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ABSTRACT 
Image colorization is a challenging problem due to the infinite RGB solutions for a grayscale picture. Therefore, 

human assistance, either directly or indirectly, is essential for achieving visually plausible colorization. This paper 

aims to perform colorization using only a grayscale image as the data source, without any reliance on metadata or 

human hints. The method assumes an (arbitrary) rgb2gray model and utilizes a few simple heuristics. Despite 

probabilistic elements, the results are visually acceptable and repeatable, making this approach feasible (e.g. for 

aesthetic purposes) in domains where only monochrome visual representations exist. The paper explains the 

method, presents exemplary results, and discusses a few supplementary issues. 
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1. INTRODUCTION & MOTIVATION 
Image colorization, i.e. reconstructing color images 

from monochrome ones, is an ill-posed problem due 

to the infinite number of RGB solutions for a grayscale 

picture. Nonetheless, this topic holds notable practical 

and commercial significance, particularly in the 

restoration of historical photos and movies being the 

primary application, e.g. [Zeg21], [Sal22]. 

In the past two decades, many papers have proposed 

diverse algorithms for reconstructing color images or 

movies from their monochrome counterparts. Initially, 

the methods were mainly semi-automatic. Users 

would provide exemplary images to guide the 

algorithm in coloring images with similar contents and 

contexts, primarily using similarly textured patches, 

e.g. [Iro05] and [Gup12]. Alternatively, monochrome 

images can be manually “scribbled” to indicate   

approximate colors over a number of significant 

locations, e.g. [Lev04], [Lag08].  

More recently, advanced machine learning has 

enabled fully automated image colorization, with 

coloring patterns learned from relevant images rather 

than human-provided hints. 

.

 

Typically, the patterns are derived from images of 

specific domains, e.g. [Des15], [Hwa16], [Zha16]. 

A more comprehensive system is described in [Iiz16], 

which learns scene recognition, local priors, and mid-

level features from nearly 2.5 million training images. 

The results are impressive on test images of scenes (if 

their semantics are correctly recognized). Existing 

commercial systems (e.g. [Sal22]) generally follow 

the same concepts.  

In an alternative approach, machine learning can be 

used to identify colorization statistics (instead of direct 

coloring), as in [Des15] and [Roy17]. Automatic 

image colorization across multiple domains (transfer 

learning) is more challenging, and [Lee22] is the first 

work with limited but convincing results. 

In summary, all the methods mentioned above (and 

many other approaches not discussed here) are 

assisted by humans, either by providing colorization 

hints or relevant training data for ML algorithms. 

Therefore, the proposed objective of this paper seems 

slightly audacious (if not impossible). Our intention is 

to develop a mechanism for unguided automatic image 

colorization without additional metadata, assistance, 

learning processes, or domain identification. In other 

words, we aim to create an acceptable colored 

counterpart using only a grayscale image as the data 

source. By "acceptable," we mean visually attractive 

results that are statistically repeatable and deliver 

convincingly rich sensations of colors (excluding 

pseudo-coloring, as in thermographic cameras). 
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In domains of visual-frequency grayscale images, 

such a problem is rather marginal, but there are areas 

where only single-channel visualizations actually 

exist, such as IR/UV/US/MRI/X-ray images. In such 

cases, we would like to see hypothetical RGB versions 

of those "gray worlds" for various reasons, even if it is 

only for aesthetic purposes (see Fig. 1). 

Section 2 of the paper discusses a number of 

assumptions and models adopted in the proposed 

solution. Further implementation details of the 

developed algorithms are included in Section 3. 

Section 4 presents diverse examples of obtained 

results, with corresponding explanations. The final 

Section 5 contains conclusions, discusses some 

supplementary issues, and highlights directions for 

future work. 

2. PROPOSED METHODOLOGY 

Using rgb2gray models in colorization 
Colorization methods generally assume that grayscale 

image values represent the luminance channel of the 

colored outputs, requiring reconstruction of only two 

chrominance channels. However, few papers on image 

colorization consider the opposite question: how the 

original RGB image (real or hypothetical) was 

decolorized to obtain a grayscale image. 

Standard RGB-to-grayscale models (YUV and YIQ) 

apply linear functions of primary colors: 

R G BY k R k G k B              (1) 

where kR = 0.299, kG = 0.587 and kB = 0.114 (or 

kR = 0.2126, kG = 0.7152, kB = 0.0722). 

Other rgb2gray models with arbitrarily assumed kR, kG 

and kB coefficients (subject to 1R G Bk k k   ) 

produce alternative monochrome images (see 

Figs 2b,c,d) from which various re-colorizations can 

be hypothetically reconstructed (Figs 2e,f,g). 

Therefore, in the proposed colorization scheme we 

first assume that: 

Monochrome images are derived from (real or 

hypothetical) color images by an rgb2gray model 

with arbitrarily assumed kR, kG and kB coefficients. 

Such an assumption is justified because for problems 

with only hypothetical existence of color images (as in 

Fig.1), any rgb2gray model can be assumed, as long 

as the colorization results are visually appealing. 

 

Colorization of pixels 

2.2.1. Individual pixels 
Assume that colorized monochrome images are 

obtained using known rgb2gray model. 

Given a single (x,y) pixel with I(x,y) intensity from 

[0:255] discrete range, its colored counterpart should 

approximately satisfy (subject to color discretization): 

𝐼(𝑥, 𝑦) ≈ 𝑘𝑅𝑅(𝑥, 𝑦) + 𝑘𝐺𝐺(𝑥, 𝑦) + 𝑘𝐵𝐵(𝑥, 𝑦)        (2) 

Since the adopted rgb2gray model might be 

inaccurate, we can use reduced numbers of colors (e.g. 

32 levels instead of 256) without affecting 

significantly Eq. 2. 

Eventually, all 323 = 32768 colors are assigned to 

various intensities, based on the smallest error in 

Eq. 2. The numbers of colors assigned to a single 

intensity are non-uniformly distributed. Fig. 3 

contains the actual numbers for two exemplary 

rgb2gray models: [0.299, 0.587, 0.114] and 

[0.69, 0.12, 0.19]. 

It shows the widest selection of color options for mid-

range intensities, with the numbers gradually 

dwindling for darker/lighter values to, eventually, a 

deterministic choice for extremely dark/light 

intensities. With no prior information provided, all 

available colors should be considered equally 

probable, i.e. ( | ) 1/jp C I N , where N indicates the 

number of colors assigned to I value. 

Fig. 4 displays the pool of colors (under two rgb2gray 

models) for selected values. 

2.2.2. Neighboring pixels 
If a pixel at (x,y) has an intensity of I but has not been 

assigned a color yet, the probabilities of colors that 

could be assigned to I should be influenced by the 

  

  

Figure 1. Examples of visually convincing 

colorizations of infrared images. 

 
(a)                      (b)                      (c)                      (d) 

   
(e)                       (f)                      (g) 

Figure 2. B/w versions of (a) by various rgb2gray 

models (b, c, d). Perfect re-colorizations of (b) 

using alternative rgb2gray models (e, f, g). 
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presence of a neighboring pixel with an intensity I1 

and its already assigned 
1I

C  color. 

 

 

Therefore, we propose a simple heuristic rule: 

The greater the difference in brightness between 

adjacent pixels, the higher the likelihood that their 

assigned colors will also differ significantly. 

Let’s consider the pool of colors available for the 

intensity level I: 
1 2{ , ,..., }N
I I IC C C . They are arranged 

in a monotonically increasing order based on their 

distance from the color 
1I

C  of the adjacent pixel. 

Fig. 4b shows the ordered lists for I = 208, assuming 

that a neighboring pixel of an intensity I1 = 46 was 

assigned the RGB color 
1

[20,42,137]IC  . 

Then, we select the color CI from the list using a 

uniform distribution which is defined over certain 

fragments of the list, depending on the difference in 

intensity levels 1( )abs I I . We tested several 

options, but eventually implemented a heuristic 

approach where the CI color is randomly selected from 

the maxmin ,
ii

I IC C   range specified by the indexes imin 

and imax given by Eq. 3.  

  

  

min

max

1

max 1, ,

min , ,

( )
where     min 1,

128

i round diff

i N round diff

abs I I
diff N

 



 
   

 

       (3) 

In some cases, the choice is deterministic (formally 

represented by the max mini i  condition), e.g.: 

 White/black pixels are always colored using the 

brightest/darkest color. 

 If neighboring pixels have the same brightness 

their colors are also the same (this may later 

change later as discussed below). 

In the implementation of the method, images are 

colored incrementally (see details in Section 3) and it 

may happen that an uncolored pixel has several 

already colored neighbors. Then, the color selection 

can be performed several times for that pixel, and the 

final choice is a weighted sum of the colors obtained 

from all colored neighbors. 

1

1
   where   1,2,3 or 4

j

M

I I
j

C C M
M 

         (4) 

In this way, we can get more colors than a limited pool 

of 32768 colors initially assumed in Section 2.2.1. 

3. IMPLEMENTATION DETAILS 

Initialization procedure 
Colorization of monochrome images is performed 

incrementally, starting from a number of initially 

colored pixels. In the simplest case, it can be even a 

single pixel. 

The proposed options that do not require human 

assistance for the initial list (queue) of colored pixels 

are: 

a) The darkest/brightest pixel of the image. Because 

its color is usually deterministic (see Section 2), 

no human assistance is needed. 

b) As in (a), but the list contains all darkest or 

brightest pixels (or both). 

Image colorization 
The image colorization method is actually a 

randomized variant of a popular flood-fill algorithm 

(in the queue-based version). 

We randomly select a pixel from the current list L of 

colored pixels and colorize its uncolored neighbors 

using the method outlined in Section 2.2.2. This way, 

 

Figure 3. Numbers of RGB colors (out of the 

total number of 32768) assigned to intensities 

in two rgb2gray models. 

 

 
(a) 

 

 
(b) 

Figure 4. Colors assigned to (a) 46 and (b) 208 

intensities in the [0.299, 0.587, 0.114] and 

[0.69, 0.12, 0.19] rgb2gray models. Note the 

inconsistencies with human perception of 

brightness in the second model. 
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the colored patch grows randomly, avoiding 

unnecessary regularities in the colorization process 

(see Fig. 5). 

 

4.3.1. Final touch ups 
As highlighted in Section 2.2.1, pixels are initially 

colored using a limited set of 32768 colors.  

However, additional colors can be introduced when 

the colors assigned to pixels are averaged by Eq. 4 (i.e. 

a colorized pixel has more already colored neighbors). 

We further increase the diversity of colors by 

projecting them on planes of rgb2gray models. 

Given a pixel with the original I intensity and the 

assigned color IC , we find its closest counterpart 

modIC  on the selected rgb2gray plane (Eqs 1 and 2). 

Such modifications may not noticeably change 

colorized images when projected onto the plane of the 

original rgb2gray model (Figs 6a and 6b), but they can 

enhance the visual plausibility of colorized images 

when projected onto the YUV plane (Fig. 6c). 

 

4. EXPERIMENTAL RESULTS 
The proposed methodology incorporates several 

heuristics, arbitrary assumptions, and probabilistic 

schemes. Therefore, evaluating its performance and 

practicality requires extensive experimentation. 

Unfortunately, popular image similarity metrics 

cannot be used because the ground-truth color images 

are assumed to be nonexistent. 

Therefore, we evaluate the results using subjective 

criteria as a preliminary approach. We consider two 

evaluation criteria: 

 Visual plausibility, without considering domain-

based realities (e.g., grass of any color can be 

accepted if convincingly rendered). 

 Repeatability under the same the same rgb2gray 

model (see Section 2) and the same initialization 

mode (see Section 3). 

Due to page limitations, we include only a selection of 

results in this section to illustrate the presented 

conclusions. For example, we only consider three 

rgb2gray models. A more extensive summary of the 

results is provided in the supplementary materials. 

Datasets 
We use a diversified collection of monochrome visual-

frequency, IR, and other images. For the visual-

frequency images, we show their ground-truth colors 

(if available) for information purposes only and do not 

use them to evaluate colorization quality. 

The images are sourced from personal resources and 

public databases. As no benchmarks (to the best of our 

knowledge) exist for the discussed topic, we have 

selected the databases somewhat arbitrarily. The 

visual-frequency images (converted to monochrome) 

mainly come from well-known UKBench and SUN 

databases. The IR images are primarily selected from 

CAMEL [Geb18] and SMD [Pra17] datasets, while 

examples of other non-visual images (e.g., MRI, X-

ray, etc.) come from various sources. 

Parameters of colorization 
Altogether, 4851 rgb2gray models were considered, 

corresponding to a sampling of the model coefficients 

with a 0.001 increment, but in the end, only three 

models were selected for the experiments reported in 

the paper, namely: 

i. kR = 0.299, kG = 0.587 and kB = 0.114, i.e. the 

standard YUV model accurately converting 

colors into a subjective perception of brightness. 

ii. kR = 0.301, kG = 0.387 and kB = 0.302, which is 

similar to a simple mean of primary colors. 

iii. kR = 0.69, kG = 0.12 and kB = 0.19, a model with 

deliberately unrealistic coefficients. 

As discussed earlier, three initialization variants are 

considered, i.e. (a1) a single darkest pixel, (a2) a 

single brightest pixel and (b) all darkest and brightest 

pixels. By considering three initialization variants, a 

single run of the colorization algorithm can produce 

nine results (all possible combinations of rgb2gray 

models and initialization options). 

Visual plausibility 
The YUV-based rgb2gray model produces the best 

plausibility in the sense that all details from grayscale 

images are equally clearly seen (sometimes even 

overexposed) in their colored counterparts. This is not 

surprising because this model provides the best 

compatibility between colors and their brightness 

perception by human eyes. 

Results of the second model are still acceptable, but 

not all details of the original contents can be as clearly 

seen as in the first model. 

For the third rgb2gray model, colors are usually 

assigned to intensities in such a way that human eyes 

can hardly identify the image details. 

      

      

Figure 5. Random growth of the colored patch. 

   
(a)                      (b)                       (c) 

Figure 6. The colorization results (a) and their 

projection on the original rgb2gray plane (b) 

and on the YUV plane (c). 
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Fig. 7 shows exemplary colorization results for 

selected IR and visual-frequency images by the three 

models. It can be noticed that the richness of colors is 

satisfactory in all three models. 

Altogether, we can preliminarily conclude that the 

plausibility of colorization depends strongly on the 

selected rgb2gray model; the more “natural” the 

model, the better. 

Plausibility by repeatability 
We found that the plausibility of colorization can be 

improved by averaging several runs of the algorithm 

with the same rgb2gray model and initialization. 

Surprisingly, such averaged images do not converge 

to grayscale, as intuitively expected (since colors are 

assigned to intensities using probabilistic heuristics 

with uniform distributions).  

Instead, as seen in Fig. 8, we get visually attractive 

images with diversified coloristics (although the 

colors are usually less saturated than those from 

individual runs of the algorithm). 

What is even more interesting, the averaged images 

obtained with the same rgb2gray model (regardless of 

the initialization) are usually quite similar. Examples 

are provided in Fig. 9. 

Thus, we cautiously hypothesize (and preliminary 

theoretical results seem to confirm this hypothesis) 

that unique image colorizations for the selected 

rgb2gray model might objectively exist. Nevertheless, 

further experimental and theoretical research on this 

topic is needed. 

5. CONCLUDING REMARKS 
In this paper, we attempted to handle the ill-posed 

problem of colorizing grayscale images without any 

(direct or indirect) human assistance. We only assume 

that a hypothetical decolorization model is given. 

Initially, we use a limited number of 323 colors, but 

the algorithm can subsequently use the full sRGB 

gamut of colors. 

The colorization process is performed using a 

randomized flood-fill method, starting from the 

darkest/brightest pixels for which the choice of color 

is deterministic. Subsequently, simple probabilistic 

heuristics are applied to incrementally colorize other 

pixels. 

In spite of the heavy presence of randomizing factors, 

the results are surprisingly repeatable, depending on 

the adopted rgb2gray model and (to a rather 

insignificant extent) on the applied initialization 

mode. We even cautiously hypothesize that for the 

adopted rgb2gray model, unique optimum 

colorizations may exist for monochrome images 

(possibly with some additional limitations). 

  

The method is primarily intended for colorizing 

grayscale images for which there are no physical color 

counterparts. In other words, we aim to produce 

convincingly rich colorized versions of "gray worlds". 

This may be required for various reasons, even if only 

aesthetic. 

Nevertheless, many visual-frequency images are used 

in the experimental work to better highlight the 

 

 

 

  

    

  
      B/W          mod. (i)      mod. (ii)        mod. (iii)     original 

Figure 7. Selected b/w images and their colorized 

samples for three rgb2gray models. For visual-

frequency images, the original color versions are 

also included. 

 

 

 

 

    

     
      B/W          mod. (i)      mod. (ii)        mod. (iii)     original 

Figure 8. Results for Fig. 7 with colors averaged 

over 10 runs (with the same model and 

initialization mode). 
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differences between our approach and the 

“traditional” re-colorization. 

In the future work we intend to focus on the following 

aspects of the project: 

 A formal analysis of the statistical properties of 

the method (including alternative probability 

distributions used in the adopted heuristics). 

 The development of metrics for objectively 

estimating the quality of colorization results (e.g. 

[Has03]). 

 Extension of the method to unguided colorization 

of monochrome movies. 
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(a1) initialization from the darkest pixel 

  
(a2) initialization from the brightest pixel 

  
(b) initialization from all darkest and brightest pixels 

    
    mod. (i)        mod. (i)        mod. (ii)      mod. (iii)     mod. (iii) 

Figure 9. Colorizations for various initializations 

using the same rgb2gray models. The results are 

averaged from 75 runs of the algorithm. 
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