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Abstract

A major problem with using automated classification systems is that if they are not engineered correctly and
with fairness considerations, they could be detrimental to certain populations. Furthermore, while engineers have
developed cutting-edge technologies for image classification, there is still a gap in the application of these models
in human heritage collections, where data sets usually consist of low-quality pictures of people with diverse
ethnicity, gender, and age. In this work, we evaluate three bias mitigation techniques using two state-of-the-art
neural networks, Xception and EfficientNet, for gender classification. Moreover, we explore the use of transfer
learning using a fair data set to overcome the training data scarcity. We evaluated the effectiveness of the bias
mitigation pipeline on a cultural heritage collection of photographs from the 19th and 20th centuries, and we used
the FairFace data set for the transfer learning experiments. After the evaluation, we found that transfer learning is a
good technique that allows better performance when working with a small data set. Moreover, the fairest classifier
was found to be accomplished using transfer learning, threshold change, re-weighting and image augmentation as
bias mitigation methods.

Keywords
Image classification, Fairness, Bias mitigation, Gender classification, Transfer learning, Human Heritage Collec-
tion.

1 INTRODUCTION new candidate’ CVs, exhibited a preference for males
in technical positions [Kod19]]. This problem does not
only occur in contemporaneous sets but also historical

scenarios.

Artificial intelligence (Al) systems have become a key
instrument in many human decision processes. Their
presence ranges from basic day-to-day tasks such as lis-
tening to music at home using technologies the size of
a donut [McL19] to transcribing hand-written charac-
ters into machine-actionable text data [[Cor20||]. Those
systems present clear benefits, mostly thanks to com-
puters being able to perform tasks at a velocity that hu-
mans cannot and without getting tired. However, not
all the outcomes are positive with AI. One major issue
that those algorithms have presented is bias and unfair-
ness. For example, the recruiting algorithm developed
by Amazon, where the system learnt key traits from
successful applicants’ resumes to rate and find the top

Galleries, archives and museums carry deep insights
into human memory and expression. Therefore not only
collecting the remains of the past is relevant, but also
analysing the objects that have been obtained. Further-
more, it is possible to apply and evaluate the technolo-
gies of the present, such as image classification, on the
remnants of the past to understand how we can have
more accurate and meaningful descriptions and classi-
fications of heritage collections. Moreover, it is crucial
to examine the ways in which qualitative aspects of hu-
man nature, such as bias, and the subjective nature of
Al intersect. This is especially relevant in the case of
museum artifacts collections, which tend to exhibit in-
herent biases due to factors such as the methods of ac-
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Literature on bias in Al mentions that bias is often en-
coded in the training data set and that this type of bias
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affects especially the models’ accuracy [Parl18]]. How-
ever, even with well-balanced data sets, bias can be in-
troduced in other steps of the ML pipeline. The work of
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Wang et al. [Wan19]] in gender classification is a good
illustration of this. The authors showed that even when
their data sets were perfectly balanced, the trained mod-
els resulted in biased predictions. Thus, assuming that
the input data set is the only source and actor of bias
is erroneous. In other studies, researchers have identi-
fied, named and classified many other sources of bias,
for example, algorithmic bias, which appears due to
inappropriate algorithmic choices, and is not present
in the input data, or evaluation bias, which happens
when the evaluation data set is not representative of
the problem or the evaluation metric is incorrect for the
task [Fah21lvanG22,Meh21].

The objective of this study is to investigate the effective-
ness of algorithmic bias mitigation techniques for gen-
der classification on a museum data set, thus bridging
the gap between Al and gender classification in cultural
heritage collections. Specifically, we aim to evaluate
the performance of modern classification approaches
and bias mitigation techniques on a highly diverse and
gender-biased data set consisting of low-quality images
of ancient people with varying ethnicity and ages. To
the best of our knowledge, no studies have yet imple-
mented these techniques for this purpose.

2 RELATED WORK
2.1 Bias mitigation

Technical bias mitigation techniques can be divided
into five stages: problem understanding, preprocessing,
in-processing, post-processing and deployment [Hor22,
Bell8|]. Bias mitigation methods performed on the
training data are considered preprocessing; techniques
performed while training ML models are categorised as
in-processing; and post-processing methods are applied
to trained ML models [Hor22|Bel18§].

One of the most common techniques for bias mitigation
in the pre-processing step is data augmentation - a tech-
nique used to increase the amount of data in the training
set by performing modifications (e.g. rotations, colour
transformation, reflection ) on the original set [Mij18§].
In the work done by McLaughlin et al. [McL15], the au-
thors evaluated the effectiveness of different data aug-
mentation techniques in re-identification systems. They
found that changing an image background increases the
performance of a model only when a combination of
other augmentation techniques, such as cropping and
mirroring, are also used.

Other bias mitigation methods have also been in-
vestigated in the literature. The work of Wang et
al. [Wan20] evaluates strategic re-sampling, adversarial
training, domain discriminative training, and domain-
independent training in a gender classification scenario
using CNNs and a data set composed of pictures of
celebrities. The authors found that oversampling out-
performed the other techniques, and that was followed

https://www.doi.org/10.24132/JWSCG.2023.6

Journal of WSCG
http://www.wscg.eu

Vol.31, No-1-2, 2023

closely by domain-independent training. Similarly,
Lee et al. [Lee22] revise bias mitigation methods for
CNNE, e.g. ReBias and vanilla, to create a benchmark
for the bias mitigation pipeline. The study showed
that state-of-the-art approaches achieved different
approaches depending on the training data set, which
suggests that a bias mitigation process is task specific.

2.2 The FairFace data set

Neural network models have been shown to learn and
amplify biases in training data [Hal22]. This is partly
the motivation for the creation of the FairFace data set,
presented in the work by Kirkkdinen and Joo [Karl9].
The FairFace data set contains 108 501 images, and it
is balanced concerning gender, ethnicity, and age, and
therefore does not suffer from the same bias that other
big data sets do. In [Karl9], it is shown that models
trained with the FairFace data set generalize better than
other existing face data sets to unseen and ethnically
diverse data. In the work of Kotti et al. [Kot22], the
data set is used in their experiments for evaluating bias
in Generative Adversarial Networks (GANs). More-
over, a model trained on the FairFace data set was used
in [Dev22| in order to benchmark the performance of
their new fair model. In our work, we conduct transfer
learning using the FairFace data set for the models to
learn first for a known fair data set.

3 BACKGROUND

3.1 Deep learning models

Our classifiers are based on existing networks
provided in the tensorflow framework. We chose
Xception [[Choll7] and EfficientNet [Tanl19] as base
networks. Both were implemented using Keras’ model
APL

The Xception network was first introduced in 2017 in
the paper "Xception: Deep Learning with Depthwise
Separable Convolutions" by Chollet [Choll7]. The
model is a fully convolutional network designed with
the goal of being a more efficient variant of the Incep-
tion architecture from 2014 [Sze15]]. The technique that
separates the Xception architecture from the Inception
architecture is the implementation of depthwise separa-
ble convolutions instead of regular convolutions. Reg-
ular convolutions work by performing convolutions on
all channels at once, unlike depthwise separable con-
volutions which performs a single convolution opera-
tion on each input channel. The Xception architecture
has 36 convolutional layers and has an input size of
299x299.

EfficientNet was introduced in the 2019 paper "Effi-
cientNet: Rethinking Model Scaling for Convolutional
Neural Networks" [Tan19]]. Rather than being a single
network, EfficientNet is best described as a family of
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networks architectures, created from scaling the base-
line network EfficientNet-B0O. The paper introduces a
new approach to scaling models which included scal-
ing the network’s width, depth and image resolution
together. The EfficientNet architecture that we imple-
mented was EfficientNet-B3 which has an input size of
300x300 which is similar to Xception. In [Tan19], the
EfficientNets’ performances, compared to other convo-
lutional neural networks, is the state-of-the-art of sev-
eral data sets, while reducing the size of the models.
The EfficientNet-B3 architecture is about half the size
of Xception, with 12 million versus 23 million parame-
ters.

Both the models have the same four top layers ap-
pended to produce the binary classification. These con-
sists of a GlobalAveragePooling2D layer, a BatchNor-
malization layer, a Dropout layer with a dropout rate
of 0.2, and lastly, a dense layer for binary classification
with a sigmoid activation function [Keras].

3.2 Fairness metrics

Bias quantification metrics are closely linked to the
concept of fairness, which has two main definitions.
The first definition is individual fairness, which in-
volves assessing similar individuals and expecting them
to be treated similarly by the model [Chol7]]. The sec-
ond definition is group fairness, which refers to the ab-
sence of prejudice and favoritism towards a particular
group [Meh21]]. Further, there are two common cate-
gories of fairness metrics related to the previous defi-
nitions: Definitions Based on Predicted Outcome and
Definitions Based on Predicted and Actual Outcome.
Some examples of fairness metrics that belong to these
categories are:

Demographic (or statistical) Parity Difference
(DPD), which focuses on ensuring that there are
similar amounts of positive predictions across
groups. In this context, a classifier is called fair
if [Ver18]:

TP+ FP =TN+FN (1)
Proportional Parity Difference (PPD) is a normal-
ized version of DPD [Koz21]|. In the binary case a
classifier is called fair if:

TP+ FP B TN +FN
TP+FP+TN+EN  TP+FP+TN+FN

(@)

In a problem with more than two classes, the denom-
inators in equation E] would be different, resulting in
different scaling factors for each class. However, in
the binary case, the denominators are the same. In
our work, we treated them as different because we
did not explicitly account for the normalization con-
stant in any of the experiments.
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Equality of Opportunity. In a binary classification
task, it aims to ensure that both groups have equal
rates of true positives. Definitions are based on Pre-
dicted and Actual Outcome, and in this case a clas-
sifier is fair if [Gar20]:

™ 1IN
TP+FN TN+FP

3)

Predictive Rate Parity Difference. This measure, in
a binary classification task, ensures that both groups
have equal rates of predicted positives [Chol7|]. The
definition is based on Predicted and Actual Outcome
[Ver18]. A classifier is fair if: In the binary case:

TP 1IN
TP+FP TN+FN

“4)

This metrics are popular in the general area of fair ma-
chine learning and can be applied in image classifica-
tion as well. Examples of this are Demographic Par-
ity used in [Fra2l1] and Equality of Opportunity used
in [Sto22,Zhal§|]. Therefore, in this project, we use
demographic parity difference, equality of opportunity,
proportional parity difference and predictive rate parity
difference as fairness metrics.

3.3 Bias mitigation techniques
3.3.1 Reweighting

Reweighting is a pre-processing bias mitigation
method. The idea of this method is to give classes
that are more common in the training data set a lower
weight i.e. the sample has less effect on the training
of the model. Reweighing approach also maintains a
high accuracy level [Kaml2]. Pre-processing tech-
niques try to transform the data so that the underlying
discrimination is removed [Meh21]. The class weights
are assigned and passed to the model while training
through Keras implementation.

3.3.2 Image augmentation

Image augmentation is an in-processing method for
bias mitigation. In this project, data augmentation is
implemented by altering the training data in order to
deal with classification bias in under-representation of
certain groups. Data augmentation can reduce classi-
fication error for discriminated groups. Furthermore,
even though different classifiers do not perform equally
good, they exhibit positive results when data augmen-
tation takes place [los18]]. In our project the data aug-
mentation has four pre-processing layers that are added
at the beginning of the model. These layers perform
random flip, random rotation, random translation (i.e.
random movement), and random contrast. The pre-
processing layers are implemented using the Keras API
for image augmentation layers [Keras].
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3.3.3 Threshold change

Changing the threshold of the model is a post-
processing method [Hor22]. In the standard implemen-
tation of our model we use a threshold of 0.5 i.e. every
predicted value below 0.5 is interpreted as Female.
This threshold is not necessarily optimized for fairness.
We applied the following threshold changes to the
models:

Equal true In this case, we optimize the threshold to
the minimal difference of predicted true values in each
class:

min{|TP, — TN,|} with t=[0,1], (5)

where ¢, here and in the following definitions, is the
value of the threshold for the classifier.
Equal false In this case we optimize the threshold to
the minimal difference of predicted false values in each
class.

min{|FP, —FN;|} witht=0,1] ©6)

Equal total In this case we optimize the threshold to
predict the minimal difference of predicted values in
each class.

min{|(TP,; + FP,) — (TN; + FN,)|} with t=[0,1]
@)
Equal opportunity In this case we optimize the thresh-
old to predict the minimal difference of predicted values
in each class.

TP, TN,
TP, +FN, TN, +FEP,

min{| |} witht=1[0,1] (8)

3.3.4 Transfer Learning

Transfer learning is the ML technique of taking the
knowledge that is able to be learned by training a model
on one task and then fine tuning it to a different but re-
lated task [PanI0].. In this project, transfer learning was
implemented as a way overcome training data scarcity.
For this part of the process, the FairFace data set is
the source domain and the cultural heritage data set is
the target domain. The tasks are similar in both do-
mains, being binary image classification of gender in
both cases.

Through our experiments, it will be investigated if it is
possible to transfer a fair model trained on the FairFace
data set. This will be done by comparing the results of
the models implementing transfer learning against the
ones trained on only target domain. The metrics for
evaluating bias will be fairness metrics detailed in sec-
tion[3.2land section 3.3

3.4 Cultural Heritage Data Set

The Cultural Heritage Data Set (CHDS) contains
labelled images from the The National Museums of
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World Culture in Sweden, and the data set was
manually post-processed as part of an earlier part of the
Quantifying Culture project. Within the data set there
are 3128 images in total of people, where 1067 images
are labeled male, and 2061 labeled female (a sample of
the data set is shown in Figure [I). These images are
photographs taken "in-the-wild" and do not guarantee
that they contain only one person at a time, but ensure
that all the individuals are of the same sex. The time
period which the photographs stem from are either the
nineteenth or twentieth century. After performing the
face extraction described in section 1] 4897 faces
were detected, 2331 labeled male, and 2566 labeled
female.

Figure 1: Example of original image from the Cultural
Heritage Data Set [VKM] containing two individuals
labeled males.

4 IMPLEMENTATION DETAILS

4.1 Face extraction

Since the CHDS contains full-body images of people,
and our model is designed to perform gender clas-
sification based on facial features, face extraction is
performed on the CHDS. The face extraction module
makes use of the Python API of the dlib ML toolkit
[Kin09]. Within the module a pre-trained CNN model
is used for face detection which then allows for extract-
ing cropped images of the faces contained in the pho-
tographs of the CHDS.

4.2 Experimental setup

We use three experimental setups to test our networks.
In the first experiment, we used only the CHDS to train
and test our networks. In a second step, we used the
FairFace data to pretrain validate and test them our
models. The third experiments use the FairFace mod-
els from the second experiments for transfer learning.
The transfer learned models are then validated, tested
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and compared to the baseline models. For all experi-
ments the fairness metrics discussed in section [3.2] are
implemented for evaluation.

4.2.1 Baseline CHDS experiments

In the baseline model experiments we train and cross
validate the models shown in section B.Il For each
of these two models, there are three variations tested,
which depend on the bias mitigation method being eval-
uvated. The first variation is without any bias miti-
gation method; the second is with class re-weighting
applied; and the third is with data set augmentation
applied. These bias mitigation methods are covered
in section 33l The models were trained for a max-
imum of 20 epochs with the learning rate decreasing
exponentially. We added an early stopping to the train-
ing, which means that the training will stop in case the
training does not decrease the validation loss in three
consecutive epochs.

4.2.2 FairFace experiments

The models described in section[3.1]are pretrained with
the help of the FairFace data in three different ways.
First we just train the models, in a second experiment
we reweight the classes because there is a slight bias to-
wards the Male class in the FairFace data. In the third
experiment we add the augmentation layers described
in section [3.3] These experiments are run to create the
different variations of base models to be used for trans-
fer learning, as well as a way to evaluate performance
on the models on a data set that we know to be fair and
balanced.

4.2.3 Transfer learning experiments

To build some the classifiers for this project, we train
a base model, either EfficientNet-B3 or Xception, with
the FairFace training data. During training, the weights
of the models’ layers are tuned and adjusted in order
to increase accuracy. This trained model is then moved
to the target domain and has a number of its layers and
their parameters frozen in order to keep the knowledge
learned in the source domain. For transfer learning with
the EfficientNet-B3 model all layers except the the last
forty layers are frozen. In the Xception case all lay-
ers except the last ten layers and the four top layers are
frozen. Also, we compare four different version of the
transfer learned models. We use the unweighted and
unaugmented pretrained model to test transfer learning.

4.2.4 Data set splits

As mentioned in section [3.4] the cultural heritage data
set does not contain a lot of data. Therefore we choose
to use 80% of the data for training, 10% for validation
and 10% for testing. We used the same splits for the
training with the help of the FairFace data set. For cross
validation we used a 5-Fold cross validation split, 80%
of data for training and 20% for validation.
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4.2.5 Early stopping

We use early stopping provided by Keras [Keras]. Le.
the training stops when the validation loss is not re-
duced in three consecutive training steps.

4.2.6 Used infrastructure for training

For the training of the models we used the Alvis clus-
ter of Chalmers University [Alvis]. We used the A100
GPUs of the cluster. This allowed us to use larger batch
sizes and smaller training time.

S RESULTS

The results of our experiments can be found in this sec-
tion. Within table [Tl the results of the Baseline CHDS
experiments and the Transfer learning experiments can
be seen. Positive values in the fairness metrics Demo-
graphic Parity Difference, Proportional Parity Differ-
ence and Predictive Rate Parity Difference show a bias
in favor of the Male class. In the Equality of Opportu-
nity metric the bias is in favor of the Male class if the
values are negative.

5.1 Baseline CHDS experiments

Baseline CHDS experiments were performed for both
the EfficientNet-B3 and Xception models. Figure [2]
shows the performance in accuracy for EfficientNet and
Xception. It can be seen that all three variations of
the EfficientNet model reaches higher accuracy than the
Xception variations. Figure [3] shows the training and
validation accuracies for the Xception variations. The
EfficientNet variations also have greater performance in
the fairness metrics as well as seen in table [Tl

o
@
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o
~
&

—— Validation CHDS EfficientNet
Validation CHDS EfficientNet (reweighted)

—— Validation CHDS EfficientNet (augmented)

—— Validation CHDS Xception

—— Validation CHDS Xception (reweighted)

—— Validation CHDS Xception (augmented)

accuracy
o o o
o = <
3 & =

o
w
v

o
w
S

2 4 6 8 10
epochs

Figure 2: EfficientNet and Xception validation accu-
racy for the CHDS experiments.

5.2 FairFace experiments

The model that achieves the highest performance in
accuracy on the FairFace data set is EfficientNet with
a validation accuracy of ~91% as seen in Figure []
The best performing Xception model is the one im-
plemented with augmentation which achieves a vali-
dation accuracy of ~87%. Figure [5] shows the perfor-
mance of the models with regards to Demographic Par-
ity Difference where all variations except Xception with
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Network name Transfer Threshold Reweighting  Image aug- Accuracy Demographic  Proportional ~ Equality of Predictive
learning change mentation Parity Parity Opportu- Rate Parity
Difference Difference nity Difference
EfficientNet No No No No 78.5 +/- -39 +/- 54.6 -0.04 +/- 0.01 +/- -0.03 +/-
1.2% 0.06 0.06 0.05
EfficientNet No Equal false No No 78.9% 4 0.008 0.036 -0.053
EfficientNet No No Yes No 80.4 +/- -64 +/-33.8 -0.06 +/- 0.04 +/- -0.01 +/-
1.6% 0.03 0.03 0.03
EfficientNet No Equal total Yes No 79.9% 6 0.012 0.041 -0.056
EfficientNet No No No Yes 78 +/-2.2% -155 +/- -0.16 +/- 0.13 +/- 0.04 +/-
77.8 0.08 0.09 0.06
EfficientNet No Equal opp. No Yes 80.1% -8 -0.016 0.013 -0.039
EfficientNet Yes No No No 84.5 +/- -45 +/-42.3 0.05 +/- 0.01 +/- 0.02 +/-
0.5% 0.04 0.04 0.03
EfficientNet Yes Equal false No No 83.7% -8 -0.016 0.017 -0.038
EfficientNet Yes No No Yes 83.6 +/- -115 +/- -0.11 +/- -0.08 +/- 0.03 +/-
0.3% 26.2 0.02 0.04 0.04
EfficientNet Yes Equal false No Yes 82.1% 12 0.024 0.056 -0.064
EfficientNet Yes No Yes No 84.2 +/- -101 +/- -0.1 +/- 0.07 +/- 0.02 +/-
1.5% 73.5 0.07 0.08 0.06
EfficientNet Yes Equal false Yes No 80.7% 14 0.028 0.059 -0.066
EfficientNet Yes No Yes Yes 83.9 +/- -13.4 +/- -0.01 +/- 0.02 +/- -0.04 +/-
1.4% 48.2 0.05 0.04 0.03
EfficientNet Yes Equal total Yes Yes 82.1% 0 0 0.031 -0.049
Xception No No No No 52.4% -492 -1 -1 -0.524
Xception No No Yes No 47.6% 492 1 1 0.476
Xception No No No Yes 52.4% -492 -1 -1 -0.524
Xception Yes No No No 65.6 +/- -7 +/- 435 -0.01 +/- -0.01 +/- -0.06 +/-
3.7% 0.44 0.45 0.15
Xception Yes Equal total No No 78.3% 2 0.004 0.032 -0.051
Xception Yes No No Yes 72.4 +/- -338 +/- -0.34 +/- -0.33 +/- 0.1+/-0.16
0.1% 401 0.40 0.41
Xception Yes Equal opp. No Yes 80.9% -16 -0.033 -0.002 -0.029
Xception Yes No Yes No 66.4 +/- 6% =341 +/- -0.35 +/- -0.34 +/- 0.09 +/-
398 0.41 0.41 0.19
Xception Yes Equal opp. Yes No 77.4% -14 -0.028 -0.002 -0.033
Xception Yes No Yes Yes 73.1 +/- -389 +/- -0.39 +/- -0.37 +/- 0.15 +/-
7.8% 169 0.17 0.19 0.08
Xception Yes Equal opp. Yes Yes 81.3% 4 0.008 0.039 -0.054

Table 1: Validation results of the experiments. The results of the CHDS experiments are the entires marked with
"No" in the transfer learning column. Entries marked "Yes" in the Transfer learning column are implemented with
transfer learning from the FairFace data set. In the table the performance of different combinations of the different

bias mitigation methods can be seen.

—— Training CHDS

Training CHDS (reweighted)
0.97 — Training CHDS (augmented)
—— Validation CHDS
—— Validation CHDS (reweighted)
—— Validation CHDS (augmented)

o6 //’

sy

o
@

o
~

accuracy

epochs
Figure 3: Xception training and validation accuracy for
the CHDS experiments.

reweighting have similar results. This is also the case
when evaluating with regards to Equality of Opportu-
nity Difference, as seen in Figure[q]
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—— Validation FairFace EfficientNet
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—— Validation FairFace Xception
—— Validation FairFace Xception (reweighted)
—— Validation FairFace Xception (augmented)

2 4 6 8 10
epochs

Figure 4: EfficientNet and Xception validation accu-
racy for the FairFace experiments.

5.3 Transfer learning experiments

Using the models created in the FairFace experiments
for transfer learning, the accuracy results shown in ta-
ble [T] were achieved. EfficientNet achieves the high-
est accuracy of the transfer learned models with 83.7%.
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—— Validation FairFace EfficientNet

Validation FairFace EfficientNet (reweighted)
7500 —— Validation Fairface EfficientNet (augmented)
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—— Validation FairFace Xception (reweighted)
—— Validation FairFace Xception (augmented)

5000
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7500
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Figure 5: EfficientNet and Xception validation Demo-
graphic Parity Difference performance for the FairFace
experiments.

0.75

0.50

—-0.25

—— Validation FairFace EfficientNet
Validation FairFace EfficientNet (reweighted)
—— Validation FairFace EfficientNet (augmented)

—-0.50

binary equal opportunity diff

=0.75 —— Validation FairFace Xception
—— Validation FairFace Xception (reweighted)
~1.00 —— Validation FairFace Xception (augmented)
2 4 6 8 10

epochs
Figure 6: EfficientNet and Xception validation Equal-
ity of Opportunity performance for the FairFace exper-
iments.

In the fairness metrics different transfer learning vari-
ation of both EfficientNet and Xception have the best
performance. Measured in Demographic Parity Dif-
ference the EfficientNet model with equal total thresh-
old change, re-weighting, and image augmentation per-
forms best. If Equality of Opportunity is considered in-
stead the re-weighted Xception model is best performer.
When using augmentation and the EfficientNet network
the bias metrics stay close to O during the training as
seen in Figure([8|and Figure[7]

6 DISCUSSION

The Xception network is not ideal for a use case with a
small data set, in this case the CHDS. In table[T] the re-
sults show that the Xception network is not performing
well due to overfitting as seen in Figure[3] More regu-
larization within the network and the final layers could
be a possible solution to fix the overfitting in the base
case of the Xception model. However, here the value of
transfer learning is shown to be an effective way to im-
prove a model which poor performance is partly due to
lack of training data. Xception used with transfer learn-
ing allowed for a validation accuracy of 73.1%, which
greatly outperforms the baseline CHDS trained models
as seen in Table table [l
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Figure 7: EfficientNet and Xception validation Propor-
tional Parity Difference for the transfer learning exper-
iments.
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Figure 8: Xception training and validation Predictive
Rate Parity Difference for the transfer learning experi-
ments.

The results in section [3 show that EfficientNet has a
higher accuracy and is better than Xception in regard
to fairness in the transfer learning variations. These
results are expected since EfficientNet is a newer net-
work and also shows better performance in the bench-
marks [Tan19].

Using transfer learning to train the models is a good
choice in our use case. The biggest advantage is that we
get a higher accuracy due to training the models with
more data. Comparing the EfficientNet model, with or
without transfer learning, it can be seen in table |I| that
accuracy in increased from 78.5% to 84.5%. However,
as a method for bias mitigation transfer learning does
not make much of an impact. For the experiments on
the EfficientNet variations the fairness metrics do not
appear to be influenced by applying transfer learning or
not. Due to the poor performance of the baseline vari-
ations of Xception, it is not possible to see if previous
results translate to the Xception model.

When transfer learning and augmentation are used to-
gether with reweighting on EfficientNet, the fairness
metrics are improved. This is also the case for accu-
racy as seen in table I} Using reweighting alone does
not show any significant improvement in the metrics for
both EfficientNet and Xception. It could be due to the
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fact that there is not a big difference in the amount of
samples in each of the classes in CHDS.

Comparing the EfficientNet CHDS results in table |1}
with and without image augmentation, it can be seen
that accuracy is not changed much, the accuracy score
being 78.5% +/- 1.2% without and 78% +/- 2.2% with.
Moreover, when evaluating these same two variations
by the fairness metrics no apparent improvement can
be seen in any case. This pattern emerges in the trans-
fer learning experiments as well for EfficientNet. Us-
ing image augmentation alone slightly worsens perfor-
mance in terms of accuracy and improvement cannot
be seen in the fairness metrics either. However, when
comparing the transfer learning variations, with and
without image augmentation, with reweighting imple-
mented, the pattern does not repeat. In this case im-
age augmentation improved performance in all accord
with all fairness metrics while reaching a perfect score
for Demographic- and Proportional Parity. For transfer
learning experiments for Xception, image augmenta-
tion improves the fairness metrics when paired together
with reweighting, similarly to EfficientNet. Image aug-
mentation improves accuracy for the Xception varia-
tions. One important observation is that augmentation
stabilizes the training (metrics always close to the ideal
value) for EfficientNet as seen in Figure[§|and Figure
This is advantageous because we can stop the training
at any point with similar bias metric values.

When applied, threshold change improves performance
in the fairness metrics consistently. In all EfficentNet
experiments the improvement in fairness came at the
cost of accuracy, this is however not translated in the
Xception experiments. It could be because of Xception
network overfitting on the data and it favours a certain
class during prediction. This can be seen from the met-
ric values in [T} When using threshold change, some of
the wrong predictions move over to the other side of the
decision boundary and so accuracy improves.

Regarding the CHDS data set, it shows a slight bias
favouring the Female class (52.4% of the images in
the Female class). This is also the case for our overall
best model (EfficientNet, with reweighting and image
augmentation but no thresholding). For example, the
value of bias according to the Proportional Parity Dif-
ference is 1 +/- 5% towards the Female class. Gender
is something that should be considered concerning fair-
ness; however, there is a cause to consider fairness in
relation to other metrics as well. With the CHDS data
set only having gender as its label, further investiga-
tion into other sources of bias is difficult to attain. The
CHDS data set is diverse concerning age, ethnicity, cul-
ture, and the period the photo was taken. All of these
aspects add the possibility for bias. Photographs por-
traying a given group of people of a certain ethnicity
could have been taken in poorer conditions than pho-
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tographs of another group due to the time period or
other external conditions. As a result, this could lead
to it being harder for the model to learn to classify the
first group correctly, which might not show up in our
results evaluated by gender.

Due to using a pre-trained model in the face extraction
module for the cultural heritage data set (section [3.4)),
there is an additional potential source of bias. For ex-
ample, it is possible that the pre-trained model was it-
self trained with biased data, thus leading to it poten-
tially having a better ability to extract the faces of a
certain group. Since we did not investigate the total
amount of faces belonging to each class in the pho-
tographs in the CHDS, no evaluation of the potential
bias of the face extraction module was performed.

7 CONCLUSION

In this paper, we evaluated three novel bias mitigation
techniques for image classification in a cultural her-
itage data set. We found that individually implementing
augmentation, class re-weighting, and threshold change
does not lead to a fairer model compared to the base-
line model. We have also evaluated the performance
of the classifiers when implementing transfer learning.
We have shown that, for this task, combining transfer
learning with image augmentation, class re-weighting,
and threshold change is the best way to reach a fair clas-
sifier.

8 FUTURE WORK

In our current implementation the process of fine tuning
was not included in the transfer learning implementa-
tion. In fine tuning the final models are trained, with all
layers unfrozen, with a very low learning rate for just
a few epochs. This could potentially improve perfor-
mance, mainly accuracy.

Further work could be done in tuning the hyper-
parameters of our models. Since the priority of this
project was the evaluation of the bias mitigation
methods, less focus was put on perfecting model per-
formance. Therefore work can be done in investigating
optimal learning rate, batch size, weight decay etcetera.

As discussed in section [6] improvement to our analysis
could be done if we would have had access to multiple
labels, e.g. age, ethnicity, etcetera. With more labels
we could take a look a the bias from an intersectional
stand point. With the help of intersectionality we could
show further biases in the approach, and we could take
action to reduce these biases.

Another interesting addition to the project would be to
compare the results of the EfficentNet with an imple-
mentation of the EfficientNetV2. EfficientNetV2 in-
cludes data augmentation layers and we had promising
preliminary results for the base model.
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