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Abstract

Diabetes is a widespread civilization disease. When developing a new treatment method, in-silico benefits the development pro-
cess by reducing the need for in-vivo subjects. In-silico evaluation requires a reliable metabolic model, often created as a multi-
compartmental model. A common approach to implementing a multi-compartmental model is to use a system of ordinary dif-
ferential equations. This approach utilises exponential transfer functions to transfer substances among the compartments. Using
other than an exponential function is complex. Therefore, we propose a novel approach based on a direct, numeric integration of
separated compartments, which can be further divided into individual depots. This enables to model substance transfer as a sepa-
rate process with non-exponential characteristics, e.g.; when modelling carbohydrate absorption from the gut. As another benefit,
the approach obeys the law of mass conservation on both the computational and architectural levels. This is a key feature when
identifying a model on data, that are not measured within a controlled, isolated environment. Moreover, we actually transform the
set of equations, i.e.; computer-code functions, into a component model to reduce the total maintenance costs – readability, testing,
verification and deployment. We demonstrate the proposed approach by converting the Samadi model to it and enhancing it with a
non-exponential transfer function.
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1. Introduction

Diabetes is a heterogeneous group of diseases, which all manifest with elevated blood glucose (BG) levels[1].
Elevated BG leads to organ damage and potentially death. The main cause of diabetes is either an absolute (type 1
diabetes, T1D) or relative (type 2 diabetes, T2D) insulin insufficiency. Insulin is a hormone, which serves as a transfer
agent for glucose to pass the cell membrane. It also allows for storing excessive glucose in a form of glycogen. Overall,
it lowers the BG. This paper is further concerned with T1D-only.

The patient measures his/her glucose levels using a CGM device[2]. This device measures the glucose levels in the
interstitial fluid using a sensor deployed to a patient’s subcutaneous tissue. The sensor obtains the interstitial glucose
(IG) readings, which are sufficiently similar to BG readings in order to achieve a successful treatment[3].

For a T1D patient, in order to keep the BG in a safe range, effective insulin treatment is needed. The treatment
aims to keep BG in between 3.6-6.0mmol/L. An insulin pump is a device, that doses insulin into a patient’s body[4].
It operates in two modes – bolus and basal insulin. Bolus insulin is a one-time insulin delivery of a greater volume.
Basal insulin delivery is a continuous delivery mode, which doses small portions of insulin periodically every few
seconds or minutes. T1D insulin treatment is a control problem[5]. The control is either an open-loop, in which the
user sets the insulin volumes manually or a closed-loop, in which the pump deploys an algorithm, which estimates
the dosage based on BG readings. A hybrid closed-loop control assumes that the system runs as a closed-loop, but no
control action is performed without the patient’s intervention[5].

Treatment methods are often tested in-silico in order to reduce the need for in-vivo patients[6]. The in-silico evalua-
tion phase requires a physiological model, that allows this type of testing inside a simulation. Such a model comprises
a number of compartments, each virtually maintaining at least one substance depot. Compartments are connected
using virtual links, which represent transfer functions. These transfer functions are often exponential. This is due to
the fact, that substance absorption was observed to be of an exponential character[7].

A common approach to multi-compartmental model implementation is to use a system of ordinary differential
equations (ODE), as such a model represents a dynamic system[8]. Exponential transfer functions are modelled lin-
early in ODE. This implicitly keeps the computational time low. Using ODE as an implementation in conjunction
with exponential transfer functions allows for multiple transfers within a single compartment to be commenced at
once – i.e.; there is no need for multiple depots with isolated transfers. This is a useful property when modelling e.g.;
meal-glucose or insulin dosage absorption.

To solve the ODE system in a computer program, a solver is used – usually a Runge-Kutta method-based solver[9].
Given the initial conditions, the solver integrates the ODE system and calculates quantities in all compartments incre-
mentally.

To achieve optimal treatment based on model-predictive control (MPC), we need to have a fully personalized
physiological model. Obtaining a personalized physiological model is a particularly hard problem. With the lack of
all relevant quantity measurements, the fitting of any model may exhibit large errors. Moreover, measured data from
CGM sensors are always noisy and suffer from immune system-induced sensor numbness. Sensor calibration by an
explicit BG measurement partially compensates for this phenomenon[10].

Furthermore, deployment of such a model into a closed-loop system driven by an embedded device requires all
components to be properly verified on a component level. Verification of a multi-compartmental model implemented
as an ODE system is hard. To be able to easily verify the implementation, we require a high level of decomposition
and a well-defined component interface[11].

1.1. SmartCGMS

SmartCGMS is a signal processing framework and architecture. It builds on top of the principles of High-Level
Architecture (HLA), which is a well-established simulation paradigm.

A SmartCGMS configuration defines a chain of linearly connected top-level entities called filters. Filters commu-
nicate by a message passing. Every filter can generate a message, which is then propagated through the chain from
the source to the last filter in chain. A filter can send messages to preceding filters only via the feedback link[13]. The
message structure is defined by an abstract data type.[12]

Every filter maintains a single, isolated functionality. For example, database reader filter reads previously measured
values and sends them to the chain. Signal generator filter uses a configured model to calculate one or more signals,
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optionally based on previously measured values. A log filter reads every message and transcribes it to a CSV log file.
A drawing filter reads all messages containing a signal level and visualizes them in form of a plot.

2. Related work

Multi-compartmental models are an integral part of, among others, diabetes mellitus treatment research. Their
primary goal in this area is to model the human glucose metabolism and related systems as accurately, as possible.
Bergman [14] devised a model of a glucose disappearance to estimate insulin sensitivity. Hovorka [15] devised a model
containing multiple metabolic subsystems to allow for model-predictive BG control. Dalla Man [16] introduced a
model specifically for insulin treatment evaluation. This model, deployed as a part of T1DMS simulator, was accepted
by the U.S. Food and Drug Administration (FDA) for pre-clinical trial in-silico testing on a single-meal scenarios.
Later, an improved model was proposed by Visentin, that was accepted by FDA for a single-day scenarios[17]. Samadi
[18] proposed an alternative model incorporating a physical activity into the Hovorka model.

All of the above models are implemented as an ODE system. As the models gain complexity, their equations grow
and creates a room for a human error when proposing enhancements. Furthermore, all of the above models need
various transfer functions other than exponentials. This forces authors to create non-standard constructions, such as
multiple compartments to simulate absorption curves, when, in fact, there are only two physical compartments that
exchange the substance in a non-exponential way.

3. Proposed approach

We propose a novel approach to multi-compartmental model implementation, considering the best practices of
software engineering. The multi-compartmental model implementation comprises a set of entities with a defined
interface. The top-level entity is a compartment itself. It contains a dynamic collection of depots. Each depot has a
quantity and a volume. Depots are connected with links, which encapsulates a transfer function, and optionally a list
of moderator functions. A single depot can be connected to multiple depots by links with various transfer functions.

A transfer function entity maintains the transfer between depots. When using a standard ODE approach, the im-
plementor needs to split the transfer into two separate terms for respective differential equations. For example, the
exponential transfer with a transfer coefficient c between compartment A and B is written using an ODE system as
follows:

dA(t)
dt
= −c · A(t)

dB(t)
dt
= c · A(t)

(1)

Most likely, a computer code representing these equations will comprise a function for each equation. We may use a
fraction of a C++ code to demonstrate the form:

double dA(TState state , double T) {

return -c*state.A;

}

double dB(TState state , double T) {

return c*state.B;

}

In this code, TState represent a container structure for compartment quantities. The equivalent link is expressed with
proposed approach as a computer code as follows:

A.Link_To <CConstant_Unbounded_Transfer_Function >(B, c);

The above code maintains both the parts of the transfer (the elimination from A and appearance in B), as it is
a single entity, which considers both the depots at once during transfer. Although the transfer is of an exponential
character, the term is linear, hence the name of the entity.

In order to define virtually any type of transfer function, we use a direct numerical integration of transfer functions
to determine the fraction of quantity to be exchanged between depots. Using this approach, it is also possible to create
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Fig. 1. Class diagram of proposed method

temporary depots with bounded transfer functions. For example to model insulin absorption, we can take the insulin
activity curve and implement it directly as a time-bounded function. Then, using multiple types of insulin does not
need multiple compartments – we change the upper bound of the insulin transfer function.

The figure 1 shows the class diagram of the proposed method. The CDepot class represents the generic depot
with usual behavior. This class has two specializations – CSource Depot as a depot with unlimited quantity (always
gives the requested amount) and CSink Depot as a depot with unlimited capacity (always takes and consumes the
whole amount). These two depot types model a situation, when a substance continuously enters or leaves the modelled
system.

Moderator function is a function, that moderates the transfer amount by an amount of other depot. Therefore, it
is the source of non-linearity in the original ODE approach. The transfer function in our proposed approach itself
cannot take another depot into account and needs a moderator to moderate the transfered amount, optionally with
moderator elimination. The moderator function is implemented as a component, which calculates moderation input.
The moderator function component is instantiated during transfer function definition. Then, during the simulation, the
transfer amount is multiplied by a moderation input. A typical example of a moderated transfer is insulin-dependent
glucose elimination – the amount of glucose eliminated from the system either by utilization or glycogenesis is directly
dependent on the amount of insulin in respective compartment.

To prove the equivalence between the standard ODE approach and our proposed approach, let us take the
CConstant Unbounded Transfer Function component and an exponential transfer function expressed in ODE.
A single transfer within our proposed method steps through a simple equation with a step of ∆t:

n(Q(t), t) = Q(t) ∗
∫ ti+1

ti
f (t) dt

A(t + ∆t) = A(t) − n(A(t), t)
B(t + ∆t) = B(t) + n(A(t), t),

(2)

where f (t) is a transfer function. The chosen function yields just a constant coefficient for every input, thus f (t) = c.
Let us use the equation for compartment A and substitute the f (t) with a constant term c. Then, by solving the
integral on a given time domain, factoring out the constant term c, substituting the time difference ti+1 − ti by a ∆t and
rearranging the equation we obtain the following difference form:

A(t + ∆t) − A(t)
∆t

= −c ∗ A(t) (3)

Using a limit, the resulting equation is successfully converted into a form of an ODE:

lim
∆t→0

A(t + ∆t) − A(t)
∆t

= −c ∗ A(t)

dA(t)
dt
= −c ∗ A(t)

(4)
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is the source of non-linearity in the original ODE approach. The transfer function in our proposed approach itself
cannot take another depot into account and needs a moderator to moderate the transfered amount, optionally with
moderator elimination. The moderator function is implemented as a component, which calculates moderation input.
The moderator function component is instantiated during transfer function definition. Then, during the simulation, the
transfer amount is multiplied by a moderation input. A typical example of a moderated transfer is insulin-dependent
glucose elimination – the amount of glucose eliminated from the system either by utilization or glycogenesis is directly
dependent on the amount of insulin in respective compartment.

To prove the equivalence between the standard ODE approach and our proposed approach, let us take the
CConstant Unbounded Transfer Function component and an exponential transfer function expressed in ODE.
A single transfer within our proposed method steps through a simple equation with a step of ∆t:

n(Q(t), t) = Q(t) ∗
∫ ti+1

ti
f (t) dt

A(t + ∆t) = A(t) − n(A(t), t)
B(t + ∆t) = B(t) + n(A(t), t),

(2)

where f (t) is a transfer function. The chosen function yields just a constant coefficient for every input, thus f (t) = c.
Let us use the equation for compartment A and substitute the f (t) with a constant term c. Then, by solving the
integral on a given time domain, factoring out the constant term c, substituting the time difference ti+1 − ti by a ∆t and
rearranging the equation we obtain the following difference form:

A(t + ∆t) − A(t)
∆t

= −c ∗ A(t) (3)

Using a limit, the resulting equation is successfully converted into a form of an ODE:

lim
∆t→0

A(t + ∆t) − A(t)
∆t

= −c ∗ A(t)

dA(t)
dt
= −c ∗ A(t)

(4)
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4. Experimental setup

To verify the equivalence between traditional ODE approach and our proposed novel approach, we choose the
Samadi model as the representative of ODE-based multi-compartmental models. The full equation description is
presented in the respective paper[18].

We implemented the original Samadi model as a system of ODE, and tuned its parameters to fit a specific time
segment extracted from Ohio T1D dataset[19], more specifically a single day segment of a subject 544. We used the
MetaDE algorithm to find parameters of the model[20]. The original Samadi model is stepped using Dormand-Prince
parametrization of a Runge-Kutta ODE solver[21]. For our proposed approach, we use the Simpson’s 1/3 rule to
integrate over the transfer function[22].

A large portion of transfer functions is of an exponential character, and therefore can be transformed to a simple
link with constant transfer rate, as demonstrated in section 3. Nonetheless, some of the transfer characteristics exhibit
a different behavior:

• over-the-threshold linear clearance – e.g.; renal clearance over the threshold of 9.0mmol/L (the FR(t) term)
• threshold-driven ratio clearance – e.g.; insulin-independent glucose uptake term (FC

01(t) term)
• moderated appearance or clearance – there are many instances, e.g.; physical activity-moderated insulin transfer

of glucose from Q1 to Q2 (written as (1 + αE2(t)2) · x1(t) · Q1(t))
• a number of transfers in the exercise subsystem – e.g.; every transfer moderated by the f (E1(t)) function
• unit change during transfer – e.g.; transfer between S 2 and I changes the units with the factor of 1

VI
; this means,

that some quantity leaves the S 2 compartment, and enters the I compartment multiplied by this factor
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Fig. 2. Graph of the measured input data, and both implementations of Samadi model.

We transformed the Samadi model from its original form of differential equations to our proposed approach. For
every type of transfer function, we implemented its own class. Then we use the same set of parameters for both the
original and proposed approach to show, that both approaches can represent the original model. Table 1 shows the
absolute and relative errors of the original ODE implementation, and our proposed approach, respectively, against the
measured data. Figure 3 depicts the empirical cumulative distribution function (ECDF). Both the tables and ECDF
shows, that the errors of both approaches are very close. Figure 2 then shows the time-segment with curves from both
model implementations.

To demonstrate the capabilities of our proposed approach, let us slightly modify the Samadi model. The glucose
flux from Q1 to Gsc is modelled as a simple exponential transfer from Q1 to Gsc with unit conversion, and as a
clearance from Gsc. This is not physiologically correct, as the substance transfer between these two compartments is
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Error type Method Avg. ± Std.Dev. Min. 1. Q Median 3. Q 95% Pct. 99% Pct. Max.

Absolute ODE 0.571 ± 0.429 5.78e-10 0.271 0.516 0.714 1.204 1.930 1.999
Proposed 0.582 ± 0.431 1.673e-03 0.273 0.521 0.752 1.235 1.930 1.999
Modified 0.5693 ± 0.459 3.161e-10 0.23 0.5068 0.7194 1.408 1.993 2.097

Relative ODE 6.325% ± 4.935% 4.05e-09% 2.66% 5.076% 8.767% 16.5% 18.93% 19.47%
Proposed 6.445% ± 5.009% 1.173e-02% 2.761% 5.188% 8.761% 16.71% 19.12% 19.86%
Modified 6.116% ± 4.931% 2.216e-09% 2.55% 4.959% 7.917% 17.03% 18.85% 20.53%

Table 1. Absolute and relative errors of original ODE system implementation of Samadi model, proposed method and proposed method modified
with non-exponential transfer
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Fig. 3. Empirical cumulative distributon function of both implementations of Samadi model

a facilitated diffusion. Let us modify the model as follows. We rename Gsc to Qsc and remove unit conversion, so the
Q1 and Qsc have the same units. Then, we remove all the links regarding this depot and introduce a new one, that uses
the CTwo Way Diffusion Unbounded Transfer Function function. We reuse the τg parameter as a diffusion rate
parameter. The Qsc is converted to IG measurements (formerly Gsc) by a control code outside the model definition.

After modifying the model, the parameter set is no longer valid, as the model changed and the meaning of the τg

parameter changed its meaning. Let us use the MetaDE to obtain a new parameter fit. Table 1 shows absolute and
relative errors after modifying the model and obtaining a new parameter set.

As the table 1 shows, the introduction of diffusion transfer between Q1 and Qsc slightly improved the model fit.
Nonetheless, we introduced this change just to demonstrate the modularity and robustness of our proposed approach.
This paper does not suggest any modifications to this model.

For a better comparison of both approaches on the implementation level, let us consider Q1 and Q2 compartments.
The code of the ODE implementation follows:

constexpr double Gthresh_F01 = 4.5;

constexpr double Gthresh_FR = 9.0;

double CSamadi_ODE ::dQ1(const double _T, const double _X) const {

const double Gt = _X / mParams.Vg;

const double F01C = Gt >= Gthresh_F01 ?

mParams.F01 : (mParams.F01 * Gt / Gthresh_F01 );

const double FR = Gt >= Gthresh_FR ?

0.003 * (Gt - 9.0) * mParams.Vg : 0;

const double UG = mState.D2 / mParams.tmaxG + mState.DH2 / (mParams.tmaxG / 2.0);

return -(1 + mParams.alpha * mState.E2 * mState.E2) * mState.x1 * _X

+ mParams.k12 * mState.Q2
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To verify the equivalence between traditional ODE approach and our proposed novel approach, we choose the
Samadi model as the representative of ODE-based multi-compartmental models. The full equation description is
presented in the respective paper[18].

We implemented the original Samadi model as a system of ODE, and tuned its parameters to fit a specific time
segment extracted from Ohio T1D dataset[19], more specifically a single day segment of a subject 544. We used the
MetaDE algorithm to find parameters of the model[20]. The original Samadi model is stepped using Dormand-Prince
parametrization of a Runge-Kutta ODE solver[21]. For our proposed approach, we use the Simpson’s 1/3 rule to
integrate over the transfer function[22].

A large portion of transfer functions is of an exponential character, and therefore can be transformed to a simple
link with constant transfer rate, as demonstrated in section 3. Nonetheless, some of the transfer characteristics exhibit
a different behavior:

• over-the-threshold linear clearance – e.g.; renal clearance over the threshold of 9.0mmol/L (the FR(t) term)
• threshold-driven ratio clearance – e.g.; insulin-independent glucose uptake term (FC

01(t) term)
• moderated appearance or clearance – there are many instances, e.g.; physical activity-moderated insulin transfer

of glucose from Q1 to Q2 (written as (1 + αE2(t)2) · x1(t) · Q1(t))
• a number of transfers in the exercise subsystem – e.g.; every transfer moderated by the f (E1(t)) function
• unit change during transfer – e.g.; transfer between S 2 and I changes the units with the factor of 1
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Fig. 2. Graph of the measured input data, and both implementations of Samadi model.

We transformed the Samadi model from its original form of differential equations to our proposed approach. For
every type of transfer function, we implemented its own class. Then we use the same set of parameters for both the
original and proposed approach to show, that both approaches can represent the original model. Table 1 shows the
absolute and relative errors of the original ODE implementation, and our proposed approach, respectively, against the
measured data. Figure 3 depicts the empirical cumulative distribution function (ECDF). Both the tables and ECDF
shows, that the errors of both approaches are very close. Figure 2 then shows the time-segment with curves from both
model implementations.

To demonstrate the capabilities of our proposed approach, let us slightly modify the Samadi model. The glucose
flux from Q1 to Gsc is modelled as a simple exponential transfer from Q1 to Gsc with unit conversion, and as a
clearance from Gsc. This is not physiologically correct, as the substance transfer between these two compartments is
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Error type Method Avg. ± Std.Dev. Min. 1. Q Median 3. Q 95% Pct. 99% Pct. Max.

Absolute ODE 0.571 ± 0.429 5.78e-10 0.271 0.516 0.714 1.204 1.930 1.999
Proposed 0.582 ± 0.431 1.673e-03 0.273 0.521 0.752 1.235 1.930 1.999
Modified 0.5693 ± 0.459 3.161e-10 0.23 0.5068 0.7194 1.408 1.993 2.097

Relative ODE 6.325% ± 4.935% 4.05e-09% 2.66% 5.076% 8.767% 16.5% 18.93% 19.47%
Proposed 6.445% ± 5.009% 1.173e-02% 2.761% 5.188% 8.761% 16.71% 19.12% 19.86%
Modified 6.116% ± 4.931% 2.216e-09% 2.55% 4.959% 7.917% 17.03% 18.85% 20.53%

Table 1. Absolute and relative errors of original ODE system implementation of Samadi model, proposed method and proposed method modified
with non-exponential transfer
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a facilitated diffusion. Let us modify the model as follows. We rename Gsc to Qsc and remove unit conversion, so the
Q1 and Qsc have the same units. Then, we remove all the links regarding this depot and introduce a new one, that uses
the CTwo Way Diffusion Unbounded Transfer Function function. We reuse the τg parameter as a diffusion rate
parameter. The Qsc is converted to IG measurements (formerly Gsc) by a control code outside the model definition.

After modifying the model, the parameter set is no longer valid, as the model changed and the meaning of the τg

parameter changed its meaning. Let us use the MetaDE to obtain a new parameter fit. Table 1 shows absolute and
relative errors after modifying the model and obtaining a new parameter set.

As the table 1 shows, the introduction of diffusion transfer between Q1 and Qsc slightly improved the model fit.
Nonetheless, we introduced this change just to demonstrate the modularity and robustness of our proposed approach.
This paper does not suggest any modifications to this model.

For a better comparison of both approaches on the implementation level, let us consider Q1 and Q2 compartments.
The code of the ODE implementation follows:

constexpr double Gthresh_F01 = 4.5;

constexpr double Gthresh_FR = 9.0;

double CSamadi_ODE ::dQ1(const double _T , const double _X) const {

const double Gt = _X / mParams.Vg;

const double F01C = Gt >= Gthresh_F01 ?

mParams.F01 : (mParams.F01 * Gt / Gthresh_F01 );

const double FR = Gt >= Gthresh_FR ?

0.003 * (Gt - 9.0) * mParams.Vg : 0;

const double UG = mState.D2 / mParams.tmaxG + mState.DH2 / (mParams.tmaxG / 2.0);

return -(1 + mParams.alpha * mState.E2 * mState.E2) * mState.x1 * _X

+ mParams.k12 * mState.Q2
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- F01C - FR + UG + mParams.EGP_0 * (1 - mState.x3);

}

double CSamadi_ODE ::dQ2(const double _T , const double _X) const {

return (1 + mParams.alpha * mState.E2 * mState.E2) * mState.x1 * mState.Q1

- mParams.k12 * _X

- mState.x2 * _X * (1 + mParams.alpha * mState.E2 * mState.E2

- mParams.beta * mState.E1 / mParams.HRbase );

}

The code above is considered a ”spaghetti code”[23] – a code with repetitive parts and little to no decomposition.
Although all given transfers are well-defined as a mathematical function, the implementation does not allow to verify
the program correctness with a standardized testing procedures, e.g.; to test the transfers separately with a set of unit
tests.

The most repeated part is the 1 + mParams.alpha * mState.E2 * mState.E2 calculation. In terms of our
proposed approach, this is a moderator function. Therefore, we implement the moderator function as a component
inheriting the IModerator Function interface:

class CQuadratic_Moderation_No_Elimination_Function : public IModeration_Function {

protected:

double mModeration_Factor = 1.0;

public:

CQuadratic_Moderation_No_Elimination_Function(double modFactor)

: mModeration_Factor(modFactor) {

}

virtual double Get_Moderation_Input(double moderatorAmount) const override {

return 1.0 + moderatorAmount * moderatorAmount * mModeration_Factor;

}

virtual double Get_Elimination_Input(double moderatorAmount) const override {

return 0.0;

}

};

The link between Q1 and Q2 utilizing this moderator function is then established as follows:

q1.Moderated_Link_To <CConstant_Unbounded_Transfer_Function >(q2 ,

[&E2, &x1 , this]( CDepot_Link& link) {

link.Add_Moderator <CQuadratic_Moderation_No_Elimination_Function >(E2 , mParams.alpha );

link.Add_Moderator <CLinear_Moderation_No_Elimination_Function >(x1 , 1.0);

},

1.0);

This component is reusable and therefore, we can use it to define the other two repetitions of the same term.

5. Conclusion

We proposed a novel approach to multi-compartmental model implementation. It respects the software engineer-
ing best-practices. The model, its compartments and transfer functions are decomposed on the implementation level
into separate, reusable building blocks. The code is cleaner, self-documenting, better constrained and reduces the
probability of human error during model modifications. Furthermore, every building block can be verified separately
using standard testing procedures. This complies with the basic idea of the SmartCGMS framework and allows for a
possible future rapid deployment process.

The proposed approach was verified on the Samadi model. The Samadi model was implemented in two versions
– original implementation using ODE system, and using the proposed approach. Results show, that both approaches
exhibits very similar errors, while the proposed method is much more scalable and respects the best practices of
software engineering. The error difference most likely comes from the differences between the used ODE solver and
the integration rule – both exhibit a slightly different behavior in different situations.

8 Martin Ubl / Procedia Computer Science 00 (2022) 000–000

The current implementation of the proposed approach is based purely on dynamic components. For the future
work, converting a substantial part of the component code-base into a statically instantiated components may greatly
improve the performance.
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- F01C - FR + UG + mParams.EGP_0 * (1 - mState.x3);

}

double CSamadi_ODE ::dQ2(const double _T , const double _X) const {

return (1 + mParams.alpha * mState.E2 * mState.E2) * mState.x1 * mState.Q1

- mParams.k12 * _X

- mState.x2 * _X * (1 + mParams.alpha * mState.E2 * mState.E2

- mParams.beta * mState.E1 / mParams.HRbase );

}

The code above is considered a ”spaghetti code”[23] – a code with repetitive parts and little to no decomposition.
Although all given transfers are well-defined as a mathematical function, the implementation does not allow to verify
the program correctness with a standardized testing procedures, e.g.; to test the transfers separately with a set of unit
tests.

The most repeated part is the 1 + mParams.alpha * mState.E2 * mState.E2 calculation. In terms of our
proposed approach, this is a moderator function. Therefore, we implement the moderator function as a component
inheriting the IModerator Function interface:

class CQuadratic_Moderation_No_Elimination_Function : public IModeration_Function {

protected:

double mModeration_Factor = 1.0;

public:

CQuadratic_Moderation_No_Elimination_Function(double modFactor)

: mModeration_Factor(modFactor) {

}

virtual double Get_Moderation_Input(double moderatorAmount) const override {

return 1.0 + moderatorAmount * moderatorAmount * mModeration_Factor;

}

virtual double Get_Elimination_Input(double moderatorAmount) const override {

return 0.0;

}

};

The link between Q1 and Q2 utilizing this moderator function is then established as follows:

q1.Moderated_Link_To <CConstant_Unbounded_Transfer_Function >(q2 ,

[&E2 , &x1 , this]( CDepot_Link& link) {

link.Add_Moderator <CQuadratic_Moderation_No_Elimination_Function >(E2 , mParams.alpha);

link.Add_Moderator <CLinear_Moderation_No_Elimination_Function >(x1 , 1.0);

},

1.0);

This component is reusable and therefore, we can use it to define the other two repetitions of the same term.

5. Conclusion

We proposed a novel approach to multi-compartmental model implementation. It respects the software engineer-
ing best-practices. The model, its compartments and transfer functions are decomposed on the implementation level
into separate, reusable building blocks. The code is cleaner, self-documenting, better constrained and reduces the
probability of human error during model modifications. Furthermore, every building block can be verified separately
using standard testing procedures. This complies with the basic idea of the SmartCGMS framework and allows for a
possible future rapid deployment process.

The proposed approach was verified on the Samadi model. The Samadi model was implemented in two versions
– original implementation using ODE system, and using the proposed approach. Results show, that both approaches
exhibits very similar errors, while the proposed method is much more scalable and respects the best practices of
software engineering. The error difference most likely comes from the differences between the used ODE solver and
the integration rule – both exhibit a slightly different behavior in different situations.

8 Martin Ubl / Procedia Computer Science 00 (2022) 000–000

The current implementation of the proposed approach is based purely on dynamic components. For the future
work, converting a substantial part of the component code-base into a statically instantiated components may greatly
improve the performance.
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