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Abstract:  
In this paper the theoretical basis and the algorithm of new method of electronic integrated circuit analysis and 
optimization in the frequency domain based on the multiparameter, large-change sensitivity conception and 
symbolic description of chosen two-ports have been presented. The method consists in determination increments 
in value of network functions caused by admittance changes of reactance elements as well as chosen two-ports, 
resulting from the frequency changes. The admittance two - ports, embedded in the main integrated circuit, have 
been divided into two groups:  one - element two - ports and multi - element two - ports. For faster computer 
processing, the last ones have been described, symbolically. The main idea of the method proposed relies on it, 
that in first step the value of the network function is calculated at the first frequency, and then for every 
consecutive frequencies its increment, caused by admittance vector change of electronic circuit, is determined, 
only. It was shown, that its effectiveness is greater than traditional methods, especially in the case of circuits, in 
which the number of nodes of a network exceeds the number of the reactive elements as well as is growing 
together with the growing of number of frequency points. It was shown that numerical efficiency of this method 
can be speed up significantly by using special acceleration algorithm. Thanks to the symbolic description of 
some two-ports the effectiveness of this method has been increased considerably. Basing on this method the 
optimization task has been formulated and the example of optimization of integrated acoustic corrector with 
passive subcircuits described symbolically has been also included. 
 

INTRODUCTION 

Nowadays arises problem – how to optimally design 
of integrated circuits with embedded passive 
modules, especially, in frequency domain. Good final 
projects in hybrid technology need exact and fast 
designing methods and tools. 
The frequency domain analysis (AC) is one of three 
basic analyses of electronic integrated circuits. At 
present, existing methods of the AC analysis differ 
each from other depending on the way of formulating 
circuit equations and the way of solving them. One of 
the most popular methods of formulating the set of 
equations, on account of its simplicity, is a nodal 
method (or its alteration so-called modified nodal 
method) [1, 2]. Also other methods are applied such, 
as the hybrid method, the state variable method or 
tableau method and their alterations (taking into 
consideration the sparseness of the circuit matrices or 
parallel processing). For solving the sets of circuit 
equations, the traditional numerical exact or iterative 
methods of solving linear systems of equations such, 
as the methods of Gauss, Gauss – Jordan, LU – 
factorization or Gauss – Seidel are used. Both 
operations are repeated for every frequency 
increasing in this way calculation time. The 
effectiveness of AC analysis becomes particularly 
important in case of calculations requiring multiple 
analyses, such as optimization or statistical analysis 
of large integrated circuits. Another approach to the 

AC analysis problem is symbolic methods [2], but 
they generate too long expressions in case of large 
integrated circuits. Therefore, some mixed numerical 
- symbolic methods can be a solution of this problem.  
In traditional approach to the AC analysis, all circuit 
elements are treated in the same way, independently 
on how big influence on frequency characteristics 
they have, whereas the essential influence have 
reactance elements such as capacitors and inductors.  
In this work, a new method, in which network 
function increment caused by admittance changes of 
reactance elements resulting from the change in the 
frequency has been taken into consideration, is 
presented. These admittance two-ports, extracted 
from the main circuit, have been divided into two 
groups: - one-element two-ports and – multi-element 
two-ports. For faster computer processing, the last 
ones have been described, symbolically. This 
situation occurs very often in RF systems being 
combination of large integrated circuits and passive 
circuits [3] embedded inside them. Direct connection 
separately designed modules can lead towards big 
errors because of mutual influences of these modules 
and parasitic [4, 5]. In order to take this effect into 
account, the definition of large-change, 
multiparameter sensitivity [6] has been used. The 
main idea of the method proposed relies on it, that in 
first step the value of the network function is 
calculated at the first frequency, and then for every 
consecutive frequencies its increment, caused by 



 

admittance vector change of electronic circuit, is 
determined, only. 

In Section 2 the theoretical background of the 
method is delivered. Section 3 details the main 
algorithm and efficiency of the new method 
compared to traditional ones. The acceleration 
algorithm for method proposed is delivered. In 
section 4 the computer optimization program based 
on new analysis method is delivered. In section 5 the 
computer program and three computational tests are 
described.  

THEORETICAL BACKGROUND OF 
METHOD 

Let the considered integrated circuit be represented 
by two-port shown in Fig. 1. Denote its input 
terminals as a pair β = (i1, i2) and its output terminals 
as α = (o1, o2).  
Suppose that the following two-ports are extracted 
from this circuit:  

a) one-element one-port called further as one-
element two-port (because of unification of 
terms), 

b) multi–element one-port called further as 
multi–element two-port. 

In both cases are possible two connections regard of 
ground node (see Fig. 2. and Fig. 3.). 
Let the k – th changed admittance yk (one-element 
two-port) be connected to pairs of nodes: ξξξξk = (ξk1, 
ξk2),  k = 1, 2,…, m, and the k – th changed 
admittance Yk (multi-element two-port) be connected 
to pairs of nodes: ξξξξk = (ξk1, ξk2),  k = m+1, m+2,…,   
m + M; total number of ports is N = m + M. 
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Fig. 1: Integrated circuit with extracted two-ports prepared for 

large-change sensitivity calculation  
 

yk  or Yk 

 
Fig. 2: One-element or multi – element two-port not grounded 

                              
yk  or Yk 

 
Fig. 3: One-element or multi – element two-port  grounded 
 

Let the network function being of our interested is 
H(p), where: p = [p1, p2,..., pN]  T – vector  of circuit 
parameters such as admittances of one-element two-
ports (capacitors and inductors) and multi-element 
two-ports. The increment in value of the H (p) 
function caused by the 'N' circuit parameters 
simultaneous changes can be written 

 
)()( 0 ppp HHH N −∆+=∆  (1) 

 
where: H0 – value of the function before any change, 
HN - value of the function after the change ‘N’ 
parameters caused by frequency increment,   

         
T
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for one-element two-ports the k-th parameter 
increment is equal to 
 

          capacitor    ,*
 inductor    ),/(*))*/((p

00
{ k

k
kk

Cj
Ljy

ω
ωωωω

∆
∆+∆=∆=∆  

(2a) 
 
 
 

where: 
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for multi - element two - ports: 
 

      (2b) 
 
where: Mmmmk +++= ,...,2,1

,  

M – number of multi-element two-ports, and 
 

  
 
(2c) 

 
is the admittance rational function of k – th two – 
port, given symbolically. In case of bigger circuit, 
this admittance can be described by some sequence of 
expressions (SoE) [5], xk – vector of parameters (such 
as R, C, and L) included in k – th two-port.  

The increment of function (1) can be calculated 
using concept of the two-port transimpedance [7] and 
its multiparameter large-change sensitivities [6, 8]. 

Two-port transimpedance and its properties  

In this work, the unified, called the transimpedance 
method is proposed for transimpedance determination 
[7].  
Definition 1.  Let Z denotes the inverse of the node 
admittance matrix: Y-1.  Let α = (α1, α2),   β = (β1, β2) 
be pairs of natural numbers, representing circuit 
nodes of ports α and β. The transimpedance is 
defined as 
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where: 
ji

z βα     
- is (αi, βj) entry of Y-1 matrix. 

Its numerical value can be determined by calculating 
the appropriate elements of the Y-1 matrix; for 
instance, by the matrix inversion process.  
Two-port transimpedance expresses the relation 
between the voltage responses in the port α and the 
current excitation in the port β. It can be explained 
using some circuit model. Let us consider the two - 
port shown in Fig. 4, in which the circuit resulted 
after extracting all passive two-ports, short – 
circuiting all independent voltage sources and open – 
circuiting all independent current sources is 
characterized by the transimpedance matrix Z. 
 
    
 
      
      
               

 
 

Fig. 4: Explanation of the transimpedance )( βα,Z  definition 

 
Port β = (β1, β2) is formed by extracting element yβ 

and port α = (α1, α2) is formed by extracting element 
yα. Dividing voltage Vα (measured at port α) by 
excitation current Iβ (at port β) we get the 
transimpedance from port β to port α:   
 

Vα / Iβ = )( βα,Z . (3b) 
As it was shown in [6], the transimpedance (3) has 
the following property - the increment of the two-port 
transimpedances due to the ξ - th admittance large 
change ∆yξ, is 

 
)()()(∆ βξ,ξα,βα, ZZKZ ⋅=
,
 (4a) 

where: ξ - ξ - th admittance port, 
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As we see, the increment of a two-port 
transimpedance )(∆ βα,Z due to ξ - th admittance 

large - change depends on three new transimpedances 
nominal and the increment ∆yξ. 

 We want to determine the increment 
)(∆ βα,Z when number ‘N’ admittances are changed, 

simultaneously. Taking into account the relationships 
mentioned above, it can be shown that the two-port 
transimpedances will be changed on each step, in 
accordance with the recurrent formula [6]:  

 

)()()()( 1111 βξ,ξα,βα,βα, −−−− += ξξξξξ ZZKZZ
 
 (5a) 

ξ = 1, 2,… ,N,  

 
where: )(0 βα,Z - the transimpedance nominal at   

f =  f0   (parameters are unchanged), 
)( βα,ξZ - the transimpedance after  ξ -th - 

parameter increment caused by frequency 
change,   
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Network function and its sensitivity calculation  

The voltage transmittance in nominal conditions 
(without any change), as it has been derived in [7, 8], 
is:   
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In similar way, other network functions like 

transimpedance, input impedance and output 
impedance can be also by the appropriate two-port 
transimpedances expressed:  
 

)( βα,ZTvi = , )( ββ,ZZ in = , )( αα,ZZ out =  .     (7) 
 

When frequency is changed, then susceptances of 
reactive elements are also changed in accordance 
with relationship (2) and in consequence appropriate 
admittances are changed, too. These increments are 

marked in Fig.1 as ky∆ or kY∆ . So, having the 

increments of appropriate transimpedances, obtained 
applying the recurrence formula (5), the increment of 
network functions can be calculated. One should be 
noticed certain essential fact, that it is possible to 
calculate demanded transimpedances after the ξ - th 
admittance large-change on the basis of knowledge 
about the values of appropriate nominal 
transimpedances, only. For this purpose we create the 
nominal transimpedance matrix: 
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Direct applying the recursion in the computational 
process according to the pattern (5) is 
disadvantageous because of repetition the same 



 

calculations while determining the same 
transimpedances. Creation the initial transimpedance 
matrix (8a) and its reduction alongside the matrix 
diagonal using the relations (5a) and (5b) as the 
suppression formula appears to be more beneficial. 
As a result of the reducing process a sequence of 
arrays is obtained: 

)()2()1()0( ... NZZZZ →→→→ . Every next array 
is smaller than previous one. In the last step an array 
is obtained with the 2x2 dimension (8b); 
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 its elements enable us to calculate network functions 
(6), (7).  

 ALGORITHMS 

The main algorithm 

Basing on the theory delivered above the main 
algorithm called further as LCS algorithm can be 
formulated in the following way:  
Step 1. Obtain the small - signal equivalent circuit 
and get the information about the network function 
required and the passive two-ports. Determine the 
one-element and multi-element ports. Determine the 
set of the frequencies, at which the ac analysis of the 
circuit should be carried out. Enter data concerning 
circuit structure and elements values.  
Step 2. Formulate the admittance matrix (NAM) (or 
modified admittance matrix (MNAM)) of the circuit 
at f = f0. 
Step 3. Accepting f0 (it is possible often to accept f0 = 
0) calculate the initial transimpedances according to 
(3) and complete the transimpedance matrix 

initial )0(Z  (8a). 
Step 4. for  consecutive frequencies determine the 
  admittance increments according to (2) 

 (frequency loop)  do:  
 for  each one-element two-port, 

 (elements loop) 
  successively (for k = 1, 2,…, m)  

 - carry out reduction of the 
  Transimpedance matrix (8a)  
 according to the relationships (5). 

     end  
    for each multi-element two-port,  
  successively (for k = m + 1, m + 2, 

 …, m + M) (elements loop) - carry 
out reduction of the transimpedance 
matrix (8a) according to the 
relationships (5).  

     end 
Step 5. Calculate the demanded network functions 
using elements of reduced matrix (8b). 
             end (of frequency loop). 

Basing on the theory outlined above the Matlab 
scripts have been written, that allowed us many 
comparison tests to carry out. Comparing operations 
done in accordance with the LCS algorithm and in 
accordance with a traditional one, it can be noticed 
that in the traditional method the frequency loop 
includes both formulating of 'n' equations and solving 
them (Fig. 5), whereas, in the method presented only 
reduction of the transimpedance matrix of ‘N x N’ 
size is needed (Fig. 6). It should be noticed, by the 
chance, that usually N << n (where: N - is the number 
of reactive ports, n - is the number of network nodes). 

Moreover, the transimpedance matrix )0(Z  is formed 
only once at the beginning.  
 

•Formulation of circuit equations –Y 
matrix ( n x n)

Traditional Algorithm

Fundamental   steps of frequency loop

•n circuit linear equations solution

•Calculation network functions

Frequency 
loop

n – number of circuit nodes

 
Fig. 5: Traditional algorithm 
 

•Formulation of circuit equations – Y 
matrix dimension ( n x n)

•Transimpedance initial matrix Z (0)

formulation - dimension ( N+2) x (N+2)

LCS algorithm 

Fundamental   steps of Large-Change
Sensitivity  method (LCS)

•Reduction of 
transimpedance initial matrix 

- N - steps

•Calculation network functions

Frequency 
loop

m – number of  reactance 
components 

 
Fig. 6: LCS algorithm 
 
The numerical comparison tests carried out for 
circuits consisting one–element two-ports, showed 
(Fig. 7. and Fig. 8.), that the LCS method needs less 
calculation cost than the Gauss-Jordan or LU– 
factorization methods, especially in the case of a 
large number of frequencies and for growing 
difference between the number of circuit nodes and 
the number of passive two-ports. 
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Fig. 7: Comparison of LCS method with Gauss-Jordan:  

ψ = tGJ / tLCS against number of frequency points,  
 b = n - N as parameter, t – calculation time 
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Fig. 8: Comparison of relative efficiency of LCS and LU -

factorization (ψ = tLU / tLCS) against number of 
frequency points, b = n - m as parameter 
 

The results of this comparison were depicted in Fig. 
4. and Fig. 5. More details concerning this 
comparison can be found in work [9]. 
Depending on network functions that have to be 
calculated, some transimpedances can be omitted, 
too. In this way, it is possible to reduce the number of 
arithmetical operations in this method, significantly. 

Acceleration method 

Because in integrated circuits exist many small 
capacitances, the computational efficiency of 
presented AC analysis method can be yet more 
speeded up. For sufficiently small values of │∆y│, 
what in case of hybrid π model capacitors of 
‘integrated transistors’ the following condition is 
valid for sufficiently low frequencies: 
 

011)(1 →∆−=−⇒〈〈−∆ ξξξξ yKZy ξξ,
,
    (9a) 

 

that leads to the approximation (see (5a) and (5b)): 
 

)(1)( βα,βα, −≈ ξξ ZZ .
 (9b) 

 
Hence, the k - th step in the LCS algorithm, can be 
omitted, which decreases the number of arithmetical 
operations by 3. As long as this relation is fulfilled 
these operations can be omitted many times. In 

practice, we use sufficiently small number Aε  that 

fulfils inequality: 
 

1)(1 〈〈−∆ AZy εξξ ξξ,
.
 (10) 

 
Basing on this fact, the following LCS accelerated 
algorithm has impact in elements loops in step 4 of 
the main algorithm.  
For  i = 1:nf              % frequency loop 

delta_omega = 2π (fi – f0);  
  %where: ‘delta_omega’ means ∆ω  

Calculate   delta_yk; 
 for  k = 1:m       % elements loop 
         if (abs(delta_yk)*abs(Z(ξk, ξk ))) > εA 

  % taking 
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carry k–th reducing step out 
according with (5); 

         end  
         end  
      calculate values of network functions; 
 end  

OPTIMIZATION 

Because the LCS analysis method appeared to be 
very efficient method it should be effective in solving 
some circuit optimization tasks. Therefore, the 
following optimization task was formulated.  
We want to minimize the difference between 
calculated and demanded functions on some set of 
parameters. The optimization task has the following 
form: 

 
 (11) 

 
 
 
where:     

 
 nf  - number of frequency points, 
  nx  - number of parameters. 
 
To accomplish this task the optimization computer 
program was elaborated. The structure of the 
optimization program is shown in Fig. 9. 
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Fig. 9: The structure of optimization program  
 
The optimization program consists of two modules:  
a) the LCS analysis module, and  
b) the Lcs-Opt optimization module  
The LCS analysis module containing the universal 
computer program performs the AC analysis of 
integrating circuits with embedded passive two-ports 
by using semi-symbolic LCS method. 
In the optimization module two optimization 
procedures: Monte Carlo and Nelder -Mead Simplex 
were applied. The first one is the global search 
method and its calculation result makes the starting 
point up for the Nelder -Mead Simplex local search 
method, which improves the search result. 
Whole optimization system has been written in C++ 
computer language. 

COMPUTATIONAL TESTS 

Test 1 – Acceleration method 

The efficiency of the acceleration algorithm was 
tested using µA741 OpAmp circuit (Fig. 11), having 
25 transistors and working in inverting mode of 
operation and supplied with +/-15 V. The parameters 
of small signal equivalent hybrid π transistor models 
[10] were taken from PSpice computer program [11].  
 

 
Fig. 10:  Hybrid π transistor model 
 
Number of nodes n = 75 (including internal nodes), 
number of reactance elements N = 51. The following 
vector of reactance element increments was 

determined as: T
m ]p,...,p,p[ 21 ∆∆∆=∆p = ∆ω 

[Cπ1, Cµ1, Cπ2, Cµ2,… Cπ25, Cµ25, Cc]
 T; where: Cc – 

compensation capacitance. As the initial frequency 
was accepted f0 = 1 Hz. All analyses were carried out 
on the set of frequencies 

fi niGHzHzFf ,...,2,1},1,1{ ==∈  at fn = 104 points 

placed in accordance with logarithmic scale. The 
calculations were performed according with the main 
LCS algorithm without acceleration and obtained 
characteristics showed full accordance with those 
given by PSPICE (denoted as result A). Next, the 
calculations were performed according with the LCS 
accelerated algorithm for different values of Aε  

(denoted as B). For each result, for comparison 
purposes, the following computer processor 
independent measures were estimated: 
 
 a) the coefficient of run time reduction:   
 

Γ = τA/τB, (12) 
 
where:  τA – the time of calculations performed in  
accordance with LCS algorithm without acceleration, 
τB - the time of calculations performed in accordance 
with LCS accelerated algorithm; 
 
b)  the relative error:   

 
δ [%] =  100│(TB-TA)/TA│ (13) 

 
where: TA – the characteristic obtained as result A,  
            TB - the characteristic obtained as result B. 
 

 
Fig. 11:  µA741 OpAmp circuit prepared for analysis 
 
As accuracy of approximation was taken the maximal 
value of measure (13) over frequency domain. These 
results were plotted as the functions ofAε , for 

magnitude of voltage gain, which is depicted in Fig. 
12. As we see, the acceleration method works quite 
well for Aε ≤ 10-1, where the calculation time is 

reduced by almost 30 times! It results from this fact, 
that most of capacitors existing in integrated circuit 
(µA741) have small capacitance (the biggest one is 
compensation capacitor Cc = 30 pF). 
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Fig. 12:  The coefficient of calculation time reduction and relative 

error of approximation vs. Aε  for magnitude 

of voltage gain 
 

Test 2 – Symbolic description 

The influence of symbolic description of multi – 
element two – ports on effectiveness of ac analysis 
was tested during analysis of the acoustic corrector. 

For the acoustic corrector (Fig. 13a) two analyses 
were performed: 

 

a) 

 
 
 
 
 
 
 
 
 
 
b) Z1:  

 
 
 
 
 
c) Z2:   

 
 
 
 
 
 
 
Fig. 13: Schematic diagram of the acoustic corrector used as the test 

circuit: a) main circuit, b) two-element two-port Z1, 
c) fife-element two-port Z2 

 
a)   Fully numerical analysis using Gauss elimination 
method, and  

b) LCS analysis with two-ports: Z1 and Z2, described 
symbolically. 
The acoustic corrector uses µA741 OpAmp in 
noninverting mode of operation which has internal 
structure of the circuit as in test1 (Fig. 3). Full 
internal circuit with the embedded passive subcircuits 
was analyzed.  
The admittances of the multi-element two-ports are 
described by the following symbolic expressions: for 
two-element two-port Z1 and for five-element two-
port Z2, respectively: 
 

1)sC1/(sC1R1= 1/Z1(s)=Y1(s) +  (14) 
 

1/Z2(s) = Y2(s)  (15) 
 
where: 
 

R4+1)+R3/(sC3R3+1))+R2/((sC2R2=Z2(s)   
 

 
 

s = jω, Z3 =R5 = 50, Z4 = R6 = 10k, R1 = 820, C1 = 
3.3 µF, R2 = 2.2 M, C2 = 3.9 nF, R3 = 33 k, C3 =  
1.8 nF, R4 = 6.2 k. 
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Fig. 14:  The RIAA correction characteristics 
 
Both analyses gave the same results – the correction 
characteristics satisfying the RIAA requirement, 
which is depicted in Fig. 14. The coefficient of run 
time reduction achieved value:  Γ = τG/τLCS = 6.7428 
for 1000 frequency points, and Γ = 8.5725 for 10000 
frequency points, where: τG - run time for Gauss 
method, τLCS - run time for mixed numeric – symbolic 
LCS method. It is evident, that the coefficient of run 
time reduction will be better if number and the 
models of passive modules are bigger.  
 

Test 2 – Results of optimization 

For the integrated circuit shown in Fig. 15 we want to 
obtain the RIAA correction characteristics shown in 
Fig. 14. The elements of passive two-ports , described 
earlier, which have been placed inside the integrated 



 

circuit (two-element grounded two-port Z1 (Fig. 13b) 
and five-element ungrounded two-port Z2 (Fig. 13c)) 
were used as the optimization parameters. 
 
The vector of optimization parameters is 
 

x=[R1,R2,R3,R4,C1,C2,C3]T 
 

(16) 

 

 
Fig. 15:  The integrated circuit with Z1 and Z2 two-ports embedded 

inside 
 
The optimization parameters have been restricted by 
lower and upper bounds: 
 
R_min(1) = 500 Ω; R_max(1) = 10e+6 Ω; 
R_min(2) = 1e+5 Ω; R_max(2) = 100e+6 Ω; 
R_min(3) = 1e+5 Ω; R_max(3) = 100e+6 Ω; 
R_min(4) = 1e+1 Ω; R_max(4) = 100e+3 Ω; 
 
C_min(1)=1e-10F;  C_max(1)=100e-6F; 
C_min(2)=1e-12F; C_max(2)=10e-9F; 
C_min(3)=1e-12F; C_max(3)=10e-9F; 
 
Whole active corrector works in the circuit shown in 
Fig. 16. 

 
Fig. 16:  Simulated circuit 
 
Four additional external resistors R1, R2, R12, and R13 
were attached to reach proper level of amplification. 
Finally we were taken R13/R12 = 103 that ensures 60 
dB of maximal amplification. The criterion function 
(11) have been calculated at nf   = 78 frequency 
points. The corrector magnitude voltage gain after 

Monte Carlo procedure of optimization is shown in 
Fig. 18. (red curve). 
The values of parameters obtained after first stage of 
optimization (Monte Carlo) made up the starting 
vector for the Nelder -Mead optimization procedure 
(second stage). 
 

 
Fig. 17:  The corrector magnitude characteristics after Monte Carlo 

optimization  procedure:  
- calculated (red) 
- demanded (blue) 

 

 
Fig. 18:  The final corrector magnitude characteristics after Nelder 

– Mead optimization  procedure:  
- calculated (red) 
- demanded (blue) 

 
Final optimal parameters are: 
 r1 = 7.9715e+004    (~80 kΩ),  

r2 = 9.9838e+007 (~100 MΩ),  
r3 = 4.4987e+005 (~450 kΩ),  
r4 = 475.7430          (~470Ω),  
c1 = 7.1751e-007   (~720 nF), 
c2 = 5.3775e-010   (~540 pF),  
c3 = 1.8169e-010   (~180 pF),  

 



 

Obtained final result is excellent but not unique, what 
is well known, because impedances Z1 and Z2 have 
no unique solution in set of parameters x. The mean-
squared approximation error reached value 0.0416 
dB, which is much less than 1 dB demands of RIAA. 
The nonstandard values can be further reached by 
laser correction in thick film passive module. It is 
well known, that the laser trimming increases the 
noise ratio and decreases the reliability of the hybrid 
circuit. Some method of minimization of number of 
trimmed elements as well as the length of trimming 
traces can be found in work [12]. Each optimization 
procedure Monte Carlo and Nelder-Mead [13] made 
about 2000 steps and the overall calculation time was 
29.587 seconds, only.  
So, the proposed semisymbolic LCS analysis method 
seems to be very effective tool for integrated RF 
circuits with embedded passive modules design. 

CONCLUSIONS 

A new method of AC semi-symbolic analysis of 
integrated electronic circuits with embedded passive 
subcircuits, based on the definition of multiparameter 
large-change frequency sensitivity, has been 
presented. This method appears to be particularly 
convenient to analyze integrated circuits with 
embedded passive subcircuits such as correction 
circuits, trap circuits, passive filters, and strip lines, 
matching or decoupling circuits. Thanks to 
converting the recursive processes into the task of 
reduction of transimpedance matrix, the repeated 
calculations were avoided as well as a greater 
transparency of the method was reached. Computer 
experiments carried out showed that the elaborated 
method could be even several dozen times more 
effective than the method of Gauss – Jordan and 
several times more effective than the method LU–
factorization. The efficiency of the method presented 
is greater, if the difference between the number of 
circuit nodes and the number of passive two-ports is 
larger. Moreover, it should be pointed out that the 
relative effectiveness is growing together with 
growing of the number of frequency points. In the 
method presented it is possible to reduce the number 
of arithmetical operations, significantly, by omitting 
unnecessary transimpedance reduction steps. The 
acceleration method outlined in this work showed 
significant calculation time decrease (almost 30 
times) with good accuracy of approximation. The 
efficiency of the method was further almost ten times 
boosted by applying symbolic description of multi-
element passive two-ports. These acceleration 
methods seem to be very useful when analyzing large 
integrating circuits, having big passive two-ports, 
over wide range of frequencies. This symbolic 
description, however, makes the LCS method more 
flexible, while integrated circuit optimizing. 
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