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port, my advisor RNDr. Miroslav Lávička, Ph.D. for his guidance and constant
support and my brother Mgr. Michal Bizzarri for his advices on corrections of
the thesis.

I hereby declare that this Ph.D. thesis is completely my own work and that I used
only the cited sources.
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Anotace

V posledních letech se studium konvolucí nadploch (zejména křivek a ploch)
stalo aktivní oblastí výzkumu. Například operace ofsetu, tj. jedna z fundamen-
tálních vlastností v počítačově podporovaném designu (CAD) není nic jiného
než konvoluce s kružnicí/kulovou plochou. Hlavním cílem předkládané práce
je poskytnout teoretickou analýzu konvolucí nadploch z algebraického úhlu
pohledu.

Té bude věnována zejména první část práce. Přestože dokážeme, že konvoluce
ireducibilních nadploch je téměř vždy ireducibilní, může se v některých pří-
padech rozpadnout na více komponent. Horní odhad jejich počtu nalezneme
s využitím tzv. konvolučního stupně. Pro ten bude v případě křivek odvozena
formule, vyjadřující konvoluční stupeň v závislosti na algebraickém stupni
a rodu křivky. Detailní analýze budou podrobeny speciální a degenerované
komponenty. Dále věnujeme speciální pozornost racionálním nadplochám a
racionálním komponentám jejich konvolucí.

V druhé části práce se zaměříme na dvě nejjednodušší třídy algebraických nad-
ploch vzhledem k operaci konvoluce, konkrétně na nadplochy s konvolučním
stupněm jedna a dva. Zatímco první jmenovaná třída se ukáže být totožná
s již známou třídou LN nadploch, významným zástupcem druhé třídy jsou nad-
sféry. Racionalita konvolucí s těmito nadplochami bude detailně prozkoumána.
Navíc pro křivky odvodíme formuli umožňující vypočítat rod jejich konvoluce
s obecnou křivkou. Závěrem bude nalezen rozklad křivek nízkého konvolučního
stupně na konvoluci konečně mnoha jednoduchých fundamentálních křivek.

Klíčová slova

Konvoluce, incidenční varieta, varieta parametrů, opěrná funkce, konvoluční
stupeň, LN nadplocha, QN nadplocha, koherentní forma



Annotation

In recent years, studying convolutions of hypersurfaces (especially of curves and
surfaces) has become an active research area. For instance, one of the funda-
mental operations in Computer Aided Design, i.e., offsetting, can be expressed
as the convolution with a circle/sphere. The main goal of the thesis is to pro-
vide the theoretical analysis of convolutions of hypersurfaces from the algebraic
point of view.

This goal will be accomplished in the first part of the thesis. Although we will
prove that the convolution of irreducible algebraic hypersurfaces is generically
irreducible, it can still decomposes into more irreducible components. The up-
per bound for the number of components, in the terms of the so-called convolu-
tion degrees of the hypersurfaces, will be given. Further, a formula expressing
the convolution degree of a plane curve using the algebraic degree and the genus
of the curve will be derived. In addition, a detailed analysis of the so-called
special and degenerated components is provided. The special attention will be
devoted to rational hypersurfaces and rational components

The second part of the thesis will focuse on the two simplest classes of algebraic
hypersurfaces with respect to the operation of convolution, namely on the hy-
persurfaces with the convolution degree one and two. The former case turns
out to coincide with the well-known LN hypersurfaces, i.e., hypersurfaces with
Linear Normals, and the most prominent example of later hypersurfaces are hy-
perspheres. The problem of rationality of convolutions with these hypersurfaces
will be studied in more detail. In the curve case, the genus formula is derived.
Moreover the decomposition of curves with low convolution degree into the
convolution of finite number of simple fundamental ones will be provided.

Keywords

Convolution, incidence variety, parameter variety, support function, convolution
degree, LN hypersurface, QN hypersurface, coherent form



Glossary of notations

]X Cardinality of the set X

Cn Affine n-space
x = (x1, . . . , xn) Affine point
PnC Projective n-space
x = (x0 : · · · : xn) Projective point
ω Ideal hyperplane (x0 = 0)
cl (X) Topological closure of a set X

X ,Y . . . Algebraic varieties
X P,YP . . . Projective algebraic varieties
X ∨,Y∨ . . . Dual algebraic varieties
C[x1, . . . , xn] = C[x] Set of polynomials in variables x1, . . . , xn

x(s), y(t), . . . Parameterizations
nx(s), ny(t), . . . Normal vector fields
deg ϕ Degree of the mapping ϕ

TqX Tangent space
TA

q X Affine tangent space
XReg Set of regular points
XSing Set of singular points
mq(X ) Multiplicity of the point q
Iq(X ,Y) Intersection multiplicity
µq(X ) Milnor number
rq(X ) Number of branches
δq(X ) Delta invariant
degX Degree of X
dimX Dimension of X
g (X ) Genus of a curve X
Gr(k, n) Set of k-planes in PnC

Gr0(k, n) Set of k-planes in Cn passing through the origin
(v,V) ∼? (w,W) Coherent points
V ? W Convolution
I(V ,W) Incidence variety
πV Projection I(V ,W) → V
πW Projection I(V ,W) → W
σ Mapping I(V ,W) → V ? W
v(t) ∼? w(t) Coherent parameterizations
P(v, w) Parameter variety
ΩV ω-correction
κV Convolution degree
iVX Index of X w.r.t. V
X− Set centrally symmetric to X

DV (x), D∆(x) Coherent forms
B∆ Generalized Blaschke hypercylinder
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Chapter 1

Introduction

The notion of convolution can be found in literature in two different ways.
In computer vision, image and signal processing, electrical engineering, etc.,
a convolution curve/surface is introduced through f (x) = g(x) ? h(x) =∫

Rn g(t)h(x − t)dt (n = 2, 3), called the convolution of the geometry function
g and the kernel function h, cf. Bloomenthal and Shoemake (1991). In geometric
modelling, the convolution hypersurface V ? W of two hypersurfaces V , W in
Euclidean space is taken as the envelope of V under the translations defined by
vectors v ∈ W . In this thesis we will deal with the convolution in the second
sense only.

In recent years, studying convolutions of hypersurfaces has been an active re-
search area. For instance, one of the fundamental operations in Computer
Aided Design, i.e., offsetting, can be expressed as the convolution with a cir-
cle/sphere. Applying operation of convolution with other hypersurfaces, we ar-
rive at so-called general offsets. Many interesting problems related to this topic
have arisen, e.g. analysis of (geometric and algebraic) properties, determining
number and kind of their components, computing the convolution degrees of
hypersurfaces and mainly a construction of rational parameterizations of convo-
lution hypersurfaces (if they exist). In addition, the construction of convolutions
is closely related to another basic geometric operation – the Minkowski sum.
The boundary of Minkowski sum of two objects is a subset of the convolution of
the corresponding boundary curves. Hence, by eliminating all redundant parts
in the convolution curve, one can generate the Minkowski sum boundary. The
Minkowski sum is used in various important geometric computations, especially
for collision detection among planar curved objects. Reader who is interested in
this topis is kindly referred to Peternell and Steiner (2007); Šír et al. (2007).

The main goal of this thesis is to provide an algebraic analysis of the operation.
The thesis is divided into three chapters. After introduction, in Chapter 2 we
introduce the fundamentals of algebraic geometry needed to read the following
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Chapter 1. Introduction

chapters. Next the convolution of two hypersurfaces is defined and its elemen-
tary properties are mentioned. For instance convolutions with hypersurfaces
with degenerated Gauss image are discussed in brief and some applications of
convolution in CAGD are presented.

The main part of the thesis is contained in Chapters 3 and 4. We start with
review of methods used for studying the convolutions. In particular, we recall
the approach based on the so-called incidence varieties introduced in Vršek and
Lávička (2010b), methods used for finding rational parameterizations developed
in Lávička and Bastl (2007); Lávička et al. (2010) and finally dual representation
of convolutions used e.g. in Sabin (1974); Šír et al. (2008); Aigner et al. (2009).

The second part of Chapter 3 is based on paper Vršek and Lávička (2010b). We
present a complete algebraic analysis of degeneration and existence of simple
and special components of convolutions of irreducible hypersurfaces. The main
characterization of a hypersurface from the point of view convolutions, deeply
studied in the thesis and firstly defined in Lávička and Bastl (2007), is the so-
called convolution degree which reflects the behavior of a hypersurface in the
process of convolution construction with a generic algebraic hypersurface. In
the curve case, a relation of the convolution degree to the genus of an algebraic
curve is analyzed. Although we will present a relation between convolution de-
grees of input hypersurfaces and the upper bound on the number of irreducible
components of their convolution, we will prove that the convolution tends to be
irreducible in general. Special attention is devoted to rational hypersurfaces and
their convolutions.

Since computing the convolutions is a non-linear problem, it is not easy to de-
cide whether the resulting hypersurface is irreducible, rational etc. Even more
it takes a lot of effort just to compute the defining equation of the convolution
hypersurface. For these reasons the last chapter arises naturally as the attempt
to identify the class of hypersurfaces whose convolution could be handled easily.
Since the invariant associated to each hypersurface which measures its complex-
ity with respect to the operation of convolution is the convolution degree, we
study hypersurfaces of low convolution degree.

We prove that hypersurfaces with convolution degree one are exactly the hyper-
surfaces with Linear field of Normal vectors (LN hypersurfaces), introduced in
Jüttler (1998). The study of LN hypersurfaces has its own history, as in Peternell
and Manhart (2003); Sampoli et al. (2006) it was proved that they admit rational
convolution with an arbitrary rational hypersurface. Another approach based
on Gröbner basis computation and discussion of the associated convolution de-
gree of parameterized hypersurfaces was used in Lávička and Bastl (2007) where
a special class of GRC parameterizations of hypersurfaces (Generally admitting
Rational Convolutions with any arbitrary rational hypersurface) was introduced.
As a by-product, it was proved that all non-developable polynomial quadratic
surfaces belong to the class of LN surfaces. Nevertheless, the detailed algebraic
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Chapter 1. Introduction

analysis of convolution hypersurfaces has not been at disposal up to the present
day.

The second part of Chapter 4 is devoted to the hypersurfaces with convolution
degree two. In spite of higher convolution degree we are still able to provide
a full algebraic analysis of their convolutions with an arbitrary hypersurfaces.
Moreover we identify the special class of the so-called QN hypersurfaces (where
QN stands for quadratic normals). Prominent QN hypersurfaces are hyper-
spheres because the convolution with a hypersphere is nothing but the cele-
brated offset. It is not surprising that the offsets were analyzed firstly as they
possess the highest application potential and the rationality of classical offset
curves and surfaces has been studied for many years.

In the case of planar curves, Farouki and Sakkalis (1990) introduced the class
of Pythagorean Hodograph (PH) curves as polynomial curves possessing ratio-
nal offset curves and polynomial arc-length functions. The deep analysis of PH
curves has followed – see e.g. Farouki and Neff (1995); Farouki (2008). Later, the
concept of polynomial planar PH curves was generalized to rational PH curves
(Pottmann (1995); Peternell and Pottmann (1998)). The notion of rational sur-
faces with rational offsets, called Pythagorean Normal vector (PN) surfaces, was
introduced in Pottmann (1995) – more details about PN surfaces can be found
e.g. in Lü (1996); Peternell and Pottmann (1998). Consequently an algebraic
analysis of offsets was provided in Arrondo et al. (1997); Sendra and Sendra
(2000); Alcazar and Sendra (2007). Since the QN hypersurfaces shares a lot of
properties with hyperspheres with respect to convolution, we will be able to
generalize some mentioned results on the class of QN hypersurfaces.

3



Chapter 2

Preliminaries

We roughly explain basics of algebraic geometry needed in this thesis.

The notions of algebraic variety, its dimension, tangent spaces, etc.

are defined. The existence of a rational parametrization of curves and

surfaces is discussed. Finally, the notions of dual variety and variety

with degenerated Gauss image are explained.

The convolution of two arbitrary varieties in Cn is defined and some of

its very basic properties are discussed. Moreover, since hypersurfaces

with degenerated Gauss image are quite special with respect to the

operation of convolution, we give a brief analysis of their behavior – at

least in low dimensional cases. We conclude this section exposing some

applications of convolutions in CAGD.

2.1 Basics of algebraic geometry

Curves and surfaces in CAGD are mostly represented by their rational param-
eterizations. Since any such an object is an algebraic variety, the algebraic geo-
metry could be a proper tool for a theoretical investigation. Although in practical
applications we want to deal with curves and surfaces in real two and three-
dimensional space, we work over the field of complex numbers C thorough this
thesis. This allow us to prove global results. Moreover we do not limit ourself
to the curves and surfaces, but we deal with varieties of an arbitrary dimension.
In spite of this the most attention is devoted to these low dimensional cases.

4



Chapter 2. Preliminaries

The main goal of this section is to introduce notations used thorough this thesis.
All the statements in this section are well known and thus we formulate them
here without proofs or references. More details concerning fundamentals of
algebraic geometry can be found e.g. in Brieskorn and Knörer (1986); Cox et al.
(2005); Hartshorne (1977); Harris (1992); Walker (1950).

2.1.1 Algebraic varieties and their properties

A given set of polynomials f1, . . . , fk ∈ C[x1, . . . , xn] = C[x] defines an affine

variety as the set

V( f1, . . . , fk) := {x ∈ C
n| f1(x) = · · · = fk(x) = 0}. (2.1)

Affine varieties which can be described by a single nonconstant equation
f (x) = 0 are called hypersurfaces. Moreover if f̂ is the squarefree part of f then
V( f̂ ) = V( f ). Hence in what follows, we will consider the defining polynomial
f of the hypersurface V( f ) to be squarefree.

Affine varieties form the closed sets of the Zariski topology on Cn. For any set
X ⊂ Cn we denote cl X its closure in this topology, i.e., cl X is the smallest affine
variety containing X. A variety is called irreducible if it cannot be written as a
union of two proper varieties. The Zariski topology gives rise to the definition of
the dimension as follows. If X is an irreducible variety then its dimension dimX
is defined to be the biggest integer k such that there is a chain ∅ 6= X0 Ã X1 Ã

· · · Ã Xk = X of irreducible subvarieties of X . The variety of which components
have the same dimensions is called equidimensional. Unless stated otherwise, we
mean by variety an equidimensional variety. A variety of dimension one is
called a curve and a variety of dimension two a surface. An affine space Cn has
dimension n and it is well known that a variety X ⊂ Cn is a hypersurface if and
only if dimX = n − 1.

The degree of an variety X ⊂ Cn, denoted by degX is defined as the number
of points in the intersection of X and a generic (n − dimX )–dimensional plane.
In the case that X is hypersurface with a defining polynomial f , then degX =
deg f .

For any variety X the set

I(X ) := { f ∈ C[x]| ∀x ∈ X : f (x) = 0} (2.2)

is called the ideal of the affine variety X . The coordinate ring of X is defined as
C[X ] := C[x]/I(X ). Any ϕ ∈ C[X ] is called a regular function on X . The
quotient of two regular functions ϕ/ψ, where ψ is not a zero divisor in C[X ], is
called a rational function. In the case the variety X is irreducible then the quotient
field C(X ) of C[X ] is called the field of rational functions on X .
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Chapter 2. Preliminaries

The mapping ϕ : X → Y given by ϕ : p 7→ (ϕ1(p), . . . , ϕn(p)), where ϕi ∈
C(X ), is called a rational mapping. This rational mapping is said to be dominant

if cl ϕ(X ) = Y . If ϕ is a dominant mapping between varieties with the same
dimensions, then there exists a positive constant k such that for a generic q ∈ Y
the fibre ϕ−1(q) contains exactly k points. This constant k is called the degree of
ϕ and we denote it by deg ϕ. If deg ϕ = 1 then there exists a rational inverse
and such ϕ is called birational. Some important examples of rational mappings
are rational parameterizations, i.e., dominant mapping Cn → X . The parameteri-
zations will be denoted e.g. by x(s), where s = (s1, . . . , sn). With a little abuse
of notation we will write s = s1 in the curve case. A parameterization given by
a birational mapping is called proper. A variety which admits a rational parame-
terization is called unirational. In addition, if it admits a proper parameterization
we speak about a rational variety. The unirationality of a variety does not imply
its rationality in general. However, in the most important cases for CAGD, i.e.,
for curves and surfaces, these notions coincide. Moreover there are birational
invariants (i.e., integers associated to the variety which do not change under bi-
rational transformations), which provide criteria of rationality. These are genus

g (X ) of a curve and e.g. the irregularity q (X ) and second plurigenus P2(X ) of
a surface. The definition of genus will be given in Subsection 2.1.2. The def-
inition of remaining two invariants is beyond the scope of this introduction –
reader is kindly refereed to e.g. Iskovskikh and Shafarevich (1989)

Theorem 2.1. (Lüroth) A curve X is rational if and only if g (X ) = 0.

Theorem 2.2. (Castelnuovo – Enriques rationality criterion) A surface X is

rational if and only if q (X ) = P2(X ) = 0.

The concept of projective algebraic varieties can be introduced in a similar way.
Throughout this paper we will assume that the affine space Cn is included in
the projective space PnC via the mapping (x1, . . . , xn) ↪→ (1 : x1 : · · · : xn). Pro-
jective points of the hyperplane x0 = 0 have no preimages in this mapping and
they are called points at infinity. The ideal hyperplane containing these points will
be denoted by ω. For any variety X we denote its projective closure by X P, spe-
cially if X is a hypersurface defined by the equation f = 0 then X P is defined
by the equation F = 0 where F is the homogenization of f .

2.1.2 Local properties of algebraic varieties

Since the tangent space is of local nature, it suffices to define it for affine varieties
only. The natural extension for projective varieties can be done by an affine
cover of the projective variety. Let X ⊂ Cn be a variety and f1, . . . , f` ∈ C[x] be

6



Chapter 2. Preliminaries

the basis of its ideal. Then we define the tangent space TpX at the point p ∈ X to
be a subspace of Cn defined by the linear equations

∇ f1(p) · x = · · · ∇ f`(p) · x = 0, (2.3)

where ∇ fi are vectors consisting of all the partial derivatives. The more usual
way of defining tangent space is to define it as an affine subspace of the ambient
space Cn passing through the point p with the vector direction TpX . We call
such a subspace the affine tangent space and denote it by TA

p X , see Fig. 2.1.

o

S1

TpS1

TA
p S1

p

Figure 2.1: The difference between placing the tangent space and the affine tan-
gent space.

It can be shown that Φ(x) := dim TxX is an upper-semicontinuous function
whose minimum equals dimV . A point p such that Φ(p) > dimV is called
singular, otherwise it is called regular. The nonempty open set of regular points is
denoted XReg and the set of singular points by XSing . A variety without singular
points is usually called smooth. Let us note that if X = V( f ) is a hypersurface,
then the singular locus is given as the solution of the system of equations

f (x) =
∂ f (x)

∂ x1
= · · · ∂ f (x)

∂ xn
= 0. (2.4)

Next, we will focus on affine plane curves, i.e., on hypersurfaces in the affine
plane. For this purpose we set X = V( f ), Y = V(g), where f , g ∈ C[x1, x2].
The intersection multiplicity of two affine curves at their common point p ∈ X ∩ Y
is defined

Ip(X ,Y) := dimC OC2,p/〈 f , g〉, (2.5)

where

OC2,p :=
{

ϕ

ψ
∈ C(x1, x2)|ψ(p) 6= 0

}
(2.6)

7



Chapter 2. Preliminaries

and 〈 f , g〉 is the ideal generated by f and g in OC2,p. In terms of the introduced
intersection multiplicity, it can be shown that the affine tangent TA

p X space is the
union of all straight lines L going through p such that Ip(X ,L) > 1. If p ∈ X is
singular then for every straight line the intersection multiplicity is greater then
one. Moreover the minimum of all the multiplicities is called the multiplicity of

the point p and denoted by mp(X ). Other important invariants associated with
singularities are the Milnor numbers defined by

µp(X ) = Ip

(
V

(
∂ f

∂ x1

)
, V

(
∂ f

∂ x2

))
(2.7)

and delta invariants given by the Milnor-Jung formula

δp(X ) =
1
2

(
µp(X ) + rp(X ) − 1

)
, (2.8)

where rp(X ) expresses the number of branches of a plane curve going through
the point p.

Each smooth projective curve over C can be viewed as a compact, orientable real
two-dimensional manifold, i.e., a real surface. Then the genus g (X P) of a curve
is defined to be the genus of the real surface. It is a birational invariant of the
curve and because every algebraic curve is birationally equivalent to a smooth
one, one may naturally extend the definition of the genus to singular curves, too.
Using delta invariants, one can write the formula for the genus of a plane curve.

Theorem 2.3. (Max Noether’s formula) The genus of a plane curve X P of degree

d can be computed by the formula

g (X P ) =
1
2
(d − 1)(d − 2) − ∑

p∈X P

δp(X P ). (2.9)

The following theorem describes the relation between genera of two non-
singular curves using the ramification divisor of a corresponding dominant ra-
tional mapping, cf. Brieskorn and Knörer (1986); Hartshorne (1977).

Theorem 2.4. (Riemann-Hurwitz formula) Let X P and YP be two smooth pro-

jective curves and ϕ : X P → YP a dominant rational mapping. Then the following

formula holds

2g (X P) − 2 = deg(ϕ)
(

2g (YP) − 2
)

+ deg DR, (2.10)

where deg DR ≥ 0 is the degree of the ramification divisor.

Riemann-Hurwitz formula serves as a very useful tool also for curves with sin-
gularities since we are always able to find a non-singular curve birationally
equivalent to a given one, and then apply (2.10).

8



Chapter 2. Preliminaries

2.1.3 Dual hypersurfaces

Let Gr(k, n) denote the set of k-planes (i.e., varieties of dimension k and de-
gree 1) in projective space PnC. We call this set a Grassmannian and it may
be shown that it admits a structure of an algebraic variety. We are not going
to more details here, but a nice introduction to Grassmannians can be found
e.g. in Harris (1992). Since any hyperplane in PnC is determined by equation
a0x0 + a1x1 + · · · + anxn = 0 where (n + 1)-tuple (a0, . . . , an) is given uniquely
up to multiplication by a nonzero constant, it is obvious that Gr(n− 1, n) ' PnC.
This projective space is often denoted by PnC∨ and called the dual space.

Next, let Cn ↪→ PnC be a natural inclusion. Then the image of the set of k-
dimensional planes passing through the origin of Cn forms a closed subset in
Gr(k, n). We denote it by Gr0(k, n). Since any (n − 1)-dimensional subspace
of Cn is determined by equation a1x1 + · · · + anxn = 0 then analogously to the
previous case there is a canonical isomorphism Gr0(n − 1, n) ' Pn−1C.

Due to the two “different” tangent spaces we have defined, we are going to study
two mappings related to them.

If X P is a projective hypersurface then the mapping X P → PnC∨ which assigns
to each point its affine tangent hyperplane is obviously well defined besides the
singular locus of the variety. A dual variety X ∨ is then defined to be the closure of
the image of X P under this mapping. Since the natural setting for convolutions
is affine space, we will work mainly with affine hypersurfaces X ⊂ Cn. The dual
variety of an affine hypersurface X is constructed naturally via the composed
mapping X ↪→ X P → PnC∨.

It is always possible to pass between dual and primal representation. We bring
in here only one way, which will be often used in what follows. The original
hypersurface is then viewed as the envelope of the affine tangents in X P . If
the dual hypersurface is unirational, then (n − 1)-parameter family of affine
tangent hyperplanes can be written in the form

Σ : n(s) · x = h(s), (2.11)

From this, the parameterization of hypersurface X is obtained by solving the
system of equations

Σ,
∂ Σ

∂ s1
, · · · ,

∂ Σ

∂ sn−1
. (2.12)

This is system of n linear equation in n variables x = (x1, . . . , xn) with coefficients
in C(s), and thus it can be solved with standard tools of linear algebra.

In differential geometry, the Gauss mapping is defined as a mapping of a smooth
hypersurface X ⊂ Cn to the unit sphere Sn−1 by associating to each point the
corresponding unit normal vector. To follow this, it could be natural to de-
fine Gauss mapping for hypersurface X : f (x) = 0 by x 7→ ∇ f (x)/‖∇ f (x)‖

9
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(cf. (2.4)). Because of the norm in the denominator this mapping is not ratio-
nal in general. To excise this difficulty we define the Gauss mapping γX : X →
Gr0(n − 1, n) by assigning to each regular point x ∈ X its tangent space TxX .1

This is again a rational mapping well defined outside the singular locus. Gen-
erally it holds that the Gauss mapping γX : X → Gr0(n − 1, n) has finite fibres
and thus the dimension of the Gauss image γX (X ) is equal to the dimension X .
If this is not the case, i.e., dim γX (X ) < dimX then the hypersurface is said to
has a degenerated Gauss image.

2.2 Convolutions of hypersurfaces

This section is devoted to the first introduction to the convolutions of algebraic
hypersurfaces. The notion of convolution of curves and surfaces was at first
introduced to CAGD by M. Sabin, cf. Sabin (1974). In recent years it experienced
a rebirth thanks e.g. to the papers Peternell and Manhart (2003); Sampoli et al.
(2006); Lávička and Bastl (2007); Šír et al. (2008).

In the first part of this section, we will define convolution of arbitrary two vari-
eties. Although only convolutions of hypersurfaces will be analyzed, this general
definition will turn out to be useful at least when we will study the so-called
degenerated components, cf. Subsection 3.2.3. The rest of the section will be
devoted to some applications of convolutions to CAGD.

2.2.1 Basic definitions

Let A, B ⊂ Cn be two subspaces then we write A + B for the subspace spanned
by A and B.

Definition 2.5. Two points v, w on algebraic varieties V and W , respectively are
said to be coherent, denoted by (v,V) ∼? (w,W), if TvV + TwW 6= Cn.

Now, the convolution is defined as the sum of the pairs of coherent points.

Definition 2.6. Let V ,W ⊂ Cn be two algebraic varieties, then the algebraic
variety

V ? W = cl {v + w ∈ C
n | (v,V) ∼? (w,W)} (2.13)

is called the convolution of varieties V and W .

10
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o

VW

v

w

v + w

Figure 2.2: Construction of the convolution V ? W .

An example of the construction of the convolution of two plane curves is seen in
Fig. 2.2. From Definition 2.5 it is obvious that two points on hypersurfaces are
coherent if and only if they are regular and the corresponding tangent hyper-
planes are parallel. Thus it agrees with the usual definition for the hypersurface
case. As the second limit case consider two varieties V ,W ⊂ Cn such that
dimV + dimW < n. Then for an arbitrary pair of regular points v ∈ V and
w ∈ W we have dim(TvV + TwW) ≤ dimV + dimW < n, and hence any such
points are coherent. The resulting variety V ? W is thus obtained by sweeping
one variety along the other one.

Let H ⊂ Cn be a subspace of dimension n − 1 and X be a hypersurface. Then
we will write

XH = {p ∈ X |TpX = H} (2.14)

If we consider H to be an element of Gr0(n − 1, n) then XH = γ−1
X (H) ∩ XReg ,

where γX is the Gauss mapping. Under the assumption, that X does not have
the degenerated Gauss image, the mapping γX is dominant. Thus for a hyper-
surface Y and a generic point q on it, there exists a point p ∈ XTqY . The point
p + q then lies on the convolution X ? Y . On the other hand if X has the de-
generated Gauss image, then for a generic point q ∈ Y there exists no point
p ∈ X coherent with q. For this reason we will omit such hypersurfaces from
our further analysis. Regardless we will briefly discuss the convolution with
these hypersurfaces at least for curves and surfaces at this place.

First let V be a generic curve and D be a curve with the degenerated Gauss

1Let us note that this is slightly different from the standard definition as Gr0(n − 1, n) '
Pn−1C ' Sn−1/{±x}.

11



Chapter 2. Preliminaries

image. Then D has to be a line and let us denote the only tangent line to D
by H. Then VH is finite and after setting {v1, . . . , v`} = VH we arrive at the
convolution V ? D consisting of ` copies of the line D translated by vi, i.e.,

V ? D =
⋃̀

i=1

vi ? D. (2.15)

If D is a surface with the degenerated Gauss image, then two cases must be dis-
tinguished. First if dim γD(D) = 0 then D is a plane and the situation is com-
pletely analogous to the curve case. If the Gauss image of D is one-dimensional
then the set of points on V coherent with some point on D forms a curve, say
B – this need not to be irreducible. Then the convolution V ? D consists of the
same number of component as the B has. All of them are again surfaces with
degenerated Gauss image. This is illustrated by the next example.

Example 2.7. Let V = S2 be the unit sphere and D be a surface consisting of
tangents to the twisted cubic a(s) = (s, 3s2, 6s3). Then D is the so-called tangent
developable surface and it admits a parameterization

d(s, t) = a(s) + ta′(s) = (s, 3s2, 6s3) + t(1, 6s, 18s2). (2.16)

The tangent planes Td(s,t)D depend only on the parameter s and may be ex-
pressed by the equation

(a′ × a′′) · x = 6(18s2,−6s, 1) · x = 0, (2.17)

and it is easy to prove that B ⊂ S2 decomposes into two curves possessing ra-
tional parameterizations

b±(s) = ± 1
1 + 18s2

(
18s2,−6s, 1

)
. (2.18)

Since (b(s),V) ∼? (d(s, t),D) for all s ∈ C and t ∈ C\{0}, the convolution V ?D
consists of two components U± parameterized by b±(s) + d(s, t).

Both of these components are again tangent developable surfaces, i.e., there
should exist their parameterization in the form c±(s) + tc′±(s). Simple com-
putations reveal that c±(s) can be expressed as

c±(s) = (±1 + s, 3s2,±1 + 6s3), (2.19)

see Fig. 3.2.

Assumption 2.8. From now, by a variety we mean a variety with non-
degenerated Gauss image.

12
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? =

Figure 2.3: The convolution of sphere and tangent developable. Curves on sur-
faces: the red one on sphere is B, on tangent developable it is twisted cubic and
on the convolution they are curves parameterized by b±(s)a(s). Finally orange
curves on the convolution are the those with parameterization c±(s).

Obviously (U ∪ V) ? W = (U ? W) ∪ (V ? W) and hence in what follows, we
can consider convolutions of irreducible hypersurfaces only. Contrariwise, the
convolution of two irreducible varieties need not to be irreducible. In general,
almost every point on some component of V ?W can be written as v + w for ex-
actly one pair of coherent points v and w. However there can exist a component
which does not fulfil this property.

Definition 2.9. Let V , W be two algebraic hypersurfaces. An irreducible com-
ponent X ⊂ V ? W will be called simple, special, or degenerated respectively, if
there exists a nonempty open set X ⊂ X , such that ∀u ∈ X exist(s) exactly one,
more than one but finitely many, or infinitely many pair(s) v ∈ V , w ∈ W such
that (v,V) ∼? (w,W), respectively, and u = v + w.

The origin of degenerated and special components and their detailed algebraic
analysis will be given in Subsection 3.2.3.

2.2.2 Applications

This subsection is devoted to two most important applications where convolu-
tions can be found. Since these applications are motivated by real world prob-
lems, they are not usually solved over C. For this reason we will formulate them
over R, too.

Minkowski sum The Minkowski sum of two sets A, B ⊂ R2 (R3) is defined as

A ⊕ B := {a + b | a ∈ A, b ∈ B}. (2.20)

13
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It is one of the fundamental operation in CAGD with applications in nesting
and packing problems, mathematical morphology, motion planing, computer
graphics etc., see de Berg et al. (1997)

If the sets A and B are represented by a polygonal boundary, the computation
of the Minkowski sum is well known. Let A ⊂ R2 be a convex2 set with polyg-
onal boundary determined by vertices a1, . . . , an. And analogously, B is consid-
ered to be a convex set with polygonal boundary given by b1, . . . , bm. Then the
Minkowski sum is convex too and can be computed as

A ⊕ B = ConvexHull
{

ai + bj

}m,n

i,j=1
, (2.21)

The advantage of this “naive algorithm” is that it may be directly generalized
to three-dimensional space. On the other hand its complexity in planar case is
O(mn log mn), which is far away form the optimal one. There exists a plenty of
more effective algorithms, but we are not going into such a detail here.

The situation becomes more complicated whenever the sets A and B are
bounded by smooth curves. At this moment, there is no way how to use previ-
ous algorithm and the convolution appears as a useful tool because of formula

∂ (A ⊕ B) ⊂ ∂ A ? ∂ B, (2.22)

where ∂ X denotes the boundary of a set X, see Peternell and Steiner (2007).
Although this formula is usually formulated for smooth boundaries ∂ A and ∂ B

only, it holds for most of boundaries with singularities too. For the only class of
counterexamples see Remark 4.10.

We conclude this paragraph by summarizing the computation of Minkowski
sum of two “curved” objects into the following algorithm (see Fig 2.4 too).

Algorithm 1 Minkowski sum
Input: A, B ⊂ Rn regions.
Output: A ⊕ B.

1: Identify boundary hypersurfaces V := ∂ A, W := ∂ B;
2: Compute U = V ? W ;
3: Trim U to obtain Ũ as the boundary of Minkowski sum;
4: return A ⊕ B is object bounded by Ũ .

Since the areas A and B are the most usually given by their boundaries the first
step of algorithm is trivial. As we will see in Chapter 3 the convolution ∂ A ? ∂ B

2This condition is not as restrictive as it could seem, because any set may be written as a union
of convex sets.
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Figure 2.4: Two regions in R2 (left), convolution of their boundaries (middle)
and Minkowski sum (right).

can be quite complicated and moreover the rationality of the boundary hyper-
surfaces does not ensure the rationality of the resulting hypersurface. Thus it
is usual to approximate the boundary by some simpler hypersurfaces which be-
haves better with respect to the operation of convolution. Such hypersurfaces
are studied in Chapter 4.

Offsets The offset hypersurface is defined as a locus of points of constant nor-
mal distance from the generator hypersurface. Formally if x(s) is parameteriza-
tion of X and n(s) the associated unit normal vector field, then the parameteri-
zation of δ-offset Oδ(X ) is given by

x(s) ± δn(s). (2.23)

The offsets are widely used in applications, such as 2.5D pocket machining,
3D NC machining, definition of tolerence regions, acces space representations in
robotics, curved plate (shell) representation in solid modeling, rapid prototyping
where materials are solidified in succesive two-dimensional layers, brush stroke
representation and in feature recognition through construction of skeletons or
medial axes of geometric models – see Maekawa (1999).

There is an obvious problem when one want to represent offset e.g. in Bézier
form. Since n(s) is required to be the unit vector field, there is a square-root
involved in the expression of n(s). Thus the offset if not generally rational even
when the generator hypersurface was. This led Farouki and Sakkalis (1990) to
introduce a class of curves with rational offsets – the so-called PH curves. These
are curves given by a polynomial parameterization x(s) = (x(s), y(s)), whose
hodograph fulfills the so-called Pythagorean Hodograph property

(
x′(s)

)2
+

(
y′(s)

)2 ≡ σ2(s), (2.24)
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for some polynomial σ(t). The three polynomials x′(s), y′(s), σ(s) form the
so-called Pythagorean triple and they have an elegant explicit description

x′(s) = w(s)
(
u2(s) − v2(s)

)
,

y′(s) = 2w(s)u(s)v(s),
σ(s) = w(s)

(
u2(s) + v2(s)

)
,

(2.25)

for three real polynomials u(s), v(s) and w(s).

Later, the concept was generalized to rational curves and surfaces using a dual
representation. In Pottmann (1995) it was shown that hypersurfaces with ratio-
nal offsets correspond exactly to rational hypersurfaces on the so-called Blaschke

hypercylinder. In other word these are envelopes of system of hyperplanes

Σ(s) : n(s) · x − h(s) = 0, (2.26)

where n(s) is a parameterization of unit sphere Sn−1 and h(s) is a rational func-
tion. The parameterization of the hypersurface is then obtained as the solutin
the system of equations

Σ(s) =
∂ Σ(s)

∂ s1
= · · · =

∂ Σ(s)

∂ sn−1
= 0 (2.27)

in variables x with coefficients from R(s).

The link between convolutions and offsets is obvious – the offset of X at distance
δ is nothing but the convolution of X with the sphere Sn−1

δ of radius δ. To
see this, let x ∈ X be a regular point and n the unit normal vector at this
point. Then there exist exactly two points on Sn−1

δ coherent with x, namely the
coordinates of these points are ±δn. Thus the convolution X ? Sn−1

δ consists
of points x ± δn, which is exactly the offset. Hence any statement proved for
convolutions has an immediate consequence for offsets. On the other hand,
the offset were studied deeply in recent years and they are well explored. Thus
the direction of the investigation may be reversed and convolutions may draw
inspiration from offsets. We will see an example in Subsection 4.2.2, where the
class of hypersurfaces, behaving like a hypersphere, is studied.
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Algebraic analysis

The summary of methods for dealing with convolutions of hypersur-

faces given by implicit, parametric, and dual equation respectively is

presented here. The advantages of each of these approaches is discussed.

Independently on chosen approach we may prove the so-called funda-

mental property, which implies that the convolution is an associative

operation.

Further the different types of irreducible components of convolution

are studied and the singular cases are exactly understood. The upper

bound on the number of irreducible components is closely related to

the affine invariant of hypersurface – convolution degree. We not only

define it but we show how to compute it too. Specially for the curves,

the convolution degree formula is presented. Finally the attention to

the problems of rationality is devoted.

3.1 Different approaches

The convolution may be viewed as a member of wider class of operations, which,
roughly speaking, maps algebraic varieties to an algebraic variety. In the first
subsection, we will identify this class precisely. Moreover we will introduce the
so-called incidence variety which is valuable tool for proving some theoretical
results. The incidence varieties were used e.g. in Arrondo et al. (1997) for
study of the offsets, in Sendra and Sendra (2009) for conchoids and in Vršek and
Lávička (2010b) this method was applied to the convolutions.
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On the other hand, the rational varieties provide the most application potential
and thus lot of effort was devoted just to them. This led to the translations
of problems to the space of parameters, see Kim and Elber (2000) or Lávička
and Bastl (2007) for paper devoted to convolutions. The disadvantage of this
approach is obvious. It may be used only for rational varieties with rational
convolution.

In addition to described approaches the operation of convolution has consid-
erably simple description in the terms of dual hypersurfaces. This was firstly
discovered in Sabin (1974) and in recent years more deeply studied in e.g. Šír
et al. (2007); Lávička et al. (2010).

3.1.1 Implicit approach

Let be given two hypersurfaces V ,W ⊂ Cn. Then a computation of their convo-
lution consists of the following two steps.

1. Determining all pairs of coherent points, i.e.,
{
(v, w) ∈ V ×W | (v,V) ∼? (w,W)

}
⊂ V ×W (3.1)

2. The convolution is then obtained as the sum v + w of points in (3.1)1.

This natural and simple decomposition can be found beside a lot of operations in
CAGD (see Vršek (2010)) and it is a cornerstone in the formal definition of these
operations. In particular, the operation ¦ is given, if for any two admissible2

varieties V and W exists following two objects

1. a variety I¦(V ,W) ⊂ V × W such that the natural projections πV :
I¦(V ,W) → V and πW : I¦(V ,W) → W are dominant and finite,

2. a rational mapping σV ,W : I¦(V ×W) → Cn,

such that V ¦W = cl
(
σV ,W (I¦(V ,W))

)
. Thus for convolutions, the set

I?(V ,W) is given as the algebraic closure of (3.1) and the mapping σV ,W is
just the sum σV ,W (v, w) = v + w. Since we deal with the convolutions only, we
will write I(V ,W) instead of I?(V ,W) and σ instead of σV ,W because it does
not depend on the varieties V and W in our case.

1More precisely, one have to take the closure of this set to obtain the convolution variety
2For instance for convolutions, these are hypersurfaces with non-degenerated Gauss image.
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Definition 3.1. Let be given two hypersurfaces V ,W . By an incidence variety we
mean

I(V ,W) = cl
{
(v, w) ∈ V ×W | (v,V) ∼? (w,W)

}
. (3.2)

It can be checked that all the conditions laid on the mappings πV , πW and σ are
fulfilled.

Lemma 3.2. If V ,W are hypersurfaces with the non-degenerated Gauss images, then

the projections πV : I(V ,W) → V and πW : I(V ,W) → W are dominant and finite.

Moreover, it holds that V ? W = cl
(
σ(I(V ,W))

)
.

Proof. Let γV : V → Gr0(n − 1, n), γW : W → Gr0(n − 1, n) be the Gauss map-
pings as in Subsection 2.1.2. Then the incidence variety may be identified with
the closure of the fibre product VReg ×Gr0(n−1,n) WReg . Thus for a generic v on
V we can find

π−1
V (v) =

{(
v, γ−1

W (γV (v))
)}

. (3.3)

Since V , W are hypersurfaces with non-degenerated Gauss images, the associ-
ated Gauss mappings are finite and dominant. Hence the preimage of a generic
v under the projection πV is non-empty and finite. The same argument holds
for the projection πW .

First, let us choose u ∈ σ(I(V ,W)). Then it follows from the definition of
I(V ,W) that there exists v ∈ VReg and w ∈ WReg such that u = σ(v, w) =
v + w. Moreover (v,V) ∼? (w,W) and hence u ∈ V ? W . Conversely, a generic
u ∈ V ? W can be written as v + w for coherent v and w. Then (v, w) ∈ I(V ,W)
and u = σ(v, w) ∈ σ(I(V ,W)). Thus using the fact that both sets are closed, we
deduce that they have to be equal.

The above relations are summarized in the following diagram:

V WI(V ,W)

V ? W

.

.

.

.

.

.

.

.

.
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σ

...............................................................................................................................................
..
..
..
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............

πV
......................................................................................................................................................

.....
..
..
..
.

πW

(3.4)

Corollary 3.3. dim I(V ,W) = n − 1.

Proof. Since the projection πV : I(V ,W) → V is dominant it follows from Harris
(1992, p. 138, Thm 11.12) that

dim I(V ,W) = dimV + dim π−1
V (v), (3.5)

where π−1
V (v) is a generic fibre. However this is zero-dimensional as it is finite.

Hence dim I(V ,W) = dimV = n − 1.
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Remark 3.4. Originally, in the paper Vršek and Lávička (2010b) the incidence
variety was defined as

C(V ,W) := cl





v 6∈ VSing ,
(u, v) ∈ Cn × Cn u − v 6∈ WSing ,

rank
[ ∇ f (v)
∇g(u − v)

]
< 2





, (3.6)

where f and g are defining polynomials of V and W , respectively. Then for two
natural projections

π1, π2 : C
n × C

n → C
n, π1 : (u, v) 7→ u and π2 : (u, v) 7→ v, (3.7)

it holds cl (π1(C(V ,W))) = V ? W and cl (π2(C(V ,W))) = V . This was moti-
vated by the incidence variety introduced in Arrondo et al. (1997) for the study
of offsets of algebraic hypersurfaces. We believe that the slightly different defi-
nition, which we decided to use in this thesis, makes it more readable.

On the other hand the set C(V ,W) can be usefull when we need to compute
the defining polynomial of V ? W , as the convolution is nothing but the projec-
tion from C(V ,W) onto the first n variables. Hence its defining polynomial can
be obtained from the defining polynomials of C(V ,W) by eliminating the second
n variables. More precisely, consider the ideal generated by

f (x), g(y − x),
∂ f (x)

∂ xi

∂ g(y − x)

∂ (yj − xj)
− ∂ f (x)

∂ xj

∂ g(y − x)

∂ (yi − xi)
, (3.8)

for 1 < j ≤ n and i < j. This is almost the ideal of C(V ,W) but we did not take
care about singular locus of input varieties yet. To fix this, we use the standard
trick relying on adding two new variables α, β and two polynomials

n

∏
i=1

(
1 − α

∂ f (x)

∂ xi

)
,

n

∏
j=1

(
1 − β

∂ g(y − x)

∂ (yj − xj)

)
. (3.9)

Now the defining polynomial of V ?W can be obtained by eliminating variables
α, β, yj from the system (3.8) and (3.9). This can be done e.g. by computing
the Gröbner basis of the ideal generated by the system w.r.t. lexicographic order
α > β > yj > xi.

It is obvious that the operation of convolution is commutative as the relation of
being coherent is symmetric and the addition of complex numbers is commuta-
tive. The decision about associativity is a little bit harder. One would use that
addition is associative on complex numbers and then to show that the relation
of being coherent is transitive and moreover that it holds

(v,V) ∼? (w,W) implies (v,V) ∼? (v + w,V ? W). (3.10)

Unfortunately, the relation ∼? is not transitive as the following example shows.
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Example 3.5. Let U , V ⊂ C3 be two curves and W ⊂ C3 a surface. If u, v, w
are points on U , V and W respectively, such that

TuU = 〈(1, 0, 0)〉, TvV = 〈(0, 1, 0)〉 and TwW = 〈(1, 0, 0), (0, 0, 1)〉, (3.11)

then (u,U ) ∼? (v,V) and (u,U ) ∼? (w,W), but (v,V) 6∼? (w,W).

In spite of that we will prove the property (3.10) and then it will immediately
follow that for hypersurfaces the associativity holds.

Example 3.6. Let us suppose, at this moment, that V ⊂ Rn is a real hyper-
surface with non-degenerated offset Oδ(V), p ∈ VReg its regular point and
v(t) : Rn−1 → V some local parameterization of the neighborhood (in the stan-
dard topology) of p with v(0) = p. Then the tangent space TpV is generated
by {

∂ v(0)

∂ t1
,

∂ v(0)

∂ t2
, · · · ,

∂ v(0)

∂ tn−1

}
. (3.12)

Now, if n(t) is the local parameterization of the unit normal vector field as-
sociated to v, then two points on the offset Oδ(V) generated by p are p± =
v(0)± δn(0). If these points are regular, the tangent spaces Tp±Oδ(V) are deter-
mined by

{
∂ (v(0)± dn(0))

∂ t1
,

∂ (v(0)± dn(0))

∂ t2
, · · · ,

∂ (v(0)± dn(0))

∂ tn−1

}
. (3.13)

However these are exactly same as the subspace TpV , since each ∂ n/∂ ti is
a linear combination of vectors ∂ v/∂ tj. To see this, it suffices to realize that
n · n = 1 implies n · ∂ n/∂ ti = 0. Hence, we have showed that generically
Tp±Od(V) = TpV . This identity called in Arrondo et al. (1997) fundamental
property of offsets holds for convolutions too.

Lemma 3.7. (Fundamental property of convolutions) For a generic v + w ∈
V ? W we have Tv+wV ? W ⊂ TvV + TwW .

There are more ways to prove this lemma. The analogy to the above example
would be a construction of the so-called coherent parameterizations (for the
definition of coherent parameterization see Definition 3.11). Moreover if V ? W
does not contain any degenerated component then the fundamental property
can be immediately seen from the dual approach, cf. Subsection 3.1.3. We give
here another proof which uses the incidence variety.

Proof. (of Lemma 3.7) Let X be an arbitrary component of V ? W and denote
Y = σ−1(X ) its preimage on I(V ,W). Then by Sard’s lemma for varieties
(cf. Mumford (1976, p. 42)) there exists a nonempty Zariski open set X ⊂ X
such that σ is smooth at the points of Y = σ−1(X)\YSing , i.e., for each y ∈
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Y the differential dσ |y: TyX → Tσ(y)Y is surjective. Since I(V ,W) ⊂ V ×
W we have for each y ∈ Y that TyI(V ,W) ⊂ TvV × TwW , where y = (v, w),
and hence we may write any tangent vector at y as ty = (tv, tw). With this
notation the differential dσ is given by (tv, tw) 7→ tv + tw and hence we obtain
that Tv+wX ⊂ TvV + TwW for generic v + w ∈ X . However the component
X ⊂ V ? W was chosen arbitrarily. This completes the proof.

Apparently, the property (3.10) is an immediate consequence of the previous
lemma. Moreover, let V ,W ,U ⊂ Cn be hypersurfaces and let v, w, u be a triple
of generic coherent points on them. Then as the consequence of the fundamental
property of convolutions, we see that (v + w,V ? W) ∼? (u,U ) and (v,V) ∼?

(w + u,W ? U ). Since this holds for generic points we arrive at (U ? V) ? W =
U ? (V ? W). Let us formulate it as a corollary.

Corollary 3.8. For three hypersurfaces U ,V ,W , we have

(U ? V) ? W = U ? (V ? W). (3.14)

We will conclude this subsection by introducing another useful concept.

Definition 3.9. A dominant rational mapping ξU ,V : U → V will be called coher-

ent if for a generic u ∈ U it holds (u,U ) ∼? (ξU ,V (u),V).

In general, for a given hypersurfaces U ,V ,W there is no chance that a rational
mapping ϕ : U → V could give us some relation between varieties U ? W and
V ? W . Contrariwise, if ϕ is coherent then by the following lemma we may
extend it to a rational mapping between corresponding incidence varieties. In
this way a coherent mapping relates variety U ? W to the variety V ? W . This
will be used later e.g. to derive a genus formula of convolutions with some
simple curves.

Lemma 3.10. For an arbitrary hypersurface W , the coherent mapping ξU ,V : U → V
may be naturally extended to the rational mapping ζ : I(U ,W) → I(V ,W) between

incidence varieties. Moreover deg ζ = deg ξU ,V .

Proof. The mapping ζ, defined by

ζ : (x, y) 7→ (ξU ,V (x), y) (3.15)

obviously does the job.
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3.1.2 Parametric approach

If the hypersurfaces V and W are given by parameterizations v : Cn−1 → V and
w : Cn−1 → W , respectively, it is worth studying conditions under which there
exists a rational parameterization of (a component of) V ? W .

Definition 3.11. Two parameterizations v(t) and w(t) are said to be coherent,
written v(t) ∼? w(t), if for a generic t0 ∈ Cn−1 it holds (v(t0),V) ∼? (w(t0),W).
The parameterization w(t) is called V-coherent, if there exists a parameterization
v(t) of V coherent with w(t).

The following proposition is an immediate consequence of the definitions of
convolutions and coherent parameterizations.

Proposition 3.12. If v(t) ∼? w(t) then there exists a component of V ?W parameter-

ized by v(t) + w(t).

Obviously, two random parameterizations are not coherent and thus the main
problem of the parametric approach can be formulated as follows: For given
parameterizations v(s) and w(t) find rational functions ϕ, ψ ∈ C(u) such that
v(ϕ(u)) ∼? w(ψ(u)). This can be solved with the help of the so-called parameter
variety in the space of variables s and t. This parametric counterpart to the
incidence variety was introduced in Kim and Elber (2000).

Definition 3.13. Let v : Cn−1 → V and w : Cn−1 → W be two parameterization.
Then we define the parameter variety as

P(v, w) = cl
{
(s, t) ∈ C

n−1 × C
n−1 | (v(s),V) ∼? (w(t),W)

}
(3.16)

Lemma 3.14. dimP(v, w) = n − 1.

Proof. Consider the projection π : P(v, w) → Cn−1 onto the first n − 1 coor-
dinates. For a generic s ∈ Cn−1 the fibre π−1(s) consists of all (s, t) such that
points v(s) and w(t) are coherent. Since W does not have the degenerated
Gauss image, we know that there exists only finitely many, say `, points on W
coherent with v(s). The parameterization w : Cn−1 → W is dominant and hence
the cardinality of generic fibre π−1(s) is ` · deg w. Thus the projection π is finite
dominant map and we arrive at dimP(v, w) = dim Cn−1 = n − 1.

Theorem 3.15. (ϕ(u), ψ(u)) is a parameterization of a component of the parameter

variety P(v, w) if and only if v(ϕ(u)) ∼? w(ψ(u)).

Proof. The (ϕ(u), ψ(u)) parameterizes a component of P(v, w) if and only if
(v(ϕ(u)),V) ∼? (w(ψ(u)),W) for a generic u by the construction of the param-
eter variety. However this is nothing but the definition of coherent parameteri-
zations.
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Given a parameterization v(s) = (v1(s), . . . , vn(s)) we may compute the normal
vector field e.g. using a determinant

n̂v(s) = det




e1 e2 . . . en
∂ v1(s)

∂ s1

∂ v2(s)
∂ s1

. . . ∂ vn(s)
∂ s1

...
... . . . ...

∂ v1(s)
∂ sn−1

∂ v2(s)
∂ sn−1

. . . ∂ vn(s)
∂ sn−1




, (3.17)

where ei are the standard basis vectors. In the same way we may compute
the normal vector field n̂w(t) associated to the parameterization w(t). Let us
denote

(
µ̂1

µ̂0
, . . . ,

µ̂n

µ̂0

)
= n̂v(s) and

(
ν̂1

ν̂0
, . . . ,

ν̂2

ν̂0

)
= n̂w(t). (3.18)

Then the polynomials

µi :=
µ̂i

gcd(µ̂1, . . . , µ̂n)
and νi :=

ν̂i

gcd(ν̂1, . . . , ν̂n)
, i = 1, . . . , n, (3.19)

lead to the polynomial vector fields with relatively prime coordinates

nv(s) = (µ1(s), . . . , µn(s)) and nw(t) = (ν1(t), . . . , νn(t)). (3.20)

If v(s0) and w(t0) are regular points on the accordant hypersurfaces then the
conditions on points to be coherent may be rewritten such that nv(s0) = λnw(t0)
for some nonzero λ ∈ C. This consideration led in Lávička and Bastl (2007) to
the so-called convolution ideal given by

I := 〈µ1(s) − λν1(t), . . . , µn(s) − λνn(t), 1 − wλ〉, (3.21)

where the last polynomial guarantees nonzero λ. The convolution ideal is closely
related to the parameter variety, as the ideal of variety P(V ,W) can be obtained
by eliminating variables λ and w from the convolution ideal.

Remark 3.16. If we consider convolution ideal I to be an ideal in the ring
C(t)[w, s, λ] then it was shown in Lávička and Bastl (2007) that it is zero-
dimensional ideal under the assumption that hypersurface given by parame-
terization v(s) does not have degenerated Gauss image. Then it follows that
the reduced Gröbner basis of ideal I with respect to the lexicographic order
w > s1 > · · · > sn−1 > λ consists of polynomials

g0(w, s1, . . . , sn−1, λ), g1(s1, . . . , sn−1, λ), gn−1(un−1, λ), gn(λ) (3.22)

with

LT (g0) = w, LT (gi) = u
ri
i , 1 ≤ i ≤ n − 1, LT (gn) = λrn . (3.23)
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Remark 3.17. If V and W are rational plane curves then P(V ,W) is a plane
curve too and the elimination can be done directly. This leads to the defining
equation of the parameter variety

pv,w(s, t) := µ1(s)ν2(t) − µ2(s)ν1(t) = 0 (3.24)

The defining polynomial of a hypersurface is given uniquely up to a constant
multiple and hence the incidence variety (3.6) is unique, too. Contrariwise, there
exists a plenty of parameterizations of given (uni)rational variety and the pa-
rameter variety depends on chosen parameterizations. Hence we cannot expect
its uniqueness. On the other hand for a rational variety there exist proper pa-
rameterizations and an arbitrary parameterization of this variety is then just
reparameterization of a proper one.

Lemma 3.18. Let v′ = v ◦ ϕ and w′ = w ◦ ψ then there exists a rational mapping

P(v′, w′) → P(v, w) of the degree deg ϕ · deg ψ.

Proof. Let us define Φ : (s, t) 7→ (ϕ(s), ϕ(t)). It is easy to see that Φ is the desired
mapping. Indeed if (s0, t0) ∈ P(v′, w′) then

(v′(s0),V) = (v(ϕ(s0)),V) ∼? (w(ψ(t0)),W) = (w′(t0),W), (3.25)

and hence Φ(s0, t0) ∈ P(v, w). Next Φ−1(s̄, t̄) = ϕ−1(s̄) × ψ−1(t̄) which shows
that a degree of Φ, i.e. the cardinality generic fibre, is equal to deg ϕ · deg ψ.

Since the unirationality of some component of parameter variety corresponds to
the existence of coherent reparameterization of input hypersurfaces, the previ-
ous lemma implies that in practical computation one should use parameteriza-
tions of lowest degree as possible.

Algorithm 2 Parameterization of a simple component of V ? W
Input: v(s) : C → V and w(t) : C → W .
Output: A parameterization x(u) : C → X ⊂ V ? W of a component.

1: If possible, compute proper parameterizations v′(s) and w′(t).
2: Find P(v′, w′) ⊂ Cn−1 × Cn−1

3: Decompose P(v′, w′) = P1 ∪ · · · ∪ P`.
4: if Pi is unirational then
5: parameterize (ϕi(u), ψi(u)) : Cn−1 → Pi

6: end if
7: return xi(u) = v′

i(ϕ(u)) + w′
i(ψ(u))

It is not obvious at this moment, if each parameterization of some component
of V ? W can be obtained in this way. We will see later (cf. Remark 3.27) that
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under the conditions that V and W are unirational and X is a simple unirational
component , then each its parameterization can be written as a sum of coherent
parameterizations.

Example 3.19. Let be given parameterizations of plane curves, namely

v(r) =

(
27r4 − r2 − 4r − 4

(2 + r)2 ,
9r2(3r4 − r2 − 4r − 4)

(2 + r)2

)
, (3.26)

and

w(t) =

(
t8 − 8t6 + 5t4 + 1

t6 + 1
,

4t5(t2 − 2)

t6 + 1

)
. (3.27)

It may be shown that w(t) is proper while v(r) can be written in the form
v = v̂(ζ(s)) for a proper parameterization v̂(s) = (3s2 − 1, s(s2 − 3)) and ζ(s) =
3s2/(s + 2). Then the associated normal fields admits the parameterizations

nv̂(s) = (s2 − 1,−2s) and nw(t) = (2t3 − 2t, t4 − t2 − 2t − 1). (3.28)

By Remark 3.17, the parameter variety P(v̂, w) is a plane curve given by equa-
tion

pv̂,w = nv̂ · n⊥
w = (s2 − 1)(t4 − t2 − 2t − 1) + 2s(2t3 − 2t) = 0 (3.29)

The parameter variety is not irreducible, because the polynomial pv̂,w can be
written as a product

(1 − s − t − st − t2 + st2)(−1 − s − t + st + t2 + st2). (3.30)

Two factors induce two components of parameter variety P(v̄, w) = P1 ∪ P2.
Since the variable s is linear in both polynomials it is very easy to find a pa-
rameterizations of these components. For instance the first component can be
parameterizad by

(ϕ(u), ψ(u)) =

(
u2 + u − 1
u2 − u − 1

, u

)
, (3.31)

and thus ĥ[v](ϕ(u)) + w(ψ(u)) parameterizes a component of V ? W .

Although the algorithm looks very simple each step involves quite tough com-
putations already in the surface case, which makes it quite impractical. If it
happen – as did in our example, that only one hypersurface need to be repa-
rameterized, then at least the parameterization step is considerably simplified.
In Lávička and Bastl (2007) the authors studied conditions under which a given
parameterization v(s) can be reparameterized to be coherent with some other
parameterization w(t). They observed that such a condition is sometimes pro-
vided by v(s) on her own in the form of some algebraic condition which the
nw(t) has to fulfill. Such a condition is then called RC-condition.
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In particular, their approach consisted in replacing the normal vector field nw(t)
in the convolution ideal by the n-tuple of new symbolic variables (ν1, . . . , νn).
The RC-conditions then appear when one expresses the variables s from the
equations of this modified convolution ideal. Let us illustrate this in the example.

Example 3.20. Let v(s) = (3s2 − 1, s(s2 − 3)) be the proper parameterization
from the previous example. Thus nv(s) = (s2 − 1,−2s) and instead of nw(t)
we use (ν1, ν2). With these data, the Gröbner basis w.r.t. w > s > λ of the
convolution ideal has the form

g0 = 1 − wλ, g1 = 2s + λν2, g2 = λ2ν2
2 − 4λν1 − 4. (3.32)

The computation of the reparameterization of v(s) is now reduced to the ex-
pressing s from (3.32) as the function of ν1 and ν2. Therefore we arrive at

s = −
ν1 ±

√
ν2

1 + ν2
2

ν2
. (3.33)

which implies that s = s(t) is rational if and only if normal field nw(t) =
(ν1(t), ν2(t)) fulfils

ν2
1(t) + ν2

2(t) = σ2(t), (3.34)

for some polynomial σ(t).

3.1.3 Dual approach

Let v ∈ V and w ∈ W be two generic coherent points on hypersurfaces in Cn.
And let us suppose that an affine tangent hyperplane TA

v V is given by

n · x = n1x1 + · · · + nnxn = hv. (3.35)

Then the TA
wW is described by n · x = hw and by Lemma 3.7 the affine tangent

hyperplane at the point v + w ∈ V ? W has the equation

TA
v+w(V ? W) : n · x = hv + hw, (3.36)

i.e., it is obtained by summing hv and hw.

It follows that the description of convolutions in dual space is considerably very
simple. In fact, the original definition Sabin (1974) is based on this dual descrip-
tion. Later, these ideas were developed in more detail e.g. in the papers Šír
et al. (2007); Gravesen et al. (2008) with the help of the so-called support function

representation, which is tool well known from the convex geometry, cf. Gruber
and Wills (1993)
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By the support function it is meant an arbitrary rational function h : Sn−1 → C.
This encodes a dual representation of the hypersurface X as the envelope of
the hyperplanes

n · x = h(n), (3.37)

where n runs over the unit sphere. If we restrict ourself to the field of real num-
bers, then the support function may be apprehended as the function measuring
the oriented distance of the hyperplanes (3.37) from the origin.

As we saw above, the convolution of two hypersurfaces is then reduced to the
sum of their support functions. Unfortunately, not every hypersurface admits
support functions representation. It is immediately seen that such a hypersur-
face X has to be rational and it can have at most two tangent planes with a given
direction – otherwise the function Sn−1 → C would be one-to-many. Moreover
this condition is necessary but not sufficient as the following example shows.

Example 3.21. Let X ⊂ C2 be an ellipse given by x2/a2 + y2/b2 = 1, where
a, b ∈ R\{0}. Then its dual equation can be expressed as a2n2

1 + b2n2
2 = h2.

Under the assumption n2
1 + n2

2 = 1 this may be rearranged into

h = ±
√

(a2 − b2)n2
1 + b2, (3.38)

which is seen to be a rational function only if a2 = b2, i.e., if X is a circle.

This led authors of Lávička et al. (2010) to define the so-called implicit support

function which removes these drawbacks. It turns out that it is exactly the dual
equation of a hypersurface as defined in Subsection 2.1.2. In the same paper
the relation between convolutions and dual equation of hypersurface was estab-
lished and we formulate it as a proposition here.

Proposition 3.22. Let F∨(n, h1) and G∨(n, h2) be the defining polynomials of V∨ and

W∨, respectively. Then the defining equation of (V ? W)∨ is obtained by eliminating

variables h1 and h2 from the system

F∨(n, h1), G∨(n, h2), h − h1 − h2. (3.39)

This can be again translated into the language of incidence varieties as follows.
Let ν denotes the projection PnC → Pn−1C given by

(n1 : · · · : nn : h) 7→ (n1 : · · · : nn), (3.40)

which is well defined outside the point s = (0 : · · · : 0 : 1). Then the points
v ∈ V∨ and w ∈ W∨ such that ν(v) = ν(w) represent tangent hyperplanes at
the coherent points on the hypersurfaces V and W . Thus it is natural to define
dual incidence variety I∨(V∨,W∨) as the closure of the set of pairs (v, w) such
that ν(v) = ν(w), i.e., it is the closure of the fibre product

I∨(V∨,W∨) = cl
(
V∨\{s} ×Pn−1C

W∨\{s}
)

. (3.41)
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Then the “sum of support functions” is performed by the rational mapping σ∨ :
I∨(V∨,W∨) → PnC defined by

σ∨(
(n : h1), (n : h2)

)
7→ (n : h1 + h2). (3.42)

The above considerations lead to the lemma

Lemma 3.23. (V ? W)∨ = σ∨(I∨(V∨,W∨)).

n2 = 2

h = 0(2, 0)

V∨

W∨

(2,
√

5)

(2,−1 +
√

5)

(2,−1 + 2
√

5)

Figure 3.1: The construction of the convolution curve in the dual plane (the
dual image is dehomogenized by setting n1 = 1) – the red and blue curves are
the irreducible input curves, their reducible convolution is in purple color.

3.2 Properties of convolutions

In this section we are going to analyze algebraic properties of convolutions.
Using an affine invariant of curve called the convolution degree, we will be able
to give a bound to the number of components of a convolution. Next, we will
give a complete characterization of special and degenerated components. As
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a consequence of this analysis some conditions on rationality of convolutions
components will be formulated. The most of results introduced in this section is
based on Vršek and Lávička (2010b).

3.2.1 Types of convolution components and their character-
ization

Definition 2.9 introduced three different types of convolution components. Us-
ing the set I(V ,W) and the associated mappings, the particular type corre-
sponds to the degree of the mapping σ. It turns out that the most interesting
cases are simple components since then the mapping σ restricted on this simple
component is a birational mapping.

Lemma 3.24. An irreducible component X of V ? W is simple, special, or degener-
ated if and only if deg σ|σ−1(X ) is equal to 1, k for 1 < k < ∞, or ∞, respectively.

Proof. For a generic u ∈ X ⊂ V ? W the fibre σ−1(u) consists of {vα, wα}α∈A

such that u = vα + wα ∈ W and (vα,V) ∼? (wα,W). Hence, the cardinality
of a generic fibre is equal to the number of pairs (vα, wα) generating u. By the
definition of the degree of a rational mapping it is nothing but the degree of
σ.

Moreover, it is seen that for any special component we have one fixed number
k such that a generic fibre has the cardinality k. Hence in what follows, we will
use the name k-special component.

For degenerated components we immediately obtain:

Corollary 3.25. Let X ⊂ V ? W be a degenerated component. Then dimX < n − 1.

Proof. Since the fibres of σ are infinite for a generic point x on the degenerated
component X , it follows that dimX < dim I(V ,W) = n − 1, cf. the proof of
Corollary 3.3.

Corollary 3.26. Let X be an irreducible simple component of V ? W , then there exist

the rational mappings X → V and X → W . In particular X cannot be unirational if

V and W are not.

Proof. Since X is simple, we have deg σ|σ−1(X ) = 1 and thus there exists its
inverse. The wanted mappings are σ−1 ◦ πV and σ−1 ◦ πW .

If X is unirational, then there exists its parameterization x : Cn−1 → X . Then the
composed mapping πV ◦ σ−1 ◦ x : Cn−1 → V is dominant as it is the composition
of dominant mappings and thus a parameterization of V . The unirationality of
W follows analogously.
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Remark 3.27. As a special consequence of Corollary 3.26 we see that a rational
parameterization x(s) of a simple component X of V ?W can by pushed forward
a rational parameterizations v(s) and w(s) of V and W , respectively. Moreover
from the definition of incidence variety it follows that v(s) ∼? w(s) and x(s) =
v(s) + w(s). Consequently every parameterization of X is the sum of coherent
parameterizations of input curves, which justifies Algorithm 2.

The rationality problem is the most simple in the curve case because it depends
only on vanishing the genus of the curve. Moreover we may formulate stronger
result which relates the genera of input curves and the genus of a simple com-
ponent of their convolution for curves.

Corollary 3.28. Let V ,W ⊂ C2 be curves and X a simple component of V ? W , then

g (X ) ≥ max{g (V), g (W)}.

Proof. We will prove that g (X ) ≥ g (V), the second inequality would be proved
analogously. If g (V) = 0 then there is nothing to prove. Next, we assume
g (V) > 0. Since X is simple, there exists a rational mapping πV ◦ σ−1 : X → V ,
by Corollary 3.26. Let ϕ : X P → VP be its projective extension. Hironaka’s
theorem ensures that there exist smooth curves X̃ P and ṼP which are birational
to X P and VP, respectively. Moreover, the mapping ϕ is resolved to the rational
mapping ϕ̃ : X̃ P → ṼP. Invoking Riemann-Hurwitz formula (Theorem 2.4) and
after some simple calculations we arrive at

g
(
X̃ P

)
= g

(
ṼP

)
+ 2 (deg ϕ̃ − 1)

(
g

(
ṼP

)
− 1

)
+

1
2

deg DR, (3.43)

where all the terms on the right side of (3.43) are nonnegative. Thus using

g (X ) = g
(
X̃ P

)
and g (V) = g

(
ṼP

)
we get g (X ) ≥ g (V) and the statement

is proved.

Let us emphasize that Corollary 3.28 does not hold for special components as
one can see in the following example.

Example 3.29. Given two curves

V = V

(
x8

1 − 12x6
1 − 2x4

2x4
1 + 48x4

1 − 20x4
2x2

1 − 64x2
1 + x8

2 + 4x4
2

)
(3.44)

and
W = V

(
x2

1 + x2
2 − 1

)
. (3.45)

The curve V has genus equal to 1 and thus it is not rational, the curve W is the
unit circle which genus equals zero. The convolution V ? W factorizes into two
components

X1 = V
(
x8

1 − 30x6
1 − 2x4

2x4
1 − 30x2

2x4
1 + 309x4

1 − 50x4
2x2

1 + 330x2
2x2

1−
−1180x2

1 + x8
2 − 18x6

2 + 133x4
2 − 516x2

2 + 900
) (3.46)
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and
X2 = V

(
x2

1 − x2
2 − 1

)
. (3.47)

The component X1 is simple and g (X1) = 1 ≥ 1 = max{g (V), g (W)}. On
the other hand the component X2 is 2-special with g (X2) = 0 < 1.

3.2.2 Convolution degree

In this subsection, we define the so-called convolution degree which reflects
a complexity of a given hypersurface with respect to the operation of convolu-
tion. Let us recall that for a (n − 1)-space H ⊂ Cn, the XH stands for the set of
points p ∈ X such that TpX = H.

Definition 3.30. The convolution degree κX of a hypersurface X is equal to the
cardinality of XH for a generic (n − 1)-space H.

It is not obvious if ]XH is constant for generic (n − 1)-spaces H and henceforth
if the definition makes sense. Let γX : X → Gr0(n − 1, n) be the Gauss mapping
defined in Subsection 2.1.2 and let n be the representant of H in Gr0(n − 1, n).
Then, since H is generic, the fibre γ−1

X (n) consists exactly of points p on X such
that TpX = H. Hence the convolution degree is nothing but the cardinality of
the fibre γ−1

X (n) for a generic n. This leads to the proposition, which justifies
Definition 3.30, as well.

Proposition 3.31. Let be given an algebraic hypersurface V with the Gauss mapping

γV . Then κV = deg γV .

Remark 3.32. From the geometric interpretation it is obvious that the convo-
lution degree of a hypersurface is an affine invariant, i.e., it is not affected by
applying any affine transformation.

Example 3.33. Let Sn−1 ⊂ Cn be the unit sphere, and a ∈ Cn a vector such that
a · a = a2

1 + · · · + a2
n 6= 0. If we take the (n − 1)-space A : a · x = 0 then it is not

hard to find out that the set Sn−1
A consists exactly of two points a/

√
a · a. Since

a was chosen generically, we obtain κn−1
S = 2.

As the convolution degree is closely related to the complexity of a hypersurface
with respect to the operation of convolution, it is important to be able to com-
pute it even for more complicated hypersurfaces then are the spheres. We have
described three different approaches used for studying convolutions and each
of them provides a natural way how the convolution degree can be computed.
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Theorem 3.34. Let V be an algebraic hypersurface, F∨(n, h) = 0 its dual equation and

let W be an arbitrary hypersurface. Moreover, if V is a unirational hypersurface given by

the parameterization v(s) then denote by g0, . . . gn the Gröbner basis as in Remark 3.16.

Under these assumptions it holds

(i) κV = deg πW ,

(ii) κV = r1·r2···rn
deg v ,

(iii) κV = degh F∨(n, h).

Proof. (i) Follows immediately from the definition of the incidence variety
I(V ,W).

(ii) See Lávička and Bastl (2007).

(iii) See Lávička et al. (2010).

Remark 3.35. The convolution degree appeared firstly in Lávička and Bastl
(2007). More precisely the integer δ = r1 · r2 · · · rn, called degree of the construction

of convolution hypersurface, was introduced in mentioned paper. It is seen that
it is a convolution degree of hypersurface multiplied by the degree of a given
parameterization and hence it is more related to the parameterization then to
the hypersurface itself.

Remark 3.36. If X is a rational curve then κX can be computed immediately
from its normal vector field instead of computing Gröbner basis. Namely, if x(s)
is a proper parameterization and nx(s) = (n1(s), n2(s)) the associated normal
vector field, then we have

κX = max{deg n1, deg n2}. (3.48)

Let X be a hypersurface given by the irreducible polynomial f ∈ C[x]. For some
fixed nonzero a ∈ Cn we set {a1, . . . , an−1} as a basis of a (n − 1)-space a · x = 0.
Then for a point p ∈ X it holds TpX = {a · x = 0} if and only if p is the solution
of the system of equations

f (x) = 0, ∇ f (x) · ai = 0, i = 1, . . . , n − 1, (3.49)

and it is not a singular point on X . Thus generically we have one equation of the
degree deg f = degX and n − 1 = dimX equations of the degrees degX − 1.
Thus, using Bézout theorem, we arrive at the estimation.

Proposition 3.37. For an arbitrary hypersurface X with non-degenerated Gauss image

it holds

κX ≤ degX (degX − 1)dimX . (3.50)
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Since each singular point belongs to the solution of system (3.49) however it
is not counted into the convolution degree it is obvious that singular points
decreases the convolution degree of a variety. Similarly, proper use of Bézout
theorem would require the projective extension of (3.49). However the ideal
points of X do not contribute to the convolution degree, too.

Although a generic hypersurface is smooth and its intersection with the ideal
hyperplane does not affect the convolution degree, we are mostly interested in
rational varieties, which are usually singular. In what follows, we will refine the
computations in order to obtain a compact formula expressing the convolution
degree of a given algebraic curve. For this purpose, it is necessary to introduce
another affine invariant of curves describing their relation to the ideal line ω.

Definition 3.38. Let X be an affine curve and X P its projective closure. We
define the so-called ω-correction of X as the integer

ΩX := ∑
x∈RegX P

(
Ix

(
X P, ω

)
− 1

)
. (3.51)

Remark 3.39. Since X P intersects ω only in a finite number of points, the ω-
correction is finite, too. Moreover, it can be easily computed in the following
way. Let X P = V(F) where F = ∑i+j+k=n ajkxi

0x
j
1xk

2. Then the intersections of

X P with ω are the solutions of the equation f(n) = ∑j+k=n ajkx
j
1xk

2 = 0. This
equation is homogeneous and can be rewritten as

f(n)(x1, x2) = ∑
i+j=n

aijx
i
1x

j
2 =

m

∏
i=1

(αix1 + βix2)
ki = 0. (3.52)

Hence, the points in X P ∩ ω are xi = (0 : −βi : αi). In addition, the intersection
multiplicity Ixi

(
X P, ω

)
is equal to ki.

If f(n) = xn
1 then ΩX equals n − 1 for (0 : 0 : 1) being a regular point of X P,

and 0 otherwise. The case f(n) = xn
2 can be handled analogously. Thus, we can

exclude these special cases from further considerations. Next, we have

GCD
(

f(n),
∂ f(n)

∂ x1
,

∂ f(n)

∂ x2

)
=

m

∏
i=1

(αix1 + βix2)
ki−1. (3.53)

Of course, some factors of the polynomial (3.53) may correspond to the singu-
lar points of X P ∩ ω. We may identify them by computing a square-free part
s(x1, x2) of the polynomial

GCD
(

f(n−1),
∂ f(n)

∂ x1
,

∂ f(n)

∂ x2

)
. (3.54)

After repeated division of (3.53) by the square-free polynomial s(x1, x2), we
arrive at the polynomial g(x1, x2) = ∏i∈A(αix1 + βix2)

ki−1 = 0, where A ⊂
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{1, . . . , m}. From the considerations mentioned above, it follows ΩX =

∑i∈A(ki − 1). Therefore, we obtain

ΩX = deg g. (3.55)

In addition, this immediately gives a bound for the ω-correction

0 ≤ ΩX ≤ degX − 1. (3.56)

Theorem 3.40. (Convolution degree formula) Let X be an affine curve, X P its

projective closure and denote ∆x := mx(X P) − rx
(
X P

)
for any x ∈ X P

Sing . If no

tangent at a singular point of X P coincides with ω then the convolution degree of X is

equal to

κX = 2 (deg(X ) + g (X ) − 1) − ∑
x∈SingX P

∆x − ΩX . (3.57)

Before proving the theorem, we recall one necessary lemma whose proof can be
found e.g. in Tutaj (1993).

Lemma 3.41. (Weak version of Teissier’s lemma) Assume that we have an ir-

reducible curve X = V( f ), where f ∈ C[x1, x2] such that o = (0, 0) ∈ X and

f (0, x2) 6≡ 0. Then

µo(X ) = Io

(
X , V

(
∂ f

∂ x2

))
− Io (X , V(x1)) + 1. (3.58)

Proof. (of Theorem 3.40) Let p = (p0 : p1 : p2) ∈ P2C be a generic point and let
us denote PpX P the curve with the defining equation

∂ F

∂x0
p0 +

∂ F

∂x1
p1 +

∂ F

∂x2
p2 = 0, (3.59)

where F(x0, x1, x2) is the homogenization of the defining polynomial of X . We
will refer to PpX P as the polar curve of X at p. If we choose generic p ∈ ω, then
the convolution degree is exactly the number of regular points in X P ∩ PpX P

which do not lie at infinity.

First we will find the number of regular points in the intersection and then sub-
tract some correction for the intersection points on ω. We denote n = deg(X P)
and thus for any X we have generically degPpX P = n − 1. Then by Bézout
theorem one obtains

n(n − 1) = ∑
x∈RegX P

Ix

(
X P ,PpX P

)
+ ∑

x∈SingX P

Ix

(
X P ,PpX P

)
. (3.60)

Now, to determine the number of regular points it is enough to compute the in-
tersection multiplicities Ix(X P ,PpX P) for both the regular and singular points.
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We may assume w.l.o.g. that x = (1 : 0 : 0) and p = (0 : 0 : 1) ∈ ω, i.e., we can
work with the affine curve X and the polar given by P(0,1)X = V (∂ f /∂ x2). By
Teissier’s lemma we know that the Milnor number of x is

µx(X ) = Ix
(
X ,PpX

)
− Ix (X , V(x1)) + 1. (3.61)

There is only a finite number of lines in a tangent cone at any singular point
x and we can assume that none of them passes through p (the only exception
occurs when x lies on ω and ω is tangent to X P at x – however, this config-
uration was excluded by the assumptions of the theorem). Since V(x1) is not
a component of the tangent cone at x, the number Ix(X , V(x1)) is exactly equal
to the multiplicity mx(X ). Using (3.61) and the Milnor identity (2.7) we arrive at

Ix

(
X P,PpX P

)
= Ix

(
X ,PpX

)
= 2δx + ∆x. (3.62)

If x ∈ X ∩ PpX is a regular point of X then V(x1) is the tangent line to X
at x. Hence Ix (X , V(x1)) ≥ 2 and the inequality is sharp if and only if x is
flex of the curve. However any curve, distinct from the line, cannot have more
than 3n(n − 2) flexes. Thus from (3.61) for a generic direction p and any point
x ∈ X ∩ PpX regular on X , we get

Ix
(
X ,PpX

)
= Ix (X , V(x1)) − µx(X ) − 1 = 2 − 0 − 1 = 1. (3.63)

Summarizing the previous calculations, we can see that the number of regular
points m in the intersection X p ∩ PpX P for a generic direction p is equal to

m = ∑
x∈RegX P

Ix(X P ,PpX P) = n(n − 1) − ∑
x∈SingX P

Ix(X P ,PpX P) =

n(n − 1) − ∑
x∈Sing X̄

(2δx + ∆x). (3.64)

Using Max Noether’s formula (Theorem 2.3) we can substitute for the genus and
obtain

m = 2(deg(X ) + g (X ) − 1) − ∑
x∈Sing X̄

∆x. (3.65)

Finally, any regular point x on X P ∩ ω such that ω = TxX P lies also on the polar
PpX P for all p ∈ ω. Hence, to get the convolution degree we have to subtract
from m the intersection multiplicities Ix

(
X P,PpX P

)
for these points. However,

this number is just the ω-correction defined above. Thus, we arrive at

κX = m − ΩX = 2 (deg(X ) + g (X ) − 1) − ∑
x∈SingX P

∆x − ΩX , (3.66)

which completes the proof.
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Since the multiplicity of an ordinary singularity equals to the number of
branches through it, we have an immediate corollary for ordinary curves.

Corollary 3.42. Let all assumptions of Theorem 3.40 hold and let each singularity of

X P be ordinary. Then the convolution degree can be computed as

κX = 2 (deg(X ) + g (X ) − 1) − ΩX . (3.67)

Example 3.43. Let us compute the convolution degree of all regular conic sec-
tions. It is an affine invariant by Remark 3.32 and thus it is enough to compute
it only for the parabola, the ellipse and the hyperbola in canonical positions.

All these curves are non-singular, rational and of algebraic degree 2. Hence,
their convolution degree is equal to κX = 2(2 + 0 − 1) − 0 − ΩX = 2 − ΩX .
Now, consider the parabola X = V(x2 − x2

1). The homogenization of its defining
polynomial is x0x2 − x2

1 and thus, by Remark 3.39, we have ΩX = 1. Hence the
convolution degree of the parabola is equal to one. Since both the hyperbola
and the ellipse intersect ω in two distinct points, their ω-corrections are zero
and thus we get for them that their convolution degree is two.

Moreover, this example shows that the convolution degree cannot be a projective
invariant – parabolas and ellipses are projectively equivalent, however of differ-
ent convolution degrees. Indeed looking at formula (3.57), one can see that all
the terms are projectively invariant except the ω-correction. This is caused by
the fact that projectivities do not preserve the ideal line from whose position the
ω-correction is derived.

Now, let us return back to the hypersurfaces. For a better understanding of
convolution hypersurfaces and their properties we will study the projections πV
and πW with respect to components of the convolution. Unlike the convolution
degree, this new characteristic obviously depends on both input hypersurfaces.

Definition 3.44. Let X ⊂ V ?W be an irreducible component. Then the integers

iVX := deg πV |σ−1(X ) and iWX := deg πW |σ−1(X ) (3.68)

are called indices of the component X with respect to the hypersurface V and W ,
respectively.

As an immediate corollary of the definitions of the index and the convolution
degree we obtain

`

∑
j=1

iVXj
= κW and

`

∑
j=1

iWXj
= κV , (3.69)

where V ? W = X 1 ∪ · · · ∪ X` is the irreducible decomposition.

Since V ? W is generated by the pairs of coherent points on the hypersurfaces
V and W , the statement X ⊂ V ? W has indices iVX and iWX means that one has
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to trace iVX times the input hypersurface V , and iWX times the input hypersurface
W to obtain all points of the irreducible component X . This obvious fact and
the fundamental property of convolutions (cf. Lemma 3.7) immediately imply
the following lemma which is given without proof.

Lemma 3.45. Let X ⊂ V ? W be a k-special component, where by 1-special we mean a

simple component. Then

κX =
iVX · κV

k
=

iWX · κW
k

. (3.70)

Using this lemma we can show that the convolution degrees of the input hyper-
surface give us an upper bound for the number of components of the convolu-
tion.

Theorem 3.46. V ? W has at most GCD(κV , κW ) irreducible components.

Proof. We prove only the case when V ?W does not have a degenerated compo-
nent. Otherwise, Theorem 3.58 can be applied.

Let V ? W = X 1 ∪ · · · ∪ X` be the irreducible decomposition into ` components,
where Xj is k j-special. By Lemma 3.45, we may write

`

∑
j=1

k j · κXj
= κV ·

`

∑
j=1

iVXj
= κV · κW . (3.71)

Furthermore, by the same lemma we have κV |k j · κXj
and κW |k j · κXj

which im-
plies k j · κXj

= µj · LCM(κV , κW ), where µj is a non-zero natural number. Next,
(3.71) can be rewritten

`

∑
j=1

µj · LCM(κV , κW ) = κV · κW = GCD(κV , κW ) · LCM(κV , κW ) (3.72)

and we arrive at ` ≤ ∑
`
j=1 µj = GCD(κV , κW ), which completes the proof.

Corollary 3.47. Let be given a hypersurface V . Then for any hypersurface W , the

convolution V ? W cannot have more than κV components. Moreover, if the number of

components is equal to κV then every simple component is birationally equivalent to W .

Proof. The first part of the proof is obvious. To prove the second part, we con-
sider the irreducible decomposition V ? W = X 1 ∪ · · · ∪ XκV and denote Yj :=
σ−1(Xj) the preimages of the components in the mapping σ. Since ∑

κV
j=1 iWXj

= κV ,

we see that iWXj
= 1 for any j. Hence the mappings ϕj = πW |Yj

: Yj → W are
birational. If the component Xj is simple then, by Lemma 3.24, the mapping
ψj = σ|Yj

: Yj → Xj is birational, too. Hence the composed mapping ϕ−1
j ◦ ψj is

birational mapping from W to Xj.
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Corollary 3.48. If GCD(κV , κW ) = 1 then V ? W is irreducible.

Remark 3.49. Let us emphasize that the converse statement of Corollary 3.48
does not hold. For instance, we can consider a nodal cubic W in Weierstrass’s
form, i.e., a curve given by the equation

x2
2 − ax2

1(x1 − b) = 0. (3.73)

Any such curve with a, b 6= 0 is a rational curve of degree 3 with one ordinary
double node at the origin. Next, one can compute ΩX = 2 an hence we obtain
κX = 2(3 + 0 − 1) − 0 − 2 = 2. However, the convolution with the unit circle
is reducible only for a = 1/9 and b = −3, which is the only cubic curve, up to
a similarity, (called Tschirhausen cubic) admitting a polynomial PH parameteri-
zation, cf. Farouki and Sakkalis (1990).

Let us consider the set of nodal cubics in the Weierstrass form parameterized
by assigning to each (a, b) ∈ C\{0} × \C{0} the curve (3.73). Then by previous
remark the set of points (a, b) such that the convolution of the associated cubic
with circle is closed – because it is finite. Therefore we may rephrase it such
that the convolution of cubic in Weierstrass form with a circle is generically
irreducible. This observation can be generalized. Our proof is motivated by the
proof of an analogous result on conchoids of algebraic curves, cf. Albano and
Roggero (2010), where one of Bertini’s theorems was used, see e.g. Lazarsfeld
(2004, Theorem 3.3.1, p. 207).

Theorem 3.50. (Bertini’s theorem for generic linear sections) Let X be an

irreducible variety and f : X → PrC a morphism. Fix an integer d < dim cl f (X ). If

L ⊂ P`C is a generic (r − d)-plane, then f−1(L) is irreducible.

Theorem 3.51. For generic hypersurfaces V ,W ⊂ Cn the convolution V ? W is irre-

ducible.

Proof. Since V ⊂ Cn is generic we may assume w.l.o.g that the dual hy-
persurface V∨ ⊂ PnC is irreducible and it does not pass through the point
s = (0 : · · · : 0 : 1). Then, following the notation introduced in Subsection 3.1.3,
let ν : PnC → Pn−1C be the projection onto the first n coordinates. Consider the
set

I∨
V = cl

(
V∨ ×Pn−1C

Pn
C\{s}

)
(3.74)

and let us denote by π1 : I∨
V → V∨ and π2 : I∨

V → PnC two natural projections.
If we look at the fibres of projection π2, we find out that they are finite – more
precisely ]{π−1

2 (p)} = κV for a generic p. Thus π2 is dominant, finite mapping
and we arrive at dim I∨

V = dim PnC = n. The fibres of π1 are not finite. Any
point v ∈ V∨ can be written in the form v = (n1 : · · · : nn : 1). Then the fibre
π−1

1 (v) is the line parameterized by

α(n1 : · · · : nn : 0) + β(0 : · · · : 0 : 1), (3.75)
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where not both α, β ∈ C equal to zero, and thus the fibres are irreducible. There-
fore using the irreducibility of V∨ we deduce that I∨

V must be irreducible, too.

I∨
V may be seen as a kind of a dual incidence variety with the unknown hyper-

surface W∨. Indeed, comparing (3.74) with (3.41) it is easy to see that

I∨(V∨,W∨) = π−1
2 (W∨), (3.76)

for a hypersurface W∨. Since V ?W is irreducible if and only if (V ?W)∨ is, we
deduce from (3.76) and Lemma 3.23 that the irreducibility of π−1

2 (W∨) implies
the irreducibility of V ? W . (This is because the image of an irreducible variety
under a rational mapping cannot be reducible.)

If m stays for the degree of W∨, then we denote by φm : PnC → P`C the m-tuple
Veronesse embedding. Now for a hypersurface W∨ of degree m, the image of
π−1

2 (W∨) under
φm ◦ π2 : I∨

V → P`
C (3.77)

is the section of φm ◦ π2(I∨
V ) by some (r − 1)-plane L. Since 1 < 2 ≤

dim cl
(
φm ◦ π2(I∨

V )
)

we can use Theorem 3.50 to obtain that π−1
2 (W∨) is gener-

ically irreducible. This completes the proof.

To conclude this subsection we establish the relation between convolution de-
grees, indices of components and coherent mappings.

Lemma 3.52. Let ξU ,V : U → V be a coherent mapping. Then deg ξU ,V = κU/κV .

Proof. Let H ⊂ Cn be a generic (n − 1)-space. Then the preimage of VH under
ξU ,V is the set UH. But ]{VH} = κV , ]{UH} = κU , and hence the degree of ξU ,V
has to be κU/κV .

Lemma 3.53. There exists a correspondence between coherent mappings ξV ,W :
V → W and components X ⊂ V ? W such that iWX = 1.

Proof. For a coherent mapping ξV ,W , define φ : v 7→ (v, ξV ,W (v)). Obviously
the closure of the image of V under φ is a component of I(V ,W), say Y . Then
X = σ(Y) is the component of the convolution whose index with respect to V
is equal to one.

Contrary if X ⊂ V ? W is a component such that iVX , then the projection
πV |σ−1(X ) from incidence variety is birational and thus there exists its inverse.
Then, by the definition of incidence variety, it is obvious that the composed
mapping πW ◦ (πV |σ−1(X ))

−1 : V → W is coherent.

Despite Theorem 3.51, the previous lemma immediately implies that for almost
every hypersurface there exists another hypersurface such that their convolution
is reducible.
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Corollary 3.54. If κV > 1 then V ? V is reducible.

Proof. The identity mapping ξV ,V : V → V is coherent and thus by the previous
lemma there exists a component X of index one. On the other hand if κV > 1
then so is the sum of indices of the component and V ?V has to be reducible.

3.2.3 Convolutions containing special and degenerated com-
ponents

Although we are mainly interested in simple components (as for them the map-
ping σ is birational), at least a short analysis of special and degenerated com-
ponents is necessary to have a better insight into the properties of convolution
hypersurfaces.

The degenerated and special components of offsets to algebraic curves were
introduced and studied in Sendra and Sendra (2000). In particular it was shown
that X is always a component of Oδ(Oδ(X )) and the conditions under which
X is degenerated or special component of an offset to Oδ(X ) were identified.
Moreover it was proved that all such components arise in this way.

If X is a degenerated component then by Corollary 3.25 dimX < n − 1. In this
case we understand under its offset Oδ(X ) just the convolution with a sphere,
i.e., X ? Sn−1

δ . It is not hard to see that this is an irreducible hypersurface. For
example in the surface case, it is a sphere or a pipe surface in dependence on
the dimension of X , cf. Fig 3.2.

Figure 3.2: Degenerated components of a convolution with sphere, i.e., offset.
Left: A component of the offset to a sphere degenerates to a point. Right: A com-
ponent of an offset to a pipe surface degenerates to its spine curve.

The extension of the results of Sendra and Sendra (2000) for convolutions is
straightforward except for one difference. If V is a more complicated hyper-
surface then the sphere and X is a variety of greater codimension, then the
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convolution X ? V need not to be an irreducible hypersurface, as the following
example shows.

Example 3.55. Let V ⊂ C3 be a torus given by

f (x, y, z) = (x2 + y2 + z2 + R2 − r2)2 − 4R2(x2 + y2) = 0 (3.78)

and X be a curve lying in the plane z = 0. If p ∈ XReg , then the tangent line
TpX is determined by some vector a = (a1, a2, 0). The set of points on the torus
V coherent with p is given as the solution of the system f = 0 and a · ∇ f = 0
After expressing the second equation

4(a1x + a2y)(x2 + y2 + z2 − R2 − r2), (3.79)

we figure out that the solution consists of four components. The first two are
circles C1, C2 obtained as the intersection of the torus with the hyperplane
a1x + a2y = 0, while the remaining two components are circles D1 and D2 in
the intersections of V with hyperplanes z = ±r and as such they do not depend
on the vector a, cf. Fig. 3.3.

Figure 3.3: The points on the torus which tangent planes contain the fixed vector
(a1, a2, 0). The circles C1, C2 are colored by cyan, while the intersection of V with
the planes z = ±r are in magenta (there is another magenta circle on the bottom
of the torus).

Thus the planes z = ±r are obviously two components of the X ? V , as they
are obtained by sweeping D1 and D2 along the curve X . Moreover, under some
conditions on X , it may be shown that the rest of the convolution has two com-
ponents (roughly speaking these correspond to the two circles Ci).
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The components z = ±r from the previous example are somehow specific for
convolutions in higher codimensions. Let V be a hypersurface and X a variety.
If it happens that the set

VX := {v ∈ V | ∀x ∈ XReg : (v,V) ∼? (x,X )} (3.80)

is nonempty then the set VX + X = {v + x} for all v ∈ VX and x ∈ X is a
component of V ? X . Let us call such a component non-ordinary. Obviously
if X was a hypersurface, then the convolution cannot have a such a kind of
component.

Definition 3.56. Let X ⊂ Cn be an arbitrary set. Then we denote by X− the set
centrally symmetric with X, i.e.,

X− := {x ∈ C
n | −x ∈ X}. (3.81)

Now we are ready to prove the analogy of the statement that a variety is a
component of the δ-offset to its δ-offset.

Lemma 3.57. If U ⊂ V ?W is not a non-ordinary component then W ⊂ U ? V− is an

ordinary component, too.

Proof. A generic point p ∈ U can be written in the form v + w for coherent points
v ∈ V , w ∈ W . Contrary, under the assumption that U is not non-ordinary, for
generic w ∈ W there exists a coherent v ∈ V such that v + w ∈ U .

Now, let us start with a generic point w ∈ W . By the above consideration
we may find u = v + w ∈ U . Invoking Lemma 3.7, we arrive at (u,U ) ∼?

(v,V). It follows that u is also coherent to −v ∈ V−, because TvV = T−vV−.
Hence w = u + (−v) ∈ U ? V− and it follows immediately that W is not non-
ordinary.

Now, we are ready to formulate the conditions under which a component of
convolution is degenerated or special.

Theorem 3.58. Let V and W be two hypersurfaces. Then V ?W contains a degenerated

component X if and only if W ⊂ X ? V− is not non-ordinary.

Proof. It is an immediate consequence of the preceding lemma.

Theorem 3.59. Let V , W ⊂ Cn be algebraic hypersurfaces. Then X ⊂ V ? W is

k-special if and only if V ⊂ X ? W− and iXV = k.

43



Chapter 3. Algebraic analysis

Proof. To prove the theorem, we have to show that X is k-special if and only if
the degree of the projection πX |U , cf. the following diagram, is k.

W− π−1
1 (V) = U ⊂ I(X ,W−)

V ⊂ X ? W−

X...........................................................................................................................
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σ

.................................................................................................................................................

.....
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.

πX

(3.82)

The component X is k-special if and only if for generic x ∈ X it holds x = vi + wi

for {(v1, wi)}k
i=1 ⊂ I(V ,W). Since (x,X ) ∼? (wi,W), by Lemma 3.7, we can

write equivalently (x,−wi) ∈ I(X ,W−) and moreover all these points lies on
σ−1(V) as σ(x,−wi) = vi ∈ V . The generic choice of x implies that the degree
deg πX is equal to the ]{π−1

X (x)} = ]{(x,−wi)}k
i=1 = k.

To conclude the part devoted to special and degenerated component, we prove
that the convolution cannot consists of special componets only. Let us note that
analogical statement does not hold for degenerated components. For example if
V is a hypersurface with κV = 1 then V ? V− is irreducible by Theorem 3.46 and
thus Theorem 3.58 says that its only component is degenerate.

Theorem 3.60. For any two hypersurfaces V ,W , the convolution V ? W has at least

one non-special component.

Proof. Let be given a generic n ∈ Cn\{o}. Then there exist κV distinct points
on V∨ with coordinates (n : h1), . . . , (n : hκV ) for some hi ∈ C and similarly on
W∨ lie κW distinct points (n : g1), . . . , (n : gκW ). From the dual interpretation of
convolution we see that

{(n : hi + gj)}κV ,κW
i,j=1 (3.83)

are points on (V ? W)∨. Moreover V ? W has only special components if and
only if for each i, j there exist i′ 6= i and j′ 6= j such that hi + gj = hi′ + gj′ . To
see that this is not possible, we may w.l.o.g. assume that hi’s are ordered such
that <(h1) ≥ · · · ≥ <(hκV ) and analogously <(g1) ≥ · · · ≥ <g(κW ), where <(a)
stands for the real part of complex number a. If <(h1) > <(h2) and <(g1) >

<(g2) we arrive at <(h1 + g1) > <(hi + gj) for all i, j 6= 1 and hence h1 + g1 6=
hi + gj. In the case when the inequalities are not strict we may choose another
basis of C (considered as two-dimensional vector space R2) to ensure this.
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Hypersurfaces of low convolution

degree

We begin with the study of hypersurfaces of convolution degree one.

Despite showing that they are rational, we will identify them with the

well known class of LN hypersurfaces. Their properties with respect

to convolutions are listed and the decomposition of LN curves into the

simple ones is shown. We conclude by a brief review of the methods of

approximations of convolutions with the help of LN curves.

The second part is devoted to the study of hypersurfaces of convolution

degree two. After summarizing their properties with respect to con-

volution, the interesting class – the so-called QN hypersurfaces will

be identified. Afterwards the detailed analysis of convolutions with

QN hypersurfaces is accomplished and for the curve case the genus

formula is presented. We conclude by providing a decomposition of

QN curves into simple ones.

4.1 Hypersurfaces of convolution degree one

Clearly, the most simple hypersurfaces with respect to the operation of convo-
lution are the hypersurfaces with convolution degree one. In this section we
specialize the general results from the previous chapter to provide a full alge-
braic analysis of corresponding convolution hypersurfaces with any arbitrary
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hypersurface (convolution degree, number and types of components). These
results for the curve case can be found in Vršek and Lávička (2010a).

Moreover we show that all hypersurfaces with convolution degree one are ratio-
nal and in addition they coincide exactly with the well-known class of LN hy-
persurfaces. This observation relates our work with the results e.g. from Jüttler
(1998); Sampoli et al. (2006); Lávička and Bastl (2007).

We conclude this section by providing a decomposition of curves with convolu-
tion degree one into the convolution of a finite number of suitable fundamental
curves and by a short discussion of methods used in the approximation of con-
volutions.

4.1.1 Introduction and elementary properties

Assumption 4.1. Throughout this section we will assume that V has the convo-
lution degree one.

Example 4.2. By a hyperparaboloid, we mean a variety in Cn given by the equa-
tion

Pn−1 : f (x) = x2
1 + · · · + x2

n−1 − xn = 0. (4.1)

Let H ⊂ Cn be a generic (n − 1)-space identified with a · x = 0 for some a =
(a1, . . . , an). Then, by Definition 3.30, κPn−1 equals ]{Pn−1

H }. A point p is in Pn−1
H

if and only if it is a solution of the equation

∇ f (x) = (2x1, . . . , 2xn−1,−1) = λ(a1, . . . , an). (4.2)

where λ is assumed to be non-zero. Obviously for an 6= 0 we obtain exactly one
solution while for an = 0 there is no solution. Since an 6= 0 is Zariski open subset
of the set of all vectors a, there is a one solution for a generic a ∈ Cn and hence
the convolution degree of Pn−1 is equal to one.

In what follows, we would like to show that hypersurfaces with convolution de-
gree one are always rational, and moreover they possess the well known LN pa-
rameterizations. Let us start with the following lemma.

Lemma 4.3. Let V be a hypersurface with κV = 1 and U an arbitrary hypersurface.

Then there exists a coherent mapping ξU ,V : U → V .

Proof. Consider the Gauss mappings γV : V → Gr0(n − 1, n) and γU : U →
Gr0(n− 1, n). Since κV = 1, we see by Proposition 3.31 that deg γV = 1 and hence
it is birational. Thus we obtain the rational mapping ξU ,V = γ−1

V ◦ γU : U → V .
From the construction of this mapping it follows that ξU ,V (u) = {v ∈ V | TvV =
TuU}, which means that points u ∈ U and ξU ,V (u) ∈ V are coherent and so is
the mapping.
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Corollary 4.4. An arbitrary hypersurface with convolution degree equal to one is ratio-

nal.

Proof. Let V be such a hypersurface. Then by the previous lemma there exists a
coherent mapping ξPn−1,V : Pn−1 → V . Since for the hyperparaboloid Pn−1 it
holds κPn−1 = 1 too, the coherent mapping is birational by Lemma 3.52. More-
over, Pn−1 is rational hypersurface, as it admits a proper parameterization

p(s) = (s1, . . . , sn−1, s2
1 + · · · s2

n−1), (4.3)

and thus V is rational, too.

Consider the normal vector field associated to the parameterization (4.3) from
the previous proof. It can be expressed, with the help of (3.17), as

np(s) = det




e1 e2 . . . en−1 en

1 0 . . . 0 2s1
0 1 . . . 0 2s2
...

... . . . ...
...

0 0 . . . 1 2sn−1




= (−1)n
(
2s1, . . . , 2sn−1,−1

)
. (4.4)

Therefore hyperparaboloids admit parameterizations with a remarkable normal
vector field – expressed by linear functions. Curves and surfaces with this prop-
erty was deeply studied in recent years because of their nice geometric proper-
ties. The original definition is due to Jüttler (1998).

Definition 4.5. Let V be a hypersurface and v(s) : Cn−1 → V its parameteriza-
tion. We say that v(s) has LN property (where LN stands for linear normals) or
it is an LN parameterization if

nv(s) = p0 +
n−1

∑
i=1

pisi, (4.5)

where p0, . . . pn−1 are linearly independent vectors in Cn. A hypersurface is
called an LN hypersurface if it admits an LN parameterization.

Remark 4.6. In some papers, the vectors p0, . . . pn−1 are not assumed to be lin-
early independent. Although such a hypersurface admits a linear normal vector
field, its Gauss image is degenerated, and hence we omit them from our further
considerations.

Obviously any LN hypersurface has its convolution degree one. Indeed a generic
a ∈ Cn is not a linear combination of vectors pi, i = 1, . . . , n − 1 and thus the
system of linear equations λa = nv(s) has the unique solution.
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Contrariwise, if V is a curve and (n1(s), n2(s)) the normal vector field as-
sociated to a proper parameterization, then by Remark 3.36 it holds κV =
max{deg n1(s), deg n2(s)} = 1. Thus, each curve with the convolution degree
one is immediately an LN curve.

The situation becomes slightly more complicated whenever one deals with vari-
eties of dimension greater then one. To illustrate this, consider a surface Q ⊂ C3

parameterized by
q(s) = (s2

1, s2
2, s2

1 + s2
2). (4.6)

The computation reveals that nq(s) = (−s1,−s2, 2s1s2) and thus even though
κQ = 1 and q(s) is proper, the normal vector field is quadratic. On the other
hand it was shown in Peternell and Odehnal (2008) that after reparameterization
t1 = −1/2s1, and t2 = −1/2s2 one obtain a normal field (t1, t2, 1).

This observation can be generalized for an arbitrary hypersurface of convolution
degree one. Although the proof which we give here is not the simplest possi-
ble one, its advantage is, that it is constructive – i.e., it gives the method how
to reparameterize hypersurfaces with convolution degree one to obtain their
LN parameterizations.

Theorem 4.7. V is an LN hypersurface if and only if κV = 1.

Proof. As mentioned above the if part is obvious. Contrary, let V be an LN
hypersurface, then it is by Corollary 4.4 rational, and thus there exists a proper
parameterization u(t) : Cn−1 → V . Let nu(t) be the associated normal vector
field and let us denote h(t) = n(t) · u(t), i.e., V is an envelope of the family of
hyperplanes parameterized by nu(t) · x = h(t). Now, fix linearly independent
vectors p0, . . . pn−1 and set

nv(s) = p0 +
n−1

∑
i=1

pisi. (4.7)

Since u(t) is the proper parameterization of LN hypersurface, the equation

nu(t) = λnv(s0) (4.8)

has exactly one solution for a generic s0 ∈ Cn−1, and thus we may express t

depending rationally on s, such that nu(t(s)) = λ(s) nv(s). Then the family of
hyperplanes

λ(s) nv(s) · x = λ(s) h(t(s)) (4.9)

describes V as their envelope. Applying (2.12) on the system (4.9) we arrive at
the parameterization v(s) of the hypersurface V with the associated normal field
nv(s).
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It is seen from the above proof that a hyperplane parameterized by the normal
vector field nv(s) can by chosen almost arbitrarily – however it must not pass
through the origin. Hence, any LN surface admits a parameterization v(s) such
that

nv(s) = (s1, . . . , sn−1, 1). (4.10)

It follows that a parameterization of an arbitrary LN hypersurface V can be ob-
tained just by choosing h ∈ C(s) and the subsequent computing of the envelope
of the system nv(s) · x = h(s). This leads to the parameterizations of the form
(see Sampoli et al. (2006) for surfaces)

v(s) =

(
∂ h

∂ s1
, . . .

∂ h

∂ sn−1
,

n−1

∑
i=1

∂ h

∂ si
si − h

)
. (4.11)

Let us return back to parameterization (4.6). The quadratic polynomial param-
eterizations are well explored, see e.g. Jörg and Reif (1998). Recently, these
surfaces were related with convolutions in Lávička and Bastl (2007), where their
LN property was discovered. The proof relies on the computation of convo-
lution ideal for each of affine classes of quadratic parameterizations. Another
proof based on the Cremona transformations was later published in Peternell
and Odehnal (2008). In spite of the effort devoted to this problem, we venture
to present another proof here. Moreover our proof, in addition to being simple,
does not depend on the dimension of the parameterized hypersurface.

Corollary 4.8. Let q(s) : Cn−1 → Q be a quadratic polynomial parameterization of

a hypersurface with non-degenerated Gauss image. Then Q is an LN hypersurface.

Proof. Let H : a · x = 0 be a generic (n − 1)-space, then κQ = ]{QH}. Tangent
hyperplanes to Q are generated by vectors ∂ q/∂ si (i = 1, . . . , n − 1) and thus

]{QH} =
]{solutions of the system ∂ q

∂ si
· a = 0}

deg q
, (4.12)

where deg q is the degree of a mapping in the usual sense. Since q is given
by quadratic polynomials, the equations in the numerator of (4.12) are linear
in variables s1, . . . sn−1. Now, using that Q has non-degenerated Gauss image,
]{QH} is non-zero finite integer and we conclude that the numerator of (4.12)
must be equal to one. This immediately implies κQ = 1 and by Theorem 4.7 the
hypersurface Q fulfills the LN property.

The interest in LN hypersurfaces is not caused by its rationality and quite sim-
ple parameterizations only. It is e.g. well known that a convolution of LN
curve/surface with any rational curve/surface is again rational. In the following
theorem we summarize important properties of convolutions with LN hypersur-
faces which follow from the general results in Chapter 3.
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Theorem 4.9. Let V be an LN hypersurface and W an arbitrary hypersurface. Then

(i) V ? W is irreducible,

(ii) V ? W cannot be special,

(iii) if V ? W is not degenerated then it is birationally equivalent to W .

Proof. (i) By Theorem 3.46 , the number of irreducible components of V ? W is
less or equal to GCD (1, κW ) = 1.

(ii) If V ? W is special, then by Theorem 3.59 it has to be a component of (V ?

W) ? V− whose index w.r.t. to V ? W is strictly greater then one. However this
index is less or equal to κV = 1 by definition.

(iii) If V ? W is non-degenerated, then by (ii) it is simple, and hence σ :
I(V ,W) → V ? W is birational. Moreover deg πW = κV = 1 and the com-
position of these mappings is the desired birational mapping.

The result on rationality of convolutions with LN hypersurface follows imme-
diately from the last item in the previous theorem. More precisely, it says that
for (uni)rational W the convolution V ?W is again (uni)rational, under the con-
dition that the convolution does not degenerate. If V ? W is degenerated then
one can still construct a rational mapping W → V ? W (of course it is far away
from a birational one) which pushes forward a parameterization of W to the
dominant rational mapping Cn−1 → V ? W .

The parameterization of V ? W can be found by methods described in Subsec-
tion 3.1.1, i.e., for given v(s) : Cn−1 → V and w(t) : Cn−1 → W the parametriza-
tion (ϕ(u), ψ(u)) of some component of P(v, w) leads to the parameterization
of V ? W in the form v(ϕ(u)) + w(ψ(u)). The great advantage of LN hyper-
surfaces is that the tough computation involved in this method becomes very
simple whenever κV = 1. This was shown in Sampoli et al. (2006) and Lávička
and Bastl (2007) for surfaces. Let us reformulate this result for hypersurfaces
here.

Let v(s) and w(t) be arbitrary parameterizations of V and W , respectively. If
v(s) happens not to be LN then apply Theorem 4.7 to obtain LN parameteriza-
tion such that

nv(s) = p0 +
n−1

∑
i=1

pisi, (4.13)

for p0, . . . , pn linearly independent vectors. Then the condition on v(s) and w(t)
to be coherent is stated as

p0 +
n−1

∑
i=1

pisi = λnw(t), (4.14)
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which is a system of linear equations in variables s1, . . . , sn−1, λ with coefficients
in C(t). The matrix (p1, . . . , pn−1, nw(t)) of this system is generically regular. To
see this, realize that rank (p1, . . . , pn−1) = n − 1 and thus the matrix is singular
if and only if nw(t) lies in the subspace generated by vectors pi. However this
may happen only for almost none parameter t, otherwise the hypersurface W
would have degenerated Gauss image. Finally, by Cramer’s rule, the reparame-
terization can be written in the form

si =
det (p1, . . . , pi−1, p0, pi+1, . . . , pn−1, nw(t))

det (p1, . . . , pn−1, nw(t))
. (4.15)

Let us conclude by an example, we have promised in the preliminary section,
showing that the boundary of Minkowski sum need not to be necessarily a sub-
set of the convolution of the associated boundaries.

Example 4.10. Let A be e.g. a domain in plane R2 bounded by the real part of
an LN curve. For an arbitrary p ∈ R2 we set B := {−x + p | x ∈ A}. Then
∂ B = (∂ A)− ? {p} and by Theorem 4.9 it holds ∂ A ? ∂ B = p. However the
boundary of Minkowski sum A ⊕ B is a curve in R2, see Fig. 4.1. Hence

∂ (A ⊕ B) 6⊆ ∂ A ? ∂ B. (4.16)

Figure 4.1: Minkowski sum of domains bounded by deltoids (left) and degener-
acy of convolution of these LN curves (right).
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4.1.2 Decomposition of LN curves

By Theorem 3.34 the dual equation of an arbitrary LN hypersurface V ⊂ Cn has
the form

fm−1(n)h + fm(n) = 0, (4.17)

where fm−1 and fm are homogeneous polynomials of degrees m − 1 and m, re-
spectively. Thus there is a close relation between LN hypersurfaces and rational
functions in n − 1 variables. To see this write h as − fm/ fm−1 and then deho-
mogenize polynomials fi e.g. by setting x1 = ni/nn for i = 1, . . . , n − 1 (see also
Gravesen et al. (2008).

If W is another LN hypersurface, represented dually as gn−1(n)h + gn(n) = 0,
then it follows from Subsection 3.1.3 that the dual equation of convolution V ?W
can be expressed as

(
fm−1(n)gn−1(n)

)
h +

(
fm(n)gn−1(n) + fm−1(n)gn(n)

)
= 0. (4.18)

In this way the convolution of two LN hypersurfaces corresponds to the sum of
two rational functions. Moreover rational functions φ and its non-zero multiple
represent the same dual hypersurface and thus writing φ = ∑

k
i=1 αiφi is equiva-

lent to writing the LN hypersurface corresponding to φ as the convolution of k

LN hypersurfaces each of them corresponding to φi. Specially in the curve case,
it is possible to identify functions φi for each φ, such that the resulting LN curves
are very simple.

Theorem 4.11. Any LN curve can be obtained as the convolution of a finite number of

affine images of the canonical curves xk
1 − xk+1

2 = 0.

Proof. Let the dual equation of an LN curve be written in the form

F∨(n, h) = fm−1(n)h + fm(n), (4.19)

where n = (n1, n2). Write

h = − fm(n)

fm−1(n)
(4.20)

and assume for the sake of simplicity, we assume that n1 divides neither fm−1(n),
nor fm(n). Thus after dehomogenization n = n2/n1 we may write the decom-
position of (4.20) into the partial fractions

h = h0 + · · · + h`, where hi =
αin

k+1
1

(βin1 + γin2)k
(4.21)

for some αi, βi, γi ∈ C and k ∈ N. Then the transformation n′
1 = αin1, n′

2 =
βin1 + γin2 and h′ = h induces an affine transformation which maps a curve
described by hi to the desired canonical form.
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Figure 4.2: Fundamental LN curves from Remark 4.12; k = 2, i = 0, 1, 2 (the
black dots denote real singularities).

Remark 4.12. Let us emphasize that despite starting with a real LN curve, it
may happen that some of the factors (4.21) possess imaginary coefficients and
hence the induced transformation does, too. So, if we prefer to work over reals
we have to introduce new real fundamental curves corresponding to irreducible
factors. In particular, these LN curves are given by the dual equations

(n2
1 + n2

2)
kh − ni

1n2k+1−i
2 = 0, (4.22)

where k ≥ 1 and 0 ≤ i ≤ k. These fundamental LN curves for k = 2 are
shown in Fig. 4.2; the first curve is the well-known hypocycloid called deltoid
(or tricuspoid).

4.1.3 Approximation with LN curves

Despite being far away from the topic of the thesis, it is apt to make a short
note on approximations of convolutions at this moment. As observed earlier,
the rationality of V and W does not guarantee the rationality of V ? W . Even
worse, it seems that the rationality is rather rarely preserved. Thus one needs
to apply some approximation technique. Let us restrict ourselves to the best
explored case – curves.

The approximate methods for the resulting convolution V ? W are often used
since they provide a universal solution of many problems appearing in technical
practice – but usually at the expense of great computational effort because any
small modification of an input curve leads to a new approximation of the gained
convolution curve. Therefore, it is worthwhile to investigate also techniques
when not the convolution curve but one or both input rational curve(s) is/are
suitably approximated.
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If only one input curve is to be approximated by va(s) : C → V a, then for
w(t) : C → W the approximation of convolution is parameterized by

va(s(u)) + w(t(u)) : C → V ?a W . (4.23)

Of course, a natural question is how to approximate a given curve and which
primitives are for this procedure suitable. The LN curves analyzed in this section
seems to serve as acceptable primitives, as their convolution with an arbitrary
rational curve is rational and thus (4.23) makes sense. Let us recall that approx-
imating convolutions with the help of LN curves has its history – a particular
example is a quadratic curve approximation (QAC) method designed and stud-
ied in Lee et al. (1998). Moreover, as shown in Lávička and Bastl (2007), there
exist one affine class of planar LN cubics and thus an analogous approach may
be formulated also for a cubic Bézier curve with linear normals.

A simultaneous approximation of both curves is beneficial especially when a
polynomial description of convolution curves is demanded. After a construction
of the so-called compatible subdivision of given curves (producing segments on
both curves with one-to-one correspondence between coherent points, cf. Lee
et al. (1998)), the approximation by a suitable arcs is applied. The advantage
of this approach is that the class of primitives can be significantly extended.
For instance by involving curves of convolution degree two studied in the next
section (e.g. we can also use other conic sections then parabola) whereas the
computational effort is still feasible.

4.2 Hypersurfaces with convolution degree two

Despite a great application potential of LN hypersurfaces, the most of hyper-
surfaces do not belong to this class. For instance a majority of regular quadrics
have convolution degree two. Fortunately the complexity of convolutions with
hypersurfaces with convolution degree two is not so large.

In this section, we provide an algebraic analysis of convolutions of these hyper-
surfaces with an arbitrary hypersurface. Further we define the so-called QN hy-
persurfaces and prove some results on the rationality of convolutions with them
(for the curve case see Vršek and Lávička (2010a)). We conclude this section with
the decomposition of QN curves into the convolution of suitable fundamental
curves.
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4.2.1 Elementary properties of hypersurfaces with convolu-
tion degree two

Assumption 4.13. Throughout this section, we consider by V a hypersurface
with convolution degree two.

In contrast to LN hypersurfaces, the rationality of hypersurfaces of convolution
degree two is not guaranteed. By Theorem 3.34, the dual equation of such a
hypersurface is of the form

F∨(n, h) = fm−2(n)h2 + fm−1(n)h + fm(n). (4.24)

If we consider an affine part of V∨ given by nn 6= 0, then we see that V is the
envelope of a system of the hyperplanes

n−1

∑
i=1

sixi + xn = −
fm−1(s) +

√
f 2
m−1(s) − 4 fm−2(s) fm(s)

2 fm−2(s)
, (4.25)

where f j(s) = f j(s1, . . . , sn−1, 1). Therefore the parameterization of V obtained
from (4.25) with use of (2.12) is not rational in general. However, it is param-
eterizable in terms of s and

√
P(s), where P(s) is a polynomial in s. Such a

hypersurface is then called square-root parameterizable. In particular, it is known
that the only curves which admits square-root parameterization are rational, el-
liptic or hyper-elliptic. Hence we obtain

Proposition 4.14. Any curve with convolution degree 2 is rational, elliptic, or hyper-

elliptic.

Owning to the greater convolution degree, the resulting convolution hypersur-
faces are generally more complicated than the convolutions with LN hypersur-
faces. Nevertheless, the properties can be still summarized relatively simply.

Theorem 4.15. For an arbitrary hypersurface W it holds:

(i) V ? W has at most two components.

(ii) If X is special component of V ? W , then X is 2-special.

(iii) If V ?W is reducible, then each simple component is birationally equivalent to W .

Proof. (i) By Theorem 3.46 the number of components is less or equal to
GCD(2, κW ) ≤ 2.

(ii) If X ⊂ V ?W then by Theorem 3.59 we have W = X ? V−. Therefore W has
index 2 w.r.t. X and by the same theorem X is 2-special.

(iii) It is an immediate consequence of Corollary 3.47.
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Remark 4.16. Since for two coherent points (v,V) ∼? (w,W) the point v + w ∈
V ? W is generically coherent to both points v and w, cf. Lemma 3.7, we can
easily compute the convolution degree of the components of V ? W . In partic-
ular, if V ? W is irreducible we have κV?W = 2κW and in the case of reducible
convolution we arrive at κX = κW for the simple component X and κX = 1

2κW
for the 2-special component X .

A main disadvantage of hypersurfaces of the convolution degree two, despite
being (uni)rational, is that the convolution V ? W is not (uni)rational in general.
However from Theorem 4.15-(iii) it follows that each simple component of V ?W
is (uni)rational, whenever W is and V ?W posses two components. On the other
hand, Theorem 3.51 implies that V ? W tends to be irreducible. Thus it would
be worth having some condition on input hypersurfaces whose ensure the re-
ducibility of resulting convolution. For instance, we see from Corollary 3.48,
that the convolution can be reducible only if κW is even. However this necessary
condition is far away of being sufficient.

Lemma 4.17. The following statements are equivalent:

1. There exists at least one coherent mapping ξW ,V : W → V .

2. There exist exactly two coherent mappings ξ±W ,V : W → V .

3. V ? W is reducible.

Proof. If V ? W is reducible then it has by (i) two components – say X and Y . By
(3.69) we have iWX + iWY = κV = 2. Hence the indices of both components w.r.t.
W equal one. The proof then follows from the correspondence between coherent
mappings and components of index one established in Lemma 3.53.

It is not easy to decide in general whether there exists a coherent mapping be-
tween two varieties or not. The partial answer will be given in the next subsec-
tion. In particular, we will identify an interesting class of hypersurfaces with
convolution degree two. For any member of this class and any rational hyper-
surface we will, besides other, give an effective method to decide whether there
exist coherent mappings between them.

4.2.2 QN hypersurfaces and their convolutions

The main aim of this subsection is to identify a direct analogy to LN parame-
terizations for hypersurfaces V of the convolution degree two. Afterwards we
will analyze the associated conditions on the rational hypersurface W to have
reducible and/or rational convolution V ? W .
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The condition on v(s) to be LN can be stated in two ways, either it is assumed
that the normal vector field nv(s) has the form (4.5), or equivalently it is a proper
polynomial parameterization of a hyperplane not passing through the origin.

To generalize the first formulation, one could assume that the coordinates of nv

are quadratic polynomials. This does not lead to well defined generalization
because such a normal vector field can belong to a hypersurface of the higher
convolution degree, as one can easily see. Thus we use the second formulation
to define the natural generalization of the LN property.

Definition 4.18. A parametrization v(s) of a given hypersurface V is said to have
a QN property (where QN stands for quadratic normals), or v(s) is a QN parame-
terization if nv(s) is a proper parameterization of some quadric not passing
through the origin. The hypersurface V admitting such a parameterization is
then called a QN hypersurface.

Lemma 4.19. Each QN hypersurface has the convolution degree two. On contrary, if

v(s) is a proper parameterization of V (κV = 2) such that nv(s) is proper and without

base points,1 then v(s) is a QN parameterization.

Proof. If v(s) is a QN parameterization and a ∈ Cn a generic vector, then κV can
be identified with the integer

]{s ∈ C
n−1 | nv(s) = λa, and λ 6= 0}, (4.26)

Let us denote by A the line parameterized by λa and by Qv the quadric with
the parameterization nv(s). Since Qv does not pass through the origin, (4.26)
can be rewritten as

κV = ]{Qv ∩A}, (4.27)

Since a generic line L will intersect Qv transversally, we arrive at κV =
degQv · degL =2.

The contrary statement follows from the same arguments.

Let A ∈ GLn(C) then the transformation v(s) 7→ A · v(s) induces the transfor-
mation on the corresponding normal vector fields by

nv(s) 7→ nA·v(s) = A−T · nv(s), (4.28)

where A−T stands for (A−1)T. For the sake of clarity, we will write A(X ) for
the set {A · x | x ∈ X}.

Using simultaneously this notation and (4.28), we can find a regular matrix A

such that A−T(Qv) is in a standard position. In particular, using the assumptions

1Under a base point we mean the point where all the coordinates of normal vector field vanish
simultaneously.
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that Qv does not pass through the origin and it is parameterizable by polyno-
mials (and hence irreducible), we deduce that the equation of A−T(Qv) can be
written in the form, cf. Berger (1987)

r

∑
i=1

x2
i + 2

r

∑
i=1

aixi − 2xn + b = 0, (4.29)

where b 6= 0 and 1 ≤ r < n.

Example 4.20. Consider a surface V parameterized by

v(s) =

(
s1(1 − s2

1
3

+ s2
2),−s2(1 − s2

1
3

+ s2
2),

1√
2
(s2

1 − s2
2)

)T

. (4.30)

This is a proper parameterization with the associated normal field given by

nv(s) =
(√

2s1,
√

2s2, s2
1 + s2

2 − 1
)T

. (4.31)

It is not hard to show that nv(s) is also proper and moreover it has no base point.
(If it has a base point, then it follows s1 = s2 = 0 from the first two coordinates.
However substituting into the third coordinate we get 02 + 02 − 1 6= 0). Direct
computation reveals that the variety parameterized by nv(s) is the paraboloid

Qv : x2
1 + x2

2 − 2x3 − 2 = 0. (4.32)

Therefore v(s) is a QN parameterization and κV = 2.

Remark 4.21. Let us emphasize that working over the field of real number –
as it is usual in CAGD, it is not always possible to find a matrix A ∈ GLn(R)
such that a transformed quadric has the form (4.29). However, it can be always
transformed into the form

p

∑
i=1

x2
i −

p+q

∑
i=p+1

x2
i + 2

p

∑
i=1

aixi − 2
p+q

∑
i=p+1

aixi − 2xn + b = 0, (4.33)

where again b 6= 0 and 1 ≤ p + q = r < n.

Now, for a later use (see the proof of Theorem 4.25) we will consider a polyno-
mial associated to (4.29), given by

−b
r

∑
i=1

x2
i +

(
r

∑
i=1

aixi − xn

)2

. (4.34)

This is a homogeneous polynomial of the degree two and thus it can be writ-
ten as xT · ∆r,n · x, where ∆r,n is a symmetric n × n matrix with the coefficients
depending on a1, . . . , ar and b.

58



Chapter 4. Hypersurfaces of low convolution degree

Definition 4.22. Let V be a QN hypersurface admitting a QN parameterization
v(s) and let nv(s) parameterizes a quadric Qv. If A ∈ GLn(C) such that QA·v
has the equation (4.29), then by a coherent form we mean

DV (x) = xT · (A−1 · ∆r,n · A−T) · x. (4.35)

Example 4.23. Let v(s) be a parameterization from Example 4.20. As we have
seen this is a QN parameterization and the quadric Qv is given by (4.32). Since it
is already in the standard form (4.29), we immediately deduce that the coherent
form is given by

DV (x) = 2x2
1 + 2x2

2 + x2
3. (4.36)

Let us recall that under the rank of quadratic form we understand the rank of
its matrix.

Lemma 4.24. Let DV (x) be the coherent form given by (4.35). Then its rank is equal to

r + 1.

Proof. Since (A−1 · ∆r,n · A−T) and ∆r,n are similar, they have the same rank.
Now, the computation of the rank of ∆r,n is only a technical application of Gauss
elimination method and it results to the rank ∆r,n = r + 1.

It is probably not obvious at this point what the coherent form is and why it
was chosen in the form (4.35). However its significance will be justified by the
following theorem.

Theorem 4.25. Let V be a QN hypersurface and W an arbitrary unirational hypersur-

face with a parameterization w(t). Then w(t) is V-coherent if and only if there exists

σ ∈ C[t] such that

DV (nw(t)) = σ2(t). (4.37)

Proof. The theorem will be proved in two steps. First let us assume that V admits
a QN parameterization v(s) such that nv(s) parameterizes a quadric Qv given
by (4.29). Since both v(s) and nv(s) are proper, we may assume (after a suitable
reparameterization) that

nv(s) =

(
s1 − a1, . . . , sr − ar, sr+1, . . . , sn−1,

1
2

(
r

∑
i=1

(s2
i − a2

i ) + b

))T

. (4.38)

The parameterization w(t) is by definition V-coherent if and only if there exists
a rational reparameterization φ(t) : Cn−1 → Cn−1 such that v(φ(t)) ∼? w(t).
Rewritten into the language of normals, this relation becomes

nv(φ(t)) = λ(t)nw(t). (4.39)
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Now we invoke the trick made by the authors of Lávička and Bastl (2007) (cf.
Subsection 3.1.1). They replaced the normal vector field nw(t) by a vector of
symbolic variables (ν1, . . . , νn). Afterwards the necessary and sufficient condi-
tion for the existence of rational reparameterization φ(t) could be extracted from
the Gröbner basis of the associated convolution ideal. This can be applied im-
mediately also to our problem. The Gröbner basis of the ideal

〈nv(s) − (ν1, . . . , νn), 1 − λw〉 (4.40)

w.r.t. lexicographic order w > s1 > · · · > sn−1 > λ is

g0 = bw +

(
r

∑
i=1

ν2
i

)
λ + 2

r

∑
i=1

aiνi − 2νn, (4.41)

gi = si − ai − λνi, i = 1, . . . , r (4.42)

gj = sj − λνj, j = r + 1, . . . , n − 1 (4.43)

gn =

(
r

∑
i=1

ν2
i

)
λ2 + 2

(
r

∑
i=1

aiνi − 2νn

)
λ + b. (4.44)

All these polynomials are linear in variables w, s1, . . . , sn,−1, λ except of the last
one, which is quadratic in λ. Expressing λ from gn yields the formula

λ = 2
νn − ∑

r
i=1 aiνi ±

√
−b ∑

r
i=1 ν2

i + (∑
r
i=1 aiνi − νn)

2

∑
r
i=1 ν2

i

. (4.45)

Comparing the polynomial under the square root with (4.34) we see that it is
nothing but a coherent form DV (ν1, . . . , νn). Thus substituting nw(t) back for
the (ν1, . . . , νn), we arrive at rational λ(t) (and therefore rational s = φ(t)) if and
only if DV (nw(t)) = σ2(t) for some rational σ(t).

Now, let V be a hypersurface with a QN parametrization v(s) such that
the quadric QA·v is in the form (4.29) for some A ∈ GLn(C). Obviously
A(V) ? A(W) = A(V ? W), and therefore w(t) is V-coherent if and only if
A · w(t) is A(V)-coherent. Writing the coherent form DA(V)(x) as xT · ∆r,n · x
we conclude that w(t) is V-coherent if and only if

DA(V)(nA·w) = nT
A·w · ∆r,n · nA·w =

(
A−T · nw

)T
· ∆r,n ·

(
A−T · nw

)
=

nw
T ·

(
A−1 · ∆r,n · A−T

)
· nw =

DV (nw) = σ2, (4.46)

which completes the proof.
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Remark 4.26. Let us recall, that conditions guaranteeing the rationality of the
convolution V ? W are called RC-conditions in Lávička and Bastl (2007). Thus,
DV (nw

T(t)) = σ2(t) is the RC condition of a QN hypersurface V .

Remark 4.27. If V is a QN curve, then the computation of coherent form becomes
considerably simpler. Let v(s) be a QN parameterization. Then

nv(s) = (µ1(s), µ2(s))T (4.47)

is a proper polynomial parameterization of a parabola. Therefore

µ1(s)y − µ2(s)x = 0 (4.48)

is a quadratic equation in variable s and coefficients in C[x, y]. It can be shown
that the coherent form is nothing but the discriminant of this equation.

Now we are ready to answer the question from the end of the previous subsec-
tion, i.e., we will provide a criterion enabling to decide whether there exists a
coherent mapping between QN hypersurface V and an arbitrary rational hyper-
surface W . Let us suppose that w(t) is a proper V-coherent parameterization of
W . Thus there exists v(t) : Cn−1 → V such that v(t) ∼? w(t). Then it is easy
to see that the mapping ξ : W → V defined by ξ = v ◦ w−1 is coherent. Con-
versely, if there exists a coherent mapping ξW ,V : W → V , then for an arbitrary
parametrization w(t) of W the ξW ,V ◦w is a parameterization of V coherent with
w. Thus w(t) is V-coherent. Hence combining with Theorem 4.25 we arrive at
the proposition.

Proposition 4.28. Let V be a QN hypersurface and W a rational hypersurface. Then

there exists a coherent mapping ξW ,V : W → V if and only if for some proper (and thus

for all) parameterization w(t) of W it holds DV (nw(t)) = σ2(t).

It turns out that QN hypersurfaces with the same coherent forms (up to mul-
tiplication by scalar) behaves similarly with respect to the operation of con-
volution. Let us denote by Q∆ the set of QN hypersurfaces V such that
DV (x) = α(xT · ∆ · x) for a symmetric n × n matrix ∆ and a nonzero number
α. Moreover the common coherent form will be often denoted by D∆(x). If
∆ is a regular matrix (it happens whenever r = n − 1, cf. Lemma 4.24), then
the following proposition reveals a simple representant of Q∆. As its proof has
a purely technical character, we omit it here.

Proposition 4.29. Let ∆ be regular. Then the quadric given by the equation

S∆ : xT · ∆−1 · x = 1 (4.49)

lies in Q∆.
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Example 4.30. Let T be the Tschirnhausen cubic given parameterically by

t(s) =
(

3(s2 − 3), s(s2 − 3)
)T

. (4.50)

Then µ1(s) = 6s, µ2(s) = 3(s2 − 1) and the coherent form is by Remark 4.27 the
discriminant of the quadratic equation 3(s2 − 3)x − s(s2 − 3)y = 0, i.e., 36(x2 +
y2). Since the multiplication by nonzero scalar does not play any role, we can
write DT (x) = xT · ∆ · xT, where ∆ is unit 2 × 2 matrix. Therefore ∆−1 = ∆ and
the set of QN curves containing the Tschirnhausen cubic can be represented by
the conic section with the equation x2 + y2 = 1, i.e., by the unit circle. In addition
the RC condition of Tschirnhausen cubic is exactly the well-known PH condition.

It follows from the definition of coherent form, that for two QN hypersur-
faces V ,W ⊂ Cn with the coherent forms of the same rank there exists some
A ∈ GLn(C) such that A(V) and W lie in the same set Q∆, i.e., GLn(C) acts
transitively on the set of all classes of QN hypersurfaces with equally ranked
forms.

Specially, all the QN curves can be transformed such that their coherent form has
the form x2

1 + x2
2 (or equivalently their RC condition is exactly PH condition). To

see this, use Lemma 4.24 to obtain that each QN curve has fully ranked coherent
form. However, let us emphasize that when working with real curves only, it
is not generally ensured that for a real curve V the curve A(V) is real, too. In
particular, any real QN curve can be transformed either to a real curve with
PH condition, or to a real curve with MPH condition (the class of MPH curves
is determined by the conic section x2 − y2 = 1, cf. Kosinka and Jüttler (2006,
2007); Moon (1999)).

As shown in Peternell and Pottmann (1998), a parameterized curve/surface ful-
fills the PH/PN property if and only if it can be represented dually as a rational
curve/surface on the so-called Blaschke cylinder B(n, h) : ∑

k
i n2

i = 1, where k

equals 2 or 3, respectively. It can be expected that an analogous condition will
be fulfilled for all classes of QN hypersurfaces, too.

Definition 4.31. Let us consider D∆(n) as a polynomial in C[n, h]. Then the
hypersurface

B∆ : D∆(n) − 1 = 0 (4.51)

is called a generalized Blaschke hypercylinder.

Corollary 4.32. If V ∈ Q∆ then there is a correspondence between V-coherent parame-

terizations and parameterizations of varieties of codimension one on B∆.

Proof. Let w(t) : Cn−1 → W be a V-coherent parameterization. Then by
Theorem 4.25 there exists σ ∈ C[t] such that D∆(nw(t)) = σ2(t). We set
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h(t) = −w(t) · nw(t). The image of the rational mapping

t 7→ 1
σ(t)

(
nw(t), h(t)

)T (4.52)

lies on B∆. Moreover, since W has non-degenerated Gauss image, its dimen-
sion is n − 1 and therefore it has codimension one on the generalized Blaschke
hypercylinder.

Conversely let (n(t), h(t))T be an arbitrary rational parameterization of a variety
of codimension one on B∆. Then, we can easily skip to the representation of
a hypersurface as the envelope of (n− 1)-parameter family of hyperplanes Σ(t) :
n(t) · x + h(t) = 0, where D∆(n(t)) = 1. Solving the system

Σ(t) = 0,
∂ Σ(t)

∂ t1
= 0, . . . ,

∂ Σ(t)

∂ tn−1
= 0 (4.53)

we arrive at the corresponding V-coherent parameterization.

Figure 4.3: Left: the generalized Blaschke cylinder n2
1 − n2

2 − 1 = 0 (yellow) with
the image of a QN-curve (blue); Right: the construction of the convolution curve
(purple) of two QN-curves (red and blue) solved on the associated Blaschke
cylinder.

Remark 4.33. The above mentioned correspondence is not bijective but one-to-
two. More precisely, both rational parameterizations x(t) : Cn−1 → B∆ and
−x(t) : Cn−1 → B∆ have the same image in the set of V-coherent parameteriza-
tions, cf. Fig. 4.3.

Having a rational parameterization of V , Corollary 4.32 gives us a straightfor-
ward method for expressing the V-coherent parameterizations. For the sake of
simplicity, we will summarize the main steps for the curve case only. The gener-
alization to the higher dimensions is straightforward. In addition we formulate
the algorithm for real curves to emphasize the difference between real and com-
plex case.
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Algorithm 3 Universal formula for V-coherent parameterizations of
curves
Input: A QN parameterization v(s) : R → V .
Output: A V-coherent parameterization w(t) : R → W .

1: DV (x, y) := (x, y) · ∆ · (x, y)T (see Remark 4.27).
2: Find A ∈ GL2(R): A · ∆ · AT =

(
1 0
0 τ

)
, where τ = ±1.

3: Set

(n1(t), n2(t), h(t)) := (2a(t)b(t), a2(t) − τb2(t), (a2(t) + τb2(t))c(t)),

where a(t), b(t) ∈ R[t] and c(t) ∈ R(t).
4: Find the solution x = x(t) and y = y(t) of the following system:

n1(t)x + n2(t)y = h(t),
n′

1(t)x + n′
2(t)y = h′(t).

5: return w(t) := A−1 · (x(t), y(t))T.

Obviously, if V = S1 then the output of Algorithm 3 are all rational PH param-
eterizations, presented in Pottmann (1995).

We mentioned above that two hypersurfaces with the same coherent forms be-
have similarly with respect to the operation of convolution. Now, we are going
to establish this analogy more precisely. In particular, we will show that from
the birational point of view the convolutions V ? W and U ? V (where V , U are
QN hypersurfaces with the same coherent form) can differ only in non-simple
components.

Lemma 4.34. If U ,V ∈ Q∆ then there exists a birational coherent mapping

ξU ,V : U → V .

Proof. Let u(s) be a proper parameterization of U . This is trivially U -coherent.
Since U and V have the same coherent forms, it is by Theorem 4.25 also
V-coherent. Therefore there exists a parameterization v(s) of V such that
u(s) ∼? v(s). Since u(t) is proper it has a rational inverse and the mapping

ξU ,V = v ◦ u−1 (4.54)

is obviously coherent. Finally using Lemma 3.52 we obtain deg ξU ,V = κU/κV =
1 and thus it is birational.

Corollary 4.35. Let U ,V ∈ Q∆ and let W be an arbitrary hypersurface. Then it holds

(i) U ? W is irreducible if and only if V ? W is,

(ii) each simple component of V ? W is birationally equivalent to each simple compo-

nent of U ? W .
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Proof. (i) Let us suppose that that V ?W is irreducible while U ?W has two com-
ponents. Then by Lemma 4.17 there exists a coherent mapping ξW,V : W → U ,
whereas there exists no such a mapping between W and V . However by
Lemma 4.34 we have coherent mapping ξU ,V :→ U → V and the composition
of coherent mappings i again coherent. Thus we obtain ξU ,W = ξV ,W ◦ ξU ,V the
coherent mapping from W to U , which is a contradiction.

(ii) If U ? W and V ? W are reducible, then there is nothing to prove because
by Theorem 4.15 each simple component is birationally equivalent to W . If the
convolutions are irreducible and simple then they are birationally equivalent to
the corresponding incidence varieties. Then invoking Lemma 3.10 we can extend
coherent mapping ξU ,V to the birational mapping ξ : I(U ,V) → I(V ,W), which
completes the proof.

The importance of the above corollary consists of possibility of replacing gener-
ally complicated QN hypersurface by a simple one, anytime we study e.g. the
rationality of resulting convolution hypersurface. For instance, when the QN hy-
persurface has a fully ranked coherent form, it can be replaced by a quadric, cf.
Proposition 4.29. To illustrate this, we conclude this subsection by giving a for-
mula for computing genera of convolutions of QN curves and a wide class of
algebraic curves. This formula uses and generalizes the result presented in Ar-
rondo et al. (1999) for the offsets (i.e., for convolutions with circles).

Let us supposse now, that V and W are curves. If V ? W is irreducible then it
is simple2, and hence combining Corollary 4.35 with the genus formula for clas-
sical offsets from Arrondo et al. (1999), allows us to write down the analogous
genus formula for a wide class of curves W fulfilling that V ? W is irreducible.
(The reducible case is solved by Theorem 4.15.) Let a given QN curve V lie in
some class Q∆ represented be the conic section S∆. Let A ∈ GL2(C) be a linear
transformation such that A(S∆) is the unit circle S1 and WP be the projective
closure of W . If all singularities of A(WP) are affine and ordinary, no tangent
line at the inflection or singular point of A(WP ) passes through the circular
point (0 : 1 : ±i) and the ideal line ω : x0 = 0 is not tangent to A(WP) (all of
these conditions are taken from Arrondo et al. (1999) – see there for more de-
tails), then we may apply the mentioned genus formula to compute the genus of
the offset S1 ? A(W) and hence of S∆ ? W = A−1(S1 ? A(W)), too. Combining
this with Lemma 4.35 we can formulate the following theorem.

Theorem 4.36. (Genus formula). Let V ∈ Q∆ and let W be a curve such that

V ? W is irreducible and all of the above mentioned conditions are fulfilled. Then the

2It is non-special by Theorem 3.60. To see that it is not degenerated suppose contrary, i.e.,
V ? W = p for some p ∈ C2 Then by Theorem 3.58 W = V− ? {p}. Now if H ⊂ C2 is
generic subspace of dimension one, we can write VH = {v1, v2}. With this notation we have
WH = {p − v1, p − v2}. Thus V ? W is generated by points of the form p, v1 − v2 and v2 − v1.
Therefore p ( V ? W which is a contradiction.
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genus of V ? W can be computed by the Arrondo-Sendra-Sendra formula:

g (V ? W) = 4g (W) + 2 degW − 3. (4.55)

Analogously to Arrondo et al. (1999) it is obvious that the convolution of two
regular conic sections is an elliptic curve assuming it is irreducible. On contrary,
if we consider quadrics in three-dimensional space we obtain the following sur-
prising result.

Theorem 4.37. The convolution of any two regular quadrics in three-dimensional space

is rational.

Proof. If the convolution is reducible, then there is nothing to prove. Let us
suppose that X and Y are regular quadrics admitting the irreducible convolution
X ? Y . Since X is regular there exists a transformation A ∈ GL3(C) such that
A(X ) is the unit sphere S1. Invoking Peternell and Pottmann (1998, Theorem
3.2) we conclude that

A(X ? Y) = A(X ) ? A(Y) = S1 ? A(Y) = O1(Y) (4.56)

is rational. Hence we have proved the rationality of the convolution X ? Y .

4.2.3 Decomposition of QN curves

Similarly to the case of LN curves we would like to give a description of the
set of QN curves. Since any QN curve lies in a certain class Q∆ for some conic
section S∆, we will work with a fixed class Q∆. Let us denote by L the set
of LN curves and we set D∆ = C2 ∪ L ∪ Q∆. Then, the following statement is
obvious:

Lemma 4.38. If V ,W ∈ D∆ then V ? W ⊂ D∆.

Hence, the set D∆ is closed under the operation of convolution3 and our goal is
to find its generators, as in the case of LN curves. More precisely, we are going
to find a family of fundamental curves {Gλ}λ∈Λ, where Λ is an (infinite) index
set, such that an arbitrary curve V ∈ Q∆ is a component of

(
F

λ∈Γ

Gλ

)
? L ? p, (4.57)

where L ∈ L, p ∈ C2 and Γ ⊂ Λ is finite.

3For curves V ,W ∈ Q∆ ⊂ D∆ the convolution can be reducible and hence we have to write
⊂ instead of ∈ in Lemma 4.38.
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As known, the dual equation of a general curve with the convolution degree 2
has the form

F∨(n, h) = fm−2(n)h2 + fm−1(n)h + fm(n) = 0, (4.58)

where fi(n) are homogeneous polynomials of degree i. It is not difficult to
realize that the set of all curves in Q∆ such that fm−1 = 0 is closed under the
operation of convolution. From the geometric point of view, the curves with this
special dual representation are centrally symmetric.

Now, let V ,W ∈ Q∆ be two curves with the centers of symmetry c1 and c2, re-
spectively. Then V ? W is decomposed into two curves with the common center
c1 + c2. As these curves play an important role in our further considerations, we
will introduce for them a notation Q0

∆.

Lemma 4.39. Any V ∈ Q∆ can be written uniquely (up to a translation) as V = L ?Q,

where L ∈ L and Q ∈ Q0
∆.

Proof. Let V has the dual equation F∨(n, h) = fm−2(n)h2 + fm−1(n)h + fm(n) =
0 and L′ be an LN curve with the dual equation gn−1(n)h + gn(n) = 0. For
the sake of brevity, we will write fi and gi instead of fi(n) and gi(n). Using
Proposition 3.22, one can compute the dual equation of V ? L′

fm−2g2
n−1h2+(2 fm−2gn + fm−1gn−1)gn−1h+

+ fm−2g2
n + fm−1gn−1gn + fmg2

n−1 = 0.
(4.59)

Hence, V ? L′ ∈ Q0
∆ if and only if 2 fm−2gn + fm−1gn−1 ≡ 0. Let us write fm−i =

f · f̃m−i, for i = 1, 2, where f = GCD ( fm−2, fm−1) and set gn−1 := −2 f̃m−2 and
gn := f̃m−1. Then L′ is an LN curve such that Q = V ? L′ ∈ Q0

∆ and denoting
L = (L′)− we arrive at V = Q ? L.

Next, let V = Q ? L = Q̂ ? L̂. If L̂ 6= L then L ? L̂− is a LN curve such that

Q = Q̂ ?
(
L ? L̂−)

. (4.60)

However, it is easy to see that the convolution of a curve in Q0
∆ with an LN curve

cannot lie in Q0
∆, which is a contradiction.

Remark 4.40. As the curves with rational explicit support function are exactly
the curves in the set D∆ for the conic section S∆ being the unit circle, the previ-
ous lemma may be understood as an implicit reformulation of the decomposition
of support functions into odd and even part in Gravesen et al. (2008).

By Lemma 4.39 it is seen that solving the problem stated by (4.57) can be reduced
to finding generators of the set Q0

∆. The following lemma shows that the dual
equations of curves from Q0

∆ possess a special form.
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Chapter 4. Hypersurfaces of low convolution degree

Lemma 4.41. V lies in Q0
∆ if and only if the defining polynomial of V∨ can be written

in the form

F∨(n, h) = d1(n) f 2(n)h2 + d2(n)g2(n), (4.61)

where d1 · d2 = D∆.

Proof. V ∈ Q0
∆ if and only if it is a rational curve defined dually as V∨ :

fn−2(n)h2 + fn = 0 and its convolution with the corresponding conic section
S∆ is reducible.

First, let us assume that V ? S∆ has a degenerated component. Then by Theo-
rem 4.15 V = S∆−

= S∆ and hence F∨(n, h) = h2 + D∆(n, h).

Second, we will show that V ? S∆ cannot have a special component. Recalling
again Theorem 4.15, we get V = S∆ ? L, where L has to be an LN curve since it
holds 2 = κV = κS∆ · κL = 2κL. However as mentioned at the end of the proof of
Lemma 4.39, the convolution of an LN curve and a curve from Q0

∆ is not in Q0
∆.

Thus, we may assume that both components of V ? S∆ are simple and after
computing the dual equation of the convolution we arrive at

( fn−2(n))2h4 − 2 fn−2(n) ( fn(n) + D∆(n) · fn−2(n)) h2+

+ ( fn(n) − D∆(n) · fn−2(n))2 = 0.
(4.62)

Next, trying to rewrite (4.62) as a product of two polynomials quadratic in h we
have to guarantee that the discriminant is a perfect square, which is equivalent
to the condition

D∆(n) · fn−2(n) · fn(n) = σ2(n). (4.63)

Finally, under the condition on F∨(n, h) to be irreducible we arrive at (4.61).

In addition, similarly to the case of LN curves we may use the partial fraction
decomposition to obtain

h =

√

−d2(n)

d1(n)
· g(n)

f (n)
= h0 + · · · + h`, (4.64)

where

hi =

√

−d2(n)

d1(n)
· αin

k+d
1

(βin1 + γin2)k
(4.65)

for some αi, βi, γi ∈ C, k ∈ N, and d = 0 if d1 = D∆, d = 2 if d2 = D∆ and d = 1
otherwise. Hence each V ∈ Q∆ is a component of the convolution Q1 ? · · · ? Q`,
where

Q∨
i : d1(n)(βin1 + γin2)

2kh2 + d2(n)α2
i n

2(k+d)
1 = 0. (4.66)

68



Chapter 4. Hypersurfaces of low convolution degree

Table 4.1: Several examples of fundamental QN-curves. Three columns cor-
respond to the dual equations D∆ f 2h2 + g4 = 0, f 2h2 + D∆g2 = 0 and
δ1 f 2h2 + δ2g3 = 0, respectively, where g = n1 and δi are nonconstant factors
of D∆.

D∆ f (D∆, 1) (1, D∆) (δ1, δ2)

n2
1 + n2

2

n2

n1 + 2n2

n2
1 − n2

2

n2

n1 + 2n2

Remark 4.42. Surprisingly, we do not need all four types of the dual equations
determined by the decomposition D∆ = d1 · d2. It may be shown that any curve
in Q0

∆ can be either written dually in the form D∆(n) f 2(n)h2 + g2(n) = 0, or it
is a component of the convolution of two such curves – the decomposition can
be consequently applied only to this class.
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Chapter 5

Summary

In this chapter we will summarize the contribution of the thesis. It can be di-
vided into two main topics.

The first one included in Chapter 3 consists in a general algebraic analysis of
convolutions. We presented the summary of methods used for studying the con-
volutions and afterwards we used these methods to solve the problems, which
appear throughout dealing with this operation. The different types of convo-
lution components were introduced – namely simple, special and degenerated.
It was shown that the most suitable components are the simple ones, e.g. if
they are rational then each their parameterization can be obtained from the pa-
rameterizations of input hypersurfaces. Therefore, in order to avoid special and
degenerated components in practise, it is convenient to understand their prop-
erties, too.

A lot of effort was devoted to an affine invariant of a given algebraic hypersur-
face, called the convolution degree. In the curve case the formula in closed form
enabling the computation of the convolution degree of almost arbitrary curve
was presented. The closed relation between the convolution degrees of input
hypersurfaces and the upper bound on the number of irreducible components
was given. One of another important results from this chapter is the application
of Bertini’s theorem to prove that the convolution is generically irreducible.

The second part of the thesis was devoted to the hypersurfaces with a low con-
volution degree. In particular, Chapter 4 is divided into two parts – first dealing
with hypersurfaces with convolution degree one, whereas in the second part
we study hypersurfaces with convolution degree two. It was shown that any
hypersurface with convolution degree one is rational and moreover it admits a
special parameterization such that its associated normal vector field is expressed
by linear functions. This related our work to the older results on the class of
LN hypersurfaces. Nevertheless the detailed algebraic analysis of convolutions
of these hypersurface has not been at disposal up to the present day. Moreover
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Chapter 5. Summary

the chosen approach enabled us to give more simple proofs of known facts – e.g.,
the proof of the statement that every hypersurface admitting quadratic polyno-
mial parameterization admits an LN parameterization, too. In the curve case, we
found a decomposition of an arbitrary LN curve into the convolution of finite
number of simple fundamental LN curves. We concluded by a brief discussion
on the approximation techniques of convolutions.

In Section 4.2 we showed that, although hypersurfaces with convolution degree
two need not to be rational, they possess the so-called square root parameteri-
zation and hence we concluded that every curve with convolution degree two
has to be rational, elliptic or hyper-elliptic. Afterwards the properties of these
hypersurfaces with respect to convolution were discussed and the criterion on
reducibility of convolution was given. In order to show application potential of
hypersurfaces of convolution degree two, we identified the so-called QN con-
dition, which naturally generalizes the known LN condition. To each QN hy-
persurface was assigned the so-called coherent form, which provided an effec-
tive criterion on the reducibility and/or rationality of convolution with a given
QN hypersurfaces. Moreover their connection with the generalized Blaschke
cylinder enables us to write down all the parameterizations coherent to this hy-
persurface. We concluded this section with two results on QN curves. First using
the coherent mappings and the Arrondo-Sendra-Sendra genus formula we gave
a genus formula for the irreducible convolution with QN curve. The second
result – similarly to the LN curves case, showed how to decompose QN curve
into the convolution of LN curve and a finite number of simple fundamental
QN curves.
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Lávička, M., Bastl, B., and Šír, Z. (2010). Reparameterization of curves and
surfaces with respect to convolutions. Lecture Notes in Computer Science,
(5862):285–298. Dæhlen, M. et al. (eds.): MMCS 2008.

Lazarsfeld, R. (2004). Positivity in Algebraic Geometry I. Springer.

Lee, I.-K., Kim, M.-S., and Elber, G. (1998). Polynomial/rational approximation
of Minkowski sum boundary curves,. Graphical Models and Image Processing,
60(2):136 – 165.

73



Bibliography

Lü, W. (1996). Rational parameterization of quadrics and their offsets. Comput-

ing, 57(2):135–147.

Maekawa, T. (1999). An overview of offset curves and surfaces. Computer-Aided

Design, 31:165–173.

Moon, H. (1999). Minkowski Pythagorean hodographs. Computer Aided Geometric

Design, 16:739–753.

Mumford, D. (1976). Algebraic Geometry I Complex Projective Varieties. Springer -
Verlag.

Peternell, M. and Manhart, F. (2003). The convolution of a paraboloid and a
parametrized surface. Journal for Geometry and Graphics, 7(2):157–171.

Peternell, M. and Odehnal, B. (2008). Convolution surfaces of quadratic triangu-
lar Bézier surfaces. Computer Aided Geometric Design, 25:116–129.

Peternell, M. and Pottmann, H. (1998). A Laguerre geometric approach to ratio-
nal offsets. Computer Aided Geometric Design, 15:223–249.

Peternell, M. and Steiner, T. (2007). Minkowski sum boundary surfaces of 3d-
objects. Graphical Models, 69(3-4):180–190.

Pottmann, H. (1995). Rational curves and surfaces with rational offsets. Computer

Aided Geometric Design, 12(2):175–192.

Sabin, M. (1974). A class of surfaces closed under
five important geometric operations. Technical Report
VTO/MS/207, British Aircraft Corporation. Available at
http://www.damtp.cam.ac.uk/user/na/people/Malcolm/vtoms/vtos.html.

Sampoli, M. L., Peternell, M., and Jüttler, B. (2006). Rational surfaces with lin-
ear normals and their convolutions with rational surfaces. Computer Aided

Geometric Design, 23(2):179–192.

Sendra, J. R. and Sendra, J. (2000). Algebraic analysis of offsets to hypersurfaces.
Mathematische Zeitschrift, 237:697–719.

Sendra, J. R. and Sendra, J. (2009). Rational conchoids of algebraic curves. arXiv:

0901.4652v1 [math.AG].

Tutaj, H. (1993). Geometric proof of M. Noether’s genus formula. Universitatis

Iagellonicae Acta Mathematica, (30):193–98.
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Vršek, J. and Lávička, M. (2010b). On convolutions of algebraic curves. Journal

of symbolic computation, 45:657–676.

Šír, Z., Gravesen, J., and Jüttler, B. (2007). Computing convolutions and
Minkowski sums via support functions. In Chenin, P. and et al., editors, Curve

and Surface Design. Proceedings 6th international conference on curves and surfaces,

Avignon 2006, pages 244–253. Nashboro Press.

Šír, Z., Gravesen, J., and Jüttler, B. (2008). Curves and surfaces represented by
polynomial support functions. Theoretical Computer Science, 392(1-3):141–157.

Walker, R. (1950). Algebraic Curves. Princeton University Press.

75


