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Abstract:  
Environment for testing static parameters of analog-to-digital converters is presented in this article. It is a novel 
concept of powerful engine suitable for design and verification of generic type ADCs in Mentor Graphics IC 
Studio software. The source code of each block of the design is written in Verilog-A which offers relatively 
effortless portability on different design systems (e.g. Cadence). The core of our proposal is based on Servo-
Loop with improved search algoritm [1]. The simulation outputs are curves of static INL and DNL. Here, we 
focus mainly on algorithm and implementation of testing interface. 
 

INTRODUCTION 

Integral (INL) and differential (DNL) non-linearity 
are two of basic parameters of A/D converters. The 
ways of their measurement can be divided into two 
groups. Algorithms belonging to the so-called open-
loop category are advantageous for production test. 
Best known member of open-loop methods is the 
histogram method. Procedures from the second group 
(referred to as closed-loop) create a reasonable 
compromise regarding the simulation requirements. 
The basic method is the standard Servo-Loop 
algorithm [5]; however, much shorter simulation time 
requirements are taken by applying the Improved 
Servo-Loop method [1] which meets the same 
performance specifications. 
Recent works in this field are mostly oriented either 
to measurement level or behavioral model 
simulations employing mathematical software such as 
Maple or Matlab. The environment proposed in our 
article is built up completely in Verilog-A and 
therefore it can be used in a direct cooperation with 
analog and mixed-signal circuit simulators (e.g. Eldo, 
Spectre, Advance MS, etc.) up to full transistor-level 
complexity with no need of any other computational 
or post processing software. 

IMPROVED SERVO-LOOP 
ALGORITHM 

In Fig. 1, block scheme of the proposed Servo-Loop 
system is outlined. Our Servo-Loop implementation 
is based on this scheme, suggesting significant 
improvements against the basic approach [5]: 
effective usage of the discrete-time integrator, 
application of the initial condition and refinement of 
the integrator step. There are two major ways how to 
implement this algorithm and both of them are 
dedicated for different class of applications. The first 

approach concerning the on-chip testing environment 
can be realized by discrete integrator (e.g. switched 
capacitor one) and several logic blocks. This method 
is good for final chip measurement with limited 
possibility of structure change. 
The second concept of testing environment is 
completely integrated into IC design software. The 
disadvantage of the second approach is much longer 
time used for the verification (based on “virtual 
measurement”) against the first one, but the time 
spent for ADC design and evolution is much shorter. 
Implementation is also simpler, because environment 
can be written only at behavioral level; gate-level 
synthesis is therefore not required. 

 
Fig. 1: Improved Servo-Loop implementation 
 

Algorithm Principle and Definitions 

The flowchart of the proposed novel algorithm 
variant is depicted in Fig. 2A). Here, Vmin and Vmax 
are the minimum and maximum ADC input voltages 
representing the full scale range. BITS is the number 
of ADC bits, i.e. the output word width. The 
LastEdge variable stores the value of the previous 
code transition level, see further explanation below. 
Finally, Vlsb is the code width expressed in term of 
the input voltage, i.e. the analog input increment 



 

corresponding to 1LSB code change of an ideal ADC 
with the same analog input range as the DUT. 
In Fig. 2, the initial variables are set immediately 
after start. The main algorithm cycle is executed for 
each transition level, i.e. 2BITS-times for the whole set 
of the ADC codes. The looping statement is ensured 
by incrementation of CREG variable representing the 
actual code for which the transition level has to be 

found. Based on the CREG value, the Vref is calculated 
and then is used for INL computation. The next step 
is the most important part of the algorithm formed by 
the transition level search procedure; it is detailed in 
grey box in Fig. 2B). First, the initial values of the 
internal variables are set and after that, single ADC 
conversion is performed. The discrete integrator 
output INT is changed in dependence on relationship 

 

 
 

Fig. 2: Algorithm flow chart - A) Complete diagram, B) Detailed view of code transition level computation  
 
between converter output code CADC and CREG value. 
Here, the CADC − CREG term ensures a quick 
convergence action in case that the actual CADC is too 
far from CREG target. At this point, it is important to 
note that the lower step transition level definition is 
applied [3]. The improvement of convergence 
suggested by us is as follows. The STEP size 
refinement by ε < 1 constant is not done at the end of 
each cycle as in [1]. Only if the last two iteration 
steps do not have the same direction, STEP size 
refinement is done. Thanks to that, ε < 0.5 can be 
used without loosing certainty of convergence. 
IsMissing boolean variable indicates that the 
appropriate CADC code is present on the ADC transfer 
characteristic. The extracted code transition level 
value is outputted to the main algorithm cycle (Fig. 
2A), the DNL and INL are then calculated. The INL 
and DNL data, together with the IsMissing variable 
are written to separate files for the next processing in 
Python script language. The algorithm terminates 
when the set of code transition levels is complete. 

Python Extension for Result Post processing 

Here, it is necessary to notice that the Verilog 
implementation in MGC software has one specific 
feature. The file writing subsystem adds unwanted 
additional lines into the output file together with the 
useful data. Therefore, it is impossible to format the 
file in compliance with the EzWave input format. 

That is why a script in the Python language was used. 
The proposed implementation can evaluate five types 
of INL representation (Basic, Offset compensated, 
Mean compensated, End-Point-Corrected, Best-
straight-line). The computation of these dependencies 
is very simple.  
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where k and q are got from INL by linear least 
square algorithm. 

 



 

Meaning of variables in equations (1) to (4) is: C is 
code for which is INL computed, C0 and Cmax are the 
first and last code for which is INL defined.  
The Fig. 3 refers to each INL description. The Basic 
INL is labeled INL in previous equations and is 
evaluated directly in MGC in coincidence with the 
equation in Fig. 2A). 
 

 

 

 
Fig. 3: All variants of INL output 

 

System Accuracy 

The algorithm resolution is one of the most important 
parameters. In our implementation, the algorithm can 
effectively change accuracy by using two parameters. 
The first parameter is the number of iterations 
NCYCLES and as it is thoroughly discussed in [5], 
the algorithm resolution depends also on the 
ε variable. The optimum value of ε to meet the 
convergency requierement is not unique. We verified 
this statement by empirical tests in Matlab. These 
tests showed that the best value of ε is between 0.24 
and 0.35. 
Influence of ε and NCYCLES is well understandable 
from Fig.4 and Table 1. shows maximal error of code 
edge measurement for ε=0.35. 

 

 
 
 

 
Fig. 4: Convergence to code transition level 
 
 
Table. 1: Maximum error vs. number of cycles 

NCYCLES Maximum error [LSB] 
5 0.23 
10 0.043 
15 0.0053 
20 0.0012 
25 0.00020 
30 0.000025 

 

ENVIRONMENT IMPLEMENTATION 

As it was mentioned above, the algorithm was 
implemented in Verilog-A. Algorithm block diagram 
is in Fig. 5. Output word from ADC DUT of 
maximum size of 16 bits is connected to the block 
labeled as D2A. This block converts the digital signal 
to a form which can be easily processed by Verilog-
A. The next block is the voltage controlled voltage 
source outputting the difference between the input 
value (in principle CADC) and the reference value 
(CREG). The difference is led to the input of the Step 
Control block, which computes an appropriate size of 
the next step. The last block is the discrete integrator 
(DISCINT) with the built-in initial condition; the 
condition is loaded to the comparator output when 
reset is at zero level. Each block is sensitive for input 
signal only at the time when its clock signal has a 
rising edge. It is advantageous due to effective usage 
of simulation time. Clock signals are generated by 
GENCLOCK in sequence of bus indexes. The 
function of CONTROL matches to the A) part of 
Fig. 2. 
As an illustration, we provide below an example of 
DISCINT Verilog-A code: 
 
`include "disciplines.h" 
module DISCINT(clk, step, init, res, out); 
 
input init, step, clk, res; 
electrical init, step, clk, res; 
output out; 
electrical out; 
 
real aout; 
 
analog begin 
   if (V(res) == 0.0) 
      aout = V(init); //inicialization 
   @(cross(V(clk)-2.5, +1)) begin  //at clock 
      if (V(res) != 0.0)  
         aout = aout - V(step); 
   end; 
 
   V(out) <+ aout; 
 



 

end 
endmodule 
 
 

 
Fig. 5: Basic INL computed by Eldo 

SIMPLE FLASH ADC TESTING 
EXAMPLE 

This section presents simulation result of the Flash 
ADC in conjunction with the proposed Servo-Loop 
unit. The ADC is the basic 8-bits realization with a 
resistor chain and ideal comparators. Thermometer-
to-Binary decoder is designed as a detector of the 
most significant logical ”one”. Comparators and 
Thermometer-to-Binary decoder are realized only as 
a behavioral model in Verilog-A. This approach is 
chosen, because of simulation time consumption 
result relevancy. As we focus mainly on the testing 
algorithm issues, we target to maximize the ratio 
between the verification environment and DUT 
contribution to the simulation time. The value of 
resistors in chain is 1k by default. In the following 
simulation set, linear superposition principle is 
checked for the sum of INL performance contributors 
versus the sum of individual input of all of them. The 
simulation results, when R1, R32, R64, . . . ,R256 are 
changed to 1.5k, can be seen in Fig.6a. The ε = 2/3, 
NCYCLES = 19 and default Eldo parameters was 
chosen for these simulation. 

 
Fig. 6: DNL and INL for R1, R32, R64, …, R256 equal to 1.5kΩ 

 
INL and DNL results from nine simulations, where 
only one resistor from R1, R32, R64, …, R256 set is 
changed to 1.5kΩ, are subtracted from the data 
depicted in Fig.7. The final result can be considered 
as a residue error of the algorithm under the above- 
mentioned parameter values and it is shown in Fig.7. 

In this paragraph, we illustrate the all-code simulation 
time of above mentioned system (Servo-loop unit and 
8-bits Flash ADC). The accuracy obtained from a cal- 

 
Fig. 7: INL residue (ε=2/3 and NCYCLES=19) 
 
culation is given too. The worst-case extraction error 
for 10 iterations is approximately 26 mLSB; this can 
be furthermore reduced to only 140 nLSB after 40 
iterations. This difference is highlighted by the fact 
than the global elapsed time varies from 40 seconds 
(for 10 iterations) only to 1 minute and 54 seconds 
(for 40 iterations). It is computed by the equation (1) 
with no respect to accuracy options of Eldo simulator 
(abstol=1·10−16, reltol=1·10−08, itol=1·10−08 and 
vntol=1·10−08). The simulation ran on PC with 
E8400@3.00GHz processor. 
Fig. 6 shows the DNL simulation result as a 
demonstration of the resistor values deviation. 
Backgrounded by [7], we identified that the major 
component formatting the shape of the curve depicted 
in Fig. 6 follows the shape of Walsh-Rademacher 
function. Since the extrema of these functions are a 
priori known, this in fact can simplify the so-called 
test point selection procedure – see below in Section 
5. 

FURTHER DEVELOPMENT -USAGE 
OF LEMMA 

As it is reported in [6], the so-called LEMMA method 
(Linear Error Mechanism Modeling Algorithm) can 
be used to streamline the simulation and 
measurement of ADC. This algorithm underlies the 
sensitivity analysis over a set of the fundamental 
device non-idealites referred to as error sources. In 
our flash ADC case, the error sources can be 
represented e.g. by the comparator offset and the 
deviation from nominal resistor values. If error 
magnitudes are small enough (meeting the 
requirements of linear modeling), it is possible to use 
principle of superposition and scaling of error 
sources. Nonlinearity of converter response can be 
decomposed to a sum of linearly independent error 
sources, which are formed in the so-called ambiguity 
group. This approach allows shortening the 
simulation time of the converter response as a matter 
of test points quantity reduction. Here, the test points 
are selected on the criterion based on the evaluation 

 

 



 

of dominant error sources. Implementation of this 
advanced approach is being prepared in nowadays. 

CONCLUSIONS 

This work presents an innovative approach to the 
extraction of ADC performance, suitable for both full 
transistor-level and behavioral simulation. The Servo-
Loop unit presented was written as a versatile 
program module for ADC performance extraction and 
is suitable for co-operation with any analog simulator 
supporting behavioral (Verilog-A) device models. In 
conjunction with the Eldo simulator, it also enables 
the multiprocessor run feature. The next significant 
advantage of the ServoLooper module is the fact that 
it is capable to extract the static non-linearity of any 
ADC architecture, described at analog or behavioral 
simulation level of abstraction. The required 
specifications are the data validity and recovery time. 
The main motivation for building the Virtual testing 
engine was the fact that the choice and availability of 
similar software tools is problematic. The next 
enhancement of our work aided by the LEMMA 
algorithm will bring simulation acceleration of 
converters specified by a complex model such as full 
transistor-level description. 
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