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Abstract: This paper deals with identification of noise covariance matrices of a dynamic system
described by a linear discrete-in-time time-invariant stochastic state-space model. In particular,
the parametric identifiability of the correlations methods is analysed and explicit relations for
determination of a number of identifiable noise covariance matrices parameters are stated. The
theoretical results are thoroughly discussed and illustrated.
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1. INTRODUCTION

Knowledge of a system description is an integral part of a
design of modern optimal signal processing and decisions
making algorithms for state estimation, fault detection,
and automatic control. An incorrect system description
can lead to deteriorated behaviour of the algorithms or
even in their instability.

The state-space model is designed to consistently describe
a combination of deterministic and stochastic impacts
affecting the system quantities and sensor properties. As
such, the model can be virtually viewed as a composition
of two sub-models. The first one describes deterministic
(and thus predictable) system behaviour that often arises
from the first principles. The second one characterises
random behaviour of involved quantities, but it is usually
difficult to obtain it from the first principles modelling and,
instead, it is identified from data.

Therefore, in the last fifty years, a considerable research
interest has been focused on a design of methods identify-
ing properties of the state and measurement noises with an
emphasis on the noise covariance matrices 1 (CMs) identi-
fication. In the literature, four main classes of the identifi-
cation methods can be found; namely Bayesian, covariance
matching, maximum likelihood, and correlation methods.
This paper focuses on the class of the correlation methods
developed in a number of paper since the seventies and
reviewed in (Duńık et al., 2017). The correlation methods
are, compared to other classes, derived analytically with
minimal assumptions on the model. As a consequence, the
correlation methods may, under mild assumptions, provide
consistent and unbiased estimates of the noise CMs.

Despite the long-term development of the correlation
methods (e.g., design for time-invariant/time-varying mod-
els, linear/nonlinear models, white/correlated noise), the
question of the maximum number of identifiable noise CMs
elements remains still open. Focussing on the linear time-

1 Typically, the noise CMs are estimated under assumption of the
zero-mean distribution.

invariant 2 (LTI) models, the noise CM elements iden-
tifiability by the correlation methods has been discussed
rather vaguely or under certain assumptions. In (Mehra,
1970; Bélanger, 1974; Lee, 1980), the identifiability of all
elements of the noise CMs was assessed without any spe-
cific assumptions laid on the model. However, as it is shown
later, the result is not directly extendable for identifiability
assessment of the unique noise CMs elements, which are
of importance. Recently, identifiability of the unique noise
CMs elements was considered in (Arnold and Rawlings,
2018) and sufficient conditions for identifiability of the
unique elements were provided in a view of one particular
correlation method. However, the number of identifiable
elements remains unknown, if the assumptions considered
there are not met or another correlation method is used.

The goal of the paper is, therefore, twofold:

(1) To analyse parametric identifiability of unique ele-
ments of the noise CMs for the LTI model by the
correlation methods,

(2) To provide explicit relations determining number of
identifiable noise CMs elements based on the model
properties.

The rest of the paper is organised as follows. In Section
II, the system description is provided and task of the
noise CMs estimation is particularised. Then, in Section
III, the correlation methods are discussed, analysed, and
illustrated. In Section IV, parametric identifiability of
the noise CMs is treated. Section V summarises the
identifiability results and Section VI concludes the paper.

2. SYSTEM DESCRIPTION AND NOISE
COVARIANCE MATRICES IDENTIFICATION

In this paper, the system described by the following
LTI discrete-in-time stochastic dynamic state-space model

2 From the perspective of the noise CMs parameters identifiability,
the methods for the LTI models are the most challenging. For linear
time-varying models, it is, generally, possible to estimate all unique
elements of the noise CMs (Duńık et al., 2018, 2020).
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Identifiability of Unique Elements of Noise
Covariances in State-Space Models
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1. INTRODUCTION

Knowledge of a system description is an integral part of a
design of modern optimal signal processing and decisions
making algorithms for state estimation, fault detection,
and automatic control. An incorrect system description
can lead to deteriorated behaviour of the algorithms or
even in their instability.

The state-space model is designed to consistently describe
a combination of deterministic and stochastic impacts
affecting the system quantities and sensor properties. As
such, the model can be virtually viewed as a composition
of two sub-models. The first one describes deterministic
(and thus predictable) system behaviour that often arises
from the first principles. The second one characterises
random behaviour of involved quantities, but it is usually
difficult to obtain it from the first principles modelling and,
instead, it is identified from data.

Therefore, in the last fifty years, a considerable research
interest has been focused on a design of methods identify-
ing properties of the state and measurement noises with an
emphasis on the noise covariance matrices 1 (CMs) identi-
fication. In the literature, four main classes of the identifi-
cation methods can be found; namely Bayesian, covariance
matching, maximum likelihood, and correlation methods.
This paper focuses on the class of the correlation methods
developed in a number of paper since the seventies and
reviewed in (Duńık et al., 2017). The correlation methods
are, compared to other classes, derived analytically with
minimal assumptions on the model. As a consequence, the
correlation methods may, under mild assumptions, provide
consistent and unbiased estimates of the noise CMs.

Despite the long-term development of the correlation
methods (e.g., design for time-invariant/time-varying mod-
els, linear/nonlinear models, white/correlated noise), the
question of the maximum number of identifiable noise CMs
elements remains still open. Focussing on the linear time-

1 Typically, the noise CMs are estimated under assumption of the
zero-mean distribution.

invariant 2 (LTI) models, the noise CM elements iden-
tifiability by the correlation methods has been discussed
rather vaguely or under certain assumptions. In (Mehra,
1970; Bélanger, 1974; Lee, 1980), the identifiability of all
elements of the noise CMs was assessed without any spe-
cific assumptions laid on the model. However, as it is shown
later, the result is not directly extendable for identifiability
assessment of the unique noise CMs elements, which are
of importance. Recently, identifiability of the unique noise
CMs elements was considered in (Arnold and Rawlings,
2018) and sufficient conditions for identifiability of the
unique elements were provided in a view of one particular
correlation method. However, the number of identifiable
elements remains unknown, if the assumptions considered
there are not met or another correlation method is used.

The goal of the paper is, therefore, twofold:

(1) To analyse parametric identifiability of unique ele-
ments of the noise CMs for the LTI model by the
correlation methods,

(2) To provide explicit relations determining number of
identifiable noise CMs elements based on the model
properties.

The rest of the paper is organised as follows. In Section
II, the system description is provided and task of the
noise CMs estimation is particularised. Then, in Section
III, the correlation methods are discussed, analysed, and
illustrated. In Section IV, parametric identifiability of
the noise CMs is treated. Section V summarises the
identifiability results and Section VI concludes the paper.
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reviewed in (Duńık et al., 2017). The correlation methods
are, compared to other classes, derived analytically with
minimal assumptions on the model. As a consequence, the
correlation methods may, under mild assumptions, provide
consistent and unbiased estimates of the noise CMs.

Despite the long-term development of the correlation
methods (e.g., design for time-invariant/time-varying mod-
els, linear/nonlinear models, white/correlated noise), the
question of the maximum number of identifiable noise CMs
elements remains still open. Focussing on the linear time-

1 Typically, the noise CMs are estimated under assumption of the
zero-mean distribution.

invariant 2 (LTI) models, the noise CM elements iden-
tifiability by the correlation methods has been discussed
rather vaguely or under certain assumptions. In (Mehra,
1970; Bélanger, 1974; Lee, 1980), the identifiability of all
elements of the noise CMs was assessed without any spe-
cific assumptions laid on the model. However, as it is shown
later, the result is not directly extendable for identifiability
assessment of the unique noise CMs elements, which are
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elements remains unknown, if the assumptions considered
there are not met or another correlation method is used.

The goal of the paper is, therefore, twofold:
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ments of the noise CMs for the LTI model by the
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(2) To provide explicit relations determining number of
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properties.

The rest of the paper is organised as follows. In Section
II, the system description is provided and task of the
noise CMs estimation is particularised. Then, in Section
III, the correlation methods are discussed, analysed, and
illustrated. In Section IV, parametric identifiability of
the noise CMs is treated. Section V summarises the
identifiability results and Section VI concludes the paper.
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with additive noises

xk+1 = Fxk +wk, k = 0, 1, 2, . . . , τ, (1)

zk = Hxk + vk, k = 0, 1, 2, . . . , τ, (2)

is considered, where the vectors xk ∈ Rnx , and zk ∈ Rnz

represent the immeasurable state of the system and the
available measurement at time instant k, respectively.
The state and measurement matrices F ∈ Rnx×nx and
H ∈ Rnz×nx are known and bounded. The system state
is assumed to be observable, i.e., the following assumption
holds:

Assumption 1: The observability matrix

rank

([
HT , (HF)T , . . . , (H F. . .F︸ ︷︷ ︸

nx−1 terms

)T
]T)

= nx (3)

is of full rank.

The variables wk ∈ Rnx and vk ∈ Rnz represents the
state and measurement noises, respectively. The noises are
assumed to be zero-mean random variables with unknown
but bounded joint CM defined by

E

[[
wk

vk

] [
wT

l vT
l

]]
=

[
Q S
ST R

]
δkl, (4)

where the operator E[·] denotes the expectation and δkl is
the Kronecker delta, i.e., δkl = 1 for k = l and δkl = 0 for
k �= l. Probability density functions of the noises as well
as of the initial state are not assumed to be known.

The noise CMs identification methods aim to provide
estimates of the noise CMs Q, R, and S forming the
joint CM (4) on the basis of available measurements zτ =
[z1, z2, . . . , zτ ] and known model matrices F and H.

3. CORRELATION METHODS: CONCEPT AND
PROPERTIES

The correlation methods represent, probably, the most
developed class of the noise CMs identification methods
providing estimates with well analysed properties and ac-
ceptable computational complexity (Duńık et al., 2017).
The methods are based on a statistical analysis of the mea-
surement vector prediction error (MPE) generally defined
and computed as

ek = Zk − Ẑk ∈ Rne , (5)

where Zk is a vector formed by the measurements and Ẑk

is its prediction 3 . The construction of the measurement
vector Zk and definition of its prediction Ẑk are the key
differences between particular correlation methods.

Regardless of the considered correlation method, the MPE
ek (5) is set to be a wide-sense stationary zero-mean
random process, thus, with the following property (Duńık
et al., 2017):

Assumption 2: Considering k → ∞, the autocovariance
function in the vector form

Ck = E
[
(ek⊗ek)

T
,(ek⊗ek−1)

T
, . . . , (ek⊗ek−M )

T
]T
, (6)

3 The measurement prediction is typically not optimal in the mean
square error (MSE), but it is unbiased or asymptotically unbiased.

where Ck ∈ RnC , nC = (M + 1)n2
e, M denotes the auto-

correlation function lag, and the symbol ⊗ the Kronecker
product, converges to the steady-state function C, i.e.,

Ck → C as k → ∞. (7)

The autocorrelation function C (7) is unknown, but it
can be estimated from the measured data by an unbiased
estimator

Ĉ = 1
τ−M+1

τ∑
k=M

[
(ek⊗ek)

T
, . . . , (ek⊗ek−M )

T
]T

. (8)

Considering the estimator (8), the estimate Ĉ goes to the
true value C, i.e.,

Ĉ → C as τ → ∞. (9)

In the following, the limit case is considered, and the true
and estimated autocovariance functions are not further
strictly distinguished 4 .

3.1 Concept

As the name of the correlation methods suggests, their
basic idea stems from analysis of the MPE autocorrelation
function (7), which can be written as a linear function of
the sought noise CMs

C = Aθ ∈ RnC , (10)

where the vector of the unique noise CMs elements is
defined as

θ =
[
QT

U, R
T
U, S

T
U

]T
, (11)

A ∈ RnC×nθ is the known matrix constructed from the
known model matrices F,H, and the notationQU denoted
the unique elements of Q stacked into the vector.

Generally, the matrix A can be rank deficient 5 and, thus,
some parameters of θ (11) have to be correctly specified 6

by the user to find the unbiased estimate of the remaining
parameters. Then, (10) reads

C−ASθS = AEθE, (12)

with A = [AE AS] and θ =
[
θT
E θT

S

]T
, where the matrix

AE belongs to the estimated elements θE and the matrix
AS belongs to the specified elements θS. Therefore, the
following assumption is considered:

Assumption 3: The noise CM element vectors θE, θS

are selected so that the matrix AE has full rank.

The matrices A and Ĉ as well as the vector θS are known
and the the matrix AE is of full rank. Then, based on
(8), (9), and (12), the sought noise CMs elements θE are
estimated using the least-squares (LS) method

θ̂E = A†
E(Ĉ−ASθS), (13)

where A†
E = (AT

EAE)
−1AT

E is the pseudoinverse of AE.

This general concept is common for all correlation methods
and for correctly specified θS, all the methods provide

4 Number of measurements used for the estimate Ĉ (8) affects the
estimate variance only, but not the noise CMs identifiability.
5 Matrix J ∈ Rn×m is of full rank, if rank(J) = min(n,m).
Otherwise, it is rank deficient.
6 Certain noise CMs parameters may be also known. For example, if
it is known that the noises are uncorrelated, then SU is a zero vector.
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estimate θ̂E (13) converging to the true parameters θE

as τ → ∞. The key designer decision is, therefore, related
to the specification of the identifiable set of the noise CM
elements θE so that Assumption 3 is satisfied.

3.2 Identifiability of Noise CMs Elements and Paper Goal

Determination of the number of identifiable elements of
the noise CMs, i.e., the identifiability, has been examined
since the development of the pioneering methods and,
in particular, identifiability of all or unique noise CMs
elements has been investigated.

Identifiability of all elements of Q and R was discussed in
(Mehra, 1970). It was observed that, assuming invertible
dynamic matrix F, all elements of the measurement noise
CM R can be identified and at least nx × nz elements
of the state noise CM Q can be found 7 . However, as a
consequence of estimation of all noise CMs parameters, the
noise CMs estimates need not be necessarily symmetric.
Unfortunately, once the noise CMs estimation task is
reformulated for the unique elements estimation, these
identifiability rules are not valid anymore 8 .

Identifiability of unique elements of the matrices Q, R,
and S was treated in (Arnold and Rawlings, 2018). It was
shown that

• All unique elements of Q and R can be found if
the dynamic matrix F is invertible and measurement
matrix H is of full (column) rank,

• It is not possible to identify all unique elements of
Q, R and S regardless of assumptions placed on the
system matrices.

Unfortunately, the key question “How many unique noise
CMs elements can be unbiasedly estimated for a given
model?” has not been answered yet, although the answer
is essential for efficient design and application of the
correlation methods.

The goal of the paper is to analyse parametric identifia-
bility of the correlation methods for the LTI model (1),
(2) in a unified framework and to find explicit relations
providing the number of identifiable elements of the noise
CMs as a function of the model properties 9 .

4. PROPOSED ASSESSMENT OF PARAMETRIC
IDENTIFIABILITY

The proposed solution to the identified problem is to
analyse the matrixA in (10) and to determine its (column)
rank as a function of the model properties. However,
as the matrix A is a complex nonlinear function of the
model matrices and has different form for each correlation
method, the general analytical solution for a class of
models defined by (1), (2) has not been found yet and
it is unlikely that a general analytical solution exists.
Therefore, the following alternative solution is proposed;

7 This observation is a motivation for direct estimation of the
Kalman filter gain, which has nx×nz elements (Mehra, 1970; Carew
and Bélanger, 1973).
8 Identifiability of all and unique elements is illustrated in Section V.
9 The model properties include the dimensions of the state and
measurement vectors and ranks of the model matrices F and H.

(i) Selection of characteristic correlation methods and
construction of the matrix A for selected methods,

(ii) Definition of a set of models varying in properties
and dimension,

(iii) Computation of the matrix AE and its maximal rank
for all correlations methods and models,

(iv) Determining explicit relations providing the number
of identifiable elements of the noise CMs as a function
of the model properties.

4.1 Selected Correlation Methods

Five characteristic and conceptually different correlation
methods, designed in (Mehra, 1970; Bélanger, 1974; Lee,
1980; Bundick, 1988; Duńık et al., 2018), are selected;

Method 1, developed in (Mehra, 1970), is historically the
first method introducing the concept of the correlation
methods for LTI models. The method requires invertible
dynamics matrix F and design of a non-optimal in the
MSE and stable linear predictor. The method estimates
Q, R elements.

Method 2, introduced in (Bélanger, 1974), relaxes the
assumption of the invertible dynamic matrix F. It is the
first method allowing the noise CMs identification for the
LTV models 10 . The method estimates Q, R, S elements.

Method 3, given in (Lee, 1980), is designed for the LTI
models and computes the prediction directly from the
measurements without explicit estimation of the state
vector. Thus there is no need for a linear predictor design
and initialisation. The method estimatesQ,R, S elements.

Method 4, designed in (Bundick, 1988), adopts the linear
predictor based concept. However, compared to Method 1,
this method is based on a set of linear predictors, each with
a different gain. The method estimates Q, R elements.

Method 5, developed in (Duńık et al., 2018; Kost et al.,
2018), generalises the concept of Method 3 and it is
extended for the LTV models.

Note 1: Remaining correlation methods can be understood
as modifications of the selected methods.

4.2 Set of Models

To analyse the parametric identifiability, a wide set of
models of the form (1), (2) is considered. The models differ
in properties of matrices F and H (namely, full rank vs.
rank deficient, stable vs. unstable) and in the dimensions
of the state nx and measurement nz. Because of the
space constraints, the following five exemplary models
were selected, out of full set of models, for this paper with
state and measurement vector dimensions nx = 1, 2, 3, 4
and nz = 1, 2, 3, 4.

Model 1: Matrix F is in the Frobenius form with the
poles equal to [0.5, 0.4,. . ., 0.5−0.1(nx−1)] and the matrix

H =

{
[1nz×1, Inz×(nx−1)], if nx≤nz,

[0nz×1, Inz×(nx−1)], otherwise.
(14)

Model 2: Matrix F is the same as in Model 1, and H=[
1nz×1, 0nz×(nx−1)

]
.

10This method modified for the LTI model is identical with the
autocovariance least-squares (ALS) method (Odelson et al., 2006).
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1980; Bundick, 1988; Duńık et al., 2018), are selected;

Method 1, developed in (Mehra, 1970), is historically the
first method introducing the concept of the correlation
methods for LTI models. The method requires invertible
dynamics matrix F and design of a non-optimal in the
MSE and stable linear predictor. The method estimates
Q, R elements.

Method 2, introduced in (Bélanger, 1974), relaxes the
assumption of the invertible dynamic matrix F. It is the
first method allowing the noise CMs identification for the
LTV models 10 . The method estimates Q, R, S elements.

Method 3, given in (Lee, 1980), is designed for the LTI
models and computes the prediction directly from the
measurements without explicit estimation of the state
vector. Thus there is no need for a linear predictor design
and initialisation. The method estimatesQ,R, S elements.

Method 4, designed in (Bundick, 1988), adopts the linear
predictor based concept. However, compared to Method 1,
this method is based on a set of linear predictors, each with
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Note 1: Remaining correlation methods can be understood
as modifications of the selected methods.

4.2 Set of Models

To analyse the parametric identifiability, a wide set of
models of the form (1), (2) is considered. The models differ
in properties of matrices F and H (namely, full rank vs.
rank deficient, stable vs. unstable) and in the dimensions
of the state nx and measurement nz. Because of the
space constraints, the following five exemplary models
were selected, out of full set of models, for this paper with
state and measurement vector dimensions nx = 1, 2, 3, 4
and nz = 1, 2, 3, 4.

Model 1: Matrix F is in the Frobenius form with the
poles equal to [0.5, 0.4,. . ., 0.5−0.1(nx−1)] and the matrix

H =

{
[1nz×1, Inz×(nx−1)], if nx≤nz,

[0nz×1, Inz×(nx−1)], otherwise.
(14)

Model 2: Matrix F is the same as in Model 1, and H=[
1nz×1, 0nz×(nx−1)

]
.

10This method modified for the LTI model is identical with the
autocovariance least-squares (ALS) method (Odelson et al., 2006).

Model 3: Matrices F and H are constructed as in
Model 1, but the first row of F is zeroed.

Model 4: Matrix F is the same as in Model 3 and matrix
H is constructed as in Model 1, but both the last two rows
and columns are identical (if nz>1 and nx>1).

Model 5: Matrix F is in the Frobenius form with the
poles equal to [1.1, 1,. . ., 1.1− 0.1(nx−1)] and matrix H is
defined as a sum of (14) and 1nz×nx .

Notation In×m stands for the n ×m matrix with the ele-
ment in i-th row and j-th column given by the Kronecker
delta δi,j and 1n×m stands for the n×m matrix of ones.

According to Assumption 1, all models are observable.
Model 1 has full rank (and thus invertible) and stable
matrix F and full rank H. Model 2 has full rank matrix F
only, matrix H is of rank 1. Model 3 has full rank matrix
H only, matrix F has rank nx − 1 (thus, not invertible).
Model 4 has both matrices rank deficient, i.e., F has rank
nx − 1 and H has rank min(nx, nz) − 1. Finally, Model 5
has full rank, but unstable, matrix F and full rank H.

Note 2: Although the selected models are rather “aca-
demic”, they are defined to cover a wide range of model
types. The results for the wide set of models (including
realistic models available in literature) are consistent with
the presented results for exemplary models.

4.3 Proposed Definition and Evaluation of Identifiability

The noise CMs parameter identifiability analysis starts
with the computation of the rank of the matrix A in (10)
defining the maximum number of identifiable unique noise
CMs elements further denoted as

r = rank(A). (15)

If r < nθ, it is necessary to split θ into two parts as
in (12); namely into the estimated part θE ∈ RnθE with
(maximally) nθE = r and the user-defined selected part 11

θS ∈ RnθS with nθS = nθ − nθE. Analogously, the known
matrix A is split into two corresponding parts AE and
AS. The matrix AE is composed as a combination of nθE

columns of the matrix A, where no column occurs more
than once. There are c realisable matrices, where c is the
binomial coefficient

c =

(
nθ

nθE

)
, (16)

and a realisable matrix is given by Ai
E = [A∗,i1,A∗,i2, . . . ,

A∗,ir] with i = [i1, i2, . . . , ir] ∈ Nr being a combination
of r integers of the set {1, 2, . . . , nθ}. The symbol A∗,i
denotes the i-th column of A. The set of the realisable
matrices with cardinality c can be formalised as follows

A = {Ai
E|i ∈ I} (17)

where I represents all possible r-combinations of nθ.

Unfortunately, as illustrated later, the rank of the matrix
Ai

E, which varies over A, depends on the selected columns
combination. Naturally, maximal rank of matricesAi

E inA
is r, but it can be lower. Therefore, besides r, theminimum
number of identifiable unique elements is analysed as well,
which is defined as

m = minIrank(A
i
E). (18)

11To solve (13), θS need to be specified by the user.

Note 3: In the view of (18), the maximum number of iden-
tifiable elements (15) can be written as r = maxIrank(A

i
E).

Note 4: As A is function of the known model matrices,
the identifiability analysis does not depend on the mea-
surements.

5. SOLUTION TO PARAMETRIC IDENTIFIABILITY
AND RESULTS

The results are split into two parts; (i) identification of
Q, R unique elements, (ii) identification of Q, R, S
unique elements. For the first part, all five correlation
methods were evaluated for all models and all combina-
tions of dimensions nx and nz, and the maximum and
minimum numbers of identifiable elements r (15) and m
(18), respectively, were computed. Identification of Q, R,
S unique elements was analogous, with the only exception
that Method 1 and Method 4 were not evaluated as they
are not capable of the matrix S identification.

5.1 Maximum/Minimum Number of Identifiable Elements

First observation: All considered correlation methods are
identical in terms of maximum and minimum numbers of
unique identifiable elements of the noise CMs. Therefore,
the number of identifiable elements is summarised for all
correlation methods in single tables.

The numbers are summarised in Tables 1 and 2 for Q, R
identification and Q, R, S identification, respectively. It
can be seen, that the minimum number of identifiable ele-
ments depends on the selected vector θE of the noise CMs
elements to be estimated. The dependence is significant
especially for models with nx > nz, where it is possible
to observe a substantial difference between r and m. Also,
the dependence is much stronger in Q, R, S identification.
For the sake of completeness, the total number of unique
elements of the noise CMs is summarised in Table 3.

Table 1. Q, R identification: r / m values

Model 1

nz

nx 1 2 3 4

1 2 / 2 3 / 2 4 / 2 5 / 2
2 4 / 4 6 / 6 8 / 7 10 / 7
3 7 / 7 9 / 9 12 / 12 15 / 14
4 11 / 11 13 / 13 16 / 16 20 / 20

Model 2

1 2 / 2 3 / 2 4 / 3 5 / 3
2 4 / 4 5 / 4 6 / 3 7 / 4
3 7 / 7 8 / 7 9 / 6 10 / 4
4 11 / 11 12 / 11 13 / 10 14 / 8

Model 3

1 1 / 1 2 / 1 3 / 2 4 / 2
2 3 / 3 5 / 5 7 / 5 9 / 5
3 6 / 6 8 / 8 11 / 10 14 / 12
4 10 / 10 12 / 12 15 / 14 19 / 18

Model 4

1 1 / 1 2 / 1 3 / 2 4 / 2
2 3 / 3 4 / 3 5 / 2 6 / 3
3 6 / 6 7 / 6 10 / 9 12 / 8
4 10 / 10 11 / 10 14 / 13 18 / 16

Model 5

1 2 / 2 3 / 2 4 / 3 5 / 4
2 4 / 4 6 / 6 8 / 7 10 / 7
3 7 / 7 9 / 9 12 / 12 15 / 14
4 11 / 11 13 / 13 16 / 16 20 / 20



320	 Oliver Kost  et al. / IFAC PapersOnLine 54-7 (2021) 316–321

Table 2. Q, R, S identification: r / m values

Model 1

nz

nx 1 2 3 4

1 2 / 2 3 / 2 4 / 2 5 / 2
2 5 / 5 7 / 6 9 / 6 11 / 5
3 9 / 9 12 / 10 15 / 12 18 / 11
4 14 / 14 18 / 16 22 / 18 26 / 21

Model 2

1 2 / 2 3 / 2 4 / 3 5 / 3
2 5 / 5 7 / 5 9 / 6 11 / 5
3 9 / 9 12 / 10 15 / 10 18 / 11
4 14 / 14 18 / 16 22 / 17 26 / 17

Model 3

1 2 / 1 3 / 2 4 / 2 5 / 2
2 5 / 4 7 / 5 9 / 5 11 / 5
3 9 / 8 12 / 9 15 / 11 18 / 11
4 14 / 13 18 / 15 22 / 17 26 / 19

Model 4

1 2 / 1 3 / 2 4 / 2 5 / 2
2 5 / 4 7 / 5 9 / 5 11 / 5
3 9 / 8 12 / 9 15 / 10 18 / 10
4 14 / 13 18 / 15 22 / 17 26 / 19

Model 5

1 2 / 2 3 / 2 4 / 3 5 / 4
2 5 / 5 7 / 6 9 / 7 11 / 7
3 9 / 9 12 / 10 15 / 12 18 / 14
4 14 / 14 18 / 16 22 / 18 26 / 21

Table 3. Total number of unique elements for
Q,R / Q,R,S Identification

nz

nx 1 2 3 4

1 2 / 3 4 / 6 7 / 10 11 / 15
2 4 / 6 6 / 10 9/ 15 13 / 21
3 7 / 10 9/ 15 13 / 21 16 / 28
4 11 / 15 13 / 21 16 / 28 20 / 36

5.2 Explicit Relations for Number of Identifiable Parameters

Based on the analysis of the observed identifiability num-
bers given in Table 1, the maximum number of identifiable
unique elements r for Q, R identification is the following
function of the model properties

r = rHnx − rH(rH−1)
2 + uR − (nx−rF )(nx−rF+1)

2 , (19)

where uR = nz(nz+1)
2 denotes the number of the unique

elements of R and rF and rH denote ranks of the matrices
F and H, respectively. If the matrices F and H are of full
rank and nx > nz (i.e., rH = nz), then the relation (19)
simplifies to

r = uQ − (nx−nz)(nx−nz+1)
2 + uR = nz(nx + 1). (20)

where uQ = nx(nx+1)
2 is the number of the unique elements

of Q. If nx ≤ nz (i.e., rH = nx), then (19) becomes

r = uQ + uR. (21)

The maximum number of identifiable unique elements r
for the Q, R, S identification is, w.r.t. Table 2, given by

r = nznx + uR. (22)

Second observation: The maximum number r defined in
(15) depends on the model properties (including state and
measurement dimensions and rank of the model matrices).
The maximum number is independent of the selection of
θE elements. Thus, the maximum number is easily pre-
dictable. The selection of θE, however, affects the mini-
mum number m (18) in addition to the model properties.
Thus, explicit relations for m can hardly be found. This is
illustrated the following subsection.

5.3 Dependence on Parameters Selection

Let Model 1 be supposed with nx = 2 and nz = 1 and
let all methods be selected. Then, the vector of unique
unknown elements of Q, R can be defined as

θ = [Q11, Q12, Q22, R]T (23)

with dimension nθ = 4, where the notation Qij stands for
the element of the matrix Q in i-th row and j-th column.
The matrix A in (10) has, however, rank

r = rank(A) = 3 (24)

only, which is also the maximum number of identifiable
parameters r. It means that at least nθS = nθ − r = 1
parameter must be specified, which results in c = 4 (16)
possible combinations of identified noise CMs elements
gathered in θE and realisable matrices AE in (12). Let
three identification cases be considered;

• Estimated noise CMs elements are θE = [Q11, Q12, R]T

(thus, the remaining elements in θS = Q22 need to be
specified by the user). Then, rank(AE) = 3 = r, i.e.,
in this case, the maximum number of elements can
be estimated.

• Estimated noise CMs elements are θE = [Q11, Q22, R]T

(thus, the remaining elements in θS = Q12 need to be
specified by the user). Then, rank(AE) = 2 �= r, i.e.,
in this case, the maximum number of elements cannot
be estimated and the user has to reduce θE further.

• Estimated elements are θE = [Q11, Q12, Q22]
T , re-

maining is θS = R. Then, rank(AE) = 2 �= r and
the user has to reduce θE further.

Third observation: It is not always possible to estimate all
diagonal elements of the state noise CM Q.

5.4 Relation of All and Unique Elements Identifiability

As mentioned in Section III.C, several identification meth-
ods have been designed and analysed under assumption
of identification of all noise CMs elements Mehra (1970);
Bélanger (1974); Lee (1980). This paper stresses identifi-
cation of the unique elements. The goal of this section is
to show the principal difference between identification of
all elements and unique elements.

Given Model 1 with nx = 3 and nz = 2, let all methods
be selected. Then, the vector of all unknown elements of
Q, R can be defined as

θALL = [QT
∗,1,Q

T
∗,2,Q

T
∗,3,R

T
∗,1,R

T
∗,2]

T (25)

with dimension nθ,ALL = n2
x + n2

z = 13. The respective
matrix AALL in (10) for particular methods has rank

rank(AALL,Method i) = 12, i = {1, 3, 4, 5} (26)

rank(AALL,Method 2) = 10, (27)

which indicates that not all elements of Q, R can be
estimated, but it may be possible to estimate unique
elements by certain methods (in this case, the noise CMs
has nθ,UNIQUE = uQ+uR = 9 unique elements). However,
if the vector of unique elements of Q, R is defined as

θUNIQUE = [Q11, Q12, Q22,Q
T
∗,3, R11,R

T
∗,2]

T (28)

with dimension nθ,UNIQUE = 9, then the respective matrix
AUNIQUE in (10) has the rank

rank(AUNIQUE) = 8 (29)
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Table 2. Q, R, S identification: r / m values

Model 1

nz

nx 1 2 3 4

1 2 / 2 3 / 2 4 / 2 5 / 2
2 5 / 5 7 / 6 9 / 6 11 / 5
3 9 / 9 12 / 10 15 / 12 18 / 11
4 14 / 14 18 / 16 22 / 18 26 / 21

Model 2

1 2 / 2 3 / 2 4 / 3 5 / 3
2 5 / 5 7 / 5 9 / 6 11 / 5
3 9 / 9 12 / 10 15 / 10 18 / 11
4 14 / 14 18 / 16 22 / 17 26 / 17

Model 3

1 2 / 1 3 / 2 4 / 2 5 / 2
2 5 / 4 7 / 5 9 / 5 11 / 5
3 9 / 8 12 / 9 15 / 11 18 / 11
4 14 / 13 18 / 15 22 / 17 26 / 19

Model 4

1 2 / 1 3 / 2 4 / 2 5 / 2
2 5 / 4 7 / 5 9 / 5 11 / 5
3 9 / 8 12 / 9 15 / 10 18 / 10
4 14 / 13 18 / 15 22 / 17 26 / 19

Model 5

1 2 / 2 3 / 2 4 / 3 5 / 4
2 5 / 5 7 / 6 9 / 7 11 / 7
3 9 / 9 12 / 10 15 / 12 18 / 14
4 14 / 14 18 / 16 22 / 18 26 / 21

Table 3. Total number of unique elements for
Q,R / Q,R,S Identification

nz

nx 1 2 3 4

1 2 / 3 4 / 6 7 / 10 11 / 15
2 4 / 6 6 / 10 9/ 15 13 / 21
3 7 / 10 9/ 15 13 / 21 16 / 28
4 11 / 15 13 / 21 16 / 28 20 / 36

5.2 Explicit Relations for Number of Identifiable Parameters

Based on the analysis of the observed identifiability num-
bers given in Table 1, the maximum number of identifiable
unique elements r for Q, R identification is the following
function of the model properties

r = rHnx − rH(rH−1)
2 + uR − (nx−rF )(nx−rF+1)

2 , (19)

where uR = nz(nz+1)
2 denotes the number of the unique

elements of R and rF and rH denote ranks of the matrices
F and H, respectively. If the matrices F and H are of full
rank and nx > nz (i.e., rH = nz), then the relation (19)
simplifies to

r = uQ − (nx−nz)(nx−nz+1)
2 + uR = nz(nx + 1). (20)

where uQ = nx(nx+1)
2 is the number of the unique elements

of Q. If nx ≤ nz (i.e., rH = nx), then (19) becomes

r = uQ + uR. (21)

The maximum number of identifiable unique elements r
for the Q, R, S identification is, w.r.t. Table 2, given by

r = nznx + uR. (22)

Second observation: The maximum number r defined in
(15) depends on the model properties (including state and
measurement dimensions and rank of the model matrices).
The maximum number is independent of the selection of
θE elements. Thus, the maximum number is easily pre-
dictable. The selection of θE, however, affects the mini-
mum number m (18) in addition to the model properties.
Thus, explicit relations for m can hardly be found. This is
illustrated the following subsection.

5.3 Dependence on Parameters Selection

Let Model 1 be supposed with nx = 2 and nz = 1 and
let all methods be selected. Then, the vector of unique
unknown elements of Q, R can be defined as

θ = [Q11, Q12, Q22, R]T (23)

with dimension nθ = 4, where the notation Qij stands for
the element of the matrix Q in i-th row and j-th column.
The matrix A in (10) has, however, rank

r = rank(A) = 3 (24)

only, which is also the maximum number of identifiable
parameters r. It means that at least nθS = nθ − r = 1
parameter must be specified, which results in c = 4 (16)
possible combinations of identified noise CMs elements
gathered in θE and realisable matrices AE in (12). Let
three identification cases be considered;

• Estimated noise CMs elements are θE = [Q11, Q12, R]T

(thus, the remaining elements in θS = Q22 need to be
specified by the user). Then, rank(AE) = 3 = r, i.e.,
in this case, the maximum number of elements can
be estimated.

• Estimated noise CMs elements are θE = [Q11, Q22, R]T

(thus, the remaining elements in θS = Q12 need to be
specified by the user). Then, rank(AE) = 2 �= r, i.e.,
in this case, the maximum number of elements cannot
be estimated and the user has to reduce θE further.

• Estimated elements are θE = [Q11, Q12, Q22]
T , re-

maining is θS = R. Then, rank(AE) = 2 �= r and
the user has to reduce θE further.

Third observation: It is not always possible to estimate all
diagonal elements of the state noise CM Q.

5.4 Relation of All and Unique Elements Identifiability

As mentioned in Section III.C, several identification meth-
ods have been designed and analysed under assumption
of identification of all noise CMs elements Mehra (1970);
Bélanger (1974); Lee (1980). This paper stresses identifi-
cation of the unique elements. The goal of this section is
to show the principal difference between identification of
all elements and unique elements.

Given Model 1 with nx = 3 and nz = 2, let all methods
be selected. Then, the vector of all unknown elements of
Q, R can be defined as

θALL = [QT
∗,1,Q

T
∗,2,Q

T
∗,3,R

T
∗,1,R

T
∗,2]

T (25)

with dimension nθ,ALL = n2
x + n2

z = 13. The respective
matrix AALL in (10) for particular methods has rank

rank(AALL,Method i) = 12, i = {1, 3, 4, 5} (26)

rank(AALL,Method 2) = 10, (27)

which indicates that not all elements of Q, R can be
estimated, but it may be possible to estimate unique
elements by certain methods (in this case, the noise CMs
has nθ,UNIQUE = uQ+uR = 9 unique elements). However,
if the vector of unique elements of Q, R is defined as

θUNIQUE = [Q11, Q12, Q22,Q
T
∗,3, R11,R

T
∗,2]

T (28)

with dimension nθ,UNIQUE = 9, then the respective matrix
AUNIQUE in (10) has the rank

rank(AUNIQUE) = 8 (29)

for all methods, which is less than the number of sought
unique elements nθ,UNIQUE.

Fourth observation: Known number of identifiable ele-
ments of all noise CMs elements does not help in determi-
nation of the number of identifiable unique elements.

5.5 Specification of Parameters

Usually, if nx > nz, it is possible to estimate only a subset
of unique noise CMs elements. Then, it is necessary to
specify the elements θS and to estimate the remaining θE.

Let the Model 2 be considered with nx = 2, nz = 1,
matrices S, R are known, and only the elements of the
state noise covariance matrix Q = [ 1 1.8

1.8 4 ] are unknown.
In this case, it is possible to estimate only 2 elements out
of three unknowns. If the diagonal elements are decided
to be identified, i.e., θE = [Q11, Q22], the off-diagonal
element has to be specified θS = Q12. However, e.g.
specification of θS = Q12 = 0 leads to the noise CM

estimate Q̂ =
[−1 0

0 4.38

]
, which is not a positive semi-

definite matrix, thus, it is not a covariance matrix.

Fifth observation: The elements in θS have to be selected
with caution because the identified CMs may not be pos-
itive semi-definite even for infinitely many measurements.
Similar conclusion holds also in case of unreasonable spec-
ification of S and estimation of Q and R.

5.6 Notes

In this section, several notes on properties observed in the
noise CMs identifiability analysis are given.

Note 5: If F is of full rank, conditions for the identifiability
of the unique elements ofR are independent of identifiabil-
ity conditions of Q and S. The identifiability condition of
Q and S are, however, closely related. It means, it is always
possible to identify all uR unique elements of R and only,
the maximum number r − uR of Q or S elements.

Note 6: Any solution θ fulfilling (10) leading to the noise

CMs estimates Q̂, R̂, Ŝ, for which a steady-state solution
P̂ of the discrete-time algebraic equation

P̂ = FP̂FT − L̂(HP̂HT + R̂)−1L̂T + Q̂ (30)

with L̂ = FP̂HT + Ŝ exists, results in the linear filter gain

K̂ = (FP̂HT + Ŝ)(HP̂HT + R̂)−1, (31)

that is identical with the steady-state Kalman filter gain
K computed on the basis of true noise CMs Q,R,S, i.e.,

K̂ = K. (32)

The equality (32) holds even if the noise CMs estimates
are biased because of unsuitable choice of θS for models
with nx > nz. This conclusion is consistent with the
observation that the Kalman gain K ∈ Rnx×nz can always
be estimated (contrary to the noise CMs) (Mehra, 1970;
Carew and Bélanger, 1973; Arnold and Rawlings, 2018).

Note 7: Assume identification of Q,R and the presence of
the known state noise shaping matrix G ∈ Rnx×nw̃ , nx ≥
nw̃ defining the state noise

wk = Gw̃k (33)

with E
[
w̃kw̃

T
l

]
= Q̃δkl ∈ Rnw̃×nw̃ . Then the maximum

rank of A is min(r, uQ̃ + ur).

Note 8: Presence of the known input signal in the state-
space model (1), (2) does not have any impact on the
method parameter identifiability.

Note 9: Our simulations indicate that other classes of
the noise CMs estimation methods (i.e., Bayesian and
maximum likelihood) suffer from the same identifiability
constraints.

6. CONCLUDING REMARKS

This paper dealt with the identification of the noise co-
variance matrices of the linear-time invariant state-space
model with the stress on the correlation methods. Explicit
relations for the maximum number of the identifiable
unique noise CMs elements were derived as functions of
model properties. It was shown, that the maximum iden-
tifiability number is the same for all correlation methods.
Such relations give an idea about capability of the corre-
lation methods to identify the CMs elements for a given
model. Thus, derived relations may significantly simplify
design and application of the correlation methods.
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