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Abstract. We studied the grid-generated turbulence by using Particle Image Velocimetry (PIV) technique.
We test on this already well studied flow the new ways of analyzing spatially resolved PIV data, such as the
spatial spectra and structure functions. We compare some of the turbulence characteristics with results of Laser
Doppler Anemometry (LDA).

1 Introduction

The decay of turbulence produced by flow passing a regu-
lar grid is a standard turbulence problem [1–6]. The grid
turbulence is interesting from the theoretical point of view
as it is a prototype of an „ideal“ Kolmogorov-type turbu-
lence, which is homogeneous and isotropic (of course, it is
not fully true) [3, 7]. It decays in space, but from the point
of view of the fluid, it decays in time. The decay realizes
via the Richardson cascade, which transports the energy
into both: smaller and larger scales. The energy at smallest
scale, called Kolmogorov scale, dissipates due to viscosity
and, as there is no other energy input than the transfer from
larger scales, the turbulence decays from bottom: growing
the Kolmogorov scale.

This flow has been studied experimentally many times
by using mainly the Hot Wire Anemometry (HWA) [8],
which is the method best suitable for turbulence research.
Its result is a perfect time-series of velocities in single
point.

In this study we use another widely used experimen-
tal method: Particle Image Velocimetry (PIV) [8, 9]. It is
based on direct optical observation of small particles (or
droplets) carried by the fluid in the entire field of view of
a camera. This method has lower precision than the HWA,
but it offers the spatially resolved instantaneous velocity
fields, which is the aspect, we found to be crucial to dis-
tinguish the main building blocks of turbulence – vortices
[10–12].

This investigation of already a well-studied flow fo-
cuses to testing new ways of analysis of the spatially
resolved PIV data. We used the LDA (Laser Doppler
Anemometry) technique as well, which offers higher accu-
racy, but only in one point. Therefore we compare turbu-
lence characteristics such as turbulence intensity obtained
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by both techniques. More details can be found in our pre-
vious publication [13].

2 Experimental setup

Fig. 1. Sketch of the wind tunnel (top) and the position of the
studied areas in respect to the grid, which is located at the inlet
into the transparent test section.

The flow has been generated by WT-tech wind tun-
nel of maximum achieved velocity 25 m/s (this experi-
ment) with the transparent test-section of size 125× 125×
400 mm. At the beginning of the test section, there is the
grid with grid spacing M = 125 mm/8 = 15, 625 mm,
thickness of square rods is d = 2 mm, therefore the poros-
ity β = (M − d)2/M2 = 76%.

PIV measurement is performed by using a com-
mercially available Dantec PIV system. Illumination
is realized by a double-pulse Nd:YAG solid-state laser
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NewWave Solo which produces a pair of 500 mJ shots last-
ing 5 ns. Double-frame CCD cameras FlowSense MkII
can distinguish two expositions separated by only 1, 5 µs,
but the repetition frequency does not exceed 7, 4 Hz, thus
the obtained instantaneous velocity fields can be consid-
ered as statistically independent. As the tracer particles we
use droplets of ∼ µm diameter produced by commercially
available fog generator SAFEX.

We have measured the flow in 7 square areas of size
32 × 32 mm, i.e. ∼ 2M, located 21, 76, 133, 200, 250,
300 and 352 mm from the grid (this is the location of the
leading edge of these areas). Their z-coordinate is 7, 5 mm
under the axis of the test section, which is approximately
close to the middle of the first grid hole. We have mea-
sured at velocities u ranging from 1, 2 to 25 m/s. M-based
Reynolds number Re = u · M/ν, where ν is the kinematic
viscosity of air. Re ranges from 1, 3 · 103 to 2, 7 · 104.

3 Results

General description of the grid turbulence is that, the tur-
bulence is first produced by the interacting jets behind the
holes, or by interacting the wakes behind the rods, as is
apparent in figure 2(a). Wakes are widening as described
e.g. by [14] – note the double maxima of TKE at small
distance (Fig. 3(a)), at later stage (Fig. 3(b)), the pair of
maxima is separated more than the maxima produced by
neighboring rods. Even later, it starts to be influenced by
the horizontal rods up and down the measuring plane.

3.1 Turbulent kinetic energy

Turbulent kinetic energy (TKE, K) is average kinetic en-
ergy associated with vortices and other coherent flow
structures, which the turbulence consists of. It is calcu-
lated as variance of velocity, i.e.

K
(
x⃗
)
=

1
2

(〈
u2 (x⃗) + v2 (x⃗)〉

T
−
〈
u
(
x⃗
)〉2

T −
〈
v
(
x⃗
)〉2

T

)
(1)

Where u and v denote the x- and y-component of the veloc-
ity vector, x⃗ is location and ⟨·⟩T denote the averaging over
time, i.e the ensemble averaging in this case of relatively
„slow“ PIV.

The flow is naturally three-dimensional, while we have
measured only the planar cut, therefore we lack any infor-
mation about the third velocity component w. Some au-
thors solve this issue by assuming that the third component
fluctuations are statistically equal to the second component
(v), thus they multiply that term by two. We prefer to keep
the measured data and not to introduce more artificial as-
sumptions, than it is needed.

Equation (1) can be rewritten by using the energies
of instantaneous velocity field E and of averaged veloc-
ity field ET as K = E − ET , where E = 1

2

〈
u⃗2
〉

T
and

ET =
1
2
〈
u⃗
〉2

T .
The spatial distribution of TKE at first three positions

is plotted in figure 3, the rest is no more interesting, be-
cause the spatial distribution is flat in span-wise direction

(y). The change of the amount of TKE in stream-wise di-
rection (x) is better recognizable in figure 4, where the av-
erage over y of TKE is displayed. When we take into ac-
count only the data more far away from the grid, we find
the decay with power −1.95. Note that this value can dif-
fer, when we would use an virtual origin, i.e. shifting of x
by some x0, which is used by some authors [2]. In article
[13], we have shown, that the decay exponent depends on
the length-scale as well. TKE of small scale decays faster
at small Reynolds numbers, while at large Re, the decay
rate is same for all scales (Figure 8 in [13]).

The value of TKE is underestimated when measured
by using the PIV method, because this method assumes
a homogeneous motion inside the so-called interrogation
area, whose size is 0.51 mm in our case. Thus all flow
structures smaller than this size are neglected and does not
counted in our TKE. On the other hand, the majority of
energy occurs at larger scales due to the quite steep decay
of power spectral density, which is (in the homogeneous
and isotropic turbulence) −5/3. Thus we need to test our
result by another method more sensitive even to the small
scale, which is the Laser Doppler Anemometry (LDA).

3.2 Comparison with Laser Doppler Anemometry

Laser Doppler Anemometry (LDA) measures the veloc-
ity of small particles caried by the fluid (similarly as PIV
does) in a one small volume, where two coherent laser
beams cross. The size of this measurement volume is
around xx µm3, thus it can be considered as a point. LDA
is generally though to be a precise trustworthy absolute
method, which is limited only by the ability of used tracer
particles to follow the flow.

We measured the stream-wise velocity u and compared
the results obtained by both techniques, as shown in figure
5. The value of stream-wise velocity strongly depends on
the position, specially in the vicinity to the grid. Generally,
speaking, the flow is accelerated in the jets and decelerated
in the wakes behind the rods. The measurement point of
LDA has been located into the wake. Therefore for com-
parison with PIV, we have to select the cut from the wake,
as it is done in figure 5. There are plotted also PIV data av-
eraged over the span-wise direction, thus containing both,
jets and wakes. The data plotted in figure 5 suggest that
the LDA measuring point has not been exactly in the wake,
as its position has been selected manually before the mea-
surement, while the track of the wake in PIV data has been
selected after the measurement from the data. This differ-
ence vanishes in higher distances from the grid.

The plot of standard deviation σT [u]

σT [u] =
√〈

u2 − ⟨u⟩2T
〉

T
(2)

shows better agreement between LDA and PIV data from
the rod wake. The standard deviation in LDA data is sys-
tematically higher by about 13%. It is too much to have
only physical reasons discussed above, it can partly be
caused by non-identical coordinate systems in LDA and
PIV data. This issue we will fix in future by using an mo-
torized traverser for the LDA measuring head.
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Fig. 2. Examples of spatial distribution of instantaneous vorticity ω in 7 studied areas (see figure 1). Stream-wise velocity (from left to
right) is 3.0 m/s corresponding to Reynolds number Re = 3.1 · 103. Note the different color-scale of first three images.

Fig. 3. Spatial distribution of the turbulent kinetic energy.
Stream-wise velocity is 3.0 m/s, corresponding Re = 3.1 · 103.

Fig. 4. Turbulent kinetic energy as a function of the distance
from the grid for Reynolds number 3.1 · 103. The plotted value is
averaged over the span-wise coordinate (y). There are displayed
powers of the dotted lines just under the data (solid lines). Note
the log-log plot.

3.3 Intensity of turbulence

The turbulence produces at the grid and later on it dissi-
pates according to a power law, which is shown in figure 4
for one velocity. The PIV offers two ways of defining the
turbulence intensity, which is a quantity useful for describ-
ing the decay processes: the classical definition based on
the temporal averaging we denote IT and we calculate it as

IT =
(E − ET )1/2

E1/2
T

(3)

Fig. 5. Top: Stream-wise velocity u measured by using PIV
(solid lines) and LDA (stars). The PIV data is processed by 2
ways: it is averaged over the span-wise direction (y) or there is
selected only a single profile in the wake of the grid rod. Bottom:
Standard deviation of the stream-wise velocity. This is plotted
instead of TKE, which needs all three velocity component, while
our LDA system measures only one component. Again, the PIV
data are selected to the averaged ones and those from the wake
only, which gives highest difference at locations close to the grid.

, where E = 1
2 u⃗2 is the average energy of instantaneous ve-

locities, while ET is the energy of temporal average veloc-
ity, ET =

1
2
〈
u⃗
〉2

T . This turbulence intensity does not con-
tain the spatial changes inside the average velocity field,
such as the wakes or jet structures. Therefore we can use
an alternative definition of spatial intensity of turbulence
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IP calculated similarly as

IP =
(E − EP)1/2

E1/2
P

(4)

, where the subscript P plays for spatial averaging, i.e. av-
eraging over the field of view. In principle, this quantity
can be calculated by using a single instantaneous velocity
field only. The effect is evident in figure 6, where close to
the grid, the spatial intensity is larger due to the structure
even in the averaged velocity field (the mentioned jets and
wakes), while more far from the grid, the temporal one is
grater due to the fluctuations larger than the investigated
field of view as the integral length-scale grows.

Fig. 6. Top: intensity of turbulence obtained by using different
approaches as a function of distance from the grid. The Reynolds
number is 3.1 · 103. Bottom: intensities of turbulence as a func-
tion of Reynolds number at constant mean distance from the grid
x0 = 250 mm = 16M, xcenter = 265 mm = 17M. IT and IP re-
flects the temporal and spatial intensity calculated according to
equations (3) and (4) respectively, The data obtained from LDA,
which measures x-component only, can be compared only with
the stream-wise turbulence intensity σ[u]/ ⟨u⟩. For complexity,
there is also plotted the span-wise component σ[v]/ ⟨u⟩, which is
normalized by stream-wise velocity, as the mean value of span-
wise velocity is close to zero.

The comparison with LDA data can be done only for
the corresponding quantity, which is the ratio of standard

deviation of stream-wise velocity and its average value,
as this is the component, which is measured. This quantity
obtained from PIV data is displayed in figure 6 as well. As
this contains only fluctuations in one direction, its value is
naturally lower, than that containing both measured com-
ponents (and if we would have measured the third compo-
nent as well, the value might be even larger). On the other
hand, it is evident, that, again as discussed above, the PIV
slightly underestimates the fluctuations.

3.4 Length-scale dependent fluctuations

The idea of averaging over space instead of over time
can be broaden by using different length scales of aver-
aging than just the entire field of view. We can focus on
spatial fluctuations in respect to different vicinity of the
probed point. This can be done by convoluting the veloc-
ity field u⃗

(
x⃗
)

with band-pass filter [15], which consists of
two Gaussian functions:

u⃗lh(x⃗) = u⃗(x⃗) ∗

 1
2πσ2

l

e
−

x2

2σ2
l −

1
2πσ2

h

e
−

x2

2σ2
h

 (5)

The resulting velocity field u⃗lh(x⃗) is smoother than the
lower bound σl and rougher than the upper bound σh, thus
it contains only fluctuations of specific length-size inter-
val. The process is illustrated in figure 7.

When we have the velocity fields with highlighted dif-
ferent scale of fluctuations [16], we calculate the TKE of
each ensemble getting the spatial distribution of each inter-
val of length-scales [17]. Then we select three of this inter-
vals and combine them into a single image. The red chan-
nel comes from the small length-scale, i.e. σR

l = 0.5 mm
and σR

h = 0.7 mm, the green channel does from the middle
scales, i.e. σG

l = 1.5 mm, σG
h = 2.0 mm and the largest

scales are coded into blue channel, i.e. σB
l = 3.9 mm

and σB
h = 5.9 mm. The relative magnitude of colors is

weighted according to the thickness of the interval and to
the estimated Kolmogorov scaling (thus that the ideal ho-
mogeneous and isotropic turbulence would be displayed in
gray-scale).

3.5 Spatial spectrum

By using this approach we can obtain the spatial spectrum
as a plot of standard deviation of energies of a band-pass
filtered velocity field in dependence on the effective wave
vector of the band. Figure 8 shows the resulting spectra,
first in dependence on the distance from the grid for con-
stant velocity (i.e. Re), second, in dependence on velocity
for constant distance from the grid.

The spectrum is already smoothed, which is in consis-
tency with the general uncertainty principle: the particular
localization in direct space is redeemed by delocalization
in the Fourier space. Additionally, the available range is
quite short: we are limited from one side by the size of
the measuring grid, which is 0.5 mm, from the other side
by the size of the largest σh, which is 5.9 mm. One can
ask, why not by the size of field of view, which is around
5× larger. This is due to the fact, that the real size of the
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Fig. 7. Top left: example of the instantaneous velocity field
colored by the energy (i.e. half of square of velocity magnitude).
Middle left: the same data with highlighted fluctuations of size
interval from σl = 0.5 to σh = 0.7 mm. Middle right: from σl =

1.5 to σh = 2.0 mm. Bottom left: from σl = 3.9 to σh = 5.9 mm.
Bottom right: Length-scale dependent fluctuations, red colors
correspond to smallest length-scales, green to middle scales and
blue to largest scales. The Reynolds number is 3.1 · 103, the left
side of the panels is 21 mm from the grid.

effective support of the band pass is much larger than its
half-width, therefore the value in such a point is already
influenced by too many points lying outside of the mea-
sured field of view. We want to minimize the boundary
effect of the points outside, whose value is extrapolated by
using the „Extend Edge Handling“ approach (i.e. that the
nearest border points are conceptually extended as far as
necessary to provide values for the convolution. Corner
points are extended in 90◦ wedges. Other edge points are
extended in lines).

As the spectrum is spatial, it is questionable, if it
makes sense close to the grid, where the flow contains
strong structures even in the average, as are jets and wakes
produced by the grid rods. The spatial spectrum naturally
mix the data from both very different regions and thus its
physical interpretation is not easy. On the other hand, the
fact, that the spectrum close to grid is despite the just men-
tioned reason very similar to the others, suggests that the
famous Kolmogorov law developed for homogeneous and
isotropic turbulence has more mathematical than physical
reasons, because it should not be valid in that case.

Fig. 8. Top: The power spectral density as a function of the dis-
tance from the grid (the x0 means the leading side of the probed
areas) at constant Reynolds number Re = 3.1 · 103. Bottom:
the power spectral density divided by square of velocity as a
function of Reynolds number at constant distance from the gird
x0 = 250 mm = 16M. For comparison there is plotted the fa-
mous Kolmogorov −5/3 law.

The dependence on Reynolds number (Figure 8 bot-
tom) shows that at lower velocities, the spectrum falls
down faster than the Kolmogorov scaling suggesting the
vicinity of the Kolmogorov scale in that distance.

The power spectral density shown in figure 8 bottom
is normalized by the square of the mean stream-wise ve-
locity. Note, that the lines meet at the larger scales, which
again suggest, that the energy normalization follows these
larger scales, while the energy deficit (towards the ideal
Kolmogorov profile) does not affect the overall mean ve-
locity.

3.6 Structure functions of second order

The structure function [18] of second order of the stream-
wise velocity component u is defined as

S 2
uu

(
x⃗, ξ⃗
)
=

〈(
u
(
x⃗
)
− u
(
ξ⃗
))2〉

T

σT
[
u
(
x⃗
)]
· σT

[
u
(
ξ⃗
)] (6)

where x⃗ denote the probed point, where the structure func-
tion is calculated, while ξ⃗ is the reference point; σT means
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Fig. 9. Top: spatial distribution of the structure function around
the point ξ⃗ in the center of the field of view in different distances
from the grid. The first line shows the structure function of u, i.e.
x-component of the velocity, second line does the v, which is the
span-wise component. The velocity is constant corresponding to
Re = 3.1 ·103. Bottom: the distance from the grid is constant and
equals to x0 = 250 mm, different panels show different Reynolds
numbers.

the standard deviation (2) in respect to time, i.e. ensem-
ble in this case of relatively slow PIV. S 2

uu thus says, how
much is the value of u at the point x⃗ statistically related to
the value of u at point ξ⃗. When the values are same (which
is identically fulfilled when x⃗ = ξ⃗), the value of S 2 = 0,
when the values are not correlated, the value of S 2 = 2.

As has been proven in [18], the S 2 is in close relation
to the autocorrelation function Cuu as S 2

uu = 2−2Cuu, when
the sample size is infinite. But, in respect to autocorrela-
tion function, the structure function is not sensitive to the
mean value and it converges better.

Analogically to the equation (6) we can define S 2
vv for

the span-wise velocity component v:

S 2
vv

(
x⃗, ξ⃗
)
=

〈(
v
(
x⃗
)
− v
(
ξ⃗
))2〉

T

σT
[
v
(
x⃗
)]
· σT

[
v
(
ξ⃗
)] (7)

These functions are autostructure functions as they probe
the same quantity only in different locations. There can

be defined also a crossstructure function S uv, which we do
not discuss in this article.

Spatial distribution of both functions is plotted in fig-
ure 9, first for different distances from the grid at constant
velocity, second for different velocities at constant posi-
tion. In all cases is the reference point ξ⃗ chosen in the
center of the field of view.

In all panels of figure 9 we can see that the distribu-
tion is not axially symmetric, e.g. the difference between
values of stream-wise velocity grows faster in span-wise
direction than in the stream-wise one, which suggests that
the turbulence is not isotropic even in this quite large dis-
tances from the grid. In addition, this anisotropy does not
seems do decrease with distance from the grid.

The range of the similar points grows with increasing
distance as can be estimated from the fact, that the tur-
bulence decays from bottom (i.e. the Kolmogorov dissi-
pative scale grows). This range decreases with increasing
Reynolds number, as can be seen in the bottom half of fig-
ure 9.

Fig. 10. Top: Range of structure function S 2. The velocity is
constant corresponding to Re = 3.1 · 103. Bottom: the distance
from the grid is constant and equals to x0 = 250 mm.

We try to quantify the range R of structure function as
a distance of the reference point ξ⃗ to point, where S 2 = 1,
in some important direction, which is the stream-wise or
the span-wise direction. The result is plotted in figure 10.

Again, we see, that the range of structure function in-
creases with distance from the grid and decreases with ve-
locity. In the first dependence we can see an interesting
slowing of increase around distance 200 mm; this effect is
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probably connected with the lost of averaged large-scale 
structure of alternating jets and wakes. On the other hand, 
the decrease with velocity is not fully uniform, as can be 
seen at the highest velocities in the bottom part of figure 
10. At this moment, we doubt that this effect was physical; 
we prefer the hypothesis, that it is an error of PIV measure-
ment technique connected with higher velocities. In the 
future we plan to perform a similar comparison with LDA 
data, as it has been done above for the turbulence inten-
sity, but we are not yet familiar with the LDA processing 
software.

4 Conclusion
The grid-generated turbulence has been studied by using 
both, PIV and LDA techniques. We observe that both 
methods give similar results, mainly at lower velocities. 
At higher velocities the PIV technique underestimate the 
fluctuations, probably due to the finite size of the interrog-
ative area, inside which the velocity is averaged.

The turbulent kinetic energy decays with distance as 
x−1.95.

We used a new method of spatial turbulence spectra 
[17] and we have found that they follow the Kolmogorov 
law even in the vicinity of the grid, where the turbulence is 
not homogeneous neither isotropic. At smaller velocities, 
we observed a deviation from this law caused probably by 
the vicinity of the dissipative length-scale.

Structure functions show that the turbulence is surpris-
ingly not isotropic as the shape of the structure function is 
deformed in the direction of the flow ( it i s prolate in the 
axis of the investigated velocity component). The range of 
structure function increases with distance and decreases 
with velocity, although there is an inexplicable increase at 
largest velocity, which might be an PIV artifact, but we 
lack the comparison with LDA to proof that at this mo-
ment.
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