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ABSTRACT
The traditional image classifiers are not capable to verify if samples belong to specified classes due to several rea-
sons: classifiers do not provide boundaries between in-class and out-of-class samples; although classifiers provide
separation boundaries between known classes, classifiers’ latent features tend to have high intra-class variance;
classifiers often predict high probabilities for out-of-distribution samples; training classifiers on unbalanced data
results in bias towards over-represented classes. The nature of the class verification problem requires a different
loss function than the ubiquitous cross entropy loss in traditional classifiers: input to a class verification function
includes a suggested class in addition to an image. As opposed to outlier detection, space is transformed to be
not only separable, but discriminative between in-class and out-of-class inputs. In this paper, class verification
based on a euclidean distance from the class centre is proposed and implemented. Class centres are learnt by
training on a centre loss function. The method’s effectiveness is shown on a self-checkout image dataset of 194
food retail products. The results show that a two-fold loss function is not only useful to verify class, but does not
degrade classification performance - thus, the same neural network is usable both for classification and verification.
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1 INTRODUCTION

Real-world computer vision tasks include a need to
verify claims that an image contains a claimed type of
object. A popular research area of class verification is
face verification ([1], [15], [18], [14], [21], [5], [13]),
where a class represents a person. In face verification,
the computer vision task is to verify if a person in an
image is the same person he/she claims to be. The
negative samples are usually ID of another person than
in the image. Another popular research area in class
verification is predicting image authenticity, given
an image and a class in that image ([8], [11]). The
negative examples are usually images generated by
conditional generative adversarial networks (GAN).

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

In food retail self-checkouts, a computer vision task
attempts to check if a product in an image is the same
product as a customer’s chosen one. Negative samples
are images of products other than the customer’s choice.

The class verification task is a binary classification task
that takes two inputs: an image and a label ([21], [2]).
A label is one of the trained classes. An image contains
one of the following: a) an object of the same class
as the label b) an object of a different trained class
than the label or c) out-of-distribution input (OOD -
any object of the unknown class or no object at all).
The goal of the class verification task is to separate
a) ("Correct") from the rest ("Incorrect") - whether an
object in an image belongs to the claimed class or not.
Class verification does not need to distinguish between
b) and c) - whether an object in an image is of any
other known class, or an unknown class, or does not
contain an object at all.

The class verification task differs from other classic
computer vision tasks - classification and detection.
Multi-class classification algorithms predict the dis-
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tribution of probabilities only among a list of known
classes. An image containing an object of an unknown
class passed to a classification neural network leads
to unpredictable results, whereas the class verification
task requires it to be rejected as "Incorrect" no matter
what label is passed as input. Passing an image
containing a known class’ object to a classifier is
likely to yield a higher probability for the correct
class. Still, the probability boundary that separates
correct class from incorrect is unknown. Thus, clas-
sification networks cannot be used for verifying class
identities directly. Detection networks usually consist
of two steps: 1) predicting object patches with the
highest objectness probabilities (whether an object of
a known class exists) and 2) predicting probability
distributions of the patches between the known classes
(classifying). Thus, detection algorithm errors in
predicting objectness are penalized differently from
errors classifying known objects. Nevertheless, class
verification tasks are indifferent to the existence of
objects other than the claimed class. Training detection
networks require labels with bounding boxes around
the objects, but class verification tasks are indifferent
to object location within images - both during training
and inference. Detection networks usually classify
image crops having the highest objectness scores in a
similar way as classification networks: they distribute
class probabilities among the list of known classes.
Therefore, a similar lack of boundary between correct
and incorrect classes in detection networks makes them
directly unusable to verify classes.

Despite the lack of proper loss function for verifying
classes in image classification and detection neural
networks, their ability to extract image features has
been widely demonstrated [25], [19], [10]. Knowledge
transfer is widely used between different tasks. There-
fore, the backbones of neural classification or detection
neural networks are likely useful in class verification if
the loss function is changed.

Class verification task relates to conditional outlier
detection task ([16], [17]). Outlier detection algo-
rithms draw a boundary between in-distribution and
out-of-distribution samples, and judge new samples
based their relation to that boundary. However, outlier
detection tasks do not make an explicit attempt to
transform space in such a way that all samples (of a
single class) are placed nearby.

Class verification task has a wide variety of applica-
tions. In the context of face verification, the suggested
class comes from a presented ID, which must be
confirmed by class verification. In the context of
self-checkouts, the suggested class is a customer’s

chosen product from a picklist menu, which must be
confirmed by class verification.

2 RELATED WORKS
Images are multi-dimensional data points that must be
reduced in dimensionality prior to applying machine
learning techniques. The most common by far are con-
volutional neural networks. [24], [4] use a fully con-
nected layer of a classifier.

Outlier detection estimators judge samples by
learnt boundary between in-distribution and out-of-
distribution samples. Boundary shapes differ by
method: robust covariance [17] learns ellipsoid-,
one-class SVM [7] learns hyperplane-, isolation forest
[6] learns any-shaped boundaries. This research uses a
simple hypershere-shaped boundary. However, our loss
function pushes latent space variables of any class to
the same point ("class centre"), thus a centre-enclosing
hypersphere-shaped boundary suffices.

The class prototype is a generalization of multiple data
samples of a single class. Multiple research attempts
have been made to derive a class prototype given a set
of data samples. [9] uses the term "class prototype
in a semantic space", which is category vectors (one
per category). They construct the category vectors by
using auxiliary textual information about the classes of
interest. We do not use any textual or other information
about the classes to train category vectors - mostly
because discriminative textual information is not easily
obtainable for the country-, chain-, or store-specific
classes of self-checkout products.

A typical task of class verification is a well-researched
face verification. Siamese network in [18] effectively
learns a distinction function - whether two images be-
long to the same class (person) or not. It consists of two
identical networks with shared weights and a distinction
layer that measures the euclidean distance between em-
beddings of a fully connected layer. A similar concept
is employed in Triplet Loss [14], except it uses three im-
ages to calculate a loss function: an anchor, a positive
(same class/persons’) and a negative (another person’s).
The Anchor+Positive pair is trained to output an op-
posite value than the Anchor+Negative pair. Both dis-
tinction function-based methods - Siamese and Triplet
- require reference images (or their embeddings) during
inference. Although that’s usually satisfiable when a
number of images per class is small, using big training
datasets faces several challenges: first, different refer-
ence images lead to different verification results; sec-
ond, inferring against multitude of reference images is
rarely feasible due to performance and storage reasons.
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Research in artificial intelligence safety attempts to ver-
ify if the input is consistent with known (in-distribution)
samples. Deep Verifier Networks (DVN) [2] use an
autoencoder’s latent layer’s activations to estimate the
density of known samples. Samples with latent activa-
tions inconsistent with the density model are rejected
as adversarial. DVN does not attempt to model latent
space where intra-class samples are clustered together.
Thus DVN does not derive class prototypes. Since our
"adversarial" samples are images of other than the de-
clared class, we suggest that deriving a class prototype
is meaningful.

Another way to verify class is to derive a class proto-
type during training and then compare an input sam-
ple against the prototype during inference. The Dis-
criminative Feature Learning [21] derives a class cen-
tre using a neural net’s latent layer’s activations. They
use a two-fold loss function: one member is a stan-
dard classifier’s cross-entropy loss; another is the eu-
clidean distance from a class prototype’s centre. Class
centres are updated in every iteration, thus "learned".
Training such a two-fold loss function pushes the la-
tent layer activations closer together for samples of the
same classes. The first member of such a loss function
- cross-entropy - ensures that different class centres are
separable, i.e. do not regress to the same point. They
perform extensive experiments to pick the best weight
between the summands of the loss function. In this arti-
cle, authors use the same two-fold loss function (Eq. 1)
in the experiments. In addition, authors perform experi-
ments on the best size of the latent layer. Discriminative
Feature Learning focuses on verification and only uses
cross-entropy loss to separate class centres but does not
provide classification results. We recognize that classi-
fication results are as important as verification results,
thus provide both and compare classification-only ver-
sus classifier-plus-verifier results.

The loss function of class-prototype-based methods
measure the distance between class prototype’s and a
sample’s embeddings. SphereFace [13], ArcFace [5]
measure the angular distance between class prototype’s
and sample’s embeddings, then modify cross-entropy
loss function to use angular distances. They show
better discrimination of inter-class features than regular
cross-entropy. Their unifold loss function does not
allow to adjust classification vs. verification relative
importance, but this research’ loss function (Eq. 1)
allows it using λ hyperparameter. Since this research’
primary focus is verification, and authors only include
cross-entropy loss in order to preserve class separa-
bility, i.e. not to regress all class centres to the same
point, it is important to adjust this relative importance.

3 METHODS

3.1 Dataset

Authors used the same dataset of retail products in the
self-checkout environment as in their other research ar-
ticles [3] and [4]. The dataset contains 194 different
food retail products that do not usually carry barcodes.
Thus, they need to be identified using different methods
at the time of checkout. The training dataset was bal-
anced by data augmentation and contained roughly 10K
different images per class, most being augmented varia-
tions of original images. Neither the testing nor training
set included out-of-distribution samples - samples of
unknown classes. All the negative samples (i.e. "Incor-
rect" selections) were generated by labelling an image
with one of the available classes other than the correct
class. Out-of-distribution samples were not included
due to difficulties in collecting them. Authors recog-
nize that including out-of-distribution samples might be
helpful in further research.

3.2 Architecture Details

Authors started architecture experiments with their own
individual class classifier’s backbone that is explained
in detail in [3]. The classifier’s backbone contains 7
convolutional and 2 dense blocks. Each block contains
a Convolutional or a Dense layer, followed by a Batch-
Norm layer, followed by a ReLU activation. Each con-
volutional layer is followed by a MaxPool layer. It was
shown to perform in other research papers [3] and [4]
on the same self-checkout dataset. Presumably, this im-
plies that the architecture is fit to carry enough infor-
mation through the network layers about the classness
of sample images. In addition, the architecture contains
little parameters (3.2mln) compared to leading architec-
tures on big sets like ImageNet - CoCa [22] (2100mln),
ViT-G/14 [23] (1843mln), EfficientNet [20] (11mln and
up).
In addition to the original classifier, the authors added
a Center Loss layer (explained below) and an Extra
Dense layer. The final model architecture is shown in
Fig.1. Experiments were performed, and results were
reported using different sizes of the Extra Dense layers.
Training without the Extra Dense layer did not saturate
the loss function.

Figure 1: Model architecture
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3.3 Center Loss layer
The Center Loss (CL) layer takes two inputs: activa-
tions ∈ Rm∗cnt (m - number of minibatch samples; cnt
- count of neurons in the extra dense layer) and image
labels (m one-hot vectors). It has an internal parameter
of class centres ∈ Rn∗cnt (n - number of classes). The
output of the CL layer is the difference vector ∈ Rm∗cnt

between samples’ corresponding class centres and sam-
ples’ activations of the extra dense layer.

3.4 Loss function
The class verification task’s loss function should return
a high value when the image does not contain an object
of the claimed class and a low value when it does.
Authors suggest a concept of a class centre (or a class
prototype) - virtual data points in latent space, one per
class. The design of the loss function was twofold:
first, the intra-class proximity had to be developed;
second, the inter-class difference had to be preserved.
Such a loss function allows verifying if the sample
belongs to the class based on its distance from other
samples of that class.
The entire loss function (Eq. 1) is a weighted sum of
Cross Entropy loss and Center loss, having a relative
weight hyperparameter λ .

L = LS +λ ∗LC (1)
where:

L−Total Loss
LS − Cross Entropy Loss of Softmax
λ − Center Loss weight (hyperparameter)
LC − Center Loss

Cross Entropy loss (Eq. 2) preserves differences be-
tween classes. Without Cross Entropy loss, the centres
of all classes are likely to regress to one point. Cross
Entropy loss does not minimize differences between
various samples of the same class.

LS =−
m

∑
i=1

log
eW T

yi
∗xi+byi

∑
n
j=1 eW T

j ∗xi+b j
(2)

where:
LS −Cross Entropy Loss of Softmax
m−Number of samples
n−Number of classes
xi − i-th sample’s activations extra dense layer
yi − i-th sample’s label
W ∈ Rcnt∗n −Weights, last dense layer
b ∈ Rn −Biases, last dense layer
cnt −Count neurons, extra dense layer (hyper-p)

Center Loss (Eq. 3) aims to minimize the distance
between various intra-class samples. A concept of
the class centre is introduced: it is an average vector
of all samples in that class of the extra dense layer’s
activations. The sample’s distance from the class centre
is calculated as L2 norm of the difference between the
sample’s and the class centre’s vector. Although other
distance types than Euclidean are available, authors
limited this research to L2 only.

LC =
1
2

m

∑
i=1

∥xi − cyi∥
2
2 (3)

where:
LC −Center Loss
m−Number of samples
xi − i-th sample’s activations of the extra dense layer
yi − i-th sample’s label
cyi −Center of the yi-th class

Whereas centre loss attempts to minimize the distance
between a "class centre" and samples of that class, it
does not attempt to maximize inter-class distances. Al-
though it is possible extending the loss function to pun-
ish low inter-class distances would result in an even
better separation of classes, authors left it out of this
research.

3.5 Training Details
The Center Loss layer did not have any trainable pa-
rameters updateable by gradient descent. Yet, the in-
ternal parameter of class centres was updated in each
iteration: only centres of the classes represented by the
samples in a minibatch were updated, whereas unrepre-
sented class centres were left untouched. Class centres
were updated as shown in Eq. 4.

Center =Center+α ∗ (Activations−Center)
(4)

where:
Center− center of a a sample’s class ∈ Rcnt

Activations− extra dense layer’s activations ∈ Rcnt

α − center’s learning rate (hyperparameter)
cnt − count of neurons extra dense layer (hyper-p)

Authors trained for up to ten epochs with a patience cri-
teria of five epochs (i.e. training was stopped and best
weights restored if the five last epochs of training did
not improve the validation loss function value). Train-
ing on a relatively big training set of two million images
(about 10 thousand per class) usually saturated in the
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first 1-2 epochs. Therefore a maximum of 10 epochs
was never reached. The criteria for the best weights
selection and early stopping was total validation loss,
which is the sum of Softmax layer loss and Centre loss.
Adam [12] optimizer with a default learning rate of
0.001 was used.
Authors had to choose a proper λ value (relative weight
of Centre loss vs Softmax’ loss). The value was chosen
0.1 from previous experiments [21]. Finding the best
value of λ was left out of scope of this paper and needs
to be investigated in further research.
The training was executed on a GPU Nvidia Tesla
V100-SXM2-32GB. The training duration of 1 epoch
on about two million images varied between 45 and 55
minutes.

3.6 Testing Details
For every test image, authors measured the distance
from every class centre. That gave m∗n measurements
(m - dataset size; n - number of classes), of which m
were positive ("Correct" selections) and m ∗ (n − 1)
were negative ("Incorrect" selections). The results
were calculated by giving weight (n−1) to the positive
measurements so that the "Correct" and the "Incorrect"
classes were balanced. The test set did not contain
any out-of-distribution (OOD) samples, i.e. samples
outside the known list of classes.

4 RESULTS
The main result in Table 1 shows class verification
Equal Error Rate (EER, or Error Rate@False Posi-
tive Rate=False Negative Rate) and Receiver Operating
Characteristic’s Area Under Curve (ROC AUC). Au-
thors exclude neuron counts before near-saturation was
reached.

Neuron Count EER ROC AUC
2048 0.073 0.978
1536 0.073 0.978
1024 0.076 0.976
768 0.073 0.979
512 0.076 0.974
256 0.110 0.956

Table 1: Equal Error Rate (EER) and ROC Area Under
Curve (AUC) for various neuron counts in Extra Dense
layer

Figure 2 displays ROC curves for various distances
from centre thresholds and for various number of
neurons in the extra dense layer. ROC Area Under
Curve saturates when the Center Loss layer reaches
approximately 512-768 neurons.

Figure 2: Receiver Operating Characteristic (ROC)
curves for various numbers of neurons in the extra
dense layer

Figure 3 shows ROC AUC’s experimentally found
dependency on the number of neurons in Extra Dense
layer. AUC climbs steeply until it saturates at about
512 neurons. An increase in neuron count above 512
does not improve AUC.

Figure 3: ROC Area Under Curve (AUC) dependency
on the number of neurons in the extra dense layer

Figure 4 depicts the accuracy of the individual class
classification. The original classifier performed at
73.2% accuracy on the validation set. Authors ex-
pected that an additional component of Center Loss
in the Loss function would decrease the accuracy of
individual class classification. However, the graph
shows approximately the same individual classification
accuracy when the Extra Dense layer contains at least
8 neurons: 73.2%±0.8%.

Figure 5 shows the relative importance of the Loss
function summands: LS (Softmax’ cross-entropy loss)
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Figure 4: Classification accuracy dependency on the
number of neurons in the extra dense layer

Figure 5: Loss (Softmax and Center) relative values and
dependency on number of neurons in the extra dense
layer

and LC (CL layer loss). The Softmax’s cross-entropy
loss gains minimum value at approximately 8-16
neurons in the Extra Dense layer, then stays at about
the same rate upon adding more neurons. This relates
to the fact that classification accuracy also saturates at
about the same 8 to 16 neurons. Center Loss obtains
its minimum values between 8 and 128 neurons, then

Figure 6: Figure 6: Distance distribution of CL layer activations from the same (Correct) vs other (Incorrect) class centres

rises steeply outside this range, mainly due to rising
dimensionality of space where distances are calculated.

Figure 6 depicts sample distance distributions for the
selected number of neurons in the Extra Dense layer.
The separation between distances from samples’ own
class centres ("Correct" classes) versus from other class
centres ("Incorrect" classes) increases with the increase
of neurons in the Extra Dense Layer until saturation
is reached. The mean distance of both - Correct and
Incorrect - increases with the number of neurons.

Figure 7 shows sample images and their distances from
selected class centers. Threshold at Equal Error Rate
(Thr.@EER) mark separating line between positive
(below the line) and negative (above the line) verifi-
cation result, when False Positive Rate equals False
Negative Rate.

4.1 Architecture experiments
Authors performed experiments without the Extra
Dense layer shown in Figure 1. With Extra Dense
excluded, training did not saturate the loss function
and did not achieve satisfiable separation in distances
between "Correct" and "Incorrect" classes.
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Figure 7: Sample images and their distances from selected class centers

6 CONCLUSIONS
Our work reinforces the value of using the Center Loss
function to verify sample’s belonging to a class. In a
self-checkout products dataset we received 92.7% veri-
fication accuracy (at Equal Error Rate). Authors discov-
ered that adding a centre loss function to discriminate
class features did not negatively affect classification ac-
curacy: 73.2%±0.8% (vs 73.2% without Center Loss).
Thus the same neural network can be used both for clas-
sification and verification without sacrificing accuracy.
We showed a minimum number of neurons is neces-
sary for both classification accuracy and class verifica-
tion accuracy to saturate. Once saturated, adding more
neurons does not improve classification or verification
accuracy.
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