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Abstract. This paper is concerned with fast flow field prediction in a blade cascade for vari-
able blade shapes as well as variable Reynolds number using the machine-learning architecture
called convolutional neural network. To generate flow field for a specific Reynolds number, an
encoder-decoder convolutional neural network, also called U-Net, is used. The values 500, 1000
and 1500 of the Reynolds number are chosen as the training set. Three U-Nets were trained
on CFD results for 100 blade profiles, each U-Net for a different Reynolds number. In order
to get a prediction for variable Reynolds number, a so-called hypernetwork in employed. The
hypernetwork essentially interpolates between the two trained U-Nets. The architecture of the
hypernetwork is fully-connected feedforward neural network with one input neuron correspond-
ing to the Reynolds number, one hidden layer and the output layer corresponds to the weights
for the interpolated U-Net. The concept of the hypernetwork-based parametrization is tested
on a problem of compressible fluid flow through a blade cascade with three unseen blade profiles
and unseen Reynolds number.

1 INTRODUCTION

Convolution neural network (CNN) is a class of neural networks originally developed for
recognition of patterns in images [2] and has become the dominant machine-learning technique
for image and video processing in general. It is based on applying convolution filters on the
image. After adding a deconvolutional layer, the architecture is also able to generate images.
This encoder-decoder CNN architecture is also called a U-Net, the diagram of which is shown
in Fig. 3.

Recently, CNNs have started to be used also to predict fluid flows. Convolution filters can
be applied to flow fields the same way as they are applied to images. A discretized flow field
is basically an image, where each pixel contains flow variables, such as velocity components,
pressure and density, instead of the RGB code. The pioneer study on the subject of flow-field
prediction using CNNs is [3]. In this paper, steady fluid flows were considered. The authors
trained a CNN to predict velocity fields given an input image, which contains information about
the fluid boundary. Soon after, the paper [4] concerned with the use of CNNs for the prediction
of unsteady fluid flows appeared. In both papers, the U-Net architecture of CNN was used.
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The above studies made a great progress in using machine learning in fluid dynamics, however,
there is still a plenty of scope for improvement. The CNNs developed by [3] and [4] do not account
for variable flow parameters, such as the Reynolds number or boundary conditions. To achieve
flow parametrization, Zhang et al. [5] developed multiple CNNs that predict the lift coefficients
of aerofoils with a variety of shapes, variable free-stream Mach numbers, Reynolds numbers
and angles of attack. The limitation of the proposed model is that the output of these CNNs
is only the lift coefficients of the aerofoil instead of the flow field around it. Bhatnagar et al.
[6] and Chen at al. [7] developed CNN models that predict velocity and pressure fields around
aerofoils with variable shape and with parametrized Reynolds number and angle of attack. Chen
at al. used a more modern architecture for the neural network called a conditional generative
adversarial network.

The aim of this study is to design a U-Net for the prediction of flow fields through a blade
cascade. The blade cascade is modelled as a single interblade channel with periodic boundary
conditions. Fast prediction of flow through turbine or compressor blades may have a significant
impact on turbomachinery design. It is an important application that has its own hurdles.
The high performance of a neural network yields a very promising alternative to classical CFD
methods for complex problems such as flow control or shape optimization, in which case, a
pressure field needs to be evaluated for many geometry variations.

To provide a parameter-dependent neural network model capable of predicting flow fields
for various Reynolds numbers, a so-called hypernetwork is employed in this paper. Based on
the given Reynolds numbers, the hypernetwork modifies weights of the main network in such a
way that the main network produces flow fields which correspond to that Reynolds numbers.
Hypernetworks can therefore be thought of as weight generators. In our model, the hypernetwork
is a simple fully-connected feedforward neural network with one hidden layer, see Fig. 4. The
neural network architecture was implemented in Python programming language using Keras [8]
and TensorFlow [9] libraries.

2 GEOMETRY OF BLADE CASCADE

In this paper, the fluid flow is modelled in one interblade channel and periodic boundary con-
dition is impose on the boundary with the neighbouring interblade channel. The computational
domain is therefore formed by the space between two adjacent blades, which is covered by a
non-Cartesian structured grid, see Fig. 2. Note that most of the other studies, such as [3, 4],
use a Cartesian grid. The advantage of a non-Cartesian grid is that it accurately describes the
boundary of the computational domain.

The blade profile is parametrized by two cubic splines as shown in Fig. 1. One spline describes
the pressure side and the other spline describes the suction side. Each spline is defined by four
points, the two inner points are variable and the two outer points are fixed. The splines share
the two fixed points. One of the fixed points is placed on the leading edge at the position
[0, 0.5] and the other fixed point is placed on the trailing edge at the position [1, 0]. The blade is
therefore described by six points - two points are fixed and four points called the design points
are variable and therefore define the shape of the blade.
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Figure 1: Blade profile.

Figure 2: Computational
mesh.

3 NEURAL NETWORKS ARCHITECTURE

For the prediction of flow fields with variable Reynolds number, two neural-network structures
are used. One network structure, which is also called the main network, predicts the flow field
for a given Reynolds number. A U-Net is used for this purpose, see Fig. 3. A U-Net is just an
alternative name for an encoder-decoder CNN. The main network is actually trained for each of
chosen Reynods numbers. As a result, a multiple U-Nets are obtained, each U-Net is trained to
predict flow field with different Reynolds number.

Consequently, a so-called hypernetwork is employed to interpolate between the U-Nets. In
this paper, the hypernetwork is a fully-connected feedforward neural network, with one input
neuron, for the Reynolds number, and its output are weights for the interpolated main network.

The input to the U-Net are x and y coordinates of the structured non-Cartesian mesh with
64 × 32 points. An example of the input mesh is highlighted in Fig. 2. Each U-Net generates
a flow field consisting of density, pressure and velocity components as the output. Each U-Net
was trained on a set of 100 blade profiles and for each of the Reynolds numbers. The resulting
weights for each of the U-Net were then used to train the hypernetwork.

The hypernetwork consists of a dense neural network, see Fig. 4. At the input, the Reynolds
number is supplied. The weights of the U-Net are then generated at the output of the hyper-
network.

3.1 BOUNDARY CONDITIONS

It is not strictly necessary to include the boundary conditions in the CNN model, since the
neural network would pick up the boundary conditions from the training dataset. However, one
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Figure 3: Main network architecture - U-Net.

Figure 4: Hypernetwork architecture.

obtains better results if the boundary conditions are included in the model. For this reason,
two types of padding (replication and periodic) are used according to the type of boundary
condition. The algorithm is illustrated in Fig. 5. Before each convolution layer, the left column
(the inlet) is copied into a new column on the left of the domain and likewise the right column
(the outlet) into a new column on the right of the domain. Secondly, the top row is copied into
a new row at the bottom and simultaneously copy the bottom row into a new row on the top.
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Figure 5: Illustration of the padding operation.

4 RESULTS

To test the described concept of the suggested flow field parametrization, a training set of
100 random profiles was generated in total. Furthermore, three values of the Reynolds number,
namely Re = 500, 1000, 1500, were chosen for training of the U-Net. For each profile and each
of the three values of the Reynolds number, a flow field was computed using the open-source
CFD software FlowPro [1]. In these simulations, air in standard conditions is considered as the
fluid. In all the forthcoming simulations, the angle of attack, α = 15◦, and the ratio of the outlet
static and inlet stagnation pressure pout/pin0 = 0.843 is used. This correspond to the subsonic
flow with the far-field Mach number Ma∞ = 0.5.

Three U-Nets were trained on CFD results of flow through a blade cascade with the 100
blade profiles. Each U-Net was trained for a different value of the Reynolds number. Finally, a
hypernetwork was trained on the three sets of weights corresponding to the three U-Nets. Once
the U-Nets and hypernetwork are successfully trained on the training dataset, the prediction
procedure is as follows. Firstly, the weights for the main network are generated for the chosen
Reynolds number using the hypernetwork. Secondly, the resulting main network is used for fast
flow field predictions in the cascade with unseen blade profiles.

In order to validate the developed concept against the results of the CFD simulation, the
pressure lift L and pressure drag D, which are given by the following relations

L =

∮
Γ
p ny dS, D =

∮
Γ
p nx dS, (1)

are compared. Here p is pressure, n = [nx, ny] is the outer unit normal vector to the surface Γ
of the blade profile.

Three testing blade profiles were randomly generated, see Fig. 6. These profiles were not
included in the training set. Three CFD simulations through blade cascades with the testing
blade profiles for the Reynolds number 750 were then performed to obtain the testing dataset.
Note that the value 750 of the Reynolds number is also not included in the training dataset. A
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Figure 6: Testing blade profiles.

Table 1: Comparison of calculated and predicted results by evaluation of pressure lift and
pressure drag for the Reynolds number 750 on the testing blade profiles.

Blade
Drag Lift

CFD DNN Err [%] CFD DNN Err [%]

1 4.533×10−2 4.418×10−2 2.5 5.641×10−2 5.912×10−2 4.8

2 3.556×10−2 3.578×10−2 0.6 6.923×10−2 7.111×10−2 2.7

3 3.710×10−2 3.552×10−2 4.3 6.621×10−2 6.682×10−2 0.9

comparison of the predicted and calculated velocity and pressure fields in cascades with each of
the testing blade profile is shown in Figs 7 – 9. Moreover, the pressure around the blade profile
is also plotted for a better comparison of the calculated and predicted results. Table 1 shows
the error of the predicted flow fields with the Reynolds number 750 for unseen testing blade
profiles.

5 CONCLUSIONS

Within this study, the concept of flow field parametrization using a hypernetwork was intro-
duced. The hypernetwork was trained for three sets of U-net weights corresponding to three
values of the Reynolds numbers, namely to 500, 1000 and 1500. The U-net with weights gen-
erated by the hypernetwork for the Reynolds number 750 was evaluated for three test profiles.
The lift and drag errors were evaluated against the CFD calculation. All of the average errors
are less than six percent. The results indicate that the concept of the flow field parametrization
by the hypernetwork could be a very promising alternative to classical CFD methods for tough
problems such as flow control or shape optimization. The future studies will be focused on a
fully parametrized flow field.
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Figure 7: Results for blade profile number 1 and Re = 750.
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Figure 8: Results for blade profile number 2 and Re = 750.
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Bubĺık O., Heidler V., Pecka A. and Vimmr J.

Figure 9: Results for blade profile number 3 and Re = 750.
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