time (sf) [ms]

1 2 041
1 1 447
1 1 437
1 1 437
1 1 496
1 1 443
1 2 081
1 1 447
1 1 438
1 1 459
1 1 459
1 1 475
2 2 894
2 1 859
2 1 736
2 1 722
2 1 759
2 1 726
9 490 554
9 286 587
9 223 143
9 200 453
9 186 401
9 176 400
22 1 131 726
22 632 535
22 465 010
22 422 372
22 385 714
22 360 701
74 3 710 248
74 1 965 092
74 1 420 514
74 1 312 271
74 1 180 246
74 1 080 896
1 26 103
1 18 668
1 14 477
1 12 779
1 12 247
1 11 722
3 56 666
3 38 704
3 28 224
3 25 877
3 23 813
3 22 889
6 97 588
6 64 169
6 46 372
6 42 977
6 38 408
6 35 511



Fig. 12. Speedups of the main parallel variant in comparison to the sequential
version for network 3 on HW2.

Fig. 10. Speedups of the main parallel variant in comparison to the sequential
version for network 1 on HW2.
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5.4. Results discussion

The performed tests described in Section 5.1 to 5.3 shows that
the convergence of the parallel variants 2 and 3 is insufficient in
most instances. For the network 1 (small), these variants were able
to achieve the target relative gap rgmax of 0.001. However, their
computation times were similar to the computation times of the
main parallel variant. The parallel variants 2 and 3 were unable
to achieve the target relative gap rgmax of 0.0001 for the network
1 (small). For the network 2 (large), they were unable to achieve
even the rgmax of 0.01. The inability to achieve the target relative
gap caused that the computation was stopped when maximal
number of iterations kmax was reached. So, the number of per-
formed iterations was in most instances significantly higher than
the number of iterations required by the main parallel version
leading to substantially higher computation times. In total, there
was not a single instance, in which the variant 2 and variant 3
showed better convergence and/or significantly better computa-
tion time. For this reason, there is no point of using them instead
of the main parallel version.

The tests showed that the parallel flows shift utilized in the par-
allel versions 2 and 3 has too high negative impact on the conver-
gence, while the speed gain in comparison to the main parallel
variant is negligible if any. The main parallel variant, which utilizes
the sequential flows shift, on the other hand, shows very good
results for both the small and the large road traffic networks,
although its convergence is slower than the convergence of the
sequential version.

For the network 1 (small), the main parallel variant requires the
same numbers of iterations as the sequential version for all values
Fig. 11. Speedups of the main parallel variant in comparison to the sequential
version for network 2 on HW2.
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of rgmax and is faster in all instances. The maximal speedup (up to
2.49) was achieved for 6 working threads on both the HW1 and
HW2 in most instances. There was no additional speedup gained
by adding more working threads on either computer. This is caused
by the increasing overhead associated with the interactions of the
threads, which makes a nonnegligible part of the computation time
for the small road traffic network.

For the network 2 (large), the main parallel variant requires a
larger number of iterations than the sequential version, but is fas-
ter in all instances with one exception – rgmax of 0.0001 and 2
working threads. The speedup increased steadily with the increas-
ing number of working threads, which is a desired behavior. Hence,
the maximal speedup is achieved for the maximal number of work-
ing threads for all values of rgmax. For the HW1, the maximal
speedup is achieved for 8 working threads (up to 2.92). For the
HW2, the maximal speedup is achieved for 12 working threads
(up to 3.53). It should be noted that, even for the large road traffic
network, the increase of the speedup with the increasing number
of working processes is sub-linear, which is caused by the increas-
ing overhead associated with the interactions of the threads, sim-
ilarly to the small road traffic network. This is an expected
(though not desired) behavior. In should be also reminded that
both the HW1 and HW2 incorporate the Hyperthreading technol-
ogy, which means that there are only 4 and 6 physical cores for 8
and 12 logical cores, respectively. Hence, the same computing
power as if there were 8 and 12 physical cores cannot be expected.

For the network 3 (large), which was tested on the HW2 only,
the main parallel variant requires the same or only slightly larger
number of iterations than the sequential version. It is faster in all
instances. In fact, the highest speedup from all tests (up to 4.32)
was achieved for the network 3 on HW2 (for 12 working threads).

It can be also observed that the sequential version (performed
using one core) and themain parallel variant performed on the same
number of cores is faster on the HW1. So, one core of the HW1 is fas-
ter than one core of the HW2, at least for the B algorithm computa-
tion. Nevertheless, the higher number of cores enables to perform
the computation of the large road traffic network faster on the
HW2. The computation of the small road traffic network is faster
on the HW1, since addition of moreworking threads has no positive
effect on the achieved speedup above 6working threads (see above).

Overall, the main parallel variant offers significant computation
time savings on both the HW1 and HW2. The highest achieved
time savings are summarized in Table 15.
6. Conclusion and future work

In this paper, the parallelization of the B algorithm, a
bush-based algorithm for the user equilibrium (UE) static traffic



Table 15
Highest computation time saving achieved by the main parallel variant.

Network Computer rgmax Threads Sequential time [ms] Parallel time [ms] Savings [%]

Network 1 (small) HW1 0.01 6 1 713 855 50.09%
0.001 6 1 691 861 49.06%
0.0001 6 2 671 1 123 57.94%

HW2 0.01 6 2 906 1 437 50.54%
0.001 6 2 930 1 438 50.93%
0.0001 6 4 294 1 722 59.90%

Network 2 (large) HW1 0.01 8 531 777 181 937 65.79%
0.001 8 1 097 883 396 787 63.86%
0.0001 8 2 232 585 1 253 008 43.88%

HW2 0.01 12 621 952 176 400 71.64%
0.001 12 1 260 125 360 701 71.38%
0.0001 12 2 538 783 1 080 896 57.42%

Network 3 (large) HW2 0.01 12 41,192 11,722 71.54%
0.001 12 70,223 22,889 67.40%
0.0001 12 153,366 35,511 76.85%
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assignment (STA) was thoroughly described. Three parallel vari-
ants were implemented. Although the parallelization was imple-
mented and tested for a specific implementation of the B
algorithm, its core idea is utilizable for other implementations as
well.

The core idea is to enable partially independent processing of
the bushes by recalculating the costs of edges only once per itera-
tion rather than after each bush while preserving sequential shift
of flows in bushes. This combination of features implemented in
the main parallel variant (parallel variant 1) ensures both good
convergence (although slightly worse than the convergence of
the sequential version) and a significant speedup of the computa-
tion. The maximal achieved speedup was 4.32 using 12 working
threads (6 physical, 12 logical cores), corresponding to computa-
tion time savings of nearly 77 %.

The remaining two parallel variants (variants 2 and 3) utilize
two versions of parallel flows shift rather than a sequential one
used in the main parallel variant. Nevertheless, they show insuffi-
cient convergence, especially for the large road traffic networks,
which makes them unusable. However, they demonstrate that
the shift of flows in bushes is the vital part of the B algorithm
ensuring its fast convergence and cannot be parallelized easily.

In our future work, we will explore the possibilities to further
improve the speed of the B algorithm. We will consider further
options how to parallelize the shift of flows in bushes. We will also
consider the adaptation of the main parallel variant for the dis-
tributed/parallel computing environment, where the computation
runs as a set of multithreaded processes on multiple multi-core
computers. This enables to utilize a large number of cores, but
brings an additional overhead in the form of the inter-process com-
munication via the message passing. Since the number of threads
interactions per iteration in the main parallel variant of the B algo-
rithm is relatively low, this approach can be viable, but only for
very large road traffic networks (probably larger then the large
road traffic network used in our tests).

We will also focus on possible optimization of individual parts
of the B algorithm not related to parallelization to further reduce
the computation time. For example, during the implementation
of the sequential B algorithm, the replacement of the library power
function with an iteration-based implementation reduced the
computation time by ca. 70 %.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
18
Acknowledgement

This work was supported by projects PoliVisu (Policy Develop-
ment based on Advanced Geospatial Data Analytics and Visualisa-
tion, H2020-SC6-CO-CREATION-2017, grant agreement No.
769608) and TRAFFO (Innovative Approaches to Mathematical
Traffic Modelling for Sustainable Development of Cities and
Regions, The Technology Agency of the Czech Republic, program
DOPRAVA 2020+, grant agreement No. CK01000096).
References

[1] Wardrop JG. Road Paper. Some Theoretical Aspects of Road Traffic Research. In:
Proceedings of the Institute of Civil Engineers. p. 325–62.

[2] Dial RB. A path-based user-equilibrium traffic assignment algorithm that
obviates path storage and enumeration. Transport Res Part B Methodolog
2006;40(10):917–36.

[3] Lotito PA. Issues in the implementation of the DSD algorithm for the traffic
assignment problem. Eur J Oper Res 2006;175(3):1577–87.

[4] de Dios Ortúzar J, Willumsen LG. Modelling Transport. John Wiley & Sons;
2011.

[5] Perederieieva O, Ehrgott M, Raith A, Wang JYT. A framework for and empirical
study of algorithms for traffic assignment. Comput Oper Res 2015;54:90–107.

[6] Jafari E, Pandey V, Boyles SD. Static traffic assignment: a decentralized
approach. Proceedings of the 95nd Annual Meeting of Transportation Research
Board, 2016.

[7] Jayakrishnan R, Tsai WK, Prashker JN, Rajadhyaksha S. A Faster Path-based
Algorithm for Traffic Assignment. Transp Res Rec 1994;1443.

[8] Chen RJ, Meyer RR. Parallel optimization for traffic assignment. Math Program
1988;42:327–45.

[9] Damberg O, Migdalas A. Distributed Disaggregate Simplicial Decomposition —
A Parallel Algorithm for Traffic Assignment. In: Network Optimization, Lecture
Notes in Economics and Mathematical Systems. p. 172–93.

[10] Karakitsiou A, Mavrommati A, Migdalas A. Efficient minimization over
products of simplices and its application to nonlinear multicommodity
network problems. Oper Res Int Journal 2004;4(2):99–118.

[11] V. Buchhold, P. Sanders, and D. Wagner, ‘‘Real-time Traffic Assignment Using
Engineered Customizable Contraction Hierarchies,” ACM Journal of
Experimental Algorithmics, Vol. 24, No. 2, 2019.

[12] Chen X, Liu Z, Kim I. A parallel computing framework for solving user
equilibrium problem on computer clusters. Transportmetrica A: Transport
Science 2020;16(3):550–73.

[13] Jafari E, Pandey V, Boyles SD. A decomposition approach to the static traffic
assignment problem. Transport Res Part B: Methodolog 2017;105:270–96.

[14] Nie Y. A class of bush-based algorithms for the traffic assignment problem.
Transport Res Part B Methodolog 2010;44(1):73–89.

[15] Boyce D, Asce M, Ralevic-Dekic B, Bar-Gera H. Convergence of Traffic
Assignments: How Much is Enough? J Transp Eng 2004;130(1):49–55.

[16] Smith MJ. The existence, uniqueness and stability of traffic equilibria.
Transport Res Part B Methodolog 1979;13(4):295–304.

[17] Dafermos S. ‘‘Traffic Equilibrium and Variational Inequalities. Transport Sci
1980;14(1):42–54.

[18] Bar-Gera H. Origin-Based Algorithm for the Traffic Assignment Problem.
Transport Sci 2002;36(4):398–417.

[19] Gentile G. Solving a Dynamic User Equilibrium model based on splitting rates
with Gradient Projection algorithms. Transport Res Part B Methodol
2016;92:120–47.

http://refhub.elsevier.com/S2090-4479(21)00340-3/h0005
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0005
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0010
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0010
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0010
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0015
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0015
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0020
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0020
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0025
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0025
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0030
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0030
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0030
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0035
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0035
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0040
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0040
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0045
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0045
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0045
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0050
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0050
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0050
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0060
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0060
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0060
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0065
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0065
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0070
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0070
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0075
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0075
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0080
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0080
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0085
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0085
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0090
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0090
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0095
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0095
http://refhub.elsevier.com/S2090-4479(21)00340-3/h0095


T. Potuzak and F. Kolovsky Ain Shams Engineering Journal 13 (2022) 101576
[20] Mitradjieva M, Lindberg PO. The Stiff Is Moving—Conjugate Direction Frank-
Wolfe Methods with Applications to Traffic Assignment. Transport Sci May
2013;47(2):280–93. doi: https://doi.org/10.1287/trsc.1120.0409.

[21] Lee DH, Nie Y, Chen A. A conjugate gradient projection algorithm for the traffic
assignment problem. Math Comput Modell 2003;37(7–8):863–78. doi:
https://doi.org/10.1016/S0895-7177(03)00090-6.

[22] Cheng L, Xu X, Qiu S. Constrained newton methods for transport network
equilibrium analysis. Tsinghua Sci Technol 2009;14(6):765–75. doi: https://
doi.org/10.1016/S1007-0214(09)70147-6.

[23] Xie J, (Marco) Nie Y, Liu X. A Greedy Path-Based Algorithm for Traffic
Assignment. Transp Res Rec 2018;2672(48):36–44. doi: https://doi.org/
10.1177/0361198118774236.

[24] Xie J, Xie C. Origin-Based Algorithms for Traffic Assignment: Algorithmic
Structure, Complexity Analysis, and Convergence Performance. Transp Res Rec
2015;2498(1):46–55. doi: https://doi.org/10.3141/2498-06.

[25] Xie J, (Marco) Nie Y. A New Algorithm for Achieving Proportionality in User
Equilibrium Traffic Assignment. Transportation Science 2019;53(2):566–84.
doi: https://doi.org/10.1287/trsc.2018.0845.

[26] Transportation Networks for Research Core Team. Transportation Networks
for Research. https://github.com/bstabler/TransportationNetworks. Accessed
2021-04-29.

Tomas Potuzak was born in 1983 in Sušice, Czech
Republic, Europe. He went to University of West Bohe-
mia (UWB) where he studied software engineering and
obtained his degree in 2006. Then, he entered Ph.D.
studies at the Department of Computer Science and
Engineering (DCSE) at the same university and has
worked on issues of distributed simulation of road
traffic. He obtained his Ph.D. in 2009. He is now a senior
lecturer at the DCSE UWB. His research is focused on the
issues of road traffic simulations and software testing.
19
Frantisek Kolovsky went to the secondary school of
Civil engineering (Geodesy). He graduated at the
University of West Bohemia (UWB) where he studied
Geomatics. Then, he started to study Ph.D. at the
Department of Geomatics at the same university. His
research is focused on time-dependent shortest path
search and transportation modeling, especially on
dynamic traffic assignment.

https://doi.org/10.1287/trsc.1120.0409
https://doi.org/10.1016/S0895-7177(03)00090-6
https://doi.org/10.1016/S1007-0214(09)70147-6
https://doi.org/10.1016/S1007-0214(09)70147-6
https://doi.org/10.1177/0361198118774236
https://doi.org/10.1177/0361198118774236
https://doi.org/10.3141/2498-06
https://doi.org/10.1287/trsc.2018.0845

	Parallelization of the B static traffic assignment algorithm
	1 Introduction
	2 Related work
	2.1 Static traffic assignment algorithms
	2.2 Static traffic assignment algorithms parallelization

	3 B algorithm description
	3.1 General algorithm description
	3.2 Mathematical background
	3.3 Sequential implementation description

	4 B algorithm parallelization
	4.1 B algorithm parallelization issues and main idea
	4.2 B algorithm parallel implementation description
	4.3 Parallel flows shift with Bush-based edge flows differences
	4.4 Parallel flows shift with Thread-based flows differences

	5 Tests and results
	5.1 Testing environment and course of testing
	5.2 Convergence results
	5.3 Computation time results
	5.4 Results discussion

	6 Conclusion and future work
	Declaration of Competing Interest
	Acknowledgement
	References


