FACULTY OF APPLIED SCIENCES DEPARTMENT OF

> UNIVERSITY COMPUTER SCIENCE
OF WEST BOHEMIA AND ENGINEERING
Bachelor’s Thesis

Graphical User Interface for
Rehabilitation Software

Lukas Varga

PILSEN, CZECH REPUBLIC 2023

FACULTY OF APPLIED SCIENCES DEPARTMENT OF

> UNIVERSITY COMPUTER SCIENCE
OF WEST BOHEMIA AND ENGINEERING
Bachelor’s Thesis

Graphical User Interface for
Rehabilitation Software

Lukas Varga

Thesis advisor
Doc. Ing. Libor Vasa, Ph.D.

PILSEN, CZECH REPUBLIC 2023

© 2023 Lukas Varga.

All rights reserved. No part of this document may be reproduced or transmitted in
any form by any means, electronic or mechanical including photocopying, recording
or by any information storage and retrieval system, without permission from the
copyright holder(s) in writing.

Citation in the bibliography/reference list:
VARGA, Lukas. Graphical User Interface for Rehabilitation Software. Pilsen, Czech
Republic, 2023. Bachelor’s Thesis. University of West Bohemia, Faculty of Applied

Sciences, Department of Computer Science and Engineering. Thesis advisor Doc.
Ing. Libor Vasa, Ph.D.

ZAPADOCESKA UNIVERZITA V PLZNI

Fakulta aplikovanych véd
Akademicky rok: 2022/2023

ZADANI BAKALARSKE PRACE

(projektu, uméleckého dila, uméleckého vykonu)

Jméno a pfijmeni: Lukas VARGA

Osobni ¢islo: A19B0219P

Studijni program: B0613A140015 Informatika a vypocetni technika
Specializace: Informatika

Téma prace: Grafické uzivatelské rozhrani pro rehabilitacni software
Zadavajici katedra: ~ Katedra informatiky a vypocetni techniky

Zasady pro vypracovani

1. Seznamte se s softwarem pro rehabilitaci pacientl trpicich roztrousenou sklerézou v prostredi
virtualni reality vyvijenym na KIV ZCU, zejména s mechanismem konfigurace terapeutickych cvieni.

2. Navrhnéte subsystém pro konfiguraci terapeutickych cviceni prostednictvim grafického uzivatel-
ského rozhrani. Dbejte na obecnost, navrh systému pfipravte na mozné zmény struktury parame-
trd cvi¢eni pouzivanych v terapeutickém softwaru. Konfiguraéni subsystém konstruujte tak, aby
vytvarel a nacital konfiguraéni soubory ve struktui'e XML navrzené v soucasné verzi rehabilitatniho
softwaru. Pfipadné nutné zmény konzultujte s vyvojovym tymem.

3. Navrzené feSeni implementujte a dkladné otestujte. Pfedlozte feSeni terapeutickému tymu a zis-
kejte zpétnou vazbu k funkénosti a uzivatelskému komfortu. Pozadované zmény zapracuijte.

4. lytvorené reseni dlikladné zdokumentujte a popiste mozné sméry pro budouci vyvoj.

Rozsah bakalarské prace: doporuc. 30 s. plivodniho textu

Rozsah grafickych praci: dle potieby
Forma zpracovani bakalarské prace: tisténa/elektronicka
Jazyk zpracovani: Anglictina

Seznam doporudené literatury:

Doda vedouci bakalarské prace

Vedouci bakalarské prace: Doc. Ing. Libor Vasa, Ph.D.
Katedra informatiky a vypocetni techniky

Datum zadani bakaléiské prace: 3. fijna 2022
Termin odevzdani bakalarské prace: 4. kvétna 2023

L.S.

Doc. Ing. Milo$ Zelezny, Ph.D. Doc. Ing. Premysl Brada, MSc., Ph.D.
dékan vedouci katedry

V Plzni dne 25. fijna 2022

[hereby declare that this Bachelor’s Thesis is completely my own work and that I
used only the cited sources, literature, and other resources. This thesis has not been
used to obtain another or the same academic degree.

I acknowledge that my thesis is subject to the rights and obligations arising from
Act No. 121/2000 Coll., the Copyright Act as amended, in particular the fact that
the University of West Bohemia has the right to conclude a licence agreement for
the use of this thesis as a school work pursuant to Section 60(1) of the Copyright Act.

Pilsen, on 23 April 2023

Lukas Varga

The names of products, technologies, services, applications, companies, etc. used in
the text may be trademarks or registered trademarks of their respective owners.

This bachelor’s thesis deals with the extension of the arm rehabilitation application
in virtual reality. The application is being developed as part of the study Virtual
reality in the treatment of patients with multiple sclerosis. In the current version of
the software, therapy exercises are set up manually by editing configuration files.
The work aims to simplify the configuration of therapeutic exercises for the physio-
therapy team using an intuitive graphical user interface. The focus is on backward
compatibility with the original configuration mechanism and on possible changes
to the structure of exercise parameters used in the therapy software.

Tato bakalarské prace se zabyva rozsirenim aplikace pro rehabilitaci paze ve vir-
tudlni realité. Aplikace je vyvijena v ramci studie Virtudlni realita v lécbé nemocnych
s roztrousenou sklerozou. V aktualni verzi softwaru se terapeuticka cviceni nastavuji
ru¢né pomoci editace konfigura¢nich soubort. Préace si klade za cil zjednodusit
fyzioterapeutickému tymu konfiguraci terapeutickych cviceni za pouziti privétivého
grafického uzivatelského rozhrani. Diraz je kladen na zpétnou kompatibilitu s
pivodnim mechanismem konfigurace a na mozné zmény struktury parametrti cviceni
pouzivanych v terapeutickém softwaru.

VR rehabilitation « XML « Configuration « Multiple sclerosis « Unity « GUI

(i)

Acknowledgement

I would like to thank Doc. Ing. Libor Vasa, Ph.D. for his guidance and helpful attitude
during the writing of this thesis. My thanks also go to Ing. Jakub Frank for his assis-
tance with software implementation and Bc. Lubomir Rodina and his therapeutic
team for the feedback, which led to the improvement of the application. Last but
not least, I would like to express my gratitude to my family and friends for their
support, particularly to Duc Long Hoang for his encouragement and assistance with
the BIEX template.

(iii)

1 Introduction

2 Theoretical Part

2.1
2.2

2.3

2.4

2.5

2.6
2.7

Multiple Sclerosis
Rehabilitation
2.2.1 RehabilitationinMS L.
Virtual Reality o o
2.3.1 Physiotherapyusing VR
Exercises
241 Movement
242 Game
Application Configuration
2.5.1 DataSerialization
2.5.2 Exercise Definition
2.5.3 Exercise Configuration
UserInterface
Unity
2.7.1 User Interface Toolkit
2.7.2 Choosing the Ul Toolkit

3 Implementation Part

3.1
3.2

3.3

Integration to the RehabilitationSW
Proposed Code Structure
3.2.1 Controller for Editing Configuration
322 HelperFunctions
323 XMLHandling
324 ClassDiagram,
Exercise Configurator Window
3.3.1 Global Settings,
3.3.2 Exercise Definition
333 Exercise

O 0 0 N O O O U i

I T e S S Y
N U AR = = O O

4

334 FinalDesign

3.4 Additional Functionality
3.4.1 Floating Tooltip
3.42 Blinking Effect,
343 UnityLayout,

Testing

41 UserManual

42 TestScenario

43 Feedback

4.4 Incorporation of Improvements

5 Conclusion

A Test Case Document

B Feedback Document

Bibliography

List of Figures

List of Listings

Attachments

33
33
33
34
35

39

41

43

45

49

51

53

Introduction

Patients with multiple sclerosis use rehabilitation to slow down the manifestations
of the disease in combination with other treatments, such as medication. Thus,
rehabilitation is considered to be one of the essential methods to enhance the overall
quality of life for patients.

A team from the Third Faculty of Medicine at Charles University and the Faculty
of Applied Sciences at the University of West Bohemia is developing software (SW)
that aims to move treatment into virtual reality (VR). The application is being devel-
oped as part of the study — Virtual reality in the treatment of patients with multiple
sclerosis. It aims to increase the motivation of patients to attend therapy.

This alternative method of rehabilitation still requires the involvement of a phys-
iotherapist, at least for now. Patients visit a specialized therapeutic facility, where
they perform a series of exercises in the presence of the therapist. The symptoms of
the disease can vary depending on the individual. Therefore, the therapist creates a
specific set of exercises that corresponds to the individual needs of the patient.

At the moment, the whole therapeutic plan is set up manually by editing con-
figuration files. These files use the Extensible Markup Language (XML) format to
describe exercises and their parameters. Editing configuration files, therefore, re-
quires the therapist to have some technical knowledge and familiarity with the given
format.

The goal of this work is to create a convenient graphical user interface (GUI)
that will simplify the configuration of therapeutic exercises for the physiotherapy
team. This would mean that therapists would not have to deal with unnecessary
technicalities and could focus more on patients and the therapy itself. Ultimately,
the implementation of the GUI can allow at least a portion of the therapy to be
transferred to the home environment in the future [Fra22].

The GUI module for the exercise configuration will be designed with an empha-
sis on backward compatibility with the original solution. It will be properly tested
by the therapeutic team and the proposed changes will be implemented in the final

version.

Theoretical Part

2.1 Multiple Sclerosis

Multiple Sclerosis (MS) is a potentially disabling disease of the brain and spinal cord
— the central nervous system (CNS). In MS, the body’s immune system mistakenly
attacks and damages the protective covering of nerve fibres called myelin, disrupting
the connection between the nerves of the body and the brain. Myelin is a layer that
forms around nerves, including those in the brain and spinal cord. It is made up of
protein substances [Tob22].

This behaviour can result in a wide range of symptoms, such as inflammation

! movement disorders, sensitivity, balance disorders or difficulty

of the optic nerve
urinating. The incidence of the disease usually occurs in individuals between the
ages of 20 and 40. Some major factors that may contribute to the onset of MS include
infection with the Epstein-Barr virus, vitamin D deficiency, tobacco smoking, and
genetic predisposition. In general, it is not considered a fatal disease. Most patients

live a normal life and reach an average age [Sib16].

The onset of the disease is usually not sudden and manifests itself in a variety
of clinical manifestations. Nonspecific difficulties described by some patients, such
as fatigue, loss of energy or malaise, may occur for several weeks to months before
the development of neurological symptoms leading to accurate diagnosis [Fra22].

During the course of the disease, there are alternating phases of relapse and re-
mission. During relapses (attacks), the patient’s condition and neurological difficulties
worsen. On the other hand, during remissions, there is a partial restoration of myelin
and the disease does not manifest itself in any way [Rod20]. The basis of treatment
is corticosteroids® and anti-inflammatory drugs during the relapse phase, combined
with physiotherapy and rehabilitation.

!Blurred vision, pain when moving the eye, change in colour perception
2Synthetic drugs that mimic the effects of naturally occurring steroid hormones

2. Theoretical Part

Rehabilitation is a type of medical treatment that focuses on restoring physical
and cognitive imbalance. The reason for this imbalance could be injury, illness, or
disability. The initial phase is crucial in determining the precise diagnosis of the
patient and identifying the exact procedures and priorities of treatment. Several
tests are employed in rehabilitation to confirm the effectiveness of the therapy.

The goal of rehabilitation is to help individuals to achieve their maximum poten-
tial and to prevent further complications or disabilities. The process often requires
a coordinated effort between healthcare professionals and patients. It may involve
long-term care and ongoing support to ensure the best possible outcomes.

The text in this chapter is based on [Fra20].

When rehabilitating patients diagnosed with multiple sclerosis, it is necessary to
approach each of them individually. MS can have a variety of symptoms and its
manifestations vary within the stage of the disease. In the phase of remissions>, the
patient is supposed to visit therapy at least once a year to learn therapeutic exercises.
During the phase of relapses* it is suggested to attend the therapy more often in
order to prevent complications.

During rehabilitation, methods based on neurophysiology are primarily used.
These methods are built on the neuroplasticity® of the CNS. As a result, the damaged
part of the brain can be at least partially replaced by an undamaged part in terms of
functioning [Her21].

The therapy initially occurs with a therapist and then gradually transitions into
an individualized program. The physiotherapy is based on elements of sensorimotor
learning® and adaptation. Therefore, patients try to understand the possibilities of
using their own body by simulating everyday activities, for instance, sitting, standing,
standing up, sitting down, stepping and walking [Fra20].

Virtual reality aims to imitate some visual environment using a computer-generated
model. In order to display the model, it is necessary to have hardware with sufficient
performance to render the resulting image. A headset’ has an integrated display, on

3An improvement of the patient’s condition

4A worsening of the patient’s condition

>The brain’s ability to adapt to various changes in the internal and external environment

%A process of acquiring and improving motor skills through sensory perceptions

’A device worn over the head, commonly used for communication and entertainment purposes

2.3.1. Physiotherapy using VR

which the generated image is displayed. The headset usually contains some technol-
ogy for recognizing the position in space and then generating the corresponding
scenery. An example of such a headset is shown in Figure 2.1.

Figure 2.1: HTC Vive Headset

The VR headset is typically paired with controllers that allow the user to simulate
hand movements in a virtual environment. Other special accessories may include
various sensors that can be attached to the body. These sensors monitor specific
parts of the human body and hence enable a more accurate simulation in a virtual
environment.

2.3.1 Physiotherapy using VR

During the study, the team of students primarily uses headsets from the Vive series,
which were created by companies Valve and HTC. The device works on the SteamVR
platform and needs to be connected to a computer that handles image rendering.
Movement is tracked by the SteamVR Tracking system using body-mounted sensors,
so-called trackers. These trackers enable tracking the movement of the entire body
or its parts in a virtual reality environment [Fra22].

As mentioned earlier, the headset needs to be connected to the computer so the
therapist can see the patient’s full view in the desktop version of the rehabilitation
SW. In addition, the therapist can configure certain parameters of the SW, edit the

2. Theoretical Part

therapeutic plan or see some statistics about the currently performed exercises on
the computer screen.

In the VR rehabilitation SW, there are currently several exercises which aim to
train the upper body. In the beginning, the patient puts on a headset and trackers are
attached to the patient’s body. After the initialization3, the physiotherapist chooses
the individual exercise plan using the computer. Then, the VR headset displays
the first exercise from the plan and the patient is guided to perform the desired
movement® till the end. After finishing the first exercise, the next exercise follows,
until the patient completes all the exercises from the therapeutic plan.

The VR rehabilitation application includes several predefined exercises which are
used in the therapy. It helps patients to visualize the movements and motivates
them to perform the desired physical activity. These exercises can be divided into
two different categories — movements and games. The emphasis is on movements
because they include basic principles of treating MS using physiotherapy. Games, on
the other hand, provide more natural motions. Additionally, games can contribute
to motivation by making the therapy more entertaining.

A VR physiotherapy session consists of different exercises which are put to-
gether into the individual plan created by a therapist. Each of these movements and
games has its own specific parameters that can be adjusted. The order of exercises
is also essential because the therapist may want some exercises to be done during
the beginning of the therapy when the patient is full of energy, and vice versa.

The text in the following two chapters is based on [Fra22].

Movement is a type of exercise that involves following a specific hand trajectory in
VR. Movements can be divided into two groups — without return and with return.
A movement without return does not require the patient to return to the starting
position. Such movement is, for instance, a spiral in Figure 2.2. A movement with
return has the starting and ending point in the same place, and the patient must
reach the so-called apex'® during the exercise. An example of such an exercise is a
one-handed diagonal in Figure 2.3.

Movements use several parameters which can be adjusted to the individual needs
of the patient in the configuration file, as further explained later in Chapter 2.5.3.2.

8Configuring the trackers and putting the patient into a neutral starting position
9Using VR controllers and his whole body
19The highest point or peak of a movement, where direction changes

24.2. Game

ig18-15_13.04.23.xml

Figure 2.3: Diagonal Movement

These parameters are a phase target, a quality threshold and the number of repeti-
tions of the given exercise.

24.2 Game

This type of exercise allows patients to play simple games so they can train their
motor skills. Currently, there is one game implemented in the VR rehabilitation
application. The name of the game is Ball Connecting and its objective is to collect
balls displayed in virtual space using the patient’s hand. Figure 2.4 illustrates the
mentioned game.

2. Theoretical Part

Aktudinf: config18-15_13.04.23.xm

Aktualni hra: Spojoén mich

Pocet bodi: 0/ 4

Figure 2.4: Ball Connecting Game

2.5 Application Configuration

In order to adapt the previously mentioned exercises to the individual needs of pa-
tients, some kind of configuration is needed. The configuration is primarily made by
physiotherapists with the help of programmers. Within the configuration, therapists
must create a suitable combination of movements and games. The emphasis is also
on the possibility to adjust the difficulty of exercises. The configuration uses files in
XML format that will be described in more detail in the following chapter.

2.5.1 Data Serialization

Data serialization is a process to save an object’s state and transfer it to a stream.
The data stream created during serialization contains all the information needed to
rebuild the object later. This process is widely used for storing persistent data on a
disk in various formats, such as XML, YAML or JSON. The process of serialization
enables exchanging data between different systems, languages and architectures [06].

In the rehabilitation SW, the configuration data are stored using Extensible
Markup Language (XML). This format offers a universal method for representing
various types of information. It is not a language specifically designed for data rep-
resentation. Instead, it provides a highly versatile structure that allows for the cre-
ation of new formats to represent diverse sets of data. This language can be used
to represent almost any data because it is highly generic. XML has gained signifi-
cant popularity in the last two decades due to its universality and the fact that even
HTML!" which the entire internet is built on, is related to XML [NL14].

'HyperText Markup Language

10

2.5.2. Exercise Definition

An example of an XML structure is shown in Listing 2.1. XML documents form a
tree structure that can be described as follows. On the first line, there is an obligatory
prologue which sets the XML version and character encoding. On the second line,
there is a mandatory root element. There can only be one root element in the whole
document. The rest of described elements are only a sample to show the structure.
The following line starts with a <child> element which has two attributes — parl
and par2. Both of these attributes have their own values stated in quotation marks.
On lines 4, 5 and 6, there are three elements of <subchild>. The final point to note is
that each element must have a corresponding closing element!?.
Source code 2.1: Sample XML Code Snippet

<?xml version="1.0" encoding="UTF-8"7?7>
<root>
<child parl="vall" par2="val2">
<subchild>...</subchild>
<subchild>...</subchild>
<subchild>...</subchild>
</child>
</root>

In the VR rehabilitation SW, each movement or game needs to be defined before
it can be used for therapy. Exercise definition can be thought of as a type of class.
Subsequently, this class can be used to generate separate exercise instances. As men-
tioned in Chapter 2.4, these instances can be used to create a therapeutic plan by
combining them in the list.

All movement definitions from the application are stored in the file movement-
definitions.xml. It includes several pieces of information about the movement, such
as its ID, the side!3, a filepath to the data and a filepath to the animation. As for the
game definitions, they are defined separately. Currently, there is only one game im-
plemented right now — Ball Connecting. Similarly, this game uses some parameters,
as will be explained later in Chapter 2.5.3.3.

Accordingly, the specific exercise instances can be used to create an individual ther-

apeutic plan, which is specified in an XML file. The default file for the rehabilitation

ll4

SW is config.xml™*, which is loaded during the application start. Because the mecha-

2Using the symbol '/’ before the element name
13Left or right
141t is located in the Assests/StreamingAssets/ directory by default

11

1

2

2. Theoretical Part

nism of exercise configuration is crucial for this bachelor’s thesis, the configuration
file and its structure will now be described in more detail, as can be seen in Listing
2.2.

The text in this section and its subsections is based on the following source
[Fra22].

)

Source code 2.2: Therapeutic Configuration File

<?xml version="1.0" encoding="utf-8"7>
<exercises>
<lang>english</lang>
<hide_hint_arrow>true</hide_hint_arrow>
<data_processor>combined</data_processor>
<tracker_model>Cube</tracker_model>
<hide_cubes_in_tunnel>true</hide_cubes_in_tunnel>
<show_tunnel_only_to_apex>false</show_tunnel_only_to_apex>
<hide_chair>false</hide_chair>
<exercise type="movement" id="diagl_1" hideChest="true"
hideHead="true" hideHand="true" hideArm="true">
<phase_target>0.5</phase_target>
<quality_threshold>0.6</quality_threshold>
<repetitions>3</repetitions>
</exercise>
<exercise type="game" id="ball_r">
<name>sixballs</name>
</exercise>
</exercises>

The root element <exercises> encapsulates all the settings and individual exer-
cises. There are several elements on lines 3-9 which modify the global settings of
the whole application. Then, there are two exercises — a game starting on line 10
and a movement starting on line 13. Each exercise has common parameters — type
and ID. Type can be either movement or game. ID then specifies the string name of
the exercise.

Itis possible to change the language using this option. All the information
in the application will be displayed in this language'.

The arrow in the Ball Connecting game can be shown or hidden
to the user. This arrow is used for navigation when the user does not see the balls.

15Current localization options are Czech and English

12

2.5.3.2. Movement Parameters

Sets the data processor used. It is a deprecated artefact that was
used during the development of earlier versions of the application.

A model representing the current position of each tracker. capsule
shows the tracker as an ellipsoid, while cube displays it as a cube.'®

The trajectory displays cubes that visualize how the tracker
should be rotated at that point. The cubes in the trajectory can be shown or hidden
from the user.

Specifies how the trajectory will be visualized for
movements with an apex, as mentioned in Chapter 2.4.1. If the value is selected,
only the trajectory from origin to apex will be displayed during the entire motion
execution. If the value is not set, then it will switch between the two trajectories.

One of the VR trackers is attached to a chair that is used for the patient
to sit down and stand up during the therapy session. For that reason, there is the
parameter Hide Chair which can be used to show or hide the chair visualization. In
the case of a hidden chair, it is not necessary to use the tracker for the chair.

A movement has a set of special parameters — hideHead, hideChest, hideArm, hide-
Hand. These parameters define whether or not to display trajectories of each body
part during the exercise by stating either true of false. The movement also has several
sub-elements as listed:

The element contains a decimal number from the interval [0, 1] and
indicates to which phase the movement should be executed. The phase determines
what part of the exercise the patient is in, spanning from the beginning to the end
of the movement.

The element contains a decimal number from the interval [0, 1]
and indicates the level of quality that should be achieved for a given phase. The
quality provides information about how far the patient is from the sample exercise.

The element specifies how many times the movement should be re-
peated before it is considered complete. The number belongs to the interval [0, 10]
and it is a natural number.

19The model is implicitly set to a cube

13

2. Theoretical Part

In the game, there is a limited number of balls and their locations are
determined by the therapist using a separate application dedicated to recording the
position of the balls. Thus, the game requires a configuration file with the data about
balls in XML format'”.

User Interface (U]) facilitates communication between human beings and comput-
ers. It includes components for input and output that allows users to interact with
electronic devices or SW applications. When designing a U], the focus is on showing
information in a comprehensible way. This can be shown in abstract or representa-
tional forms to help people understand structures and processes using tables, forms,
charts, maps, and diagrams.

In addition to UI, there is also User Experience (UX). It is a field that involves
designing interactive experiences for viewers, customers, visitors or readers. UX
design is not limited to graphic, media and web designers, or other related pro-
fessionals. Instead, it contains all aspects of the human experience and incorpo-
rates them into computer-based products. As a result, related topics like customer-
experience design, culture-driven design, cognitive-neuroscience-driven design and
others have emerged.

Graphical User Interface (GUI) is closely connected to Ul The main difference
is that GUI refers more specifically to a system of interactive visual components for
controlling the SW, such as menus, windows, dialogue boxes, control panels, icons
and tool palettes. An example of such a GUI is the Unity Editor, which is described
in the following chapter.

The text of this chapter is based on [Mar15].

The Unity Editor can be utilized to develop 2D and 3D games, applications, and inter-
active digital environments, so basically, it could be characterized as an integrated
development environment (IDE). An IDE is a piece of computer SW that provides
tools and features to make it easier to develop other pieces of SW. Unity offers a
user-friendly interface, a powerful game engine, a visual editor, and support for
multiple programming languages [Uni22c]. The Unity Editor is presented in Figure
2.5.

"The file location is the Assests/StreamingAssets/ directory by default

14

2.7.1. User Interface Toolkit

119.438f1 Personal [PREVIEW PACKAGES IN USE] <DX11> - 8 X
Help

Figure 2.5: Unity Editor

The editor consists of several parts as follows. On the left side, there is the
hierarchy with all the game objects used in the current application. At the bottom
side, there is the project tree with all the files and also the console. In the middle of
the screen, there is the scene for visualising game objects from hierarchy using the
camera'®. When any game object!? is selected, some of its additional options and
preferences will pop up on the right side.

One of the native languages that can be used for scripting in Unity is C#. It is
a modern, object-oriented programming language designed and first introduced
in 2000 by Microsoft. It is mainly used for developing Windows applications, web
applications and games. C# is quite similar to languages such as C++ and Java, but
with some additional features [Mic23].

2.71 User Interface Toolkit

A very important point of the design was the selection of a suitable library for
the creation of the UIL. Within the Unity version in use??, there are three different
libraries, it can be chosen from — UlElements, Unity Ul and IMGUL.

UlElements. User Interface Elements (UlElements) is a Ul toolkit for developing
user interfaces in the Unity Editor. The toolkit is based on recognized web tech-
nologies and supports stylesheets, dynamic and contextual event handling, and data

18A tool through which the player views the world
YEither from the scene or from the hierarchy
20Unity 2019.4 LTS

15

2. Theoretical Part

persistence. It is a Ul toolkit that is no longer maintained by Unity and it is grad-
ually being replaced by its descendant — UI Toolkit?!. UlElements allows defining
elements using a tree structure familiar to web technologies based on XML and CSS,
as it is displayed in Figure 2.6.

TANKS [

SANDBOX
A

Figure 2.6: UlElements Example [Uni20b]

Unity Ul. The Unity User Interface (Unity UI) package provides a simple UI toolkit
for developing user interfaces for games and applications. Unity Ul is a GameOb-
ject-based Ul system that uses components to arrange, position, and style the user
interface, as can be seen in Figure 2.7. This toolkit has the advantage of a mainly
graphical approach. So far, it has been used for the development of graphic ele-
ments of VR rehabilitation SW. Unity Ul is integrated into the Unity development
environment, which is a great advantage among the others.

Editing Configuration

Figure 2.7: Unity Ul Example

2INot presented the in Unity version of the VR rehabilitation SW

16

1
2
3
4

19
20

21

2.7.2. Choosing the UI Toolkit

Immediate Mode Graphical User Interface IMGUI) is a code-driven Ul
toolkit that is mainly intended as a tool for developers. IMGUI uses the OnGUI
function (and scripts that implement the OnGUI function) to draw and manage its
user interface. IMGUI is the most advanced tool, but also the most complex. Its big
disadvantage is the aforementioned complexity, so Unity itself does not recommend
it for building the UI of a game or an application. An example of IMGUI can be seen
in Listing 2.3, where I used it for the blinking effect described later in Chapter 3.4.2.

Source code 2.3: IMGUI Example

public class ImageBlinkEffect : MonoBehaviour
{
void Start ()
{
imgComp = GetComponent<Image>();
StartCoroutine (SelfDestruct());
}
void Update ()
{
imgComp.color = Color.Lerp(startColor, endColor,
Mathf.PingPong(Time.time =* speed, 1));
}
private void OnDestroy ()
{
imgComp .color = startColor;
}
}

The text in this chapter is based on [Uni22a].

Of the options listed, I chose to use mostly the Unity Ul package. It seemed logical to
build on the similar structure which was used during the previous development of
the VR rehabilitation application. This toolkit contained sufficient tools from which
I could model a graphical editor for configuring exercises.

In addition to that, I also used the last mentioned IMGUI package for a couple
of advanced functionalities. Specifically, I used it for two interactive visual effects
— the blinking effect and the floating tooltip?2.

22 graphical element that provides some information about a given item when the user hovers
the mouse over it

17

Implementation Part

The entire GUI module was designed and implemented in the Unity development
environment. More specifically, Unity version 2019.4 LTS was used, since the whole
VR rehabilitation application is based on this particular version. The object-oriented
language C# was used as the programming language for scripting in Unity. The target
platform of the application was Windows operating system.

3.1 Integration to the Rehabilitation SW

Before implementing the GUI module, I needed to examine the existing application
structure so I could connect the module in a reasonable way. The most suitable
place for linking was the class ExercisesController. This class handles the loading
of exercises from a configuration file into the application environment. It already
contains a list of exercises and exercise definitions, and a reference to the configuration
file.

In the desktop version of the rehabilitation SW, the ExercisesController class is
responsible for displaying the top panel, where therapists select the configuration
file. A new button was added to the top right corner of the mentioned panel, as
shown in Figure 3.1 (highlighted in yellow). It has two different functions — editing
an existing configuration or creating a new configuration file.

3.2 Proposed Code Structure

In the following chapters, I am going to describe the proposed code structure of
the GUI module for configuring exercises. In order to maintain code readability for
other programmers, it is generally considered best practice to divide the code into
multiple files and classes. Moreover, | personally consider this division to be crucial
because it helped me to come up with better ideas when developing the application
and it enables me to connect individual logical and functional blocks together. The
code was divided into three main classes as follows — EditConfigController, Helper
and XmlHandle.

19

1
2
3
4

5

3. Implementation Part

Current;

Power bars

Figure 3.1: Exercise Controller Window

3.2.1 Controller for Editing Configuration

The class EditConfigController is a Unity class that inherits from MonoBehaviour!.

In addition, I created a main GameObject2 with an identical name to the class in the
Unity Editor. This GameObject contains all the references to graphical elements used
in the Unity scene, such as labels, buttons, dropdowns and toggles. EditConfigCon-
troller class serves as a bridge between visual elements in Unity and their controlling
scripts. That made it easier for me to implement my own functionality which was
not offered by the editor.

The class EditConfigController is represented by a window that is displayed when
a user wants to modify certain settings in the configuration file. Once the user clicks
the editing button in Figure 3.1, the method StartEditConfig() is called>. The method’s
parameter is the list of Exercise elements which were loaded from the XML file to
the application during the start*. This method serves as the top-level trigger for
displaying all other graphical elements. The method can be imagined as a tree — the
visual elements are displayed from the root through the branches to the last smallest
leaves, as presented in Listing 3.1.

Source code 3.1: Creating the Configurator Window

public void StartEditConfig(List<Exercise> exercises)

{

Init(Q); // Initializes the window
FillSettingLabels () ; // Labels for settings
FillSettingInputs(); // Switches for settings

I'The base class from which every Unity script derives [Uni22d]

2Base class for all entities in Unity Scenes [Uni22b]

31f the user creates a new config file instead, in addition, the method CreateNewConfig() is called
“The list of exercises is already present in the class ExercisesController

20

3.2.1.1. Scroll View

FillDefinitions (); // Draws definitions
FillExercises(_exercises); // Draws exercises
SwitchVisibility) ; // Shows the window

In the beginning, the method StartEditConfig() draws Ul elements of the global
settings and assigns them the data from the configuration file, as mentioned in Chap-
ter 2.5.3.1. There is a group of toggles and dropdowns that can change several ap-
plication settings. Afterwards, the method loads all the possible exercise definitions
from the rehabilitation SW. The definitions are displayed in the Unity element called
Scroll View®, which will be introduced shortly. At last, the method draws another
Scroll View. This one loads the exercises from the chosen XML configuration file.
This includes movements and games with their parameters used in the therapeutic
plan. The configuration window is created only once on the application start, but it
can be hidden or shown to the user. Internally, it is implemented using the method
SwitchVisibility() which uses Unity method SetActive() for hiding GameObjects from
the scene.

It is also worth mentioning the methods responsible for closing the window.
In the case of saving exercises and closing the configuration window, the method
SaveConfig() is called. This method hides the window using the mentioned method
SwitchVisibility(), updates the selected configuration file and clears Scroll Views. In
the end, the updated configuration file is loaded into the application so the therapist
can use the therapeutic plan immediately.

Detailed information about some other methods in this class will be described
later in Chapter 3.3 because these methods are closely connected to individual
graphic elements in terms of visualisation and behaviour. These methods are also
responsible for creating additional visual effects, which will be explained further in
Chapter 3.4.

During the development of the exercise configurator, I searched for a suitable Unity
UI element which would be able to contain a varying number of items, in my case,
it was definitions and exercises. In other words, I needed a graphic container en-
abling dynamic collection. After some searching, I have finally discovered the tool
called Scroll View which fits the definition. It can simply display its contents inside
a scrollable frame. A Scroll View is presented in Figure 3.2.

A Scroll Rect is a Unity Component® that is able present a lot of content in a small
area and is often combined with other elements to create a Scroll View. Its essential

>A UI component for scrolling through large amounts of content within a limited screen space
A modular piece of functionality attached to a GameObject to add behaviours and properties

21

3. Implementation Part

Scroll View -

A Scroll Rect is
usually used to
scroll a large
image or panel of

s S

Figure 3.2: Unity Scroll View [Uni20a]

elements are the Viewport, the Scrolling Content, and vertical or horizontal Scrollbars.
All scrolling content should be within a single content GameQObject. The Scrollbars
can hide automatically if the content doesn’t need to be scrolled. Then, the Viewport
can be automatically expanded in order to use more space [Uni20a].

Unlike the previous class mentioned, the class Helper is not marked as a Unity class.
It is a standard C# class which extends the functionality of EditConfigController. Es-
sentially, it handles the programming logic for a wide range of elements in the GUIL.
Furthermore, it includes the internal code handling of methods in EditConfigCon-
troller for the purpose of making the code more clear and more consistent.

The class is built using a software design pattern called singleton. The singleton is a
class that has only one instance and provides a way to access a single global resource.
To create and maintain a single instance, a class method is usually used, similar to a
factory method. Singletons are often available via an idempotent” method, which
returns a reference to the singleton instance and creates it for the first time if needed,
although singletons may also be created at startup [09].

Thanks to that pattern, only one instance of the Helper is created inside the
EditConfigController. That makes the usage of the class way safer and cleaner for
future development. It is worth mentioning this class also has a reference to the
instance of XmlHandle which is used to read from and write to the configuration
file.

The class contains several methods with the prefix Init-. These methods are used
to create and set up graphic elements, such as toggles, dropdowns, sliders, etc. In
order to achieve generality, the methods pass Ul elements as parameters, as shown
in Listing 3.2. In this piece of code, the given slider is set to the default value.

7Refers to the property of a function or operation that can be repeated multiple times without
affecting the result after the first execution.

22

E N S

323 XML Handling

Source code 3.2: Slider Initialization

public void InitSlider(Slider slider, float defaultValue)

{
if (slider != null)
{
slider.value = defaultValue;
}
}

In a similar way, there are methods with the prefix On- which handle all the
different listeners and triggers for the graphic elements from EditConfigController.
Likewise, these methods are built generically using input parameters so they can be
easily used for future development and extension of the exercise configurator.

Once again, there are several methods for handling the internal logic of exercises
and definitions, which I will describe in detail later in Chapter 3.3.

Similarly to the previous class, the class XmlIHandle is a standard C# class without
deriving from MonoBehaviour. One of the main objectives of this class is to gather all
the code related to configuration file manipulation. A library used for manipulating
XML data as if data were C# objects is System.Xml. Once again, the class uses a single-
ton design pattern which unites the instance manipulation in EditConfigController.
Besides, it needs the reference to the class ExercisesController due to its dependency
on the configuration filename.

When creating a new configuration file, the method CreateEmptyXml() is called.
The method generates sample XML data® and saves it to the newly created config-
uration file in XML format. The file’s name is configHH-mm_dd.MM.yy.xml, where
datetime wildcards represent a current timestamp.

There are a few methods with the prefix Save-. These methods are used to save
the global settings right after changing their values in the GUI. On the other hand,
the therapeutic plan itself is saved after closing the window’. To do this, the Upda-
teXmlFromList() method is called, as displayed in Listing 3.3. It iterates over selected
movements and games and writes the data into the XML file using methods Crea-
teXmIMovement() and CreateXmlGame(). The writing is done separately, since move-
ments and games have different parameters and attributes. Within the programming
code, the class type is determined using the is operator'® on lines 9 and 13.

8Including default values for the global settings and one sample game

9Saving dynamically changing exercises at the end of editing leads to improved application
performance

19The is operator in C# checks if an object or expression can be cast to a specific type

23

18

19

3. Implementation Part

Source code 3.3: Saving Exercises to XML File

public void UpdateXmlFromList(List<Exercise> exerciselList)

{

foreach (var exer in exerciselist)

{

XmlNode node = doc.CreateElement (GlobalSettings.
XML_EXERCISE);

root.AppendChild(node);

if (exer is Movement)

{
CreateXmlMovement (doc, node, (Movement)exer);
}
else if (exer is Game)
{
CreateXmlGame (doc, node, (Game)exer);
}

}

From my perspective, it was a good decision to separate the manipulation of
XML data into its own class because it ultimately follows the basics of the Model-
View-Controller (MVC) design pattern. In fact, all three classes in the GUI module
follow the pattern in a way.

The MVC is a software architecture that splits an application into three com-
ponents — model, view, and controller. The model contains or represents the data
that users work with. In my case, it is presented by XmlHandle. The view renders
the model as a Ul which is showcased by EditConfigController. The controller pro-
cesses incoming requests and performs operations on the model. This behaviour
can be seen in Helper. The separation of tasks between each component leads to a
well-defined code, making the application easier to maintain and extend over its
lifetime [FS11].

If visualizing the relationships between the individual classes is desired, then a
UML!! class diagram can be created, as can be seen in Figure 3.3. The diagram por-
trays the mentioned classes and their interdependencies. It is worth noting, there
are several classes that derive from Monobehaviour class.

"Unified Modeling Language

24

3.3. Exercise Configurator Window

—> ImageBlinkEffect

MonoBehaviour <+— ExerciseController

ToolTip ?

EditConfigController

| .
v v |

Helper XmlIHandle

REHABILITATION
SOFTWARE

Figure 3.3: UML Class Diagram

In this chapter, I am going to describe in more detail the internal logic and function
of the graphical elements of the GUI including their appearance. Apart from global
settings which are defined manually due to their uniqueness, definitions and exercises
are modelled using Unity prefabs'?. Thanks to prefabs, it is way easier to create
any SW in Unity with an emphasis on a dynamic structure that can be effortlessly
changed and maintained in future development. Prefabs are handled similarly to ob-
jects in programming languages, which means that every object must be instantiated
before it can be used and destroyed at the end of its life cycle.

This set of parameters adjusts the settings of the whole environment in the reha-
bilitation SW. Since the parameters are used in a static way, there was no need to
use prefabs while creating the controls. On the other hand, there is a possibility that
new configuration settings will be added in the future. Therefore, I tried to design
these elements descriptively with an emphasis on readability. [added new constants
in the already existing class GlobalSettings. This class describes used XML tags and
elements in the configuration file. To create a new parameter in the global settings, a
new XML tag or element needs to be added to the GlobalSettings. By following this
approach, the programmer is more likely to implement the new parameter correctly
and not forget anything important. Controls for the global settings can be seen in
Figure 3.4. This functionality was the first to be implemented so the given figure
also shows the initial draft of the GUI module.

12A pre-made object template that can be used to create multiple instances of the same object

25

3. Implementation Part

Current: config.xml

Editing Config

Data Processor:

Tracker Model:

Cubes in Tunnel:

Tunnel Only to Apex

Chair Visibilty:
Power bars i

Figure 3.4: Global Settings Controls

As for the implementation itself, the text of captions and tooltips is assigned
to the corresponding Ul elements thanks to Unity’s TextMeshProUGUI'? in the
method FillSettingLabels()'* of the class EditConfigController. For each individual
setting listed in Chapter 2.5.3.1, toggles and dropdowns are initialized and matching
listeners are attached to them in FillSettingInputs(). For settings with value true or
false, a Unity Ul element called Toggle is used. It can be either checked or unchecked.
For settings with the list of values, a Ul element named TMP_Dropdown is used. It
shows the currently selected value and, when clicked, displays a pop-up box that
presents all the possible values for the user to choose from.

3.3.2 Exercise Definition

While designing a control panel for handling exercise definitions, I kept in mind its
dynamic requirements. There is no static number of definitions, as was the case with
global settings. Thus, I modelled the definition element using a generic prefab, as
shown in Figure 3.5.

Move: spiralB_right

Figure 3.5: Definition Prefab

13A Unity asset that provides advanced text rendering and layout features for creating high-quality
text in UI elements
14All the language texts, such as labels, captions or tooltips, are stored in the file language.xml

26

3.3.3. Exercise

The implementation is done in Unity’s file Definition.prefab. The whole element
consists of three parts. On the left side, there is the label which shows the exercise

type — movement'>

or game. In the middle, there is an ID that specifies the string
name of the exercise. On the right side, there is a Unity UI element named Button
which is used to add the given exercise to the current therapeutic plan. I also needed
a GUI container that would be able to hold a dynamic number of these prefabs.
Hence, I chose to use a Scroll View that was already mentioned in Chapter 3.2.1.1.

Instantiating the prefab is done in the function InstantiateDefinition() of the class
EditConfigController. The instantiating is done separately for movements and games,
since these two types have different parameters and attributes. Subsequently, linking
data, captions and listeners to the instantiated prefabs is performed in methods Pop-
ulateMoveDefinition() and PopulateGameDefinition() of the class Helper. After clicking
the Unity UI’s Button with the text "+’, the methods AddMovementFromDefinition()
and AddGameFromDefinition() add a new exercise to the therapeutic plan and instan-
tiate it in the second Scroll View containing exercises.

A new movement with a different set of parameters can be added in the future
using the XML file movement-definitions.xml. In the same way, a completely new
game with different properties can be added to the rehabilitation SW. The generic
approach, used during the development, enables making even slight changes easily
without the need of rewriting the whole code. For instance, adding a new parame-
ter describing the movement would result in modifying Definition.prefab and meth-
ods PopulateMoveDefinition() and AddMovementFromDefinition. On the other hand,
adding a new exercise definition with the same set of parameters will automatically
include the exercise in the SW without any required code modifications.

Similarly to the definitions, there is no fixed number of exercises. Therefore, exercises
were modelled using prefabs and they were grouped into another Scroll View. Indi-
vidual exercises form together a therapeutic plan, which is represented by this Scroll
View and refers to the XML configuration file. Speaking of prefabs, some of their
controls are shared for movements and games.

An exercise is removed from the plan using the ‘X’ button in the right corner
of the prefab. To ensure that each therapeutic plan has at least one exercise, the
program has been designed to prevent the removal of the last exercise in the plan.
The removing is implemented in the method OnRemoveClicked() by calling Unity
method SetActive(false)'S.

I5The shorter form move is used as an abbreviation
18The method is preferred to Destroy() because it preserves the object’s state, allows reactivation
and improves performance [Uni23]

27

3. Implementation Part

To change the order of the exercises, the user can use arrow buttons — up and
down — which are located on the right side of each prefab. The arrow buttons
do not allow the exercise to move up if it is in the first position, and vice versa.
This functionality is implemented in the method MoveByNumber() by calling Unity
method SetSiblingIndex()'”. Once again, a Unity UI's Button is used for both removing
and changing order.

The exercises are numbered on the left side of the prefab and they are performed
in the given order when the VR application is launched. There are also labels for
determining type and ID of the exercise.

3.3.31 Movement

An exercise of type movement is implemented in Unity’s Movement.prefab file. At
first, the prefab is instantiated in methods PopulateMove() and AddControls() of the
class Helper. During that process, all graphical Ul elements are created and event
listeners and triggers are attached to enable interactivity. The movement element
with controls and switches can be seen in Figure 3.6.

99.Move: spiralB_right Chest @ Head @ Hand @Am ?

Phase: —.— Quality: —.— Reps: —’—

Figure 3.6: Movement Prefab

In the top row of the prefab, there are four Unity Toggle switches that define
whether the trajectory of individual body parts should be displayed during the exer-
cise or not. It is implemented using the generic method OnDynamicToggleChanged(),
which is used multiple times for different parameters. The question mark displays a
tooltip for these four switches.

In the lower part of the prefab, there are three segments with numerical pa-
rameters. These are: target phase, quality threshold and the number of repetitions (see
Chapter 2.5.3.2). Changing values of these parameters can be done either by moving
the Slider — in the method OnMovementSliderChanged() — or by direct numerical
input into the TMP_InputField — in the method OnMovement TextFieldEdit(). Only
a numerical input is allowed, and the decimal point is used as the separator. Both of
these elements are part of Unity UL

Thanks to reusable methods and prefabs the code is easily extendable. This
generic approach implies that if another functionality needs to be added, such as

nitially, reordering was done by destroying and re-instantiating all the prefabs instead, which
was slowing down the response a lot

28

3.3.32. Game

switching the arm colour, it is necessary to add a toggle to Movement.prefab. Af-
terwards, the logic of the toggle should be arranged in the PopulateMove() and the
corresponding listener should be created or the generic one could be used in the
method OnDynamicToggleChanged)).

3.3.3.2 Game

An exercise of type game is designed in Unity’s Game.prefab file. First of all, the pre-
fab is instantiated in methods PopulateGame() and AddControls() of the class Helper.
In these methods, labels are initialized and triggers are attached. The prefab repre-

senting the game can be seen in Figure 3.7.

A
99.Game: spiralB_right Filename: testballs

Figure 3.7: Game Prefab

In the middle of the prefab, there is a description specifying the name of the
file from which game data will be loaded. The filename is given without the XML
extension. The user can select the file by clicking a Unity Button with the text Pick
located on the right side. When clicked, the user is prompted to select an XML game
data file. The implementation is written in the method OnGameFileClicked() of the
class Helper.

In a similar way, a completely new game can be added to the rehabilitation SW
in the future. That would require adjusting the prefab Game.prefab, the initializing
method PopulateMove() and the listener OnGameFileClicked(). Alternatively, a new
prefab and methods similar to the one mentioned could be created.

3.3.4 Final Design

Putting together all the information about prefabs, controls and graphic elements
resulted in the final implementation of the GUI module for the exercise configurator.
A screenshot of the module running in the rehabilitation SW can be seen in Figure
3.8.

On the left-hand side, there are global settings that are able to adjust the parame-
ters and properties of the whole environment in the VR rehabilitation application. In
the middle, there is a list of definitions for all available movements and games, which
can be added to the selected therapeutic plan. The list is represented by the Scroll
View with definition prefabs. On the right-hand side, there is a list of individual exer-
cises representing the therapeutic plan, which is loaded from the XML configuration
file. Again, this list is created using the Scroll View with exercise prefabs.

29

3. Implementation Part

Editing Configuration

ball_r

ball_I
sMove: degil @ Chest @Head @Hand @Am 2GRE]

e: ()@= Qualiy: (i) =——@== Reps: [=@=—x

diaga_|

diaga_r
spirai_let (@ Chest @ Head @ Hand @ Am ?
o:) ——— Quait: (Y= Reps: [f) —@——

diagz_|
diag2_r

i tett @ Chest @ Head @ Hand @Am ?
| em—@ e Quality: -* Reps: ._

diaga_|
diaga_r
o_rignt @ Chest @Head @Hand @A 2SS Y
spiralA_left . - !
spiralB_left

spiralB_right

Oooooooooannn

_tert @ Chest @ Head @Hand @AM ?
e: (M) == Qualiy: () @ Reps: [l @

standup

Figure 3.8: Final Implementation of the Exercise Configurator

After modifying the exercise plan, it is necessary to confirm the changes. This is
done with the Save button, which is located in the upper right corner of the window.
After pressing it, the changes are saved to the selected configuration file and the
updated file is directly loaded into the application, so there is no need to restart it.

3.4 Additional Functionality
3.4.1 Floating Tooltip

A tooltip is a graphical element providing additional information about a given item
or feature, which is typically displayed when the user hovers the mouse over that
item. In the GUI module of the exercise configurator, it is necessary that therapists
understand the meaning and behaviour of the Ul elements correctly, so they can
create the desired therapeutic plan.

Therefore, I implemented the tooltip functionality in the Unity class ToolTip and
in the file Tooltip.prefab. It can display an auxiliary text on a white background'®,
as shown in Figure 3.9. The text is assigned to corresponding Ul elements in the
method AttachTranslated ToolTip() of the class EditConfigController. 1 based the im-
plementation on [Cod20].

3.4.2 Blinking Effect

While developing the GUI module, I noticed that adding or reordering exercises
happens almost instantly, so I often lost track of which exercise I have just modified.

18All the text for tooltip captions is given in the file language.xml

30

3.4.3. Unity Layout

11. Move: diag2 | @ Chest @ Head @ Hand @ Am '?
Phase: —‘— Quiality: —.— Reps: -.—

12.Move: diag3 | Chest @ Head @ Hand @@ Arm '7

Phase target contains a decimal number from the interval <0;1>
=T and indicates to which phase the movement should be executed. [

13. Move: diag1 | @ Chest @ Head @ Hand @AM ?
Phase: —.— Quality: I._ Reps: —.—

Figure 3.9: Tooltip for Movement

In order to correct this behaviour, I decided to add a graphical effect that would
increase the quality of the UX design.

Information about which exercise has just been edited is displayed using the
yellow blinking effect!®, as can be seen in Figure 3.10. The effect is implemented in
the Unity class ImageBlinkEffect and this component is added to corresponding exer-
cises in the method BlinkYellow() of the class EditConfigController. This functionality
was adapted from [Uni21].

10. Move: spiralA_right ([Chest) Head @ Hand @ Arm '?
Phase: .— Quality: —.— Reps: .—

12. Move: diag2 | @ Chest @ Head @ Hand @ Am '?
Phase: —.— Quality: —.— Reps: -.—

Figure 3.10: Blinking Effect

3.4.3 Unity Layout

In order to design a user-friendly GUI, I needed to come up with a layout struc-
ture that can arrange all the Ul elements (GameObjects) logically in the window,
regardless of the screen pixel count. In Unity, I combined the following components

“The blinking is stopped after a few seconds so that a therapist is not excessively distracted

31

3. Implementation Part

to achieve the desired result — HozirontalLayoutGroup, VerticalLayoutGroup and
LayoutElement.

Both layout groups allowed me to position elements side by side or on top of
each other. In addition, LayoutElement was used to maximize the area of both Scroll
Views when using computers with different screen sizes. As presented in Figure
3.11, all the GameOQObjects were put into the Unity hierarchy (left), combined with
mentioned components, to create a friendly GUI (right).

i Trackers: Fil: contig i _ _

Editing Configuration

Language:
Tracke.r
Model:

HintArow: @ Show
'J(E\\;x?:esl:in Show
Powe . @Show
Si:?ligl ity: Show

Figure 3.11: Unity Hierarchy

32

Testing

41 User Manual

Before the testing itself, it was necessary to familiarize the therapists with the envi-
ronment of the GUI module for exercise configuration, so that the therapists could
more easily understand the functionality of the individual controls. For this reason,
two files were created. Both of these documents are listed in Chapter Attachments
and the used language is Czech.

The first of them is a traditional user manual in text form. Therapists who rely
on a more detailed and descriptive approach can get acquainted with the exercise
configurator through a brief PDF document. There are several chapters describing
individual parts of the GUI module and demonstrating an illustrative use of the
application.

The second one is an instructional video in MKV! format. This concise video
manual is suitable for therapists who prefer a more illustrative demonstration of
the functionality. The video shows a description of the graphic elements and an
example of the configuration.

4.2 Test Scenario

The VR rehabilitation SW is designed to be used at both University Hospital Kralovské
Vinohrady and Thomayer University Hospital. The physiotherapeutic department
team of the first mentioned hospital was given the application for testing purposes.
During the testing process, Bc. Lubomir Rodina acted as a mediator, so he facilitated
the new version of the SW to several therapists. Additionally, he created a test case,
which was then provided to the therapists, as can be seen in Appendix A.

This test scenario was designed to cover various aspects of the exercise con-
figuration. The scenario includes adding exercises to an XML configuration file,
changing the parameters and order of these exercises and renaming the given con-

"Matroska Video File

33

4. Testing

figuration file. The desired output of this test case in rehabilitation SW is shown in
Figure 4.1.

Trackery: Aktugini: RHB_Anonym.xmi
= = a——

e e

Uprava nastaveni

1 Pohyb: standup @ Hiava @Hud @ Paze @ Ruka ?

[czecn]
Fize: (i) e—g= Kvalita: () =@ Opak: [=@

ball_|
Hra: ball_r

Model Pohyb: diag1 |
vaskens:

Pohyb: diagl_r

2 Pohyb: diagz1 @ Hiava @Hud @Paze @Ruka ?
Fize: (i) e—g= Kvalita: (i) @ Opak: [=@
. Py]
3. Pohyb: diag2_r @Hiava @Hrud @Paze @Ruka ? grg B
Pohyb: diag2_l
pomecnd Wb: 02 Faze: () @ Kvaia: () @ Opc [=@
ocn 8 zobr
Sipka obraz Pohyb: diag2_r
4 ponyb diag3! @Hiava @Hnd @Paze @rua 2 EREY

Pohyb: diaga_| Fze: (Y @ Kvaic: () @ Op: [s @mmme

[A — Pohyb: diaga_r
i ® Zobrez

5 Pohyb: diagar @ Hiava @Hud @Paze @Ruka ?

Pohyb: spirala_left
Feze: () e— Kali | @ Op; [@

Pohyb: spiralA_right -
6. Pohyb: spiralB_left @ Hiava @Hrud @ Paze @ Ruka ?

raze: () @ Kvalite: () @ Opek: [=@

Tunel po
Tunel @ Zobraz Pohyb: spiralB_left

Pohyb: spiralB_right

7. Pohyb: spiralB_left @ Hiava @Hrud @Paze @ Ruka ?
Pohyb: standup

Viditelnost -
zidle: 8 Zobraz Faze: () @ Kalta: () em@e Ol [@

. v— 8 e

Figure 4.1: Desired Test Case Result from Appendix A

4.3 Feedback

Based on the above test scenario, the team of therapists provided feedback in the
form of comments and ideas for improvement, as shown in Appendix B. Further-
more, the document emphasizes in bold the key points that Bc. Lubomir Rodina
considered essential, as the primary person responsible for utilizing the VR reha-
bilitation SW. As some remarks were repeated in the feedback document, I also
considered these points to be quite important.

As stated in the feedback, the therapeutic team often mentioned the demanding
creation of a new XML configuration file. The implemented process of deselecting
the loaded config file in order to create a new one using only one button is indeed
a bit complicated. Another point of feedback was a difficult file renaming together
with complex navigation in the folder structure of the application. One of the other
requirements was to have the ability to revert the configuration back to its original
state without saving any changes made. Other remarks were, for instance, a typo in
one of the tooltips, different alphabetical order for game and movement definitions
and an increase in the maximum number of repetitions. I incorporated the above
changes into the new version of the application, as described in detail in Chapter
4.4.

In the feedback document, there were also some demands, which I did not in-
clude in the new version of the SW. One of them was a request to drag and drop
elements from the definition Scroll View into the exercise Scroll View using the mouse.

34

4.4 Incorporation of Improvements

This feature would be excessively difficult to implement, since mouse clicking is al-
ready recognised as an event for scrolling through the Scroll View. In other words,
the whole logic of events and listeners related to adding a new exercise would need
to be reworked. On the other hand, this feature might be a good idea for future
improvements of the application. Another feedback point, which I did not address
when implementing the new version, was storing exercise records in a folder by
patient name. This request is outside the scope of this work, since it is not directly
related to the exercise configuration process. Rather, this request is related to the
process of saving exercise records within the rehabilitation SW. Therefore, the re-
quest was forwarded to the development team, specifically to Ing. Jakub Frank, and
it will be addressed in the future.

4.4 Incorporation of Improvements

Regarding the incorporation of new features in the application, I will describe each
point briefly, primarily focusing on implementation and ordering them based on
their relative importance.

Creating and Renaming a New Configuration File. One of the most frequently
mentioned feedback comments concerned the creation of a configuration file. Apart
from the complicated process of creating a new file, there was also no option avail-
able to rename the file in the provided version of the rehabilitation SW, so it needed
to be renamed in the Windows File Explorer. When it comes to implementation, I
added a new Create button in the top panel of the ExercisesController. The button
logic is provided by the FilenameDialogShow() method, which uses Unity Standalone-
FileBrowser. The method prompts the user to create a new XML file directly in the
folder StreamingAssets with the possibility of choosing a filename, as seen in Figure
4.2.

Trackers: ([v Current: config.xml

Figure 4.2: File Browser for Creating and Renaming a New Configuration

35

4. Testing

Reverting Configuration Changes. This remark concerned the possibility to re-
store the configuration back to its original state. In other words, a user could close
the editing window without saving any changes made using a Cancel button. The
idea behind the implementation was to create a deep copy of the global settings and
the list of exercises at the start of configuring. After clicking the mentioned button,
this deep copy containing original data is then loaded into the selected XML file in
the method CancelConfig() and the editing window is then closed, as seen in Figure
4.3 (highlighted in yellow). It is worth mentioning that the application saves the
global settings after each change, whereas the list of exercises is saved all at once after
pressing the OK button, as was discussed in Chapter 3.2.3. Therefore, if the applica-
tion crashes unexpectedly in the middle of editing, the selected file will contain the
original list of exercises before saving, so the exercise data will remain consistent.

Trackers: Current configam
e

w2 e o— e — — =
Editing Configuration
" .
9. Move: spiralB right @ Head @ Chest @Am @Hand ? gplfd
ball_I Phase: ..._ Quality: n.._ Reps: -._
ball_r
o S

diagl_r

10. Move: spiralA right @ Head @ Chest @Am (@ Hand ?
Phase: () @ Quaity: () =@ Reps: [@
1. Move: diag2_| @Head @ Chest @Am @ Hand ?
Phase: () @@= Quaiity: (ff) @ Reps: [@

diag2_|

HintArow: 8 Show
diag2_r

12. Move: diag3! @ Head @ Chest @Am @ Hand ?
phase: () =@ Quay: () e=@me Reps: [fff) @

diaga_|

Cubes in tove: diag3_r
Tunnel

13 Move: diagi | @ Head @ Chest @Am @@ Hand ?

spiralA_left phase: () =@ Quay: () @ Reps: [fff) =@
diagl_r @Head @ Chest @ Am ?

Phase: () @ Qualy: () @ Reps: [@

Tunnel to
Apex:

spiralB_right

ead @ Chest @Am @ Hand ?

Ooooooooaooaoan

standup
@ Show

Figure 4.3: Reverting the Configuration Using the Cancel Button

Alphabetical Order in the Definition Panel. This comment was related to reorder-
ing elements in the left definition Scroll View. The solution required sorting tempo-
rary lists of game and movement definitions in the method FillDefinitions(). Because
elements in the lists were not basic data types, but instances of GameDefinition and
MovementDefinition, I decided to sort the lists using a lambda expression to access
the string name of each definition, as shown in Listing 4.1

Source code 4.1: Reordering of Elements in the Definition Panel

public void FillDefinitions ()
{

gameDefs.Sort((x, y) => x.ID.CompareTo(y.ID));
movementDefs.Sort((x, y) => x.ID.CompareTo(y.ID));

36

/

4.4 Incorporation of Improvements

}

Order of Trajectory Animation Switches. In this case, it was desired to reorder
the movement toggles inside the right exercise Scroll View. In the first version of the
GUI module, the toggles follow this randomly selected order — Chest, Head, Hand
and Arm. The main goal was to create a more intuitive and meaningful sequence
for the toggles’ position, for instance using an order inspired by the human body, as
seen in Figure 4.4. To do so, it was necessary to edit the Movement.prefab file.

A
99. Move: spiralB_right @ Head @ Chest @Am & Hand 9

Phase: —.— Quality: —.— Opak: o) m—

Figure 4.4: Altering the Movement Switches Order

An Increase in the Maximum Number of Repetitions. Since it is planned that
VR rehabilitation will be at least partially moved to the home environment in the
future, it would be beneficial to allow a larger range in the number of repetitions.
Therefore, I increased this number from 10 to 20 in both methods that manipu-
late the number of repetitions of a movement — OnMovementTextFieldEdit() and
OnMovementSlider Changed().

Typo in One of the Tooltips. Besides implementing new functionality, I also cor-
rected a few typos in the tooltips. These changes required revising the file lan-
guage.xml that includes the text of labels in Czech and English.

Decimal Pointand Decimal Comma. One of the comments addressed non-intuitive
entering decimal numbers for parameters target phase and quality threshold. In the
initial version of the SW, input was only possible using a decimal point as the sep-
arator. An ability to use a decimal comma as well was implemented in the method
OnMovementTextFieldEdit(), where an entered comma is replaced with a point and
the number is then further processed. The use of both separators does not depend
on the locale used in Windows.

37

Conclusion

A new graphical user interface module was successfully implemented in the VR
rehabilitation SW in this work. The implementation was preceded by the selection
of a suitable Unity Ul toolkit, and analyzing the structure of the application and
exercise format. This led to more efficient integration of new functionality into the
already developed rehabilitation SW without the need to change anything in the
rest of the application.

The GUI module now allows the creation and editing of an individual therapeu-
tic plan directly within the desktop version of the SW. As a result, it is no longer
necessary to manually write configuration files in order to customize the therapeu-
tic plan. The module provides users with a comprehensible editing environment
using visual representation. There is also a user manual describing individual parts
of the GUI, as well as a video tutorial that demonstrates basic functionality.

The application was handed over to the therapeutic department of University
Hospital Kralovské Vinohrady in Prague. The new functionality was made available
to the therapeutic team for testing and the team was encouraged to share their
thoughts. The final version of the GUI module implemented some of the features that
emerged from the feedback, such as simplifying the creation of a new configuration
file or introducing a Cancel button in the editing window.

The SW is still backwards compatible with the original configuration structure,
so any direct changes to the XML file will affect the therapeutic plan as in previous
versions. In future development, newly created exercise definitions will be automat-
ically included in the GUI module without requiring code modifications. On the
other hand, programmers might add a new exercise type or a new set of parameters
which requires some changes in the code. However, these potential adjustments
will not be particularly challenging to implement because the module is designed
in a generic way using object-oriented programming principles. Moreover, GUI
elements in Unity were also created generically using Unity prefabs.

39

Test Case Document

Sestavte cvicebni sestavu podle zadani:

Jazyk: ¢estina, Model trackeru: capsule, Pomocna Sipka: Ne, Kostky v tunelu: Ano, Tunel po apex: Ne,
Viditelnost Zidle: Ne

1) Ball_l sixballs

2) Ball_r threeballs

3) Diag2_| ruka/paze faze: 0,85 kvalita: 0,80 Opakovani: 8
4) Diag2_r ruka faze: 0,5 kvalita: 0,30 Opakovani: 4
5) Diag3_| hrud/hlava faze: 0,9 kvalita: 0,9 Opakovani: 3
6) Diag3_r paze faze: 0,8 kvalita: 0,2 Opakovani: 3
7) SpiralB_| ruka/paze/hrud | faze: 0,99 kvalita: 0,8 Opakovani: 5
8) SpiralB_r ruka/paze faze: 0,6 kvalita: 0,5 Opakovani: 5
9) Standup ruka faze: 0,8 kvalita: 0,3 Opakovani: 6
10) Umistéte pohyb Standup na pozici 1) a hru Ball_| a Ball_R na pozici 8) a 9)

11) Soubor uloZte a poté prejmenujte na: RHB_Anonym

41

Feedback Document

MisSa Rakova

e V nabidce vybér cviki: Neprohazovat pravou a levou stranu v poradi. Micky jsou na levou
koncetinu, poté na pravou koncetinu a u pohybu je to obracené, prvné leva a poté prava
koncetina.

e Pfivpisovani hodnoty faze ¢i kvality se musi psat tecka (0.5), zda pfipadné neumoznit ¢arku (0,5).
Nebo variantu obojiho.

e Zménit poradi zobrazovani kfivek: Hlava, Hrud, PaZe, Ruka. Bude to vice intuitivni.

e Pretahovani cviku z prostfedniho sloupce do pravého sloupce za pomoci mysi a rovnou jej moct
umistit i na ndmi vybranou pozici.

e Pokud si oteviu config a ménim parametry, ale poté se rozhodnu, Ze necham plvodni verzi,
nemohu ze souboru zpét. Mam jedinou moznost uloZit nové nastaveni anebo vypnuti celého
programu, aby se zména neuloZila.

e Chyba v popisku. U otazniku preklep ve slové: Jednotlivych

Lubomir Rodina

e MozZna navysit pocet opakovani z 10 na 15-20. Pokud bude aplikace uZivana pro domaci RHB, je
mozné, ze pacienti budou plnit ukoly s vy$sim poctem opakovani.

o Tlacitko pro vytvofit novy konfiguraéni soubor.

e Upravit pofadi zobrazovani kfivek: Hlava, Hrud', PaZe, Ruka.

e Jednodussi pfejmenovani konfigura¢niho souboru.

MUDr. Barbora Miznerova

e PfipretaZeni cviku 1diag_| a nastaveni parametrd, aby se automaticky nastavili stejné parametry i
pro cvik 1diag_r. (Urychleni nastaveni cvicebni sestavy, ale s moZnosti poté ménit parametry.)

e Ukladani zdznamu pohybu do sloZek podle nazvu configu (napf. Novék), ve které by byli zaznamy
1-15 terapie.

e Slozité vytvareni nového konfiguracniho souboru.

Franziska Vosenova

e Prohodit strany micka.
e SlozZité hleddni ve sloZkach, kde je uloZeny soubor config a verze mickovych her.
e Pfejmenovani souboru config v aplikaci. Obtizné hledani ve slozkach aplikace.

Sara Hukaufova

e Jednodussi pfejmenovani vytvoreného souboru config.

e Tlacitko odkazujici rovnou do slozky sestav cviki, aby se nemuselo hledat v podslozkach. (Pro
vetsinu lidi, kteri neméli zkusenost s pravidelnym pouZivani aplikace matouci, dlouho hledali, kde
je uloZeny konfiguracni soubor.)

Anna Herynkova

o Slozité ukladani a vybirani .xml souboru.

43

[Cod20] CODE MONKEY. Dynamic Tooltip in Unity! (Resizable, Follows Mouse,
Edge Detection). 2020. Available also from: https://unitycodemonkey .
com/video.php?v=YUIohCXt_pc.

[Fra20] FRANK, Jakub. Sbér 3D dat pro rehabilitacni software ve virtudlni real-
ité. 2020. Available also from: http://hdl . handle .net/11025/41806.
University of West Bohemia.

[Fra22] =~ FRANK, Jakub. Rozsireni aplikace pro rehabilitaci paze ve virtudlni real-
ité. 2022. Available also from: http://hdl .handle .net/11025/49092.
University of West Bohemia.

[FS11] FREEMAN, Adam; SANDERSON, Steven. The MVC Pattern. In: Pro
ASP.NET MVC 3 Framework. Berkeley, CA: Apress, 2011, pp. 63—88. 1SBN
978-1-4302-3405-0. Available from por: 10.1007/978-1-4302-3405-
0-4.

[Her21] HERYNKOVA, Anna. Virtudlni realita v ramci fyzioterapie pacientii s roztrouse-
nou sklerozou mozkomisni. 2021. Available also from: http://hdl.handle.
net/10467/97904. Czech Technical University in Prague.

[Mar15] MARCUS, Aaron. Dare We Define User-Interface Design? In: HCI and
User-Experience Design: Fast-Forward to the Past, Present, and Future. Lon-
don: Springer London, 2015, pp. 21-29. 1sBN 978-1-4471-6744-0. Avail-
able from por: 10.1007/978-1-4471-6744-0_4.

[Mic23] MICROSOFT. A tour of the C# language. 2023. Available also from: https:
//learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/.

[NL14] NOLAN, Deborah; LANG, Duncan Temple. An Introduction to XML.
In: XML and Web Technologies for Data Sciences with R. New York, NY:
Springer New York, 2014, pp. 19-52. 1sBN 978-1-4614-7900-0. Available
from por: 10.1007/978-1-4614-7900-0_2.

[Rod20] RODINA, Lubomir. Virtudlni realita v ramci rehabilitace pacientii s roztrouse-
nou sklerézou mozkomisni. 2020. Available also from: http://hdl.handle.
net/20.500.11956/124048. Charles University.

45

https://unitycodemonkey.com/video.php?v=YUIohCXt_pc
https://unitycodemonkey.com/video.php?v=YUIohCXt_pc
http://hdl.handle.net/11025/41806
http://hdl.handle.net/11025/49092
https://doi.org/10.1007/978-1-4302-3405-0_4
https://doi.org/10.1007/978-1-4302-3405-0_4
http://hdl.handle.net/10467/97904
http://hdl.handle.net/10467/97904
https://doi.org/10.1007/978-1-4471-6744-0_4
https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://doi.org/10.1007/978-1-4614-7900-0_2
http://hdl.handle.net/20.500.11956/124048
http://hdl.handle.net/20.500.11956/124048

Bibliography

[Sib16] SIBRINOVA, H. Co je to roztrousend mozkomisni skleréza. 2016. Available
also from: https://www.ereska-aktivne.cz/. The article on multiple
sclerosis.

[09] Singleton Pattern. In: Learn Objective-C for Java Developers. Berkeley,
CA: Apress, 2009, pp. 429-432. 1sBN 978-1-4302-2370-2. Available from
pol: 10.1007/978-1-4302-2370-2_23.

[Tob22] TOBIN, Oliver. Multiple Sclerosis. 2022. Available also from: https://
www.mayoclinic.org/diseases-conditions/multiple-sclerosis/
symptoms-causes/syc-20350269.

[06] Understanding Object Serialization. In: Pro VB 2005 and the .NET 2.0
Platform. Berkeley, CA: Apress, 2006, pp. 555-571. 1sBN 978-1-4302-
0160-1. Available from por1: 10.1007/978-1-4302-0160-1_19.

[Uni20a] UNITY TECHNOLOGIES. Scroll Rect. 2020. Available also from: https:
//docs.unity3d.com/Packages/com.unity.ugui@l.0/manual/script-
ScrollRect.html. Unity UI 1.0.0.

[Uni20b] UNITY TECHNOLOGIES. The main Ul Builder window. 2020. Avail-
able also from: https://docs.unity3d.com/2019.4/Documentation/
Manual/ScriptingToolsIDEs.html. Ul Builder 1.0.0.

[Uni22a] UNITY TECHNOLOGIES. Comparison of UI systems in Unity. 2022.
Available also from: https://docs.unity3d.com/2019.4/Documentation/
Manual /UIToolkits.html. Unity User Manual (2019.4 LTS).

[Uni22b] UNITY TECHNOLOGIES. GameObject. 2022. Available also from: https:
//docs.unity3d.com/2019.4/Documentation/ScriptReference/GameObject.
html. Unity User Manual (2019.4 LTS).

[Uni22¢] UNITY TECHNOLOGIES. Integrated development environment (IDE)
support. 2022. Available also from: https://docs.unity3d.com/2019.

4/Documentation/Manual/ScriptingToolsIDEs.html. Unity User Man-
ual (2019.4 LTS).

[Uni22d] UNITY TECHNOLOGIES. MonoBehaviour. 2022. Available also from:
https://docs.unity3d.com/2019.4/Documentation/ScriptReference/
MonoBehaviour.html. Unity User Manual (2019.4 LTS).

[Uni23] UNITY TECHNOLOGIES. GameObject.SetActive. 2023. Available also
from: https : //docs . unity3d . com/ScriptReference/GameObject .
SetActive.html. Unity User Manual (2019.4 LTS).

46

https://www.ereska-aktivne.cz/
https://doi.org/10.1007/978-1-4302-2370-2_23
https://www.mayoclinic.org/diseases-conditions/multiple-sclerosis/symptoms-causes/syc-20350269
https://www.mayoclinic.org/diseases-conditions/multiple-sclerosis/symptoms-causes/syc-20350269
https://www.mayoclinic.org/diseases-conditions/multiple-sclerosis/symptoms-causes/syc-20350269
https://doi.org/10.1007/978-1-4302-0160-1_19
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/script-ScrollRect.html
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/script-ScrollRect.html
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/script-ScrollRect.html
https://docs.unity3d.com/2019.4/Documentation/Manual/ScriptingToolsIDEs.html
https://docs.unity3d.com/2019.4/Documentation/Manual/ScriptingToolsIDEs.html
https://docs.unity3d.com/2019.4/Documentation/Manual/UIToolkits.html
https://docs.unity3d.com/2019.4/Documentation/Manual/UIToolkits.html
https://docs.unity3d.com/2019.4/Documentation/ScriptReference/GameObject.html
https://docs.unity3d.com/2019.4/Documentation/ScriptReference/GameObject.html
https://docs.unity3d.com/2019.4/Documentation/ScriptReference/GameObject.html
https://docs.unity3d.com/2019.4/Documentation/Manual/ScriptingToolsIDEs.html
https://docs.unity3d.com/2019.4/Documentation/Manual/ScriptingToolsIDEs.html
https://docs.unity3d.com/2019.4/Documentation/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/2019.4/Documentation/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/GameObject.SetActive.html
https://docs.unity3d.com/ScriptReference/GameObject.SetActive.html

[Uni21]

Bibliography

UNITY3D SCHOOL. Creating Image Blink effect by Changing Color | UI
| Color Lerp | Unity Game Engine. 2021. Available also from: https://

u3ds.blogspot.com/2021/09/creating-image-blink-effect-by-
changing.html.

47

https://u3ds.blogspot.com/2021/09/creating-image-blink-effect-by-changing.html
https://u3ds.blogspot.com/2021/09/creating-image-blink-effect-by-changing.html
https://u3ds.blogspot.com/2021/09/creating-image-blink-effect-by-changing.html

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
33
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4

HTC Vive Headset
Spiral Movement
Diagonal Movement
Ball Connecting Game
Unity Editor
UlElements Example [Uni20b]
Unity Ul Example

Exercise Controller Window
Unity Scroll View [Uni20a]
UML Class Diagram
Global Settings Controls
Definition Prefab
Movement Prefab
GamePrefab

Final Implementation of the Exercise Configurator

Tooltip for Movement
Blinking Effect
Unity Hierarchy

Desired Test Case Result from AppendixA

File Browser for Creating and Renaming a New Configuration

Reverting the Configuration Using the Cancel Button

Altering the Movement Switches Order

10
15
16
16

34
35
36
37

49

List of Listings

2.1
2.2
2.3
3.1
3.2
3.3
4.1

Sample XML Code Snippet 11
Therapeutic Configuration File 12
IMGUI Example 17
Creating the Configurator Window 20
Slider Initialization 23
Saving Exercisesto XML File 23
Reordering of Elements in the Definition Panel 36

51

Attachments

The attached archive has the structure as listed:

Application_and_libraries

A folder containing the application build, source code and both user guides. To run
the Unity project, it is recommended to use the UnityHub application and the Unity
version, specified in the project. After starting the application build, it is necessary
to press the space bar to confirm tracker initialization.

VR_Rehabilitation_3.3. A directory containing the SW build of the rehabilitation
application with the added GUI module for configuring exercises. The VR Arm
Rehabilitation_Data/StreamingAssets subfolder contains all the configuration files.

VVR_Rehabilitation_Project. A directory containing the Unity project of the reha-
bilitation application with the added GUI module for configuring exercises. The

project repository is located at https://gitlab.com/frankkuba/vr-arm-motion.

UZivatelska prirucka pro konfiguraci cviceni. A PDF document that describes the
configurator of exercises. This document serves as a textual user manual.

Video navod pro konfiguraci cviceni. An MKV video file that demonstrates the
basic functionality of the configurator of exercises. This file serves as a video guide.

Text_thesis

A folder with the BIEX source code and a PDF file containing the text of this paper.
Latex/img/cust/. A directory with images used in the text.

Latex/img/pdf/. A directory with PDF documents used in the text.

53

https://gitlab.com/frankkuba/vr-arm-motion

	Introduction
	Theoretical Part
	Multiple Sclerosis
	Rehabilitation
	Rehabilitation in MS

	Virtual Reality
	Physiotherapy using VR

	Exercises
	Movement
	Game

	Application Configuration
	Data Serialization
	Exercise Definition
	Exercise Configuration

	User Interface
	Unity
	User Interface Toolkit
	Choosing the UI Toolkit

	Implementation Part
	Integration to the Rehabilitation SW
	Proposed Code Structure
	Controller for Editing Configuration
	Helper Functions
	XML Handling
	Class Diagram

	Exercise Configurator Window
	Global Settings
	Exercise Definition
	Exercise
	Final Design

	Additional Functionality
	Floating Tooltip
	Blinking Effect
	Unity Layout

	Testing
	User Manual
	Test Scenario
	Feedback
	Incorporation of Improvements

	Conclusion
	Test Case Document
	Feedback Document
	Bibliography
	List of Figures
	List of Listings
	Attachments

