
Citation: Žalik, B.; Strnad, D.; Kohek,

Š.; Kolingerová, I.; Nerat, A.; Lukač,

N.; Podgorelec, D. A Hierarchical

Universal Algorithm for Geometric

Objects’ Reflection Symmetry

Detection. Symmetry 2022, 14, 1060.

https://doi.org/10.3390/sym14051060

Academic Editor: Chin-Ling Chen

Received: 12 April 2022

Accepted: 19 May 2022

Published: 21 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Hierarchical Universal Algorithm for Geometric Objects’
Reflection Symmetry Detection
Borut Žalik 1,*,† , Damjan Strnad 1,† , Štefan Kohek 1,† , Ivana Kolingerová 2,† , Andrej Nerat 1,† ,
Niko Lukač 1,† and David Podgorelec 1,†

1 Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46,
SI-2000 Maribor, Slovenia; damjan.strnad@um.si (D.S.); stefan.kohek@um.si (Š.K.); andrej.nerat@um.si (A.N.);
niko.lukac@um.si (N.L.); david.podgorelec@um.si (D.P.)

2 Department of Computer Science and Engineering, University of West Bohemia, Technická 8,
306 14 Plzen̆, Czech Republic; kolinger@kiv.zcu.cz

* Correspondence: borut.zalik@um.si
† These authors contributed equally to this work.

Abstract: A new algorithm is presented for detecting the global reflection symmetry of geometric
objects. The algorithm works for 2D and 3D objects which may be open or closed and may or may
not contain holes. The algorithm accepts a point cloud obtained by sampling the object’s surface at
the input. The points are inserted into a uniform grid and so-called boundary cells are identified.
The centroid of the boundary cells is determined, and a testing symmetry axis/plane is set through
it. In this way, the boundary cells are split into two parts and they are faced with the symmetry
estimation function. If the function estimates the symmetric case, the boundary cells are further split
until a given threshold is reached or a non-symmetric result is obtained. The new testing axis/plane
is then derived and tested by rotation around the centroid. This paper introduces three techniques to
accelerate the computation. Competitive results were obtained when the algorithm was compared
against the state of the art.

Keywords: computer science; computational geometry; uniform subdivision; centroids

1. Introduction

The phenomenon of symmetry has fascinated people since ancient civilisations. Di-
rectly or indirectly, it is increasingly the subject of investigation in the arts [1], architec-
ture [2], biology [3], medicine [4], mathematics [5], and various engineering disciplines [6–8].
A formal definition of symmetry can be found in [9,10]. Informally, however, a figure or an
object is considered symmetrical if it is made from multiple copies of smaller units that are
somehow interchangeable [11]. There are various types of symmetries [12,13]; however,
the reflection and the rotation are the most common. In addition, symmetry in an object
can be exposed on a global scale [14] or as a local feature [15].

Humans are extremely skilful at resolving various geometric tasks, including sym-
metry detection [16,17]. On the contrary, computer applications must be adapted to them,
bearing in mind that geometric objects are considered to be continuous while computers
work with finite arithmetic. This is the reason why a certain degree of inaccuracy should
be accepted during geometric data processing. In addition, geometric data, potentially
containing symmetric features, arrive in different forms: as raster images; as an output
from drawing programs or CAD systems; or as a result of various scanners producing
point clouds (e.g., LiDAR) or voxelized space (e.g., CT or MRI). Unfortunately, this usually
requires different approaches for solving the same geometric tasks.

A lot of approaches for detecting reflection symmetry have been suggested and they
are reviewed in Section 2. Many of them are demanding and therefore difficult for practi-

Symmetry 2022, 14, 1060. https://doi.org/10.3390/sym14051060 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14051060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4372-5020
https://orcid.org/0000-0003-4468-0290
https://orcid.org/0000-0002-6210-0889
https://orcid.org/0000-0003-4556-2771
https://orcid.org/0000-0003-1559-9776
https://orcid.org/0000-0002-9517-1157
https://orcid.org/0000-0002-0701-9201
https://doi.org/10.3390/sym14051060
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14051060?type=check_update&version=2

Symmetry 2022, 14, 1060 2 of 21

tioners to reproduce. A hierarchical and easy-to-implement approach which is nonetheless
efficient is proposed in this paper. The main features of the introduced algorithm are:

• The algorithm detects the global reflection symmetry;
• It accepts a point cloud obtained by sampling the input geometric object’s surface;
• It works for 2D as well for 3D geometric objects with just a few small adaptations;
• It accepts objects without holes as well as those with holes, which may even be nested;
• Geometric objects may be open or closed;
• The algorithm is designed for acceleration by three techniques—by a two-level uni-

form subdivision; by varying the granularity of the testing symmetry axes/planes;
and by parallelisation.

The rest of the paper is divided into four sections. An overview of previous works is
given in Section 2. The proposed approach is explained in detail in Section 3, while the results
of experiments are given in Section 4. The paper is concluded with the discussion in Section 5.

2. Related Works

Symmetry is a frequent topic in the scientific literature. However, the majority of
works deal with its applications and do not consider how symmetry is actually determined.
The algorithms for the detection of symmetries were analysed and compared in only a few
survey articles. Xiao and Wu [18] gave an overview of algorithms for symmetry detection in
raster images. Mitra et al. [19] compared selected methods for detecting reflection symmetry
in 3D objects, which we mostly summarise in this Section as well. Bartalucci et al. [20]
conducted a thorough review of methods for symmetry detection in biomedical spatial data.
The following related work focuses on methods for global reflection symmetry detection as
these are directly comparable to our method.

Although our method only handles global reflection symmetry, it is easily adjustable
and scalable to various input data representations and domain dimensions. Addition-
ally, it handles multiple simultaneous symmetries, it is straightforwardly understandable,
implementable, and fast.

2.1. Global Reflection Symmetry

Elawady et al. presented a method for the detection of a global reflection symmetry
axis in a raster image [21]. At first, the method extracts edge features using a Log-Gabor
wavelet filter. Subsequently, the edge features are associated with textural and colour
information. Ultimately, a voting scheme selects the best symmetry axis for the consid-
ered image.

The methods presented in [22–27] determine global reflection symmetries in 3D point
clouds. The algorithm developed by Chen et al. [22] firstly associates weights to individual
points according to their surroundings. A weighted PCA is executed to determine the
initial symmetry plane. Finally, an iterative process adjusts the weights associated to the
points according to their distances to the current symmetry plane. The process terminates
when two consecutive symmetry planes are similar enough or when the given number of
iterations is reached. The last calculated plane is accepted as the dominant symmetry plane
of the whole point cloud. Schiebener et al. [23] presented an approach for completing the
point cloud of a scanned object, the surface of which was captured from a single direction
only. The method assumes that most objects used by robots are symmetric. In addition
to the scanned point cloud, it also requires some points from the object’s environment
and the position of the scanner. The symmetry plane candidates are then determined
by the RANSAC method. Usually, more symmetry planes are obtained if they exist.
The algorithm estimates them and the plane with the highest score is taken as a symmetry
plane. Combés et al. [24] and Ecins et al. [25] based their methods for the determination
of the symmetry plane on an iterative nearest point search. An initial symmetry plane is
selected and then an iterative procedure is started. It mirrors points over the symmetry
plane. Points are refused that are mirrored far away from the points on the opposite side of
the symmetry plane. The nearest points on the opposite side of the symmetry plane are

Symmetry 2022, 14, 1060 3 of 21

determined for the remaining points. The symmetry plane is then refreshed according to the
actual pairs of points. Nagar and Raman [26] developed a framework in which the problem
of establishing the points’ correspondence is transformed into a linear assignment problem
and considered to be an optimisation problem on a smooth Riemannian product manifold.
The method works in a space of arbitrary dimensions and is relatively slow, reaching a
time complexity of O(n3.5) for n points. Furthermore, it extracts a single symmetry plane
from a single initialisation. Hruda et al. [27] recently proposed a differential symmetry
measure which allows gradient-based optimisation to determine the symmetry plane of
a 3D geometric object whose surface is represented by a point cloud. The method is not
sensible to noise or missing parts of the object.

The approaches from [28,29] determine the symmetry plane for a geometric object
represented by a triangulation network. Li et al. [28] placed several virtual cameras on the
sphere which surrounds the object. After that, the entropy of each viewpoint is determined.
The entropy depends on the number of visible triangles. The entropy of all used viewpoints
defines the so-called viewpoint entropy distribution which has the same plane symmetry
as the input model. The method is only able to detect planes close to the centre of the
input object, but it is faster, more accurate, and less sensitive to noise than previous
methods. The method proposed by Sipiran et al. [29] attempts to improve incomplete
geometric shapes represented by triangular meshes under the assumption that they are
symmetric. The curvature is applied as an additional filter for finding the pairs of points
which determine candidates for the symmetry plane. The main criterion for selecting the
pairs of points is the so-called function of heat diffusion in the local domain.

The approach of Kakarala et al. [30] operates on both 3D point clouds and triangular
meshes. It is based on the extended Gaussian image. The input object is approximated
by the spherical harmonics which are then transformed into an extended Gaussian image.
This image is characterised by a star-shaped surface which is used to identify the symmetry
plane by applying Fourier transform.

A planar reflective symmetry transform of 3D geometric objects in volumetric models
was proposed by Podolak et al. [31]. At first, the object’s surface is sampled by the Monte
Carlo approach and the samples are embedded into a 3D uniform grid. All possible symme-
try planes are then determined among the samples. The planes are evaluated by a symmetry
measuring function, and the best evaluated plane is accepted as the symmetry plane.

The symmetry as a registration problem was considered in [32]. For this, a new
registration method was proposed in 2D based on a random sample consensus of an
ensemble of normalised cross-correlation matches. The method is then generalised on
3D shapes with an iterative nearest-point registration approach. Although the method is
limited to finding a single symmetry, it seems more complex than more direct approaches.

2.2. Local Reflection Symmetry

Several global reflection symmetry detection methods, e.g., [23,25,29] firstly extract
potentially symmetric interesting objects from the scene and then handle them separately.
On the other hand, there are approaches designed to directly determine local reflection
symmetries. Simari et al. [33] introduced an algorithm for the determination of local
reflection symmetries from 3D triangular meshes. The algorithm constructs a covariance
matrix of weighted gravity centres. The weights are determined according to the area of
neighbouring triangles. Distances between the original and the reflected vertices are then
used to modify the weights in the covariance matrix. The estimated symmetry planes are
iteratively refined by repeating the aforementioned steps. Cailliere et al. [34] also addressed
triangular meshes. The Hough transform was used to determine the symmetry planes of
global and local symmetries. The method determines symmetry planes for all perspective
pairs of points selected according to their curvature. The voting mechanism based on the
clustering and the Monte Carlo strategy is then applied; the plane with the highest score is
selected as the symmetry plane.

Symmetry 2022, 14, 1060 4 of 21

Two methods for symmetry plane determination with the aim of the better reconstruc-
tion of 3D objects were proposed by Speciale et al. [35]. Both methods use a uniform grid of
voxels. The first method is a modification of the algorithm proposed by Podolak et al. [31],
while the second one marks the voxels with large enough gradients and curvatures as
boundary voxels. After that, the pairs of boundary voxels are randomly sampled, and these
pairs determine the candidates for the symmetry planes. The strongest candidates reflect
the largest number of voxels, and they are selected as the final symmetry planes.

Chain codes are another popular method for representing the boundary of geometric
objects [36]. The method for detecting the reflection symmetry of open or closed curves
represented by the slope chain codes [37] was proposed by Alvarado-Gonzalez et al. [38].
The symmetry detection was performed on the level of a chain code symbol sequence,
for which the operations of inversion, concatenation, and reflection were used. As such, the
problem of rounding errors and setting the adequate threshold was eliminated. However,
the method also defines the measure for the degree of symmetry for quasi-symmetric
objects. The approach was also later extended for rotational symmetries [39].

2.3. Global Reflection and Rotational Symmetry

A 3D symmetry detection algorithm based on an extended Gaussian image was pro-
posed by Sun and Sherrah [40]. The object’s surface is triangulated and the bounding sphere
is calculated. The hexagonal tessellation of the sphere is performed to produce hexagonal
patches. The hexagonal patches are associated with values which are in correspondence
with the number of normal vectors pointing from the triangles of the object towards the
centre of the considered patch. The extended Gaussian image is obtained in this way.
The method then selects the potential planes of symmetry passing through the coordinate
origin. The so-called orientation histogram is obtained in this way. The plane with the
highest correlation with the histogram is selected as the symmetry plane. The reflection and
rotational symmetry can be estimated in the same way. The method is declared to handle
exact and approximate global reflection symmetries in 2D-3D and rotational symmetries in
2D only, but it is quite slow, requiring a few minutes to an hour and more.

Korman et al. [41] proposed an algorithm that uses a sampling of the transformation
space. It is then capable of determining the global reflection and rotational symmetries on
obtained volumetric models. The sampling density depends on the total variation of the
shape. As such, the authors were able to derive the dependency of the spent CPU time and
the quality of the obtained result.

2.4. Different Categories of Local Symmetry

Mitra et al. presented a method for the symmetry detection of geometric objects whose
surfaces are obtained by scanning [42]. At first, a local signature is computed for each point
in the point cloud. The points with the most similar signatures are paired and define the
potential symmetry planes. The pairs are clustered to yield subsets of the pairs (patches)
which are invariant under a certain transformation, i.e., they are symmetric. The patches
are then connected in a graph, which is the output from the algorithm. The algorithm also
finds local symmetry planes in this way.

2.5. Machine Learning in Symmetry Detection

Machine learning approaches, especially those using neural networks, have recently
appeared. They all require a rich training set and a relatively demanding and time-
consuming learning process. Ji and Liu [43] and Wu et al. [44] address global reflection
symmetries in point clouds, Gao et al. [45] in voxel models, while Tsogkas and Kokki-
nos [46] deal with global and local reflection symmetries in raster images. Although these
methods are promising, they are highly dependent on the learning datasets, which are not
complete in all cases.

Symmetry 2022, 14, 1060 5 of 21

3. Materials and Methods

The basic idea of the proposed solution is given first, and three acceleration techniques
are considered after that. The 2D geometric object shown in Figure 1a is used for the
clarification of the solution. However, the needed equations are generalised for 3D cases.
As will be seen, the changes in the algorithm due to the dimensionality are minor.

(x , y)a a

(x , y)b b

y

x

S

C (1) C (1)

a() ()b

()c ()d

()e ()f

Figure 1. Steps of the proposed algorithm—part 1: (a) object boundary; (b) axis-aligned bounding
rectangle/box determination; (c) uniform grid creation; (d) determination of the object’s boundary
grid cells; (e) determining the centroid of the boundary cells and establishing the coordinate system;
and (f) placing the initial testing symmetry axis/plane.

Symmetry 2022, 14, 1060 6 of 21

The steps of the algorithm for the global reflection symmetry detection are:

1. The information about the object’s boundary, labelled G hereafter, is obtained first.
The object may contain holes; two are presented in the particular example in Figure 1a.
Initially, the geometry is expressed in the Cartesian coordinate system adopted from
the input dataset.

2. An axis-aligned bounding rectangle (a bounding box in 3D) is subsequently deter-
mined. It is specified by the bottom left (xa, ya, za) and the top right points (xb, yb, zb),
where za = zb = 0 in 2D (see Figure 1b).

3. The axis-aligned bounding rectangle/box is divided into equally sized cells u forming
a uniform grid U, u ∈ U, as shown in Figure 1c. The number of cells ux, uy, uz in each
coordinate direction is determined by heuristic (1), where r = 1000.

m =

⌈
max{abs(xb − xa), abs(yb − ya), abs(zb − za)}

r

⌉
,

ux =

⌈
abs(xb − xa)

m

⌉
,

uy =

⌈
abs(yb − ya)

m

⌉
,

uz =

⌈
abs(zb − za)

m

⌉
(1)

m in (1) represents the linear size of a cell in any coordinate direction.

4. The tolerance δ is then determined by which the allowed deviation from the ideal
symmetry of G is enabled. The tolerance should at least compensate for the effect
of the uniform grid usage. δ = 2m is set by default; however, it can be changed by
the user.

5. The G’s boundary is uniformly sampled by the horizontal and vertical sampling step
of m/2. The obtained sampled points of G are inserted into U and the set of boundary
cells B(1) of G is determined. A cell u, u ∈ U, belongs to the object G (u ∈ G) if u
contains at least one point of G. Two cells are neighbours if they share a common
edge in 2D or a common side in 3D. We may now formally define B(1) = {u; (u ∈
G) ∧ ((u is on the border of U) ∨ (∃v, (v ∈ U\G) ∧ (v and u are neighbours)))}.
The cells of B(1) are plotted in grey in Figure 1d.

6. The centroid C(1) = (c(1)x , c(1)y , c(1)z) for B(1) is calculated with (2) where |B(1)| denotes
the cardinality of B(1), and Centre(k) = (uk,x, uk,y, uk,z) is the central point of a cell
uk ∈ B(1). The origin of the coordinate system is then moved to C(1) as seen in
Figure 1e.

C(1) =
1
|B(1)|

|B(1) |

∑
k=1

Centre(k) (2)

7. A testing axis of symmetry S (a testing plane in 3D) is then placed in the origin (red
dot-dashed line in Figure 1f). In general, S can be arbitrarily sloped at the beginning.
However, it is desired that S is initially aligned with one of the coordinate axes in 2D
or with one of the coordinate planes in 3D. In Figure 1f, S coincides with the y axis.

8. S divides B(1) into two subsets B(1)
1 an B(1)

2 , as seen in Figure 2a.

Symmetry 2022, 14, 1060 7 of 21

S

S S

S

S

B(1)1 B(1)2 B(1)1 B(1)2

C (1)1

C (1)2

B(1)2

B(1)1

C (1)1

C (1)2

B(2)1

B(3)1

B(3)2

B(2)2

C (2)1

C (2)2

B(3)2

B(3)1

B(4)1

B(4)2
C (4)1

C (4)2

B(5)1

B(5)2

()e

()c

()a ()b

()d

Figure 2. Steps of the proposed algorithm—continuation: (a) dividing boundary cells according to S;
(b) calculating the centroids of divided cells; (c) rotating the S; (d) further dividing the sets of the
boundary cells and calculating centroids for the new subsets; and (e) applying breadth-first traversal
to further divide the sets of boundary cells.

9. A function SymmetryTest (B(i), B(i)
1 , B(i)

2 , S, δ) is then used. This function calculates two

auxiliary centroids C(i)
1 for B(i)

1 and C(i)
2 for B(i)

2 (Figure 2b shows an initial situation

when i = 1). In addition, a common centroid C(i) for B(i)
1 and B(i)

2 is calculated

Symmetry 2022, 14, 1060 8 of 21

according to (3). |B(i)
1 | and |B(i)

2 | represent the cardinalities of the corresponding
sets. This part of the algorithm is hierarchically repeated as later described with the
flowchart (Figure 3) and an example (Figure 4). In the first repetition, C(i) equals C(1)

calculated in step 6.

C(i) =
|B(i)

1 |C
(i)
1 + |B(i)

2 |C
(i)
2

|B(i)
1 |+ |B

(i)
2 |

. (3)

The function SymmetryTest returns either symmetric or non-symmetric. If the claims
given in (4) are valid, the returned value is symmetric. The first claim states that the
two centroids are equidistant from the testing axis/plane S. The second claim says
that the line through the centroids is perpendicular to S, and the third claim checks
whether the subsets B(i)

1 and B(i)
2 are balanced with respect to S, so that the common

centroid is on S. All three conditions are necessary because they are independent of
each other. Function d, as used in (4), calculates a non-negative distance between two
points, or between a point and S.

|d(C(i)
1 , S)− d(C(i)

2 , S)| ≤ δ∧

|d(C(i)
1 , S) + d(C(i)

2 , S)− d(C(i)
1 , C(i)

2)| ≤ δ∧

d(C(i), S) ≤ δ.

(4)

The reflection symmetry is not confirmed in the situation shown in Figure 2b as
relation (4) is not satisfied. The function SymmetryTest returns the value non-symmetric
and the algorithm moves to step 11.

10. Sets B(i)
1 and B(i)

2 are further split by the line/plane perpendicular to S. With each
split, i is incremented. The function SymmetryTest is repeatedly called for a split pair
of subsets until the threshold for the division is reached (a suitable threshold is 2 m,
for example) or the function returns non-symmetric. If symmetric is returned in all
runs of the SymmetryTest, the object is considered symmetric in the actual orientation,
and the rotation angle (two angles in 3D) of the symmetry axis/plane is stored.

11. S is rotated for a small angle α (e.g., α = 1◦) and the algorithm returns to step 9 if
not all rotation positions have been checked yet. Otherwise, the algorithm verifies
whether at least one angle was stored in the previous steps. The object is declared to
be symmetric in this case, otherwise it is non-symmetric.

The situation displayed in Figure 2c is reached after some consecutive rotations of S.
The algorithms continue with step 8 after each rotation. Set B(1) is divided into subsets B(1)

1

and B(1)
2 ; for them, the centroids are calculated, and the function SymmetryTest is invoked,

which returns symmetric. Sets B(1)
1 and B(1)

2 are then split by the line perpendicular to S,
and two pairs of subsets are obtained (in the concrete case shown in Figure 2d, the green
line is perpendicular to S and two pairs of boundary sets are obtained (B(2)

1 , B(2)
2) and (B(3)

1 ,

B(3)
2)). The process is repeated at first for the pair of sets B(2)

1 and B(2)
2 . The centroids C(2)

1

and C(2)
2 are calculated (see Figure 2d). As the function SymmetryTest returns symmetric,

the sets are divided again. Figure 2e shows the next subdivision of the region indexed
with i = 2, i.e., containing B(2)

1 and B(2)
2 , into regions with i = 4 and i = 5. Finally,

the current rotation slope of the symmetry axis is stored as SymmetryTest=symmetric after
all subdivisions. G is thus declared symmetric.

The flowchart of the proposed algorithm is shown in Figure 3. Its most demanding
phase is analysed step by step through the example in the continuation.

Symmetry 2022, 14, 1060 9 of 21

Determine bounding rectangle/box

Determine δ

Read geometric object boundary

Rotate symmetry

axis/plane S

i = i = i = 1

i = i + 1

a)

b)

c)

d)

f)

g)

h)

i)

e)

j)

k)

Split B
(i)

1 in B
(j+1)

1 B
(j+2)

1and

i = i , j = i

Split B
(i)

2 in B
(j+1)

2 B
(j+2)

2and

i = i+1, j = j+2

NO

YES

i = i, i = j

p)

q)

r)

s = symmetric
Split

interval small

enough

NO

NO

YES

YES

Store rotation angle/angles

OBJECT IS SYMMETRIC

Rotation

finished

YES

OBJECT IS NON-SYMMETRIC

NO

Any angle

stored

NO

YES

NO

l)
n)

t)

v)

x)

z)

y)

YES

s=SymmetryTest(B
(i)

1,B
(i)

2 , δ)S,

Construct uniform grid

Sample points from object's boundary, map the

points into grid and determine boundary B
(1)

C =Centroid(B
(1)

)
(1)

Set origin of coordinate system in C
(1)

B
(1)

1 B
(1)

2andSplit intoB
(1)

with S

m)

Initialise rotation angle/angles and
set testing symmetry axis/plane S

o)

u)

w)

s)

min max

i = imax

maxmin

i > imax

maxmin

START

STOP

Figure 3. Flowchart of the proposed algorithm for reflection symmetry detection.

Blocks a–e of the flowchart correspond to the described steps 1–5, respectively. Blocks
f and g represent step 6, and block h corresponds to step 7. At this point, the algorithm
enters a loop in which the testing symmetry axis/plane S is gradually rotated (block w)
and the symmetry is separately checked for each rotated position. Block i divides the set
of the object’s boundary cells into two subsets on opposite sides of S (step 8), and block k
then checks whether they are symmetric with respect to S (step 9).

The symmetry test is performed hierarchically as the problem is gradually split into
smaller sub-problems which are then subjected to the same testing procedure. The use
of recursion allows for a straightforward easy-to-understand solution. The considered

Symmetry 2022, 14, 1060 10 of 21

hierarchical process may be represented by a binary tree (see Figure 4), and the recursion in
its common, stack-based form traverses this tree in a depth-first manner, which, however,
does not completely follow the concept set out in the above step 10. On the other hand,
the iterative algorithm from Figure 3 governs the splitting process and the order of perform-
ing the symmetry tests in a slightly complex way by the three loop control variables i, imin,
imax, and auxiliary j, but it implements the breadth-first (level-order) traversal—BFT, which
turned out to be more preferable for our purpose. If a considered object is symmetric, then
both solutions lead to the same result, and a complete traversal to some predefined tree
height is required in both cases. In the case of an asymmetric object, however, the depth-first
traversal may unnecessarily probe to great depths the branches representing symmetrical
parts even though the possibility of symmetry could be disproved at higher hierarchical
levels by testing a few bigger split parts of the entire object only.

Let us explain the BFT operation in more detail using the example in Figure 4. Parts
of the same example are already shown in Figure 2c–e where, however, the focus was on
the positions of the centroids, while here we stress the role of the loop control variables.
To make the presentation easier and clearer, the grid was removed, and the images were
rotated by 45°. We will also use a slightly simplified terminology, as instead of talking about
the splitting and testing sets of boundary cells, we will talk about splitting and testing the
nodes that represent these sets.

i = 1
i = 2

i = 3

i = 7

i = 5

i = 4

i = 6

i = 14

i = 8

i = 12

i = 11

i = 10

i = 9

i = 13

i = 15

imin = 1

imax = 1

imin = 2

imax = 3

imax = 7

imin = 4

imax = 15

imin = 8

Figure 4. Example of performing a symmetry test on gradually split segments in breadth-first order.

Each tree level corresponds to a complete execution of the loop indicated by the
termination condition in block m. The considered object (butterfly) is symmetric, so the
loop is not exited at any tree level by an early termination condition in block l. Within the
loop, i increases from imin to imax. The control is then transferred to the hatched block on
the right side of Figure 3, where the next tree level is established by splitting each leaf
node into two halves (step 10) and adjusting imin and imax accordingly. Note that the left
and the right half of each node image are split separately in blocks p and q, respectively.
The operations at each of the four levels of the considered example are illustrated in the
continuation. For simplicity, a node with index i will be labelled Ni.

• Level 0 (root level). Block i sets both, imin and imax to 1 and initialises i = imin = 1.
After a single iteration, the loop termination condition in block m is true, and the
hatched block is entered. Blocks p and q split the root node N1 into N2 and N3.
The loop indicated by termination condition s is exited with i = 2, imax = 1, and j = 3.
Accordingly, block t sets imin = 2 and imax = 3, making the next tree level ready
for processing.

• Level 1. Nodes N2 and N3 are both successfully tested for symmetry before the loop
termination condition in block m becomes true. Blocks p and q within the loop in the
hatched block split N2 into the pair of nodes (N4, N5) and N3 into (N6, N7). The loop is
exited with i = 4, imax = 3, and j = 7. Accordingly, block t sets imin = 4 and imax = 7.

Symmetry 2022, 14, 1060 11 of 21

• Level 2. Nodes N4–N7 are all successfully tested for symmetry before the loop termina-
tion condition in block m becomes true. Blocks p and q within the loop in the hatched
block split N4 into (N8, N9), N5 into (N10, N11), N6 into (N12, N13), and N7 into (N14,
N15). The loop is exited with i = 8, imax = 7, and j = 15. Accordingly, block t sets
imin = 8 and imax = 15.

• Level 3. Nodes N8–N15 are all successfully tested for symmetry before the loop termi-
nation condition in block m is true. This depends on the predefined splitting threshold
tested in the loop termination condition n, whether the algorithm proceeds to the
hatched block to split these nodes further or it terminates the symmetry test for the
considered rotated position of S.

Obviously, blocks p and q always split node Ni into N2i and N2i+1, which is, of course,
an expected result for the complete binary tree (where each internal node has two children,
and all leaves are at the same level). This suggests that we could dispose of not only of the
auxiliary variable j, but also of imin and imax. However, we abandoned this modification
as it prevents another more important adaptation: namely, the algorithm in its current form
can easily be adapted to avoid extending empty nodes which do not contain any boundary
cells. This can be done by embedding blocks p and q and the statement j = j + 2 from
block r into an if clause, which checks the cardinalities of B(i)

1 and B(i)
2 before splitting.

The remaining blocks u–z of the flowchart in Figure 3 simply conclude the algorithm
by performing the last step 11.

The proposed algorithm works for open or closed geometric shapes, and the latter can
contain holes, which may even be nested. The algorithm can work in three modes with
minor modifications:

Mode A: All symmetry axes/planes in G are determined within the granularity α.

Mode B: The first found symmetry axis/plane is returned.

Mode C: The algorithm determines the closest axis/plane to the ideal symmetry axis/plane
for non-symmetric G. It searches for S where the Euclidean distance between C(1)

2

and the mirrored image of C(1)
1 across S is the smallest.

3.1. Algorithm Acceleration

The algorithm presented in Figure 3 is generally quite slow, so speed-ups are needed
to make it usable in practice and competitive with the existing methods. The algorithm
processes the individual rotated positions of the object independently, splitting the set
of boundary cells B(1) into B(1)

1 and B(1)
2 with respect to S in time O(|B(1)|). After that,

for each pair of B(i)
1 and B(i)

2 , starting with i = 1, the algorithm sequentially:

1. Computes the centroids of B(i)
1 , B(i)

2 , and B(i) = B(i)
1 ∪ B(i)

2 in time O(|B(i)|).
2. Evaluates inequality (4) in time O(1).

3. Splits B(i)
1 and B(i)

2 perpendicularly to S into two pairs of subsets in time O(|B(i)|).
Let:

• l be the number of hierarchical levels of execution of the algorithm.
• lmax indicate the maximum value of l.

• i(h)min and i(h)max, 1 ≤ h ≤ l, be the start and end index i of B(i)
1 , B(i)

2 , and B(i) at level h.
• α stand for the granularity of the slope increment of S.
• D be the dimension (D ∈ {2, 3}).
• Diagonal be the length of the diagonal of the bounding box int 3D or a bounding

rectangle in 2D.

Symmetry 2022, 14, 1060 12 of 21

For each hierarchical level h:

i(h)max

∑
i=i(h)min

|B(i)
1 | = |B

(1)
1 |,

i(h)max

∑
i=i(h)min

|B(i)
2 | = |B

(1)
2 |, and

i(h)max

∑
i=i(h)min

|B(i)| = |B(1)|.

(5)

As a consequence of (5), the total time complexity of computing centroids and subset
splits at each hierarchical level h is O(|B(1)|). This is also the total time complexity of all three
listed operations for level h as the evaluations of (4) only require O(i(h)max − i(h)min + 1) time.

The maximum number of hierarchical levels lmax is reached when splitting is performed
to the threshold of 2m (see Equation (1). Then, at the leaf level (see Figure 4), we have at most
Diagonal/(2m) subsets. A complete binary tree has 2lmax−1 nodes at the leaf level leading
to (6):

2lmax−1 =
Diagonal

2m
. (6)

This gives (7):

lmax = log2
Diagonal

m
. (7)

The upper bound of the processing time for each object position is, therefore, O(|B(1)| log
Diagonal

m). The number of all rotated positions is
(

180
α

)(D−1)
, and the worst-case time com-

plexity of the algorithm from Figure 3 is described by (8).

Tworst = O

((
180
α

)(D−1)
|B(1)| log

Diagonal
m

)
. (8)

D and Diagonal are of course part of the problem definition and cannot be changed.
The logarithmic factor has the smallest impact on Tworst and besides this, the threshold 2m
affects the accuracy of the symmetry detection. Therefore, speed-ups must be primarily
designed by increasing step α, or by downsampling B(1), at least in the individual phases
of the algorithm.

3.1.1. Dual-Resolution Grid

Two uniform grids in different scales are formed in the initialisation step: the rough
UR and the coarse U. The density of the uniform grid is controlled by parameter r in (1);
r = 1000 is used for constructing U and r = 100 for UR. G is initially embedded into both
grids and two sets of boundary cells are obtained: BR from the UR and B from U. Certainly,
|BR| ≤ |B|. The algorithm switches between both grids for each slope of the test axis/plane
S in the following way:

• It starts with BR, splits it into BR1 and BR2, and runs SymmetryTest(BR1, BR2, S, δ).
• If the SymmetryTest returns symmetric, the algorithm switches to U and gradually

considers the split sub-problems until SymmetryTest = non-symmetric or the subdivision
threshold is reached.

3.1.2. Variable Granularity of the Testing Axis/Plane

Incrementing the slope of S for equal steps is time-consuming when S is far from
symmetric. However, these steps can be made variable, as explained in the continuation.

Symmetry 2022, 14, 1060 13 of 21

C (1)1

C (1)2 C (1)1

vc

vs

l

C (1)1

C (1)1

C (1)2
vc

vs

C (1)1

C (1)1

C (1)2

v
c

v
s

C (1)1

C (1)1

C (1)2

vc

vs

S

S

S

S

()a()a

()c

()b

()d

Figure 5. Four rasterised shapes: (a) glass; (b) butterfly; (c) circle; and (d) hand—to demonstrate
variable granularity.

Let C(1)
1 be a mirrored copy of C(1)

1 across S and let vc be a vector connecting C(1)
2

and C(1)
1 . Another vector vs is placed on S with the tail at the origin (see Figure 5). vs is

a vector of length of m
2 initially pointing in the positive y direction, and rotates together

with S. The line l (or the plane in 3D), perpendicular to vs and passing through the origin,
divides the plane/space into two half-planes/half-spaces (l is plotted in Figure 5a). Its role
is explained subsequently.

Let us suppose that S smoothly rotates around the origin. The length |vc| is reducing
as S approaches the symmetric position. It becomes zero exactly at the symmetry, and when
it leaves it, |vc| starts to increase again. Furthermore, after passing the symmetric position,
vc changes the half-plane defined by vs.

We can therefore observe the sign sg obtained from the dot product of vectors vc and
vs according to (9). When both vectors point in the same half-plane, sg is positive, it is
otherwise negative. If |vc| is zero, then sg is also zero.

sg = sgn(vc · vs) (9)

Checking the sign sg appears useful for the detection of whether the symmetric
position has been overlooked. However, two questions should be investigated:

• Does observing sg prevent false positives?
• Does observing sg prevent false negatives?

The answers are obtained by considering Figure 6, where curves show the signed
length sL of vc, defined in (10).

sL = sg |vc|. (10)

Symmetry 2022, 14, 1060 14 of 21

First of all, it can be observed that the curves sL are not smooth but only have C0

continuity. The reason for this is the introduction of the uniform subdivision in the ini-
tialisation phase of the algorithm. In addition to the noticeable rounding errors (e.g., the
vc of the circle is not zero in Figure 5c) which causes the unsmooth change of sL even
if S moved fluently. For example, the sign sg changes 12 times for the object glass and
9 times for the object butterfly (see Figure 6a,b), indicating 12 and 9 possible symmetric
positions, although only 1 exists in both objects, as we see in Figure 5. Furthermore, sL for
the non-symmetric object hand indicates two symmetric positions. Obviously, observing
just sg is not resistive to false positives. However, they can easily be refused by applying
the algorithm from Figure 3 to zones where the changes of sg are detected.

Let us observe Figure 6c, showing sL for the object circle. The sL should be zero all
the time as the circle has infinite symmetries. Unfortunately, due to the already described
uniform subdivision effect, sL also only has in this case C0 continuity. This, however, can
also lead to the false negative scenario. For example, if the slopes of S at 22◦ and 67◦ are
tested after each other, they both give the positive sign sg, which leads to the conclusion
that there is no symmetric scenario in between. This is the reason why just observing the
sign sg is not enough. However, Figure 6 shows that the dangerous situation for the false
negatives only appears for small values of sL. Therefore, we consider both the sign sg
and the length sL. As the cell in the uniform subdivision is of size m, the iteration of the
algorithm from Figure 3 for the corresponding rotation of S is executed when |sL| <

√
2 m.

The situation in 3D is identical with only one difference; vector vs defines the half-space.

(a) (b)

(c) (d)

Figure 6. Graph of the signed distances sL with respect to the slope of S for (a) glass; (b) butterfly;
(c) circle; and (d) hand.

Symmetry 2022, 14, 1060 15 of 21

3.1.3. Parallelisation

The presented algorithm, either in its basic or accelerated form with the dual-resolution
grid and/or variable granularity techniques, changes the slope of the testing axis/plane
and repeats the same calculations independently, which is ideal for parallel processing.
Figure 7 shows the adaptation of data for this purpose. Boundary cells’ coordinates B(1)

are stored in an array. Each thread Tτ , 1 ≤ τ ≤ t, where t is the number of available threads
has its own array of indices, pointing into the array with the boundary cells B(1). Each
thread then processes its own candidate for the symmetry axis/plane. Splits of cells by
S are not performed on the B(1) array, but on the corresponding arrays of indices. Two
instances of the represented data structures, each representing the specific grid, are used in
the case of the dual-resolution grid. OpenMP [47] was used for parallel implementation.

B(1)
(x , y , z)1 1 1 (x , y , z)2 2 2 (x , y , z k k k)(x , y , z)1 1 1 (x , y , z)2 2 2 (x , y , z k k k)(x , y , z)3 3 3

1T1 2 3 k

1T2 2 3 k

1Tt 2 3 k

Figure 7. Organisation of data for parallel execution.

4. Results

The proposed algorithm [48] for reflection symmetry detection was intensively tested
on a large number of 3D objects obtained from [49–51], 20 of which are considered in detail
in this section. They are shown in Figure 8, while details about their properties, important
for our algorithm, are given in Table 1. All objects were first tested in Mode A where
the algorithm classified the twelve objects as symmetric, four of which have more than
one symmetric plane, while the remaining eight objects were marked as non-symmetric.
The results of the algorithm for symmetric objects with only one symmetric plane are
shown in Figure 9. Figure 10 gives the results for the objects trophy (two symmetries),
ornate frame (six symmetries, but only three are shown), and rugby ball (with infinitely
many symmetric positions, but only three are shown). The object apple, also with infinitely
many symmetric positions, is not shown. Mode C was then used on the objects declared as
non-symmetric to find the nearest symmetry plane for each of them. The results are shown
in Figure 11. The obtained nearest symmetry planes were compared with the algorithm
proposed by Hruda et al. [27] and an adequate correspondence was obtained.

Symmetry 2022, 14, 1060 16 of 21

Alpaca Apple Astronaut Buddha

Butterfly Cup of coffee Dolphin Female bust

Flamingo Homer Kangaroo Male bust

Ornate frame Race car 1 Race car 2 Rugby ball

Seahorse Skeleton Spider Trophy

Figure 8. Tested geometric objects.

Table 1. Information about geometric objects used in the experiments.

Object |B(1)| Symmetric?

Alpaca 1,322,413 X
Apple 1,898,806 XX

Astronaut 2,381,281 ×
Buddha 1,815,195 ×
Butterfly 1,602,828 X

Coffee cup 3,717,007 X
Dolphin 836,102 X

Female bust 1,703,742 ×
Flamingo 431,892 ×

Homer 1,234,423 X

Symmetry 2022, 14, 1060 17 of 21

Table 1. Cont.

Object |B(1)| Symmetric?

Kangaroo 836,738 ×
Male bust 2,035,006 ×

Ornate frame 1,304,854 XX
Race car 1 3,490,257 ×
Race car 2 2,908,840 ×
Rugby ball 951,947 XX
Seahorse 709,877 X
Skeleton 560,303 X
Spider 1,374,073 X
Trophy 3,369,891 XX

X: symmetric; XX: multiply symmetric; ×: non-symmetric.

Figure 9. Result of the algorithms: symmetric objects with a single plane of symmetry.

Figure 10. Result of the algorithms: some objects with multiple symmetries.

Symmetry 2022, 14, 1060 18 of 21

Figure 11. Result of the algorithms: the nearest symmetry plane for non-symmetric objects.

Table 2. CPU times in seconds by applying different algorithms.

Object Single Thread Multi-Threaded
Basic Accelerated Basic Accelerated Referenced

Alpaca 299.15 0.374 28.03 0.044 0.230
Apple 424.50 0.430 42.27 0.151 0.193

Astronaut 267.21 0.592 52.89 0.077 0.254
Buddha 407.90 0.564 40.24 0.133 0.431
Butterfly 353.86 0.360 36.19 0.046 0.167

Coffee cup 839.88 0.426 84.38 0.079 0.187
Dolphin 180.64 0.195 12.88 0.044 0.245

Female bust 376.64 0.345 37.51 0.045 0.205
Flamingo 94.18 0.123 6.69 0.047 0.418

Homer 272.52 0.376 24.76 0.053 0.212
Kangaroo 178.29 0.292 13.01 0.122 0.240
Male bust 458.27 0.495 45.07 0.070 0.201

Ornate frame 285.33 0.341 27.76 0.094 0.164
Race car 1 800.70 1.025 78.67 0.123 0.208
Race car 2 663.49 0.850 65.49 0.097 0.215
Rugby ball 208.03 0.235 15.21 0.096 0.222
Seahorse 149.60 0.142 11.04 0.034 0.308
Skeleton 117.73 0.067 8.66 0.021 0.302
Spider 312.45 0.403 30.12 0.048 0.199
Trophy 755.17 0.608 75.77 0.090 0.202

The algorithm’s computational efficiency was finally tested. The average spent CPU
times of 10 runs are given in Table 2. The algorithm was tested in a single thread while
running in Mode A (i.e., when all possible symmetry planes were determined), or Mode C,
when the nearest S was searched for. The direct implementation of the algorithm from
Figure 3, named basic, was tested first. As expected (see the explanation at the beginning of
Section 3.1), the run-time depends on the number of boundary cells B(1) used to represent
the geometric object and the number of symmetry planes. Without a doubt, the basic ap-
proach is slow. However, applying the acceleration techniques, including the rough/coarse
grids and the variable granularity of testing slopes, significantly changes the situation
(see the column accelerated under single thread in Table 2). The acceleration is drastic in
comparison to the basic algorithm.

The parallel version of the algorithm was finally used. This time the proposed
approach was faced against the parallel version of the algorithm published in 2022 by
Hruda et al. [27] (considered as referenced in Table 2). Both algorithms (the proposed one
and the referenced one) were run on the same personal computer with an AMD Ryzen 9
5900X processor with 12 cores and 24 threads. The computer had 64 GB RAM. The tests

Symmetry 2022, 14, 1060 19 of 21

were executed on a Linux KUbuntu 21.10 (Kernel 5.13.0-30). As can be seen from the results,
the proposed algorithm was faster in all testing cases.

A parametric surface generated by the SURFMOD application [52] was used to demon-
strate the universality of the algorithm. The surface shown in Figure 12a was sampled
and the obtained points were mapped onto |B(1)| = 624,538 voxels. The surface has four
global reflection symmetries, two of them are shown in Figure 12b,c. The basic single
thread version of the algorithm took 129.06 s, while the Accelerated one terminated in just
0.321 s. The multi-threaded version was considerably faster: the basic version took 9.56 s,
the accelerated version took 0.035 s, and the referenced algorithm required 0.381 s.

(a) (b) (c)

Figure 12. An application of the algorithm on the parametric surface: (a) the surface with shown
control mesh; (b,c) found global reflection symmetries.

5. Discussion

Humans (and even some animals) consider symmetric objects as natural and beau-
tiful [53], and therefore the symmetry has been considered from many various aspects.
However, computers do not have the ability to see and to estimate symmetry. Various
approaches to this task were suggested in the past, and these were reviewed in Section 2
of this paper. Section 3 introduced the new hierarchical approach for global reflection
symmetry detection. This basic approach, however, makes the algorithm extremely gen-
eral, as it works for 2D or 3D geometric objects, which can be closed or not and may also
containing holes or not. Unfortunately, the direct implementation of the basic algorithm
turns out to be slow, as shown in Table 2. Therefore, three acceleration techniques were
introduced in this paper. The first one uses the dual-resolution grid, while the second
one uses the variable granularity of rotating the testing axis/plane. Table 2 confirms that
the acceleration is dramatic, and achieves almost a factor of 1000. For geometric objects
represented by more than 1,000,000 boundary cells, the algorithm found the position of the
symmetry plane in less than half a second in all the testing cases. The proposed algorithm
was then parallelised and an additional reduction in CPU time was achieved in this way.
The algorithm was compared with the state-of-the-art and achieved the same results with a
shorter CPU time.

Future work will go in two directions. Firstly, additional acceleration techniques
will be considered, and secondly, finding the symmetries in voxel-based data will be
investigated for medical applications.

Author Contributions: Conceptualisation, B.Ž. and D.P.; methodology, D.S. and N.L.; software,
A.N. and Š.K.; validation, I.K. and A.N.; formal analysis, D.P. and I.K.; investigation, B.Ž., D.P., I.K.
and A.N.; resources, I.K.; data curation, Š.K.; writing—original draft preparation, B.Ž., D.P. and A.N.;
writing—review and editing, D.S., I.K., Š.K. and N.L.; visualisation, A.N.; supervision, I.K. and B.Ž.;
project administration, I.K. and D.P.; funding acquisition, I.K. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Slovene Research Agency under Research Project N2-0181 and
Research Programme P2-0041, and the Czech Science Foundation under Research Project 21-08009K.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Symmetry 2022, 14, 1060 20 of 21

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McManus, I.C. Symmetry and Asymmetry in Aesthetics and the Arts. Eur. Rev. 2005, 13, 157–180. [CrossRef]
2. Mehaffy, M.W. The Impacts of Symmetry in Architecture and Urbanism: Toward a New Research Agenda. Buildings 2020, 10, 249.

[CrossRef]
3. Evans, C.S.; Wenderoth, P.; Cheng, K. Detection of Bilateral Symmetry in Complex Biological Images. Perception 2000, 29, 31–42.

[CrossRef]
4. Qui, W.; Yuan, J.; Ukwatta, E.; Sun, Y.; Rajchl, M.; Fenster, A. Prostate Segmentation: An Efficient Convex Optimization Approach

With Axial Symmetry Using 3-D TRUS and MR Images. IEEE Trans. Med. Imaging 2014, 33, 947–960.
5. Jäntschi, L.; Bolboacã, S.D. Symmetry in Applied Mathematics; MDPI: Basel, Switzerland, 2020.
6. Glowacz, A.; Królczyk, G.; Antonino-Daviu, J.A. Symmetry in Mechanical Engineering; MDPI: Basel, Switzerland, 2020.
7. Modrea, A.; Munteanu, V.M.; Pruncu, I. Using the Symmetries in the Civil Engineering. An overview. Procedia Manuf. 2020, 46,

906–913. [CrossRef]
8. Montoya, F.G.; Navarro, R.B. Symmetry in Engineering Sciences; MDPI: Basel, Switzerland, 2019.
9. Weyl, H. Symmetry; Princenton University Press: New York, NY, USA, 1952.
10. Miller, W. Symmetry Groups and Their Applications; Academic Press: London, UK, 1972.
11. Liu, X.; Hel-Or, H.; Kaplan, C.S.; van Gool, L. Computational Symmetry in Computer Vision and Computer Graphics. Found.

Trends Comput. Graph. Vis. 2009, 5, 1–195. [CrossRef]
12. Martin, G.E. Transformation Geometry; Springer: New York, NY, USA, 1982.
13. Barker, W.H.; Howe, R. Continuous Symmetry: From Euclid to Klein; American Mathematical Society: Providence, RI, USA, 2007.
14. Leyton, M. Symmetry, Causality, Mind; MIT Press: Cambridge, MA, USA, 1992.
15. Ponce, J. On Characterizing Ribbons and Finding Skewed Symmetries. Comput. Vis. Graph. Image Process. 1990, 52, 328–340.

[CrossRef]
16. Conners, R.W.; Ng, C.T. Developing a Quantitative Model of Human Preattentive Vision. IEEE Trans. Syst. Man Cybernet. 1989,

19, 1384–1407. [CrossRef]
17. Tyler, C.W. Human Symmetry Perception and its Computational Analysis; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2002.
18. Xiao, Z.; Wu, J. Analysis on Image Symmetry Detection Algorithms. In Proceedings of the Fourth International Conference on

Fuzzy Systems and Knowledge Discovery (FSKD 2007), Haikou, China, 24–27 August 2007; pp. 745–750.
19. Mitra, N.J.; Pauly, M.; Wand, M.; Ceylan, D. Symmetry in 3D geometry: Extraction and applications. Comput. Graph. Forum 2013,

32, 1–23. [CrossRef]
20. Bartalucci, C.; Furferi, R.; Governi, L.; Volpe, Y. A Survey of Methods for Symmetry Detection on 3D High Point Density Models

in Biomedicine. Symmetry 2018, 10, 263. [CrossRef]
21. Elawady, M.; Ducottet, C.; Alata, O.; Barat, C.; Colantoni, P. Wavelet-Based Reflection Symmetry Detection via Textural and Color

Histograms: Algorithm and Results. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops
(ICCVW), Venice, Italy, 22–29 October 2017; pp. 1734–1738.

22. Chen, H.; Wang, L.; Zhang, Y.; Wang, C. Dominant Symmetry Plane Detection for Point-Based 3D Models. Adv. Multimed. 2020,
2020, 8861367.

23. Schiebener, D.; Schmidt, A.; Vahrenkamp, N.; Asfour, T. Heuristic 3D Object Shape Completion Based on Symmetry and Scene
Context. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea,
9–14 October 2016; pp. 74–81.

24. Combés, B.; Hennessy, R.; Waddington, J.; Roberts, N.; Prima, S. Automatic Symmetry Plane Estimation of Bilateral Objects in
Point Clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28
August 2008; pp. 1–8.

25. Ecins, A.; Fermüller, C.; Aloimonos, Y. Detecting Reflectional Symmetries in 3D Data Through Symmetrical Fitting. In Proceedings
of the IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017; pp. 1779–1783.

26. Nagar, R.; Raman, S. Detecting Approximate Reflection Symmetry in a Point Set Using Optimization on Manifold. IEEE Trans.
Signal Process. 2019, 67, 1582–1595. [CrossRef]

27. Hruda, L.; Kolingerová, I.; Váša, L. Robust, Fast, Flexible Symmetry Plane Detection Based on Differentiable Symmetry Measure.
Vis. Comput. 2022, 38, 555–571. [CrossRef]

28. Li, B.; Johan, H.; Ye, Y.; Lu, Y. Efficient 3D Reflection Symmetry Detection: A View-based Approach. Graph. Models 2016, 83, 2–14.
[CrossRef]

29. Sipiran, I.; Gregor, R.; Schreck, T. Approximate Symmetry Detection in Partial 3D Meshes. Comput. Graph. Forum 2014 33, 131–140.
[CrossRef]

30. Kakarala, R.; Kaliamoorthi, P.; Premachandran, V. Three-Dimensional Bilateral Symmetry Plane Estimation in the Phase Domain.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013;
pp. 249–256.

http://doi.org/10.1017/S1062798705000736
http://dx.doi.org/10.3390/buildings10120249
http://dx.doi.org/10.1068/p2905
http://dx.doi.org/10.1016/j.promfg.2020.05.007
http://dx.doi.org/10.1561/0600000008
http://dx.doi.org/10.1016/0734-189X(90)90079-B
http://dx.doi.org/10.1109/21.44061
http://dx.doi.org/10.1111/cgf.12010
http://dx.doi.org/10.3390/sym10070263
http://dx.doi.org/10.1109/TSP.2019.2893835
http://dx.doi.org/10.1007/s00371-020-02034-w
http://dx.doi.org/10.1016/j.gmod.2015.09.003
http://dx.doi.org/10.1111/cgf.12481

Symmetry 2022, 14, 1060 21 of 21

31. Podolak, J.; Shilane, P.; Golovinsky, A.; Rusinkiewiczm, S.; Funkhouser, T. A Planar-Reflective Symmetry Transform for 3D
Shapes. ACM Trans. Graph. 2006, 25, 549–559. [CrossRef]

32. Cicconet, M.; Hildebrand, D.G.C.; Elliott, H. Finding Mirror Symmetry via Registration and Optimal Symmetric Pairwise
Assignment of Curves: Algorithm and Results. In Proceedings of the IEEE International Conference on Computer Vision
Workshops (ICCVW), Venice, Italy, 22–29 October 2017; pp. 1759–1763.

33. Simari, P.D.; Kalogerakis, E.; Singh, K. Folding meshes: Hierarchical Mesh Segmentation Based on Planar Symmetry. In
Proceedings of the Fourth Eurographics Symposium on Geometry Processing, Cagliary, Italy, 26–28 June 2006; pp. 111–119.

34. Cailliere, D.; Denis, F.; Pele, D.; Baskurt, A. 3D Mirror Symmetry Detection Using Hough Transform. In Proceedings of the 5th
IEEE International Conference on Image Processing, San Diego, CA, USA, 12–15 October 2008; pp. 1772–1775.

35. Speciale, P.; Oswald, M.R.; Cohen, A.; Pollefeys, M. A Symmetry Prior for Convex Variational 3D Reconstruction. In Computer
Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Lecture Notes in Computer Science 9912; Springer: Cham,
Germany, 2016; pp. 313–328.

36. Liu, Y.-K.; Žalik, B.; Wang, P.-J.; Podgorelec, D. Directional Difference Chain Codes with Quasi-Lossless Compression and
Run-Length Encoding. Signal Process. Image Commun. 2012, 27, 973–984. [CrossRef]

37. Bribiesca, E. A Measure of Tortuosity Based on Chain Coding. Pattern Recognit. 2013, 46, 716–724. [CrossRef]
38. Alvarado-Gonzalez, M.; Aguilar, W.; Garduño, E.; Velarde, C.; Bribiesca, E.; Medina-Bañuelos, V. Mirror Symmetry Detection in

Curves Represented by Means of the Slope Chain Code. Pattern Recognit. 2019, 87, 67–79. [CrossRef]
39. Aguilar, W.; Alvarado-Gonzalez, M.; Garduño, E.; Velarde, C.; Bribiesca, E. Detection of Rotational Symmetry in Curves

Represented by the Slope Chain Code. Pattern Recognit. 2020, 107, 107421. [CrossRef]
40. Sun, C.; Sherrah, J. 3D Symmetry Detection Using the Extended Gaussian Image. IEEE Trans. Pattern Anal. 1997, 19, 164–168.
41. Korman, S.; Litman, R.; Avidan, S.; Bronstein, A. Probably Approximately Symmetric: Fast Rigid Symmetry Detection with

Global Guarantees. Comput. Graph. Forum 2015, 34, 2–13. [CrossRef]
42. Mitra, N.J.; Guibas, L.J.; Pauly, M. Approximate Symmetry Detection for 3D Geometry. ACM Trans. Graph. 2006, 25, 560–668.

[CrossRef]
43. Ji, P.; Liu, X. A Fast and Efficient 3D Reflection Symmetry Detector Based on Neural Networks. Multimed. Tools Appl. 2019, 78,

35471–35492. [CrossRef]
44. Wu, Z.; Jiang, H.; He, S. Symmetry Detection of Occluded Point Cloud Using Deep Learning. Procedia Comput. Sci. 2021, 183, 32–39.

[CrossRef]
45. Gao, L.; Zhang, L.-X.; Meng, H.-Y.; Ren, Y.-H.; Lai, Y.-K.; Kobbelt, L. PRS-Net: Planar Reflective Symmetry Detection Net for 3D

Models. IEEE Trans. Vis. Comput. Graph. 2021, 27, 3007–3018. [CrossRef]
46. Tsogkas, S.; Kokkinos, I. Learning-based Symmetry Detection in Natural Images. In Computer Vision—ECCV 2012 Florence; Fitzgib-

bon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C., Eds.; Lecture Notes in Computer Science 7578; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 41–54.

47. Mattson, T.G.; He, Y.; Koniges, A.E. The OpenMP Commom Core, Making OpenMP Simple Again; MIT Press: Cambridge, MA, USA;
London, UK, 2019.

48. Generalized Symmetries and Equivalences of Geometric Data. Supplementary Material. Available online: https://gemma.feri.
um.si/projects/international-projects/generalized-symmetries-and-equivalences-of-geometric-data-si/eng/software-eng/ (ac-
cessed on 11 April 2022).

49. PLY Files an ASCII Polygon Format. Available online: https://people.sc.fsu.edu/~jburkardt/data/ply/ply.html (accessed on 24
February 2022).

50. The Stanford 3D Scanning Repository. Available online: http://graphics.stanford.edu/data/3Dscanrep/ (accessed on 24 February 2022).
51. MS Paint3D Library. Available online: https://free3d.com/3d-model (accessed on 24 February 2022).
52. Guid, N.; Kolmanič, S.; Strnad, D. SURFMOD: Teaching tool for parametric curve and surface methods in CAGD based on

comparison and analysis. IEEE Trans. Educ. 2006, 49, 292–301. [CrossRef]
53. Moller, A.P. Swallows and Scorpionflies Find Symmetry is Beautiful. Science 1992, 257, 327–328.

http://dx.doi.org/10.1145/1141911.1141923
http://dx.doi.org/10.1016/j.image.2012.07.008
http://dx.doi.org/10.1016/j.patcog.2012.09.017
http://dx.doi.org/10.1016/j.patcog.2018.10.002
http://dx.doi.org/10.1016/j.patcog.2020.107421
http://dx.doi.org/10.1111/cgf.12454
http://dx.doi.org/10.1145/1141911.1141924
http://dx.doi.org/10.1007/s11042-019-08043-9
http://dx.doi.org/10.1016/j.procs.2021.02.027
http://dx.doi.org/10.1109/TVCG.2020.3003823
https://gemma.feri.um.si/projects/international-projects/generalized-symmetries-and-equivalences-of-geometric-data-si/eng/software-eng/
https://gemma.feri.um.si/projects/international-projects/generalized-symmetries-and-equivalences-of-geometric-data-si/eng/software-eng/
https://people.sc.fsu.edu/~jburkardt/data/ply/ply.html
http://graphics.stanford.edu/data/3Dscanrep/
https://free3d.com/3d-model
http://dx.doi.org/10.1109/TE.2006.873981

	Introduction
	Related Works
	Global Reflection Symmetry
	Local Reflection Symmetry
	Global Reflection and Rotational Symmetry
	Different Categories of Local Symmetry
	Machine Learning in Symmetry Detection

	Materials and Methods
	Algorithm Acceleration
	Dual-Resolution Grid
	Variable Granularity of the Testing Axis/Plane
	Parallelisation

	Results
	Discussion
	References

