

An Innovative Verification Approach For
Nyquist-rate A/D Converters – Algorithm and Implementation

J. Židek 1, O. Šubrt 1,2, P. Martinek 1

1 Department of Circuit Theory FEE CTU Prague,
Technická 2, 166 27 Prague, Czech Republic

2 ASICentrum,
Novodvorská 994, 142 21 Prague, Czech Republic

E-mail : zidekj1@fel.cvut.cz, Ondrej.Subrt@asicentrum.cz, martinek@fel.cvut.cz

Abstract:
Environment for testing static parameters of analog-to-digital converters is presented in this article. It is a novel
concept of powerful engine suitable for design and verification of generic type ADCs in Mentor Graphics IC
Studio software. The source code of each block of the design is written in Verilog-A which offers relatively
effortless portability on different design systems (e.g. Cadence). The core of our proposal is based on Servo-
Loop with improved search algoritm [1]. The simulation outputs are curves of static INL and DNL. Here, we
focus mainly on algorithm and implementation of testing interface.

INTRODUCTION

Integral (INL) and differential (DNL) non-linearity
are two of basic parameters of A/D converters. The
ways of their measurement can be divided into two
groups. Algorithms belonging to the so-called open-
loop category are advantageous for production test.
Best known member of open-loop methods is the
histogram method. Procedures from the second group
(referred to as closed-loop) create a reasonable
compromise regarding the simulation requirements.
The basic method is the standard Servo-Loop
algorithm [5]; however, much shorter simulation time
requirements are taken by applying the Improved
Servo-Loop method [1] which meets the same
performance specifications.
Recent works in this field are mostly oriented either
to measurement level or behavioral model
simulations employing mathematical software such as
Maple or Matlab. The environment proposed in our
article is built up completely in Verilog-A and
therefore it can be used in a direct cooperation with
analog and mixed-signal circuit simulators (e.g. Eldo,
Spectre, Advance MS, etc.) up to full transistor-level
complexity with no need of any other computational
or post processing software.

IMPROVED SERVO-LOOP
ALGORITHM

In Fig. 1, block scheme of the proposed Servo-Loop
system is outlined. Our Servo-Loop implementation
is based on this scheme, suggesting significant
improvements against the basic approach [5]:
effective usage of the discrete-time integrator,
application of the initial condition and refinement of
the integrator step. There are two major ways how to
implement this algorithm and both of them are
dedicated for different class of applications. The first

approach concerning the on-chip testing environment
can be realized by discrete integrator (e.g. switched
capacitor one) and several logic blocks. This method
is good for final chip measurement with limited
possibility of structure change.
The second concept of testing environment is
completely integrated into IC design software. The
disadvantage of the second approach is much longer
time used for the verification (based on “virtual
measurement”) against the first one, but the time
spent for ADC design and evolution is much shorter.
Implementation is also simpler, because environment
can be written only at behavioral level; gate-level
synthesis is therefore not required.

Fig. 1: Improved Servo-Loop implementation

Algorithm Principle and Definitions

The flowchart of the proposed novel algorithm
variant is depicted in Fig. 2A). Here, Vmin and Vmax
are the minimum and maximum ADC input voltages
representing the full scale range. BITS is the number
of ADC bits, i.e. the output word width. The
LastEdge variable stores the value of the previous
code transition level, see further explanation below.
Finally, Vlsb is the code width expressed in term of
the input voltage, i.e. the analog input increment

corresponding to 1LSB code change of an ideal ADC
with the same analog input range as the DUT.
In Fig. 2, the initial variables are set immediately
after start. The main algorithm cycle is executed for
each transition level, i.e. 2BITS-times for the whole set
of the ADC codes. The looping statement is ensured
by incrementation of CREG variable representing the
actual code for which the transition level has to be

found. Based on the CREG value, the Vref is calculated
and then is used for INL computation. The next step
is the most important part of the algorithm formed by
the transition level search procedure; it is detailed in
grey box in Fig. 2B). First, the initial values of the
internal variables are set and after that, single ADC
conversion is performed. The discrete integrator
output INT is changed in dependence on relationship

Fig. 2: Algorithm flow chart - A) Complete diagram, B) Detailed view of code transition level computation

between converter output code CADC and CREG value.
Here, the CADC − CREG term ensures a quick
convergence action in case that the actual CADC is too
far from CREG target. At this point, it is important to
note that the lower step transition level definition is
applied [3]. The improvement of convergence
suggested by us is as follows. The STEP size
refinement by ε < 1 constant is not done at the end of
each cycle as in [1]. Only if the last two iteration
steps do not have the same direction, STEP size
refinement is done. Thanks to that, ε < 0.5 can be
used without loosing certainty of convergence.
IsMissing boolean variable indicates that the
appropriate CADC code is present on the ADC transfer
characteristic. The extracted code transition level
value is outputted to the main algorithm cycle (Fig.
2A), the DNL and INL are then calculated. The INL
and DNL data, together with the IsMissing variable
are written to separate files for the next processing in
Python script language. The algorithm terminates
when the set of code transition levels is complete.

Python Extension for Result Post processing

Here, it is necessary to notice that the Verilog
implementation in MGC software has one specific
feature. The file writing subsystem adds unwanted
additional lines into the output file together with the
useful data. Therefore, it is impossible to format the
file in compliance with the EzWave input format.

That is why a script in the Python language was used.
The proposed implementation can evaluate five types
of INL representation (Basic, Offset compensated,
Mean compensated, End-Point-Corrected, Best-
straight-line). The computation of these dependencies
is very simple.

][][][0CINLCINLCINLOffset −= (1)

∑
=

=

−=
Ni

i
Mean iINL

N
CINLCINL

1

][
1

][][(2)

()qCkCINLCINL PointEnd +⋅−=−][][(3)

where
CC

CINLCINL
k

0max

0max][][
−
−= and

0max

0max
00

][][
][

CC

CINLCINL
CCINLq

−
−−=

)(][][qCkCINLCINL SL-Best +⋅−= (4)

where k and q are got from INL by linear least
square algorithm.

Meaning of variables in equations (1) to (4) is: C is
code for which is INL computed, C0 and Cmax are the
first and last code for which is INL defined.
The Fig. 3 refers to each INL description. The Basic
INL is labeled INL in previous equations and is
evaluated directly in MGC in coincidence with the
equation in Fig. 2A).

Fig. 3: All variants of INL output

System Accuracy

The algorithm resolution is one of the most important
parameters. In our implementation, the algorithm can
effectively change accuracy by using two parameters.
The first parameter is the number of iterations
NCYCLES and as it is thoroughly discussed in [5],
the algorithm resolution depends also on the
ε variable. The optimum value of ε to meet the
convergency requierement is not unique. We verified
this statement by empirical tests in Matlab. These
tests showed that the best value of ε is between 0.24
and 0.35.
Influence of ε and NCYCLES is well understandable
from Fig.4 and Table 1. shows maximal error of code
edge measurement for ε=0.35.

Fig. 4: Convergence to code transition level

Table. 1: Maximum error vs. number of cycles

NCYCLES Maximum error [LSB]
5 0.23
10 0.043
15 0.0053
20 0.0012
25 0.00020
30 0.000025

ENVIRONMENT IMPLEMENTATION

As it was mentioned above, the algorithm was
implemented in Verilog-A. Algorithm block diagram
is in Fig. 5. Output word from ADC DUT of
maximum size of 16 bits is connected to the block
labeled as D2A. This block converts the digital signal
to a form which can be easily processed by Verilog-
A. The next block is the voltage controlled voltage
source outputting the difference between the input
value (in principle CADC) and the reference value
(CREG). The difference is led to the input of the Step
Control block, which computes an appropriate size of
the next step. The last block is the discrete integrator
(DISCINT) with the built-in initial condition; the
condition is loaded to the comparator output when
reset is at zero level. Each block is sensitive for input
signal only at the time when its clock signal has a
rising edge. It is advantageous due to effective usage
of simulation time. Clock signals are generated by
GENCLOCK in sequence of bus indexes. The
function of CONTROL matches to the A) part of
Fig. 2.
As an illustration, we provide below an example of
DISCINT Verilog-A code:

`include "disciplines.h"
module DISCINT(clk, step, init, res, out);

input init, step, clk, res;
electrical init, step, clk, res;
output out;
electrical out;

real aout;

analog begin
 if (V(res) == 0.0)
 aout = V(init); //inicialization
 @(cross(V(clk)-2.5, +1)) begin //at clock
 if (V(res) != 0.0)
 aout = aout - V(step);
 end;

 V(out) <+ aout;

end
endmodule

Fig. 5: Basic INL computed by Eldo

SIMPLE FLASH ADC TESTING
EXAMPLE

This section presents simulation result of the Flash
ADC in conjunction with the proposed Servo-Loop
unit. The ADC is the basic 8-bits realization with a
resistor chain and ideal comparators. Thermometer-
to-Binary decoder is designed as a detector of the
most significant logical ”one”. Comparators and
Thermometer-to-Binary decoder are realized only as
a behavioral model in Verilog-A. This approach is
chosen, because of simulation time consumption
result relevancy. As we focus mainly on the testing
algorithm issues, we target to maximize the ratio
between the verification environment and DUT
contribution to the simulation time. The value of
resistors in chain is 1k by default. In the following
simulation set, linear superposition principle is
checked for the sum of INL performance contributors
versus the sum of individual input of all of them. The
simulation results, when R1, R32, R64, . . . ,R256 are
changed to 1.5k, can be seen in Fig.6a. The ε = 2/3,
NCYCLES = 19 and default Eldo parameters was
chosen for these simulation.

Fig. 6: DNL and INL for R1, R32, R64, …, R256 equal to 1.5kΩ

INL and DNL results from nine simulations, where
only one resistor from R1, R32, R64, …, R256 set is
changed to 1.5kΩ, are subtracted from the data
depicted in Fig.7. The final result can be considered
as a residue error of the algorithm under the above-
mentioned parameter values and it is shown in Fig.7.

In this paragraph, we illustrate the all-code simulation
time of above mentioned system (Servo-loop unit and
8-bits Flash ADC). The accuracy obtained from a cal-

Fig. 7: INL residue (ε=2/3 and NCYCLES=19)

culation is given too. The worst-case extraction error
for 10 iterations is approximately 26 mLSB; this can
be furthermore reduced to only 140 nLSB after 40
iterations. This difference is highlighted by the fact
than the global elapsed time varies from 40 seconds
(for 10 iterations) only to 1 minute and 54 seconds
(for 40 iterations). It is computed by the equation (1)
with no respect to accuracy options of Eldo simulator
(abstol=1·10−16, reltol=1·10−08, itol=1·10−08 and
vntol=1·10−08). The simulation ran on PC with
E8400@3.00GHz processor.
Fig. 6 shows the DNL simulation result as a
demonstration of the resistor values deviation.
Backgrounded by [7], we identified that the major
component formatting the shape of the curve depicted
in Fig. 6 follows the shape of Walsh-Rademacher
function. Since the extrema of these functions are a
priori known, this in fact can simplify the so-called
test point selection procedure – see below in Section
5.

FURTHER DEVELOPMENT -USAGE
OF LEMMA

As it is reported in [6], the so-called LEMMA method
(Linear Error Mechanism Modeling Algorithm) can
be used to streamline the simulation and
measurement of ADC. This algorithm underlies the
sensitivity analysis over a set of the fundamental
device non-idealites referred to as error sources. In
our flash ADC case, the error sources can be
represented e.g. by the comparator offset and the
deviation from nominal resistor values. If error
magnitudes are small enough (meeting the
requirements of linear modeling), it is possible to use
principle of superposition and scaling of error
sources. Nonlinearity of converter response can be
decomposed to a sum of linearly independent error
sources, which are formed in the so-called ambiguity
group. This approach allows shortening the
simulation time of the converter response as a matter
of test points quantity reduction. Here, the test points
are selected on the criterion based on the evaluation

of dominant error sources. Implementation of this
advanced approach is being prepared in nowadays.

CONCLUSIONS

This work presents an innovative approach to the
extraction of ADC performance, suitable for both full
transistor-level and behavioral simulation. The Servo-
Loop unit presented was written as a versatile
program module for ADC performance extraction and
is suitable for co-operation with any analog simulator
supporting behavioral (Verilog-A) device models. In
conjunction with the Eldo simulator, it also enables
the multiprocessor run feature. The next significant
advantage of the ServoLooper module is the fact that
it is capable to extract the static non-linearity of any
ADC architecture, described at analog or behavioral
simulation level of abstraction. The required
specifications are the data validity and recovery time.
The main motivation for building the Virtual testing
engine was the fact that the choice and availability of
similar software tools is problematic. The next
enhancement of our work aided by the LEMMA
algorithm will bring simulation acceleration of
converters specified by a complex model such as full
transistor-level description.

ACKNOWLEDGMENTS

The work has been supported by the grant GACR
102/07/1186 of the Grant Agency of the Czech
Republic running in co-operation between the Czech
Technical University in Prague and ASICentrum
Prague. The work has been also supported by the
research program MSM6840770014 of the Czech
Technical University in Prague. ICstudio®, Advance
MS®, Design Architect® , Eldo® and EZwave® are
registered trademarks of the Mentor Graphics
Corporation. Maple® is a trademark of the Waterloo
Maple, Inc., Matlab® is a trademark of the
Mathworks, Inc.

REFERENCES

[1] Šubrt, O., Martinek, P., Wegener, C. A Powerful
Extension of Servo-Loop Method for Simulation-
based A/D Converter Testing, 15th IMEKO TC4
Symposium.

[2] Geelen, G. A 6b 1.1GSamples CMOS A/D
Converter, ISSCC 2001.

[3] Burns, M., Roberts, G. W. An Introduction to
Mixed-Signal IC Test and Measurement, Oxford
University Press, 2001, pp. 447-481.

[4] Estrada, P., Maloberti, F. Virtual Test Bench for
Design and Simulation of Data Converters,
Proc. IEEE Conf. BMAS, Behavioral Modeling
and Syst., Santa Rosa, California 2002

[5] The Institute of Electrical and Electronics
Engineers, Inc., IEEE Standard for Terminology

and Test Methods for Analog-to-Digital
Converters., New York, December 2000, IEEE
Std. 1241-2000.

[6] Wrixon, A., Kennedy, M. P., A Rigorous
Exposition of the LEMMA Method for Analog
and Mixed-Signal Testing, IEEE Transactions on
Instrumentation and Measurement, October
1999, Vol. 48, No. 5.

[7] Z. Růžička, Walsh function and ways of their
generation, [in Czech] Elektrorevue 2004/65-
17.12.2004 internet magazine [online] [cit.
2009-10-29]. Available from WWW:
<http://www.elektrorevue.cz/clanky/04065/inde
x.html>.

