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Anotace

Ćılem práce je studium, použit́ı a vyhodnoceńı metod řešeńı úlohy estimace pózy zv́ı̌rat.
Tyto metody jsou použity na novém Lynx-Pose datasetu, který je v práci představen.

Práce sestává z úvodu do teoretického základu estimace pózy a použit́ı metod odhadu
pózy k vyřešeńı predikce pózy rysa ostrovida. V práci jsou představeny hluboké neuronové
śıtě a metody vyhodnoceńı pro estimaci pózy spolu s dostupnými datasety pro estimaci pózy
zv́ı̌rat. Experimenty sestávaj́ı z natrénováńı model̊u HRNet-W32, ResNet-50 a ResNet-152
pro estimaci pózy rys̊u a z použit́ı technik augmentace obraz̊u k dosažeńı lepš́ıch predikćı
pózy. Výsledky jsou vyhodnoceny za použit́ı mean average precision a procenta správných
predikćı a vykresleny na obrázćıch z Lynx-Pose datasetu.

Kĺıčová slova: estimace pózy zv́ı̌rat, 2D estimace pózy, estimace pózy nerigidńıch objekt̊u,
estimace pózy rysa, HRNet, ResNet, augmentace obrázk̊u, Lynx-Pose dataset, dataset pro
estimaci pózy zv́ı̌rat

Annotation

The goal of the thesis is to study, use and evaluate the animal pose estimation methods.
These methods are to be used on the novel Lynx-Pose dataset introduced in the thesis.

The thesis consists of an introduction to the animal pose estimation theoretical basis
and the use of the pose estimation methods to predict the Eurasian lynx pose. Deep neural
networks and evaluation metrics for pose estimation are introduced as well as the available
animal pose estimation datasets. The experiments consist of training the HRNet-W32,
ResNet-50, and ResNet-152 models for lynx pose estimation and using image augmentation
techniques to achieve better performance. The results are evaluated using the mean average
precision and the percentage of correct predictions and also visualized on images from the
Lynx-Pose dataset.

Keywords: animal pose estimation, 2D pose estimation, non-rigid object pose estimation,
lynx pose estimation, HRNet, ResNet, image augmentation, Lynx-Pose dataset, animal pose
estimation dataset
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1 Introduction

In recent years, society has become increasingly aware of the nature protection impor-
tance. Academia follows this trend and some of the recent research shifts more towards
sustainability and wildlife conservation. As we see in the wildlife conservation works, one of
the important used techniques to collect data is wildlife tracking [25, 32, 33, 58]. Wildlife
tracking studies the movement and movement patterns of animal individuals or whole pop-
ulations. The movement is examined both from a local and a global point of view. An
example of a local, respectively global point of view is the movement of different animal
species on Barro Colorado island [33], respectively the mule deer across the continent [58]
or even migration of birds across multiple continents [32].

My thesis is part of a work with the goal of wildlife tracking. Specifically, the goal is
tracking wild Eurasian lynxes in the Šumava and Bayerwald National Parks. Let us now
look at why wildlife tracking is important for wildlife conservation.

There are multiple wildlife tracking uses important for wildlife conservation. One of the
uses is the detection and analysis of issues with the animals’ habitat. The tracked wildlife
often migrates within their habitat to find new food sources. This can be affected by the
creation and extension of the built environment. Migration is vital for some animals and
it can be destructive for a given population if an important part of their migration route
is blocked [58]. Animals can also change their migration patterns on the basis of climate
changes, which can in turn cause a local abundance of a given species in the area the
animals migrate to [59]. Scientists also use wildlife tracking to research the land use change
impact which can cause changes in biodiversity. This can affect the species within a given
ecosystem and have an impact on the extinction risk of entire populations [74]. Tracking helps
with animal protection too. Wildlife can be endangered by invasive species or by infectious
diseases. The diseases and parasites spread and the impact of invasive species can be studied
using movement patterns obtained by tracking [33]. Wildlife tracking is also used in poaching
prevention and there is an increasing number of works studying this topic [2, 13, 31, 35].
The rangers or nature reserve guards use the knowledge of wildlife movement and position
themselves for more effective animal protection. The tracking system can also detect rapid
changes in animal movements possibly caused by a panicking animal [2].

We now look at wildlife tracking methods. One of the first wildlife tracking methods is
animal tagging. One of the early recorded experiments is from 1834 [1], and this method is
still used nowadays. The scientists capture the individual animal and tag it, the tracking is
based on recapturing the given individual, retagging it, and recording new information in
the process. The drawbacks of this approach are the need to physically recapture the animal
and the method’s invasiveness.

To moderate these disadvantages, more modern wildlife tracking methods were devel-
oped. Some of these methods are still based on the previously mentioned principle - the
individual is captured and then given a tag, but nowadays the tag is a digital device or a lo-
cation transmitter. These devices are called biologgers and some can record environmental
conditions or even video. They can be of various natures - a Passive Integrated Transpon-
der (PIT) which is an electronic microchip serving as a digital tag [19], Global Positioning
System (GPS) trackers to observe relatively fine-scale movement [10, 14, 28], radio signal
transmitters with the radio telemetry use and radio-frequency identification [8, 16, 33], and
more. Examples of such biologger devices on animals are shown in Figure 1. The devices
used by these methods can be costly, especially when satellite tracking is used [64]. While
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Figure 1: Examples of captured animals with biologging devices [32].

the price decreases as the device development is progressing, there is still the disadvantage
of the methods’ invasiveness.

All of the previously mentioned methods require capturing the animal in order for a bi-
ologger to be attached to it. Since the devices are installed directly on the animals, an
effort is being made to keep their size small. The device has to be carried and its weight
and size must therefore not exhaust the animal, hinder its movement or reduce its appeal
to potential mates. In Figure 1 we see that even with the more modern devices the size
is still big and the device is definitely a burden for the animal. The size of the devices is
also limited by the battery size. Ideally, the biologger should also be able to transmit the
data remotely to prevent unnecessary animal recapturing. This remote transfer contradicts
the size requirement because the remote transfer often requires bigger devices with stronger
batteries [69].

Some of the newer methods take these disadvantages into account and base themselves
on non-invasive observation of individuals or populations [18, 23, 40, 49]. Therefore, these
methods do not require capturing the animal and do not disturb the life of the animals. This
also means they are often cheaper and the data collection and device replacement are easier.

The prominent method is camera trap wildlife tracking which, as the name suggests,
uses the pictures from camera traps to identify and track the individual animal [34]. This
identification along with the camera trap location and a timestamp gives us a partial model
of the movement and behavior of the given individual.

As mentioned, to track the individual we need to identify it from the image. As already
stated, we focus on the Eurasian lynx tracking. Lynxes, like other animals, have unique
markings and can be identified by those markings making them ideal animals for camera
trap capture-recapture (re-identification) methods [20, 55, 68]. The lynx initial and every
subsequent lynx identification are done manually by an expert. However, the identification
process could be automated and such automation allows the experts to focus on more im-
portant tasks like processing the data from wildlife tracking. To be able to automate the
process and identify a lynx individual automatically, we need to extract the markings from
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the image. This would also allow us to identify a new lynx individual if we extracted an
unknown marking pattern.

Figure 2: Example of a kinematic (left) and a volumetric (right) animal pose models [71, 77].

Therefore, we need the ability to extract the coat pattern from the image for lynx iden-
tification and tracking. One of the possible approaches is to find the lynx’s pose and use
it to extract the texture from the image. This way we know the correspondence of texture
parts to body parts and we can then compare the texture with a set of known geometrically
normalized textures. The pose of the lynx can be found with the use of pose estimation.

The pose estimation problem is a general problem consisting of detecting the position and
orientation of a person or an object. This definition suggests that the human pose estimation
task is a very important subtask of pose estimation. Therefore we first define human pose
estimation which we later reformulate into an animal pose estimation definition. Human
pose estimation can be defined as a problem of human joints localization in an image [66].
This means we look for points (areas) in the image, which correspond to important human
body parts. These important parts can be joints in the skeleton, other points of interest such
as the eyes or nose, or even whole limbs. If we look for singular points of interest, they do
not always need to correspond to exact joints in the human skeleton. However, they are still
often called joints. The estimation can output various pose models which we now introduce
briefly.

As stated in [75], the model representing the pose by the 2D or 3D coordinates of singular
points is called a kinematic (skeleton-based) model. For 2D pose estimation, we can also use
the planar (contour-based) model which replaces body parts with rectangle approximations
of the body contours. An example of such a model is the cardboard model [30], and another
example of a planar model is the well-known Active Shape Model [12]. The last option, the
volumetric model, is used for 3D pose estimation and represents the pose as geometric meshes
and shapes, an example of such a model is the Skinned Multi-Person Linear model [43].

Animal pose estimation is derived from human pose estimation as the animal joints
localization in the image [29]. We notice that the formal definition is the same for both
problems and the principles described above apply to the animal pose estimation task too.
The difference is in the task-dependant definition of the joints and the used models. The
joints for the animals often correspond to their body parts (ears, muzzle, skeleton joints,
paws, tail base, . . . ) as well, but we notice that the body parts we listed here differ slightly
from the ones used in human pose estimation (e.g. tail base). For 2D and 3D animal pose
estimation, kinematic models are often used. The other model types defined above also exist
for animal pose estimation tasks. a volumetric model example for 3D animal pose estimation
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is the Skinned Multi-Animal Linear (SMAL) model [77]. a kinematic and a volumetric pose
model examples for animals are depicted in Figure 2.

The rigidness of the studied subject is another aspect of pose estimation. The methods
and definitions presented so far all regarded the non-rigid object pose estimation. The
methods of rigid object pose estimation are also being studied. They are important for
many relevant and trending problems like autonomous driving, robotic manipulation, and
augmented reality. With the object being rigid, the pose is estimated in regard to the camera
location, meaning the 3D location and 3D rotation of the object are estimated. This results
in a 6D vector hence the task is often called 6D pose estimation [26, 44]. These methods go
beyond the scope of my thesis as they are not of big importance for tracking lynxes.

To summarize, in my thesis, the focus is on the non-rigid object pose estimation, and the
kinematic model is used for our task. We use the kinematic model because as stated in [29],
the 2D pose estimation tasks usually aim “to detect the 2D coordinates of the keypoints
(joints) of an animal”.

Having presented the pose estimation task, the automation method for lynx identification
and tracking can be concluded. Given the lynx image from a camera trap, we can estimate
the 2D animal pose in the image and extract the coat pattern texture which can be used
for the identification of the individual. The animal can then be tracked with the use of
the camera trap location and the information about the time animal walked by the camera
trap. This way, wildlife tracking can be done without the need to catch the animals. As [23]
states, the selected spatial placement of the cameras influences the result greatly so this
aspect needs to be considered too.

To further expand on the uses of animal pose estimation beyond my thesis, animal pose
estimation can also be used for behavioral analysis [22, 46, 54] or 3D model extraction [4,
38, 77]. Stating all the possible uses of animal pose estimation we notice it is of similar
importance as human pose estimation. However, since it does not directly benefit humans,
for example from a health, financial, or military point of view, it is less researched and
funded. This is related to the lack of data, which is also many times more difficult to obtain
in some animal species than in humans because of their population number. The data
scarcity problem is not uncommon and has a good solution in computer vision tasks that
also helps the methods to generalize - data augmentation [50, 63, 76]. Thus we also explore
the data augmentation techniques in the lynx pose estimation task.

In the theoretical part of my thesis, the tasks of animal and lynx pose estimation are
introduced in Section 2. Then the existing deep learning methods used to estimate the pose
are studied in Section 3. Afterward, methods for pose estimation evaluation are explored in
Section 4, our novel dataset for lynx pose estimation is introduced and the existing datasets
for which pre-trained models exist are also looked at in Section 5. Afterward, we introduce
the image augmentation techniques in Section 6. Section 7 is the practical part of my thesis
where the deep learning models are selected and trained on our dataset. We also conduct
a study of the data augmentations’ impact on the training.
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2 Animal Pose Estimation

In this section, we introduce the tasks of pose estimation and animal pose estimation
in more detail, and introduce the approaches used for pose estimation depending on the
expected input and output.

As mentioned in the Introduction, the non-rigid object pose estimation task is often
performed on humans and we also already mentioned the animal pose estimation task. Let
us now quickly recap this definition by defining the general pose estimation task. The goal
of general non-rigid object pose estimation is to detect the location of a given object’s parts.
These parts are predetermined and often represented as points in the 2D image or in 3D
space. Together, the points give us information about the object configuration (pose) and
position.

The animal pose estimation task is a subtask of the general non-rigid object pose esti-
mation task. The object is an animal and the detected parts very often correspond directly
to specific animal body parts, such as ears, eyes, limbs, or tail.

As stated in [29], we can also define several different aspects of the pose estimation task
depending on the expected input and output. In terms of input, we are primarily interested
in whether we are estimating the pose for a single image or for a video, i.e., an image
sequence. Another possibility is an input consisting of multiple images representing multiple
views in a single moment.

In terms of output, there are several aspects to consider. First, we need to decide on the
model we use for the pose as we already stated in the Introduction. As [75] states, we can
choose from the kinematic (2D or 3D pose), planar (2D pose), or volumetric (3D pose) model.
Let us suppose we use the kinematic model. Using this model we can estimate the pose in 2D
or 3D which affects the coordinate dimension we get as the output. We are also interested
in whether we always estimate the pose for only one occurrence of a given individual (single
animal pose estimation), or whether there may be multiple individuals and we estimate the
pose for all of them (multiple animal pose estimation). All of the mentioned needs to be
taken into account in general pose estimation tasks. In the animal pose estimation task, we
additionally consider whether we are estimating the pose for a single species or for multiple
species.

Figure 3: A generic animal pose estimation workflow flowchart [29].

We see the above-mentioned aspects in Figure 3, as well as few other things that need to
be considered. The Figure 3 shows the image pre-processing as the inference model receives
the content of the object’s bounding box as input. This approach is called top-down and
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requires to have a detector (e.g. Single shot multibox detector [42], R-CNN [21]) between the
raw input and the pose estimation model. Examples of backbones used for top-down pose
estimation are Residual Networks (ResNets) [24], Cascaded Pyramid Network (CPN) [9], or
High-Resolution Network (HRNet) [67]. If the detector detects multiple objects, they are
passed into the pose estimation model as individual inputs. The second approach is called
bottom-up (e.g. OpenPose [7]). This approach estimates the pose of all objects’ parts by
itself, groups these parts, and creates objects from them.

2.1 Lynx Pose Estimation

In terms of the presented aspects, our task can be defined as follows. We estimate the
pose for a single image on input. We solve a task of 2D animal pose estimation using
a kinematic (skeletal-based) pose model and the estimation is done for a single species - The
Eurasian lynx (Latin: Lynx lynx).

Since the Eurasian lynx is mostly a solitary animal [62], occurrences of two or more
lynxes in a single image are rare. This leads us to the usage of the top-down approach to
pose estimation. If there are ever two (or more) lynxes in a single image, we assume that
a lynx detector exists and gives us information about all of the lynxes by means of multiple
bounding boxes. In this thesis, we work only on the pose estimation part of this issue
and assume that the detector is given. This detector is simulated by having the annotated
bounding boxes for all the ground truth images.

In our task, we detect the following 20 keypoints: two ears, two eyes, a nose, withers,
a neck, a tail base, four paws, four “knees”, two shoulder points, and two hip points. In
Figure 4, we show an example of a lynx from our dataset and the points that are annotated
and represent the ground truth pose.

Figure 4: Example of an annotated Eurasian lynx image from our dataset.

We notice that these keypoints correspond to anatomical parts of the lynx skeleton with
the only exception being the throat keypoint. The “knee”, hip, and shoulder keypoints
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correspond to physical joints in the lynx skeleton. The ear keypoints are the exact points
where the lynx skull ends and the ear cartilage tissue starts. If we connect these keypoints
with the eye keypoints on the corresponding side and then connect the eye keypoints with
the nose keypoint, a triangle is formed. The line going from the nose to the eye and to the
ear should be almost straight and this should be the case in all lynx images. We see that the
image in Figure 4 meets this requirement, but the left ear base could have been annotated
slightly closer to the eye. The withers keypoint is placed exactly between the shoulder blades
of the lynx and the tail base keypoint is between the topmost parts of the pelvis where the
lynx’s tail starts. The paw keypoints should always be annotated exactly at the very end of
the lynx’s limbs.

Another important aspect we need to consider is the keypoint occlusion. We distinguish
three types of keypoint occlusion - self-occlusion, occlusion by an object, and keypoints
located out of the image bounds. We obviously do not do anything with the out-of-bounds
keypoints and they are also not being annotated.

Dealing with the other occlusion types is image dependent. We see that some of the paws
in Figure 4 are partially or fully occluded by the snow and are still annotated. Since we have
a reference in the other not-occluded paws and some occluded paws are partially visible, we
can annotate the points. If the snow was deeper in the image we would not be able to find
the tips of the limbs and the keypoints would not be annotated. This also often happens
with self-occlusion since the lynxes are usually standing sideways and occluding some part
of their body. These occluded keypoints can often be annotated without knowing the precise
location of the joint because the lynx’s body constitution in a certain pose is predictable.
This principle is also applicable to some occlusions by an object. On the other hand, there
are circumstances where the occluded keypoint location can not be determined reliably. In
that case, the keypoint is annotated as occluded or not annotated at all. Regarding the
occlusion during pose estimation itself, we would want the pose estimation model to have
low confidence for keypoints that are out of the image or occluded. We hope that the model
will be able to have this low confidence score when presented with enough examples that do
not contain all keypoints.
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3 Deep Learning Methods of Pose Estimation

Nowadays, animal pose estimation problems are most often and most efficiently solved
by deep learning methods. As discussed in [29], the Residual Neural Network (ResNet) [24]
architecture is commonly used as a backbone to solve this task, supplemented with deconvo-
lution layers as recommended in [70]. a second frequently used and very effective backbone
architecture is the High-Resolution Network (HRNet) introduced in [67]. Thus, we now
introduce these architectures.

3.1 Residual Neural Network and Simple Baselines for Pose Esti-
mation

Residual networks are well-known architectures introduced in 2015 [24]. This paper
addresses the problem of vanishing and exploding gradients when training deep neural net-
works.

The presented ResNet architecture consists mainly of convolutional layers with 3×3 ker-
nels. The network is formed from multiple convolutional layers operating at the same feature
map size followed by downsampling. Additionally, skip connections are used between some
layers as we present later. The authors also present two simple rules for building the net-
work regarding the number of filters in layers: “(i) for the same output feature map size, the
layers have the same number of filters; and (ii) if the feature map size is halved, the number
of filters is doubled so as to preserve the time complexity per layer”. The downsampling
between different feature size filters is done by stride 2 convolutional layers.

Figure 5: Training and test errors comparison of different depth architectures (20-layer and
56-layer) [24].

In Figure 5, the authors show that for deeper networks, the network’s error rate increases
for both training and inference on the test set. However, if a deeper network can be con-
structed from its shallow counterpart by stacking extra layers, it should at worst have the
same error rate. This could be achieved if the stacked layers represented identity mappings
in the worst-case scenario. To prevent the phenomenon of the increasing error rate with
increased depth, skip connections between the convolutional layers are used to implement
said identity mapping.
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The authors consider the whole ResNet to be composed of subnetworks that transform the
input x by the function H (x). They assume that the neural network is able to approximate
residual connections, and instead of letting the network approximate H (x) directly, they
re-parametrize the function to its residual form F = H (x) − x. Hence the output y of the
subnetwork is represented as y = F (x) + x. This residual function is implemented in the
network using skip connections between the subnetworks. At the same time, the ResNet
networks use the ReLU function as a nonlinear activation function. This whole principle is
shown in Figure 6 which depicts a basic building block of the ResNet architecture. These
building blocks form the subnetworks we mentioned earlier and the network is composed of
them. The skip connections are used directly for the same dimensions in the layers as shown
in the Figure 6. When the layers change dimension, either the input is padded by zeroes or
a linear projection to a higher dimension is used.

Figure 6: Proposed use of a skip connection in the building block of the ResNet architec-
ture [24].

Five versions of ResNet were proposed in the original paper with 18, 34, 50, 101, and
152 layers, named Resnet-18, Resnet-34, and so on according to the number of layers.

The usage of ResNet networks for pose estimation came a bit later than the original paper.
In 2017 it is introduced as a part of the Cascaded Pyramid Network (CPN) [9]. This network
has two sub-network parts forming its pyramid network, the first one is called GlobalNet, and
the second one RefineNet. ResNet here is used indirectly to build the GlobalNet network.

The main ResNet usage in pose estimation tasks was introduced a year later in the paper
“Simple Baselines for Human Pose Estimation and Tracking” [70]. The authors focus on
creating simple yet effective baseline methods to battle the increasing complexity of the
methods introduced at the time. The pose estimation method is based on the usage of deep
and low-resolution feature maps. The deep, low-resolution feature maps are encoded in the
last ResNet layers. This method adds three deconvolutional layers behind the last layer with
batch normalization and ReLU activation function. The layers have 256 convolutional filters
with 4×4 kernel size and stride 2. To generate heatmaps for keypoints a 1×1 convolutional
layer is added at the very end of the network with the number of filters equal to the number
of the estimated keypoints.

In general, ResNet models have a lower number of Floating-point Operations Per Second
(FLOPs) than other networks achieving similar performance. Compared to VGG-19 [60],
which is a 19-layer network and has 19.67 GFLOPs, ResNet-152 has 11.58 GFLOPs and bet-
ter performance on the ImageNet classification task (numbers from MMClassification model
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zoo [11]). By adding the pose estimation deconvolutional layers from [70], this statement is
no longer true. If we compare the two networks presented above - CPN and Simple Baselines
ResNet-50 on the COCO validation set in the experiment from [67], we notice that ResNet
outperforms CPN with almost a 2% increase in mean average precision score (presented in
Section 4.4), but has 8.9 GFLOPs while CPN has only 6.2 GFLOPs.

3.2 High-Resolution Network

The High-Resolution Network is an architecture proposed in 2020 [67]. As opposed to
the Simple Baselines principle presented at the end of the previous Section, HRNet attempts
to maintain a high-resolution representation of the image during training and inference.

As the authors state, neural networks that use low-resolution representations are the
most commonly used type of network for detection, pose estimation, and segmentation tasks.
However, this low-resolution provides a coarse output and its performance can be improved
by combining it with the middle layers’ outputs - medium-resolution representations. Apart
from the networks using low-resolution representations, the other commonly used option is
hourglass-shaped networks. These networks use a mirrored version of themselves to recover
high resolution. An example of such a network is DeconvNet [53] which uses VGG as
a backbone and unpooling to recover high resolutions. Another approach is to copy feature
maps between layers of the same level and combine this with unpooling. An example of such
an architecture is U-Net [57].

There are also architectures that try to work with high-resolution representations - Grid-
Net [17] and multi-scale DenseNet [27]. HRNet attempts to address the weaknesses of these
networks. GridNet passes information between low-resolution and high-resolution repre-
sentations only twice, once from the high-resolution representation to the low-resolution
representation and the other way around. The high-resolution representation in the multi-
scale DenseNet does not even obtain information from the low-resolution representation and
therefore the learned high-resolution representation is not so strong.

HRNet’s approach is to maintain a high-resolution representation at all times and grad-
ually add parallel convolutional branches that work with lower-resolution representations.
These branches then pass information to each other after a few steps of parallel running.
This approach and the HRNet architecture that implements it can be seen in Figure 7.

Before passing the input to the network’s main body which is shown in the Figure, the
input is reduced to 1

4
of its original resolution using a stem. Stem consists of two stride-2

3×3 convolutions. The main body then consists of four stages and at the end of each stage,
one high-to-low resolution stream is added. The resolution streams operate at 1

4
, 1
8
, 1
16
, 1
32

resolutions.

Figure 7: The HRNet backbone architecture with four stages and four parallel branches [67].

As we see in Figure 7, strided convolution and upsampling are used to combine outputs
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of different resolution streams. The authors call this Repeated Multi-Resolution Fusions and
the detail can be seen in Figure 8.

When fusing three representations we have the input set
{
Rin

r

}
, where r = 1, 2, 3 denotes

the index and also the resolution. It is assumed that r = 1 belongs to the first resolution
stream and each subsequent stream has a resolution of 1

2r−1 . The output set is {Rout
r } and

each Rout
r is the sum of the transformed inputs as follows:

Rout
ro =

∑
r

fr,ro
(
Rin

r

)
, (1)

where the function fr,ro depends on the resolution of the input r and on the resolution of the
input ro. If r = ro then no transform is needed and fr,ro

(
Rin

r

)
= Rin

r . If r < ro then we need
to upsample the input and fr,ro

(
Rin

r

)
is bilinear upsampling with 1×1 convolution to match

the number of channels. If r > ro then we need to downsample the input and fr,ro
(
Rin

r

)
is

(r − ro) times stride-2 3×3 convolution. The fusion formula for two or four representations
is derived easily by removing or adding a sum element.

Figure 8: Illustration of the resolution fusion approaches in HRNet for the fusion of different
resolution branches. The strided 3×3 means stride-2 convolution of size 3×3, the up samp.
1×1 means bilinear upsampling with 1×1 convolutions to match the number of channels [67].

The authors present three ways to generate the network output - three different rep-
resentation heads, which are shown in Figure 9. The first output option is the HRNetV1
head, where only the highest resolution representation comes out of the network. The second
option is HRNetV2. This head increases the resolution of the low-resolution representations
using the previously mentioned bilinear upsampling. It then concatenates the resulting rep-
resentations and uses 1×1 convolution to mix the concatenated representations. The last
head is HRNetV2p, which works in the same way as HRNetV2, but after obtaining the high-
resolution representation, it further converts it to low-resolution. This gives a multi-level
representation by means of a feature pyramid.
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Figure 9: Illustration of the proposed representation heads producing output from the HR-
Net network [67]. Left to right: HRNetV1 outputs the highest resolution representation,
HRNetV2 outputs concatenated representations (resolutions are upasmpled with bilinear
upsampling), HRNetV2p outputs a feature pyramid.

The number of channels for the resolution of the first network stage is given by a param-
eter C. This width of the convolution is used to calculate the widths for the other stages as
2C, 4C, and 8C. The common C values are 18, 32, 48, and 64 and the resulting architectures
are then called HRNet-W18, HRNet-W32, and so on.

Having presented the number of GFLOPs in the previous section we can now compare
HRNet to the Simple Baselines ResNet according to the experiment from [67]. Again we
compare the numbers on the COCO validation dataset. We notice HRNet-W32 outperforms
Simple Baselines ResNet-152 with a 2.4% increase in mAP value while having 7.10 GFLOPs,
Simple Baselines ResNet-152 has 15.7 GFLOPs. If we also compare the number of parameters
we notice HRNet has 28.5 million parameters and Simple Baselines ResNet-152 has 68.5
million parameters, which is almost two and a half times the number of parameters.

3.3 Pose Estimation Heads

Now that we have introduced the neural network backbones, we can look at the various
options for applicable heads. There are two approaches in skeletal-based pose prediction,
keypoint (coordinates) regression, and heatmap regression.

Deep convolutional neural network (CNN) architectures have started being applied to
pose estimation tasks [66] along with the CNNs that started winning image recognition
competitions in 2013-2015 [24, 36]. The early networks used the keypoint regression and
tried to work with the connection of convolutional layers to fully connected (FC) layers [66],
for example by using global average pooling. The keypoint coordinates regression is a product
of the last FC layer and the output of the neurons in this layer corresponds to the predicted
coordinates in the image. The task of such exact regression is difficult because the network
tries to predict real values [3].

The heatmap regression task was first introduced in [65] and it very quickly replaced
the coordinate regression usage in the field of pose estimation. The heatmap regression
does not utilize global average pooling and FC layers. It instead uses a convolutional layer
on the output with channels corresponding to the keypoint heatmaps. This means that
estimated joints each have a heatmap that is directly represented by the last layer’s channel.
The heatmap contains the spatial likelihood of the keypoint location. This means that
each heatmap element represents a likelihood of the keypoint being located in the element’s
position. The regression of the keypoint position (x̂, ŷ) from the heatmap H (x, y) is then
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done as

(x̂, ŷ) = argmax
x,y

(H (x, y)) . (2)

As stated in [3], the probabilistic character of heatmaps helps to add extra uncertainty to
the keypoint location. Furthermore, heatmaps perform better than networks that directly
perform keypoint regression. The disadvantage is the higher number of network parameters.

Figure 10: An example of heatmaps output from a CNN. The final pose estimation on the
left is obtained as the maximum activation value of the heatmap [52].

Such an example of a heatmap produced by the neural network is shown in Figure 10.
We see a few sample heatmaps produced by the Stacked Hourglass Network [52] on the right.
On the left, there is a final pose estimation that was regressed from the heatmaps according
to Equation 2.

The heatmap generation methods (also called coordinate encoding) and the keypoint
deduction from the heatmap (also called coordinate decoding) are also a matter of study [45,
73]. Let us first look at the most basic methods used to encode the coordinates.

The heatmap could be generated as a “one-hot heatmap” (a matrix that has one at
the keypoint location and zeroes elsewhere). However, this approach does not help with
the aforementioned coordinate regression issues and does not utilize the probabilistic char-
acter of heatmaps. Hence, the most basic approach that is widely used is to generate the
heatmaps using a Gaussian representation with the mean being in the keypoint coordinates
and the variance chosen as a hyperparameter. This approach is sufficient for top-down ap-
proaches in which the objects are resized to the same size, but bottom-up approaches need
to handle a large object scale variety. This issue is being tackled in [45] by introducing the
scale-adaptive and the weight-adaptive heatmap regression. There are also other coordinate
encoding shortcomings. For example, the paper [73] tries to tackle the issue of coordinate
encoding error introduced by the encoded location quantization.

The coordinate decoding was already introduced in Equation 2. This is the most ba-
sic decoding technique which also does not fully utilize the probabilistic character of the
heatmaps. The Python framework MMPose [51] uses this decoding as a base for the final
keypoint regression. The final pose (x̂′, ŷ′) in the heatmap is regressed as

(x̂′, ŷ′) = (x̂, ŷ) + 0.25 (sign (∆x) , sign (∆y)) , (3)

where sign is the bipolar sign function and ∆x is the difference calculated from the heatmap
H (x, y) as ∆x = H (x̂+ 1, ŷ)−H (x̂− 1, ŷ), the calculation of ∆y is done similarly.

The paper [52] introduces another basic approach that also uses the second most prob-
able keypoint location and interpolates it with the most probable location. The maximal
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prediction m and the second best prediction s are used to localize coordinates p as

p = m+ 0.25
s−m

||s−m||2
. (4)

These two approaches add sub-pixel precision to the final estimated coordinates and
make the predictions more precise. The paper [73] argues that even these decoded locations
are coarse. The authors experiment with finding the heatmap extrema by approximating the
quadratic form of the predicted Gaussian heatmap by the Taylor series (up to a quadratic
term). They do this to formulate the extrema condition (the first derivative being equal to
zero) and to find the Gaussian distribution extrema point.

There are several used network heads using the approaches presented above. Possibly the
most notable heatmap regression head is the one presented in [70]. We already introduced
this heatmap regression approach in Section 3.1 where the heatmaps are generated by using
k channels of 1 × 1 convolutional networks for k keypoints. HRNet [67] uses a very similar
approach and regresses the heatmaps from the high-resolution output. Almost the same
approach is presented in Stacked Hourglass Network [52] which uses two consecutive 1 × 1
convolutions to produce the predictions.

The keypoint regression heads are a matter of study too because the heatmap approach
also has major drawbacks. As [61] states, probably the biggest issue that comes with
heatmaps is the non-differentiability of the argmax operation. This leads to the construction
of loss functions to optimize the heatmaps and not the final coordinates. Another problem
is the already mentioned quantization error due to the lower resolution of the produced
heatmaps. This could be fixed by increasing the heatmap resolution, but the increased reso-
lution brings computational difficulties and a quadratic increase in model complexity. This
model complexity is also the reason why keypoint regression methods are widely used in 3D
pose estimation [61].

The first regression head we look at consists of a simple pooling layer followed by three
FC layers, the first and the second FC layer has 4096 neurons, and the last layer has 2k
neurons for coordinate regression. This regression head was introduced in [66]. The authors
of [61] try to find a connection between keypoints and heatmaps and estimate the joints by
integrating the heatmap locations weighted by their probability. The heatmap is normalized
by soft-max operation to make its elements non-negative and sum to one. This is called
the Integral Pose Regression and can be applied to any heatmap-based method. Another
approach introduced in [39] reformulates the regression problem as a maximum likelihood
estimation task and tries to regress the underlying ground truth distribution. They come
up with a Residual Log-likelihood Estimation which helps regress both the coordinates and
their variance. The head is implemented as average pooling followed by an FC layer which
consists of k × 4 neurons, two neurons are for the coordinates and the remaining two for
mean and variance of each keypoint.

Loss functions

Let us now briefly introduce the common loss functions used to train the pose estimation
models. First, we introduce the mean squared error (MSE) loss for heatmap regression, and
then we introduce the L1 and smooth L1 losses for keypoint regression.

The MSE loss is used to minimize the mean squared error between each prediction and
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target. The squared error between the prediction xi and the target yi is calculated as

SE (xi, yi) = (xi − yi)
2 . (5)

If the target is the heatmap of the size m× n, then the operation is done element-wise and
the result is also of the size m×n. The output is then reduced either by taking the sum of all
elements or the mean of all elements. In popular neural network implementation frameworks
like PyTorch, the loss is called MSE even when only the elements’ sum is taken. The final
loss for K heatmaps is then usually a weighted sum of the partial losses as

MSE (x, y) =
K∑
k=1

wk

∑
mk

∑
nk

(xmk,nk
− ymk,nk

)2

mn
, (6)

where xmk,nk
is the predicted value on the position (m,n) in the predicted heatmap and

ymk,nk
is the target value on the position (m,n) in the target heatmap for keypoint k. The

wk is the weight of each partial loss and is often set to be equal to one.
The L1 loss is used to minimize the absolute error between the prediction and the target.

The absolute error between the prediction xi and the target yi is calculated as

AE (xi, yi) = |xi − yi| , (7)

and if the targets are keypoint coordinates, then the absolute error is calculated for each
coordinate element. As with the MSE loss, the L1 in the PyTorch framework is then calcu-
lated either as the sum of all the elements or their mean. The smoothed version of the L1

loss is calculated as

li(xi, yi) =

{
0.5(xi−yi)

2

β
if |xi − yi| < β

|xi − yi| − 0.5β otherwise
, (8)

where β is usually chosen as β = 1. The mean of all coordinates is usually taken for the
final loss and the loss is then calculated as

smooth-L1(x, y) =

∑N
i=1 li(xi, yi)

N
. (9)

In the Equation we see that the smoothed version behaves as the L2 loss when the absolute
error term is lower than β and behaves as the L1 loss otherwise. This makes the function
differentiable and also makes it more robust to outliers (because for big differences xn − yn,
the error is not being squared).
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4 Evaluation

To properly evaluate the pose estimation models’ performance, we now present the meth-
ods used to evaluate pose estimation.

Two main approaches are used to evaluate pose estimation. The first approach is to
evaluate each keypoint separately, which is for example done by the percentage of correct
keypoints (PCK) metric. This gives us a number indicating the performance of the model for
each keypoint. The second approach is to use the evaluation for each keypoint and calculate
the overall model performance.

In the following sections, we first discuss the first approach and introduce the frequently
used PCK metric. We then modify this metric as a percentage of correct predictions and use
it to evaluate the overall model success rate. The percentage of correct predictions already
falls under the second approach mentioned above. Finally, we present the well-known OKS
metric and its different interpretations with their advantages and disadvantages. The OKS
metric is used to calculate mean average precision for pose estimation tasks.

4.1 Percentage of Correct Keypoints

The percentage of correct keypoints metric is a widely used evaluation metric for pose
estimation tasks. As mentioned, this metric measures the accuracy of individual keypoint
predictions. It is defined as the percentage of predicted keypoints whose distance from
ground truth is less than a given threshold distance t. We need to keep in mind that this
percentage is measured separately for each keypoint.

Thus, for each detected keypoint, we compute the PCK as the ratio of the number of
predictions satisfying this condition to the total number of predictions. The calculation for
keypoint i is as follows:

PCK (i, t) =

∑N
i=1 δ (di, t)

N
, (10)

where di is the Euclidean distance between i-th ground truth keypoint and the i-th predicted
keypoint, N is the total number of predictions, and δ (di, t) is a function defined as follows:

δ (di, t) =

{
1 if di < t

0 otherwise
. (11)

4.2 Percentage of Correct Predictions

We can now use the already defined PCK to evaluate the overall success of pose esti-
mation. To do this, we use the condition defined in the PCK. We check that all predicted
keypoints within one pose prediction are closer to the ground truth than a given distance
threshold. By checking this condition, we obtain information about the pose predictions
correctness at the given threshold t. If we calculate the ratio of these correct predictions to
the total number of predictions, we get the percentage of correct predictions at the threshold.
We obtain it using the modified formula as follows:

P (t) =

∑N
i=1 sign

+
(∏Nk

k=1 δ (di,k, t)
)

N
, (12)
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where sign+ is the unipolar sign function, di,k is the Euclidean distance between k-th ground
truth keypoint and the k-th predicted keypoint for the i-th ground truth image. We notice
that the product iterates over all Nk predicted keypoints within one ground truth image.
The sum then iterates over all N images. Again we use the δ (di,k, t) function presented in
Equation 11.

4.3 Object Keypoint Similarity

Object keypoint similarity (OKS) is an evaluation metric that, like other similarity met-
rics, gives us a number in the interval ⟨0, 1⟩ indicating the estimated pose similarity to the
ground truth data. The perfect prediction has a similarity score of 1. OKS is presented by
the authors of the COCO dataset [41] as the main metric to evaluate pose estimation.

The OKS authors say that its goal is to perform the evaluation in a similar way to the
object detection evaluation, i.e., to allow for average precision (AP) and average recall (AR)
calculation. To evaluate AP and AR a similarity measure needs to be used. In the case of
detection evaluation, the similarity measure is Intersection over Union (IoU). With IoU the
curves for precision and recall can be computed by choosing different IoU thresholds. Thus
OKS is defined as a similarity measure for keypoint detection.

OKS for one vector of keypoint predictions p and ground truth keypoints g for image I
is calculated as follows:

OKS (p,g) =

∑
i exp

(
−d2i
2s2κ2

i

)
δ (0, vi)∑

i δ (0, vi)
, (13)

where di is the Euclidean distance between the corresponding i-th predicted keypoint and
ground truth from vectors p and g, s is the ground truth object scale, κi is the per-keypoint
constant. The ground truth keypoint visibility flag vi is greater than 0 if the keypoint is
visible and equal to 0 if not. We assume that at least one keypoint is visible to avoid division
by zero and to make the pose estimation task meaningful.

The κi value represents the keypoint’s i uncerainty. It is calculated using a set of redun-
dantly annotated images, meaning multiple annotators have to annotate the same image set.
From these redundant annotations, we compute the variance σ2 of the annotated keypoints
positions with respect to the scale of the object. We then determine κi for each keypoint as
κi = 2σ. This means that κi values depend on the object type for which we are estimating
the pose. This dependency and the cost of annotating images redundantly makes these val-
ues difficult to obtain and they are often approximated from existing values computed for
some benchmark datasets.

The object scale s can also be defined in different ways. In the official COCO definition,
it is the square root of the object segment area. If one does not have segmentation for the
object, it is the square root of the bounding box area. However, the object size introduced
this way does not take into account different image sizes and box-to-image ratios. Thus, one
can also encounter versions of OKS where the object scale s is introduced as the ratio of the
bounding box size to the total image size.

However, defining the scale s with respect to the image size introduces problems with
numerical stability. Thus, we propose two approaches to account for image size. The first is
to use a correction factor to solve the numerical problems. The second is to use the standard
definition with the addition of a constant representing different image sizes.
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4.3.1 Scale-aware OKS

As mentioned earlier, we propose two solutions to account for image size in the OKS
calculation.

The first solution is to modify the meaning of the scale term s in the OKS calculation
formula. Instead of the square root of the object segment area, we use the square root of
the ratio of the bounding box size and the image size. However, using this solution easily
leads to numerical instability.

In the OKS calculation, we use an exponential whose exponent is always negative because
the Euclidean distance d, the scale s, and the per-keypoint constant κ are always positive
numbers. At the same time, the scale s is always a number lower than one. The same
statement applies to the per-keypoint κ constant. Moreover, both of these numbers are
squared in the denominator. Thus, there is a large negative number in the exponent. When
the bounding box is small compared to the image size, the result of the exponential term
gets so close to zero that the numerical precision of floating-point numbers is not sufficient
enough to account for it and the result gets rounded to zero.

We address this numerical instability by adding a correction factor c to the OKS formula.
This correction factor must be constant across the evaluated problem, otherwise, the OKS
results would not be mutually comparable. It is then added to the formula as follows:

OKS (p,g) =

∑
i exp

(
−d2i

2cs2κ2
i

)
δ (0, vi)∑

i δ (0, vi)
. (14)

As mentioned above, it is essential that the correction factor c is fixed for the results to
be comparable. If we then wanted to interpret the results across experiments that use OKS,
the correction factor value must of course be the same.

The second solution is to use the scale s calculation proposed by the OKS authors. The
scale s is therefore still the square root of the size of the object segment area or the square
root of the size of the bounding box. We then modify the formula by adding the image ratio
term r. We the calculate OKS as follows:

OKS (p,g) =

∑
i exp

(
−d2i

2crs2κ2
i

)
δ (0, vi)∑

i δ (0, vi)
. (15)

We kept the correction factor c in the formula to compare it to the calculation from Equa-
tion 14.

We can calculate OKS at different correction factor values and show why it is needed
only in the first proposed formula. The image ratio term r also needs to be calculated for
every image. It gets calculated as follows:

r =
Ir
Ic
, (16)

where Ir is the reference image size and Ic is the size of the image the current prediction is
made for. We propose to choose the reference image size as the median value of the image
sizes in the given image set.
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Figure 11: The experiment showing the correction factor effect. The top graph OKS values
are calculated as in Equation 14, and the bottom graph OKS values are calculated as in
Equation 15. The “Ratio of nonzero scores” is the relative amount of images with OKS
score greater than zero. The “Average OKS value” is the average of the values for the
images in the set.

We depict the experiments with scale-aware OKS implementations in Figure 11. These
experiments are done on our Lynx-Pose dataset images presented later in Section 5.1. The
model we use to make the predictions is HRNet-W32 with Simple Baselines heatmap regres-
sion head pre-trained on the Animal-Pose dataset presented in Section 5.2. The top graph in
the Figure 11 is the scale-aware OKS using the bounding box to image size ratio presented
in Equation 14. The bottom graph is the scale-aware OKS using the square root of the
bounding box area with the image ratio term presented in Equation 15. As the Ir value
we use the median image size in the dataset. As we see in the bottom graph the correction
factor is not really needed for the image ratio implementation. The ratio of nonzero scores
to the total number of images is nearing 1 and the average OKS value is greater than 0.5.
On the other hand, we notice that the top graph has a ratio of nonzero OKS scores lower
than 0.1. This means that more than 90% of the calculated values got floored to zero due
to numerical instability for the correction factor equal to one. We achieve above 60% of
nonzero values if we increase the correction factor to 102. If we keep increasing the factor
we can analyze the graph to find a good correction factor value for the given experiment.
This value corresponds to a factor where the ratio of nonzero scores is nearing one and the
average OKS value is also acceptable - this correction factor value would be around 105 for
our experiment.

4.4 Average Precision for Pose Estimation

As mentioned at the beginning of Section 4.3, the OKS value is defined mainly for us
to be able to calculate the standard performance metrics - Average Precision and Average
Recall. In fact, the Average Precision (AP) notation used for pose estimation stands for
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mean Average Precision (mAP), and as COCO authors state [41], these terms are often used
interchangeably and depend on context.

To calculate the mAP value, we need to first calculate Average Precision at a given
threshold T as follows:

AP (T ) =

∑N
i=1 δ (OKS (pi, gi) , T )

N
, (17)

where N is the total number of predicted poses. This gives the relative count of predictions
that had an OKS value greater than the threshold T .

The mAP is then the mean of AP values at different thresholds as follows:

mAP ({T}) =
∑

T∈{T}AP (T )

|T|
, (18)

where {T} is the thresholds set for which we calculate AP values and |T| is the set’s
magnitude. The thresholds set for the commonly used COCO evaluation [41] is given as
T = {0.5, 0.55, 0.6, . . . 0.95}, this set used in mAP calculation is often denoted as AP at
OKS=.50:.05:.95. It is common to evaluate only AP with single threshold values of T = 0.5
and T = 0.75 too. Another usual evaluation of mAP takes the object size (ground truth
bounding box size) into account and evaluates mAP at different object scales. Small objects
have an area lower than 322 pixels, medium objects have an area between 322 and 962 pixels,
and large objects have an area greater than 962 pixels.
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5 Datasets

Several datasets are available for animal pose estimation problems. These datasets focus
on pose estimation tasks of multiple animals and contain various animal species. In our
work, we want to focus on datasets containing mammals. We look for a dataset containing
a quadruped mammal species that have their pose defined by the same keypoints we mention
in Section 2.1. Another aspect we need to consider is the given species’ similarity to lynxes.
These aspects allow us to choose a dataset and to look for models pre-trained on a given
dataset. We hope these mentioned aspects would make the finetuning better and more
robust.

In this section, we first introduce our novel dataset for lynx pose estimation and its char-
acteristics, then we look at the other available datasets regarding the animal pose estimation
task.

5.1 Lynx-Pose dataset

The Lynx-Pose dataset is a novel dataset we present containing the images of the Eurasian
lynx photographed by camera traps in the national parks Šumava and Bayerwald. The
images capture these rare animals in the wild and in various natural conditions.

The dataset contains 2,151 annotated images of various sizes depending on the camera
trap that took the image. The image sizes range from 640 × 480 pixels to 5, 152 × 3, 968
pixels and have another 16 unique resolutions between these two sizes. This means that the
dataset allows for tackling the problem of multi-scale object detection, segmentation, and
pose estimation.

The bounding boxes and segmentations are annotated for all lynx images in the dataset.
In the 2,151 images, there is a total of 2,208 annotated lynxes, we notice that very few images
contain multiple lynxes as per the assumption made in Section 2.1.

The lynx’s distance from the camera also varies greatly throughout the dataset which,
combined with the varying image sizes, results in a bounding box sizes variability. The
different sizes of the lynx individuals also contribute to this variability. The bounding box
area size is usually used to determine whether the object size is small, medium, or large as
stated in [41] and in Section 4.4. The small objects have an area lower than 322, medium
objects have an area size between 322 and 962, and large objects are the objects with an
area greater than 962 pixels. All of the lynxes in our dataset are large objects according to
this measurement metric making this size system useless for our issue.

Hence we plot the bounding box areas in Figure 12. The histogram shows counts of
bounding boxes with size within a given interval relative to the biggest bounding box size.
We observe a big variance in the box sizes. The biggest bounding box in our dataset has an
area of 19, 548, 447 pixels. The smallest bounding box has an area of 4, 614 pixels. We also
notice that most of the boxes lie in the 0% to 20% area. We show the closeup of this area
in the same Figure. With the information available, we could now redefine the small objects
for our task as the ones having an area less than 2.5% of the biggest bounding box area, the
medium objects could lie between 2.5% and 20% of the biggest bounding box area and the
rest could be large objects. This way, the object sizes classification can be made to fit the
task at hand and makes more sense than the rigid object size classification proposed in [41].
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Figure 12: Histogram of the bounding box size distribution within the animal pose dataset
relative to the size of the biggest bounding box. More detailed depictions of ranges 0% to
20% and 20% to 100% are shown in the closeups

Out of the 2,208 annotations, not all include the annotated pose. Sometimes, the lynx
is blurred because of its movement and the pose is impossible to annotate. The other issue
is that sometimes the lynxes are stood in a way that the pose can not be annotated either.
Such lynxes have the “NOT FOR POSE” tag in their annotation meaning that the pose is
not annotated for the given image. Some of the images are missing the “NOT FOR POSE”
tag but also do not have the pose annotated at all. a total of 1,689 lynxes are annotated for
pose estimation in 1,685 images.

The pose itself is given by 20 keypoints mentioned in Section 2.1. These keypoints are
two ears, two eyes, a nose, withers, a neck, a tail base, four paws, four “knees”, two shoulder
points, and two hip points. As we see in Figure 13, most of the annotations (69.2%) have
all 20 keypoints annotated and the majority of the annotations (90.2%) have pose at least
18 keypoints annotated.

Another benefit of our dataset is the lynxs’ identity annotation. When the lynx as an
individual is recognizable in the image, its identity is annotated as well. There is a total
of 18 identified lynx individuals across the dataset in a total of 1,386 images. This allows
for the use of the dataset to train a re-identification model which is needed to track lynxes
successfully as was mentioned in the Introduction.
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Figure 13: Absolute count of the annotations containing a given amount of annotated key-
points.

As we already mentioned the dataset contains lynxes in various conditions. This can be
seen in Figures 14 and 15. We see that the dataset captures the lynxes during the daytime,
evening, and night. Another important aspect is the time of the year because lynxes mostly
live in temperate climate zones. Our dataset captures the temperate weather, in the Figures
we see images with and without snow, with and without greenery, and with and without
sunshine. These aspects are of great importance for image classification as shown in [56] on
the famous example of the “Husky vs Wolf” experiment. The classification task is of great
importance for determining if the image should be passed to an object detector model and
subsequently to a pose estimation model.

Figure 14: Example of annotated pose keypoints in Lynx-Pose dataset.
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Figure 15: Example of annotated pose keypoints in Lynx-Pose dataset.

5.2 Animal-Pose dataset

The Animal-Pose dataset was proposed in paper “Cross-Domain Adaptation for Animal
Pose Estimation” in 2019 [6]. It contains images from the publicly available PASCAL Visual
Object Classes Challenge 2011 dataset [15]. Five mammal categories were selected for the
dataset and their pose was annotated. The chosen animals are the following: cat, dog, horse,
sheep, and cow.

This dataset contains 4,608 images of the previously mentioned animals with 5,517 animal
instances throughout the images. The size of these images varies, but the image size is usually
around 500 × 500 pixels. As the authors state, since animal pose datasets are scarce, they
use a novel cross-domain adaptation method to transform the pose knowledge from labeled
animal species to unlabeled animal species. This is done with the proposed dataset combined
with a human pose dataset from which the pose knowledge is also transferred.

The pose is represented by 20 keypoints, the final number of keypoints in the images can
be smaller because of occlusion or out-of-bounds keypoints. The annotated keypoints are as
follows: four paws, two eyes, two ears, four elbows, nose, throat, withers, tail base, and the
four knee points. a keypoint annotations example from this dataset can be seen in Figure 16.

If we compare the defined keypoints with our Lynx-Pose dataset keypoints from Sec-
tion 5.1, we notice the similarity between the datasets. We can also compare Figures 14 and 15
with Figure 16 and notice that the pose looks almost the same when visualized. Since the
dataset contains a cat category and quadruped mammals in general, it is a good candidate
dataset for which we can find pre-trained models. However, there are subtle differences that
will introduce an initial error. The first one is the paws annotation. We notice the cats’ and
the dogs’ paws not being annotated at the tip of the limb in the Animal-Pose dataset. The
other, less meaningful difference is the animals’ skulls. We notice a difference in the position
of the ears related to the position of the eyes for horses and sheep. This difference should
not matter that much since the dataset contains cats, which are similar to the lynxes and
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hopefully generate similar features in the neural network feature maps.

Figure 16: Example of annotated pose keypoints in Animal-Pose dataset [6].

5.3 Amur Tiger Re-identification in the Wild dataset

Amur Tiger Re-identification in the Wild dataset (ATRW dataset) was introduced in 2019
in “ATRW: a Benchmark for Amur Tiger Re-identification in the Wild” [40]. It contains
Amur tiger images from large zoos because these tigers are on the brink of extinction in the
wild.

The dataset contains 8,076 video clips containing at least one Amur tiger uniformly
sampled into frames. These images are of varying resolutions. The resulting dataset with
pose keypoints annotated contains 4,126 images. There is also a re-identification dataset
created in which the images are cropped to only contain the tiger.

Multiple tiger attributes are annotated in this dataset. For each tiger, a bounding box
and the tiger’s view orientation (frontal, left, right, and back) are annotated. Tigers also
have their identity annotated or have an unknown id annotation if the identity cannot be
determined. The orientation of the tiger is very important because the tiger’s stripe patterns
are different on each side. This results in one tiger being treated as two different entities
in the re-identification dataset when viewed from two different sides. The entities are then
linked to one tiger identity in the dataset.

Finally, tigers have their pose keypoints annotated and the following 15 keypoints are
used: two ears, a nose, two shoulders, two hips, four paws, two back knees, a tail base, and
a midpoint between the nose and tail base. These annotations can be seen in Figure 17.

Figure 17: Example of annotated pose keypoints in ATRW dataset [40].
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5.4 AP-10K dataset

AP-10K dataset was proposed in August 2021 as a benchmark dataset for general animal
pose estimation. It was proposed in the paper “AP-10K: a Benchmark for Animal Pose
Estimation in the Wild” [72]. It aims at the benchmark dataset construction which would
allow the models to have better generalization ability on unseen animal species.

AP-10K dataset contains around 60,000 images, 10,015 images are annotated with pose
annotations, and around 50,000 images are organized into animal families without keypoint
annotations. There are 54 animal species from 23 animal families. We notice a huge increase
in the number of animal species in comparison to the previously introduced datasets. This
diversity is introduced to answer the questions of whether or not the pose estimation model
benefits from a large-scale multi-species dataset and how much impact pre-training on human
pose estimation datasets has on the performance.

Pose of the animals is represented by the following 17 keypoints: two eyes, nose, neck,
tail, two shoulders, two elbows, two knees, two hips, and four paws. These annotations are
shown in Figure 18.

Background types are also labeled for all images containing pose annotation. These
background types are grass or savanna, forest or shrub, mud or rock, snowfield, zoo or
human habitation, swamp or riverside, desert or gobi, and mugshot.

Figure 18: Example of annotated pose keypoints in AP-10K dataset [72].

5.5 Horse-10 dataset

Horse-10 dataset is from the year 2021 and was proposed in the paper “Pretraining Boosts
Out-of-Domain Robustness for Pose Estimation” [48]. The paper explores the question
of how well an algorithm that performs with high accuracy on an individual animal can
generalize its estimation to different individuals with different appearances. Because of
this, the dataset contains only 30 diverse thoroughbred horses. The horses have various
appearances (coat colors) and are captured at different farms to add location complexity. The
dataset was split into 3 parts that contain 10 randomly selected training horse individuals
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(hence called Horse-10). The other two splits were used for evaluation on out-of-domain
horses.

The dataset consists of 8,114 images of these horses. Because of the scarce amount of
individuals, the pose estimation algorithm needs to be trained on a lot of possible movement
patterns. The dataset images are taken from videos capturing moving horses and their size
is 288× 162 pixels.

Horse pose in this dataset is represented by 22 keypoints. The images in the dataset are
also “corrupted” by 15 forms of digital transformations, blurring filters, point-wise noise, or
simulated weather conditions. This way the Horse-C dataset is created. The authors created
the Horse-C datasets using each corruption at 5 different severity settings resulting in a total
number of 75 datasets and over 600,000 images. The example of the corrupted images from
the dataset are shown in Figure 19.

Figure 19: Example of corrupted images from the Horse-C dataset [48].

5.6 MacaquePose dataset

The MacaquePose dataset is a novel dataset created and described in “MacaquePose:
a Novel “In the Wild” Macaque Monkey Pose Dataset for Markerless Motion Capture” [37].
This dataset contains macaque images from the internet, images captured in zoos, and images
captured at the Primate Research Institute of Kyoto University.

It contains 13,083 images with 10,630 images containing a single monkey, and 2,453
pictures containing multiple monkeys.

The pose of the macaques is represented by 17 keypoints: nose, two ears, two eyes, two
shoulders, two elbows, two wrists, two hips, two knees, and two ankles. An example of
keypoint annotations from this dataset can be seen in Figure 20.
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Figure 20: Example of annotated pose keypoints in MacaquePose dataset [37].

5.7 Other datasets

There are also other datasets regarding animal pose estimation problems that are not as
interesting for the task of lynx pose estimation.

a paper “Fast Animal Pose Estimation Using Deep Neural Networks” [54] published in
2018 introduced the LEAP method for animal pose estimation for behavioral analysis. It
focused on fruit fly pose estimation and fast prediction on new data.

In October 2019 the paper “DeepPoseKit, a Software Toolkit For Fast And Robust
Animal Pose Estimation Using Deep Learning” [22] proposed a deep learning toolkit for
tracking animals’ movements. This toolkit was tested on the pose and movement estimation
of fruit flies, locus, and Grévy’s zebras when viewed from above.

Another dataset regarding behavioral analysis of insects was proposed in “DeepBees –
Building and Scaling Convolutional Neuronal Nets For Fast and Large-scale Visual Moni-
toring of Bee Hives” [47] and focuses on bee pose estimation.

28



6 Image augmentations

Image augmentations are a way to generate new training data with the use of various im-
age preprocessing techniques such as brightness transformations, geometric transformations,
convolutions with various convolutional kernels, or other more complicated operations. As
mentioned in the Introduction, image augmentations (or image transformations) can help
greatly with the performance the model is able to achieve. Since augmentations bring an
aspect of randomness into training and generate “new” data, they are a great tool for im-
proving the ability to generalize [50, 63, 76]. The images can be augmented prior to the
training hence the generated training data are always the same. The second option is to use
online generation during the training and to have differently augmented data for each epoch.

There are a lot of image-processing libraries implementing the augmentations. In our
work, we focus on two implementations and the image augmentations which they contain.
For geometric augmentations, we study and later use the MMPose implementation [51], and
for the rest of the augmentations, we focus on the popular Python library Albumentations [5].
Hence we introduce the augmentations as they are implemented in these two toolboxes
including their input parameters.

We group the augmentations into five groups: geometric, blur, color, noise, and weather
augmentations. We notice that this grouping is more subtle than the usual division into
brightness and geometric transformations. The augmentations grouping tries to group the
augmentations according to their effect on the image and is done from our subjective percep-
tion of the resulting image. a good reason to create smaller groups from the transformations
is an opportunity to further explore the effect of individual augmentations on training. One
could argue that we could study the effect of each augmentation individually, but as we show
in the following Section a lot of the augmentations work in a very similar way. Another reason
to group the augmentations is to save computational time.

6.1 The augmentation groups

In this Section, we describe the augmentation groups and the augmentations they contain
in more detail. We go over each augmentation and describe its nature and the parameters
that need to be set. Most of the parameters for the Albumentations augmentations are given
in a form of an interval from which the final parameter value is chosen randomly. Unless
stated otherwise, the final parameter is chosen uniformly from the interval.

Geometric augmentations

There are four truly geometric transformations in the group: the horizontal flip, random
scale, random rotation, and random shift. The last augmentation, half-body transformation,
is not geometric by nature and augments the ground-truth target. We later use it along with
the geometric transformations, so include it in this group. All of the geometric augmentations
also transform the ground truth keypoints to correspond to the augmented image.

The horizontal flip flips the image horizontally.
The random scale changes the image size by a factor s passed as the input parameter.
The random rotation rotates the image by an angle θ passed as the input parameter.
The random shift implementation we choose shifts the bounding box center. The center is
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shifted both horizontally and vertically and the new position of the center (x′
c, y

′
c)

T is given as[
x′
c

y′c

]
=

[
xc

yc

]
+

[
sh · w
sv · h

]
, (19)

where (xc, yc)
T is the original bounding box center, w and h are the bounding box width

and height and sh and sv are the shift factors passed as input parameters. The shift of the
bounding box center is not a geometric transformation per se, but in the top-down pose
estimation task the model input is only the content inside the bounding box, hence the shift
combined with this crop becomes a standard shift transformation.

The last augmentation is the half-body transformation, which keeps only all the upper or
all the lower body keypoints. The differentiation to lower and upper body keypoints for our
Lynx-Pose dataset is adopted from the Animal-Pose dataset. The lower body keypoints are
the tail-base and all of the back limb keypoints, the upper body keypoints are withers, the
throat, the front limb keypoints, and the head keypoints. This augmentation is performed
only when the number of visible keypoints is above a threshold t passed as the input param-
eter. In Section 5.1, we have shown that most of the images in our dataset have all of the
keypoints. This augmentation tries to “teach” the model, that it does not always need to
produce high confidence for all of the keypoints. Since the keypoints can often be occluded,
this is a really important ability to have and the network needs to know how to represent
this possibility.

Blur augmentations

The blur augmentations group consists of four transformations that blur the image:
averaging blur, gaussian blur, median blur, and motion blur. All of these blurs have the
input parameter k, which is the blur mask size. The Albumentation implementation of
these augmentations only accepts an odd mask size. An example of blur augmentations of
an image from our Lynx-Pose dataset is in Figure 21.

The averaging blur convolves the image with a mask of a given size. The mask is a matrix
of ones divided by the total number of its elements.

The Gaussian blur takes a Gaussian kernel of a size k and convolves it with the image.
The standard deviation σ of the Gaussian kernel is calculated as σ = 0.3(0.5(k − 1)− 1).

The median blur replaces each image pixel with the median of neighboring pixel values.
The neighboring pixels are taken from a square neighborhood centered at the currently
replaced pixel and the size of the square side is k.

The motion blur tries to simulate the motion of the objects in the image. It convolves
the image with a mask with values only in a line and the mask elements sum up to one.
The direction of this line in the mask matrix is the direction of the movement. For arbitrary
angles, the best “approximation” of a line in the given direction is in the mask. An example
of such masks for vertical, respectively horizontal, respectively 45° movement direction is as
follows: 1

3
1
3
1
3

 ,

1
3
1
3
1
3

T

,

1
3

0 0
0 1

3
0

0 0 1
3

 .

In Albumentations, only a horizontal direction of the movement is used.

30



Figure 21: Example of blur augmentations applied on the image (Left to right: averaging
blur, Gaussian blur, median blur, motion blur).

Color augmentations

The color augmentations group is a group of brightness transformations that globally
change the brightness values of the color channels. This group contains 7 augmentations:
channel dropout, channel shuffle, color jitter, hue-saturation-value transformation, image
inversion, RGB shift, and random change of brightness and contrast. Examples of color
augmentations of an image from our Lynx-Pose dataset are shown in Figures 22 and 23.

The channel dropout augmentation replaces the brightness value in a random channel
with a value v selected as the input parameter.

The channel shuffle shuffles the channels randomly and takes no parameters.
The color jitter augmentation changes the brightness, contrast, saturation, and hue values

randomly. The new image I ′ is calculated from the old image I as follows:

Ib = kb · I, (20)

Ic = kc · Ib + (1− kc) Ḡb, (21)

Is = ks · Ic + (1− ks)Gc, (22)

H ′ = (Hs + 360kh) mod 360, (23)

where Ib, Ic, and Is are the images after changing brightness, contrast, and saturation. The
grayscale image of the image Ic is denoted as Gc and Ḡb is the mean of the grayscale image
for the image Ib. H

′ and Hs denote the hue channel in the HSV image representation of the
respective images I ′ and Is. The constants kb, kc, ks, and kh are the input parameters.

Hue, saturation, and value (HSV) transformation is very similar to color jitter. It works
fully in the HSV image representation. Unlike in color jitter, the changes kh, ks, and kv
in hue, saturation, and value are additive. These changes are the transformation’s input
parameters.

Figure 22: Example of color augmentations applied on the image (Left to right: channel
dropout, channel shuffle, color jitter, HSV transformation).

Image inversion inverts the input image by subtracting its brightness values from the
maximum value of the image type. This augmentation takes no input parameter.
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The RGB shift augmentation adds a value to or substracts a value from all pixels within
a given color channel. This is done for each channel and the values kr, kg, and kb added to
the color channel pixels are the input parameters.

The last transformation in this group is the random change of brightness and contrast.
The new image I ′ is generated from the old image I as

I ′ = kb · I + kc ·m, (24)

where m is the maximum value of the image type and constants kb and kc are the input
parameters.

Figure 23: Example of color augmentations applied on the image (Left to right: image
inversion, RGB shift, random brightness and contrast).

Noise augmentations

The noise augmentations add noise to the image or reduce the image quality by some
other means. We have chosen the following 6 augmentations for this group: the downscale
transformation, additive Gaussian noise, ISO noise, multiplicative noise, posterize transfor-
mation, and sharpening. Examples of noise augmentations of an image from our Lynx-Pose
dataset are shown in Figures 24 and 25.

The downscale transformation is considered a geometric transformation, but in the Al-
bumentations implementation, the augmentation first downscales the image to a lower scale
and then upscales it back to the original resolution. This means that there is no change
in the image geometry and the noise brought to the image is introduced by the interpola-
tion algorithms. The augmentation uses the nearest neighbor interpolation as the default
interpolation, other methods like bilinear or bicubic interpolation can be chosen as the input
parameter. The scale value s to which the image is downscaled is the input parameter.

The additive Gaussian noise adds a noise with the Gaussian probability density function
to the image. The noise can be the same for all the channels or generated for each channel
separately, this setting is passed at the input of the method. The Gaussian distribution’s
variance σ2 and the mean µ are also the input parameters.

The ISO noise adds a simulated grain noise which appears naturally in the images when
the camera ISO value is set too high. In photography, the ISO value determines the camera’s
sensitivity to the light. However, this step is done in the post-processing and hence ampli-
fies both the brightness values and the random noise present in the incoming signal. The
augmentation is applied to the hue, luminance, and saturation (HLS) image representation.
The noisy luminance L′ is calculated from the old luminance L as

L′ = L+ (1− L)
P

255
, (25)

32



where P is Poisson noise with mean λ = σ ·i ·255. The parameter σ is the standard deviation
of the HLS values and i is the intensity given as the input parameter. The noisy hue H ′ is
calculated from the old hue H as

H ′ = H +G, (26)

where G is Gaussian noise with zero mean and variance σ2
G = c · 360 · i, parameter c is also

the input parameter.

Figure 24: Example of noise augmentations applied on the image (Left to right: downscale,
additive Gaussian noise, ISO noise).

The multiplicative noise multiplies the image by a given scalar value or does an element-
wise multiplication by a matrix. This can be chosen as the input parameter of the aug-
mentation. Another choice is to either have the same value(s) for all channels or a different
one(s). The interval km from which the multiplier value(s) is (are) generated is given as the
input parameter.

The posterize transformation reduces the number of bits used to represent the values
of each color channel. This augmentation takes the image with the 8-bit unsigned integer
number representation format and randomly chooses a new maximal number of bits to
represent each channel. These maximal numbers kr, kg, and kb are given as the input
parameter for each channel.

The last augmentation in the noise group is the sharpen augmentation. This augmenta-
tion convolves the image with the 3 × 3 sharpening matrix S. The base sharpening matrix
is given as

S =

−1 −1 −1
−1 8 −1
−1 −1 −1

 . (27)

The sharpen augmentation in Albumentations takes parameter α and a parameter l for
lightness as its input. These parameters are then used to generate the final sharpening
matrix S’ as follows:

S’ = (1− α)

0 0 0
0 1 0
0 0 0

+ α

−1 −1 −1
−1 8 + l −1
−1 −1 −1

 . (28)

The matrix S’ is then convolved with the image.
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Figure 25: Example of noise augmentations applied on the image (Left to right: multiplica-
tive noise, posterize, sharpen).

Weather augmentations

The last augmentation group is augmentations simulating various weather effects on
the environment in the image. There are four augmentations in this group: random snow,
random sun flare, random rain, and random fog. An example of weather augmentations of
an image from our Lynx-Pose dataset is in Figure 26.

The random snow bleaches out the values of some pixels to add a snow effect to the image.
This augmentation uses a given brightness coefficient kb which is used to multiply the values
below a given threshold t. The condition set by the threshold is checked against the values
of luminance in the HLS image representation. Both the coefficient and the threshold are
the input parameters.

The random sun flare imitates an effect of contre-jour images where the camera is pointing
toward the source of the light. This generates a number of circles with a set color and adds
to the image with increasing transparency. The color c, number of circles n, and radius of
the first generated circle r is the input parameter of the augmentation.

The random rain adds lines to the image simulating the water drops during rain. The
lines are generated with a given slant (rain angle) same for all raindrops. After the drops are
generated and added to the image, the image brightness is reduced by a brightness coefficient
kb < 1 and then it is also blurred by an averaging blur. The rain slant θ, the size of the blur
mask k, the brightness coefficient kb, and the color of the drops c are the input parameters.
The rain type is also chosen from “drizzle”, “heavy”, and “torrential”. The type influences
the generated lines’ length and the number of drops.

The last weather augmentation is random fog which simulates foggy weather conditions.
The fog is simulated by creating circles and overlaying them with the image at the given
points. The number of circles is calculated using the fog coefficient kf , which is passed as
the input parameter. The circles are then overlayed with a weight given by a coefficient α
also passed as the input parameter. The image is then blurred using averaging blurring with
kernel size calculated from the fog coefficient.

Figure 26: Example of weather augmentations applied on the image (Left to right: random
snow, random sun flare, random rain, random fog).
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7 Experiments

In this Section, we present the models chosen for the training and the results of various
experiments with the training. First, we present the experimental settings, then we evaluate
the performance of the models on our data without any training. Afterward, we train the
models with our basic training settings and do a study on the effect of image augmentations
on the training result. At last, we try to train a model with a randomly initialized keypoint
head and compare its performance to the pre-trained heatmap-based models.

7.1 Experimental settings

We use the MMPose [51] framework for our experiments which features a model zoo
with pre-trained models. From the available models, we choose HRNet-W32, ResNet-50,
and ResNet-151 backbones with a pre-trained heatmap head and the input size 256 × 256.
For our experiments, we choose models pre-trained on the Animal-Pose dataset, which was
introduced in Section 5.2. The main reason for this choice is that the keypoints used to
represent pose in the Animal-Pose dataset are the same 20 keypoints our task uses, hence
we can use the pre-trained weights for the heatmap head. We show the importance of pre-
training later in Section 7.4. The chosen Animal-Pose dataset also focuses on quadruped
mammals that have similar body composition to that of lynx. One of the species in the
dataset is cats, which also makes a good basis for lynx pose estimation. These models have
achieved mAP of 0.736, 0.688, and 0.709 on the validation set of the Animal-Pose dataset.

As mentioned in Section 5.1, our dataset contains 1685 images of lynxes in various en-
vironments. For our experiments, we use a 75-25 train-validation split of the data meaning
we have 1262 images in our train set and 423 images in our validation set. We convert the
annotations to the Animal-Pose annotation format and use the data loader created for the
Animal-Pose dataset. After the image is loaded by the data loader, it is cropped using the
bounding box and rescaled to the network input size of (256× 256 pixels).

We use the MMPose implementation of TopdownHeatmapSimpleHead as our heatmap
prediction head and as mentioned above, this prediction head is also pre-trained on the
Animal-Pose dataset. We presented this head in Section 3.1, and in Section 3.3. It is the
head composed of 20 convolutional layer channels with 1 × 1 kernel sizes for 20 heatmaps.
The heatmap count corresponds to the number of predicted keypoints. The final keypoint
position (x̂′, ŷ′) is calculated as described in Equation 3 in Section 3.3. This heatmap head
from MMPose also produces a confidence score for keypoints. This confidence score for
a given keypoint is the maximal value in a heatmap corresponding to the keypoint.

The ground truth heatmaps are generated using the Gaussian approach also described
in Section 3.3 with the standard deviation parameter set as σ = 2 and the mean equal to
the ground truth keypoint coordinates.

The loss function for the training is the MSE loss presented in Section 3.3 as presented
in Equation 6. The target weight wk for our experiments is set as 1 if the ground truth
keypoint is annotated and 0 if not.

As the main metric for the trained models evaluation and to choose the best model
weights, we use average precision on the validation dataset. We defined this metric in
Section 4.4 and we use the mAP calculated at OKS=0.50:0.05:0.95. The mAP calculation
on the validation dataset is done after each training epoch.
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In the experiments, we use the same settings of the following hyperparameters for all
of the runs: the batch size is always set to 32 images per batch, the initial learning rate is
always set to 5e−4, the warmup is linear and is performed over 5 epochs. The learning rate
value at the start of the warmup is 5e−8, i.e. 1e−4 times the initial learning rate. The linear
change during warmup happens in each training step. The step scheduler is used and has
a learning rate decay factor of 0.3. The momentum for the optimizer is set to 0.9.

We use the Adam optimizer for all experiments. We tried using the SGD optimizer
with various hyperparameter settings. However, setting it correctly is difficult and in our
experiments, the model did not achieve comparable results to using Adam and converged
much slower. One such run is depicted in Figure 27. The training run with the Adam
optimizer runs 110 epochs, and SGD was set to 280 epochs. We see that the run with Adam
converges in the 100th epoch and reaches a maximum mAP value of 0.9113. For SGD, on
the other hand, we notice the trend of the mAP value increasing slightly even after this
100th epoch, reaching a maximum of 0.8838 in epoch 210.

Figure 27: Comparison of mAP value on validation in a fine-tuning experiment run with
SGD and Adam optimizers.

7.2 Baseline results

First, we calculate the mAP value for the selected models without any finetuning. The
value is calculated on the Lynx-Pose validation dataset. The results can be seen in Table 1,
comparing these values to the results the models have on the Animal-Pose dataset, we see
that HRNet outperforms the two other models in both cases. The difference in performance
between Animal-Pose HRNet and Resnet-50 is 0.048, the difference in performance is more
than twice as big for the baseline Lynx-Pose models - 0.1112. The difference between the
baseline Lynx-Pose HRNet and Resnet-152 is 0.0588.

Mean Average Precision

HRNet 0.5918
ResNet-50 0.4807
ResNet-152 0.5330

Table 1: Mean Average Precision of the selected models without finetuning on the validation
dataset.
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After testing the baseline models on the validation set, the models are trained on the
training dataset. For the first experiment, we do not augment the training images in any
way during the run. We also run a second training experiment set where the images in the
training dataset are augmented using a horizontal flip with a 50% probability. Apart from
this augmentation, no other augmentation is applied to the training dataset images.

The hyperparameters for setting the scheduler steps and the number of epochs were set
experimentally based on previous experiments. The other hyperparameters are set according
to Section 7.1. For HRNet and ResNet-50, the epoch count and the scheduler steps settings
are identical. The models are trained for 160 epochs and scheduler steps occur at epochs 50,
90, and 130. At each step, the learning rate is reduced by a factor of 0.3, the final learning
rate is 1.35e−5. For ResNet-152, due to the larger model size, we choose a larger epoch
count. For this experiment, we set the count at 180 epochs and the scheduler steps happen
at epochs 60, 110, and 150. The learning rate reduction factor is the same for ResNet-152.

First, we compare the effect of the flip transform on the training results. This comparison
of the best mAP values achieved by the models is shown in Table 2. We notice that the
flip augmentation helped to increase the best mAP value for all of the models. ResNet-
152 has the least increase in performance and both ResNet-50 and HRNet have a similar
increase in performance. We also see that training the models increased their performances
by approximately 35% compared to the baseline results presented in Table 1. Again, HRNet
achieves the best mAP value results in this experiment. ResNet-50 achieves a result that is
a tenth of a percent worse in both experiments.

mAP without augmentations mAP with flip

HRNet 0.8893 0.8999
ResNet-50 0.8802 0.8884
ResNet-152 0.8906 0.8946

Table 2: The best mAP values achieved by models on validation dataset with no augmenta-
tions and with flip augmentation being used during training.

The mAP value progression on the validation dataset during training is shown in Fig-
ure 28. We can now compare the epoch of convergence to the best mAP values between
the two training experiments. HRNet with flip augmentation achieves its best mAP value
in the 58th epoch. Without the flip augmentation, the mAP of 0.8893 is achieved in the
104th epoch which is almost twice the time. With the mAP value of 0.8946, ResNet-152
with flip augmentations achieves comparable results even faster than HRNet in epoch 40.
Without the flip, the maximal value of 0.8906 is achieved in epoch 158, which is almost four
times longer. ResNet-50 reaches its best mAP value of 0.8884 in the 95th epoch with flip
transform, it is the exception in the experiment reaching the best mAP value without the
flip in the 71st epoch.

This faster convergence of the models with a flip augmentation is could be caused by
the models not overfitting to the training data as soon as the training runs without the
augmentations. This gave the models a chance at learning to estimate a general lynx pose
at the early stages of the runs. We see the mAP value actually decreasing for the flip
experiments as the epochs progressed and the model started overfitting itself.
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Figure 28: The comparison of mAP progression on the validation dataset with runs without
any training data augmentations and runs with flip augmentation.

7.3 Augmentation experiments

In this Section, we experiment with the effect of the augmentation groups presented in
Section 6 on the trained model performance. We run each experiment only once for each
model as our goal here is to find the best model and the study of the augmentation effect
on training is the side product. Hence, we run each experiment only once and the statistical
significance of the conclusions we make is not computed.

We use the augmentations online, meaning we generate new augmented images for each
training batch. For each augmentation, we set its application probability, we present this
setting later in Section 7.3.1. In these experiments, we always use geometric augmentations
and one additional group of presented augmentations. The geometric augmentations usage is
to prevent the model from overfitting to the known joint locations. As we saw in the previous
Section, adding the flip transformation already helped with achieving a better performance.

As we presented in Section 6, the augmentations take a lot of input parameters. Most of
these parameters are given as an interval from which the value is chosen randomly. Since the
parameter count is this high, we decide to choose these parameters empirically based on the
perceived effect of augmentations on the images. Even this way, we have to manually set 72
parameters and check the resulting images. As we saw in Section 6, some of the augmenta-
tions have up to four interval parameters. This means we have to manually check 16 interval
boundary combinations to verify the images are still usable for the training. We observe that
an experimental search for the optimal parameter setting would be extremely computation-
ally intensive. The whole models would need to be trained with fixed augmentation settings
for tens, hundreds, or even thousands of runs while trying to optimize hyperparameters in
a 72-dimensional space. Another question to consider is the difference in the performance
between the optimal and the empirical parameter settings. Hence we settle for an empirical
setting of the input parameters.
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7.3.1 Training settings

Let us now discuss the parameters used for the experiments. First, we discuss the general
training settings and afterward, we focus on the settings of the augmentations parameters.

For the experiments presented in this Section, we use the same dataset, models, losses,
evaluation metric, and hyperparameters settings as in Section 7.1. The only change in the
experiments is the scheduler policy. We use the same scheduler settings for HRNet, ResNet-
50, and ResNet-152 across the experiments presented in this Section. The HRNet is trained
for 180 epochs with a starting learning rate of 5e−4. The step scheduler is used with a learning
rate decay rate of 0.3 and the steps are set to happen at the 45th, 100th, and 140th epoch,
the learning rate first drops to 1.5e−4, then to 4.5e−5 and finally to 1.35e−5. Exactly the
same setting is applied to the scheduler for ResNet-50. ResNet-152 is trained for 190 epochs
with the same initial learning rate and the same decay. The scheduler steps for ResNet-152
happen at the 50th, 110th, and 160th epoch and the learning rates throughout the training
have the same values as discussed before.

Let us now look at the settings of the data augmentation probabilities and the training
data preparation pipeline. First, we use the bounding box shift with the probability of
30% and then flip the image horizontally with the probability of 50%. Then we use the
augmentation group for which the experiment is being done - blur, color, noise, or weather
augmentation. Only one augmentation from the group is selected and then it is applied with
a probability of 80%. After, we apply the half-body transformation with the probability of
30% if the image has more than 8 keypoints. After that, the image is always transformed
by random scale and rotation. The bounding box region of the image is then cropped and
rescaled to the network input size, normalized to the model’s expected mean and standard
deviation, and sent to the network input. This training data generation process is the same
for all of the presented experiments.

The parameter settings are listed in Appendix A. As stated earlier, a lot of these settings
are given as intervals. The parameter choice from this interval is always done uniformly in
the MMPose and Albumentations implementations.

7.3.2 Results

In this Section, we present the training results along with the mean average precision
progression visualizations on the validation dataset. First, we focus on the experiments with
the different augmentation groups separately, then we compare the final results together.

Let us repeat that the only thing changing throughout the experiments is the augmenta-
tion group from which the augmentation is chosen after the horizontal flip is done. Every-
thing else is set up as stated in Section 7.3.1.

The first experiment is done for the blur augmentation group. We see the mAP measured
on the validation dataset after each training epoch in Figure 29. ResNet-152 achieves its
peak mAP of 0.9020 first in 117 epochs. After that, ResNet-50 achieves mAP 0.8992 in
131 epochs. HRNet achieves the best mAP value of 0.9042 in this experiment in the 167th
epoch. We can notice the increase in performance of ResNet-50 on the 100th epoch, where
the learning rate changes to the value of 4.5e−5. Both ResNet models reached the best
mAP value before the last scheduler step. Only HRNet reached its best value after the last
scheduler step. We also see the progression being very intertwined before the last scheduler
step. After this step, HRNet starts overperforming the two other models.
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Figure 29: The comparison of validation mAP progression of the runs trained with the blur
augmentations in the training image preparation pipeline.

The second experiment is conducted with the color augmentation group. The mAP value
progression on the validation dataset is in Figure 30. ResNet-152 achieves its best mAP of
0.9134 in epoch 120. ResNet-50 is the slowest network to reach its best mAP value achieving
0.9091 in epoch 165. HRNet is in turn the fastest here achieving mAP value of 0.9171 in
epoch 104. Comparing the progression to the one in Figure 29, we see that the results for
individual networks are less intertwined in the later training stages. We also notice a similar
increase in the performance of the trained models after the penultimate scheduler step as
we did in the last experiment. In this experiment, the HRNet and ResNet-152 seem to be
affected more by this scheduler step.

Figure 30: The comparison of validation mAP progression of the runs trained with the color
augmentations in the training image preparation pipeline.
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The third experiment is done with the noise augmentation group. The mAP measured
on the validation dataset for this experiment is depicted in Figure 31. ResNet-152 achieves
its best mAP value of 0.9115 in epoch 136 and is the fastest network in this experiment.
ResNet-50 has its best mAP value of 0.9079 in epoch 144. HRNet is again the “slowest” ar-
chitecture achieving the best mAP value of 0.9157 in epoch 175. All of the networks achieved
their respective best mAP values later than in the previous experiments. The maximal values
for HRNet and ResNet-50 were achieved after the last scheduler step. ResNet-152 reached
its best performance before the last step. We also see both ResNet-152 and HRNet overper-
forming ResNet-50 throughout the experiment. This could mean that ResNet-50 does not
have the capacity to respond to the noises as well as ResNet-152, because we saw the two
models having a similar mAP progression in the previous experiments.

Figure 31: The comparison of validation mAP progression of the runs trained with the noise
augmentations in the training image preparation pipeline.

The fourth experiment is done with the weather augmentation group. This experiment
is depicted in Figure 32. Again, the networks achieve their best mAP values later than
in the first two experiments. ResNet-152 achieves its best mAP of 0.9089 in epoch 150.
ResNet-50 achieves its best mAP of 0.9019 in epoch 178, being the “slowest” network in this
experiment. HRNet achieves the best mAP value of 0.9140 in epoch 149, beating ResNet-152
by one epoch. This experiment is interesting with regard to the relations of the individual
mAP progressions. In the previous experiments, the models’ mAP values were somewhat
intertwined in the plots, especially for the blur and noise augmentation groups. Here we see,
that the HRNet’s mAP value is better than the one of the ResNet-152 in the majority of
the epochs. The same can be said for ResNet-152 and ResNet-50. We assume HRNet has
a better response to weather augmentations, but more runs would be required to validate
the assumption. This better response could be caused by the ability of the model to keep
a high-resolution representation of the image. As the augmentations bring a lot of noise that
is not filtered easily and introduce new edges in the images (e.g. the raindrops from random
rain augmentation), the low-resolution representation of the ResNet architectures could be
too coarse.
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Another thing to consider with weather augmentations is the computational demand
for fog augmentation. During the experiments, we notice that the weather augmentations
experiment runs considerably longer than the other experiments. Hence we take the aug-
mentations in the group and compare their computation time to selected augmentations
from the other groups, namely color jitter for the color group, ISO noise for the noise group,
and median blur for the blur group. We see the results in Table 3, where we notice the fog
augmentation being 44 times slower than the fastest augmentation - color jitter. We also
notice the fog augmentation is 9 times slower than the second slowest weather augmentation
- the random sun flare denoted as “Sun”.

This is given by the big input image size (2048 × 1536px). We also include the relative
computation time of the augmentations on a small image (373 × 205px) in the same Table.
All of the augmentations run at comparable speeds after cropping the images to a smaller
size. Hence the fog augmentation speed is no longer an issue and if we wanted to experiment
with the weather augmentations more, we would consider applying them after the input is
already cropped by its bounding box.

Figure 32: The comparison of validation mAP progression of the runs trained with the
weather augmentations in the training image preparation pipeline.

Augmentation (Big image) Color Noise Blur Fog Rain Snow Sun

Relative time (to Color time) 1× 13× 8× 45× 3× 2× 5×

Augmentation (Small image) Color Noise Blur Fog Rain Snow Sun

Relative time (to Color time) 0.03× 0.27× 0.19× 0.06× 0.05× 0.04× 0.14×

Table 3: The comparison of the times taken to augment the image relative to the color jitter
augmentation on the original image.

Having done the experiments with the basic augmentation groups, we found the color
and the noise augmentations groups to have the best effect on the models’ performance. We
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also notice that the blur group has very little effect on the performance and the same can
be said for the weather group in regard to the two ResNet models. Hence we now train the
models with color augmentations followed by noise augmentations.

The augmentation group used in the training data generation pipeline is now replaced
by these two groups. In each image preparation step, one augmentation from each group
is selected randomly. These two selected augmentations are then applied each with 80%
probability (meaning that the probability of both being applied is 64%).

The first experiment combining the augmentation groups is applying color augmentation
first followed by noise augmentation. The mAP value progression on the validation dataset
in this experiment can be seen in Figure 33. ResNet-152 reaches its best mAP value of
0.9099 in epoch 130. ResNet-50 is the last model to reach its best mAP of 0.9080 in epoch
167. HRNet reaches the best mAP value of 0.9110 in this experiment in epoch 158. Once
again, the networks reach their best performance in the later training stages and ResNet-152
is the only network reaching its best mAP value before the last scheduler step. Interestingly
enough, ResNet-50 is the only network seeing an increase in its performance compared to
the previous experiments. ResNet-152 and HRNet on the other hand drop in performance
compared to the experiments where the color and the noise groups were applied separately.

Figure 33: The comparison of validation mAP progression of the runs trained with the color
and then noise augmentations in the training image preparation pipeline.

The second combination is done by applying noise augmentation first and following it
with color augmentation. The mAP value progression can be seen in Figure 34. ResNet-152
reaches the mAP value of 0.9142 in epoch 140. ResNet-50 is slightly faster, reaching the
mAP value of 0.9021 in epoch 137. HRNet is the last network to reach the maximum with
its best mAP value of 0.9122 in epoch 176. Again we notice a big increase in the models’
performance after the scheduler step in epoch 100 (110 for ResNet-152). The progression
in this experiment is interesting because ResNet-152 achieves better mAP on the validation
dataset than HRNet. Their mAP value progressions are also very similar. ResNet-152 seems
to be responding to this augmentation combination the best as it is the only model which
sees an increase in performance compared to all the previous results. If we look at the mAP
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value progression of ResNet-50, we notice it performs considerably worse than the other
models throughout the experiment. This is a very similar phenomenon to the one observed
in the Weather experiment.

Figure 34: The comparison of validation mAP progression of the runs trained with the noise
and then color augmentations in the training image preparation pipeline.

Since the augmentations combination brings only a slight increase in performance for
ResNet-152 and not for the other two models, we look at the effect of the augmentations on
the images. The hypothesis is that the combinations of the augmentations may decrease the
image quality too much. We notice that some of the boundary parameter combinations pro-
duce images that are deformed beyond recognition. Hence we decide to tune the parameters
for the groups, these parameters are also presented in Appendix A. We run a new training
experiment for these tuned parameters.

We show the mAP value progression for this experiment run in Figure 35. We notice that
all of the models reached their maximum mAP value late in the experiment. ResNet-152
reaches its best mAP value of 0.9119 in epoch 185. ResNet-50 reaches its best mAP value
of 0.9069 in epoch 167. HRNet is the best-performing model in this experiment with mAP
value of 0.9143 in epoch 175. The tuning did not really work for ResNet-152 and HRNet as
the results are still comparable to the previous experiments. Both ResNet models achieved
a better result in one or the other of the previous experiments. However, we notice ResNet-50
performance being much closer to the performance of the other models again. The HRNet’s
performance is better than in the previous experiments with augmentation combinations,
but still worse than the one achieved in the color experiment where HRNet reached mAP
value of 0.9171. Perhaps a longer training and another scheduler step would help with the
performance since all of the networks achieved their best mAP values at the very end of the
training.
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Figure 35: The comparison of validation mAP progression of the runs trained with the tuned
color and then tuned noise augmentations in the training image preparation pipeline.

The last experiment we do with the models is combining the color and noise groups by
applying either one or the other group in the pipeline. This is done by randomly selecting
either the color or the noise group, then randomly picking one augmentation from the selected
group, and applying it with the 80% probability. We also keep the initial settings for the
groups and do not use the tuned ones from the last experiment.

We depict the mAP value progression for this experiment in Figure 36. ResNet-152
reaches its best mAP value of 0.9127 in epoch 115. ResNet-50 is the latest to reach its peak
value reaching 0.9137 in epoch 177. HRNet also reaches its best mAP value of 0.9180 in the
later stages in epoch 172. In this experiment, HRNet reaches the best mAP value of all the
experiments, and looking at the Figure 36 we see it outperforming the two other models in
the late training stages. Another quite interesting phenomenon is ResNet-50 getting better
results than ResNet-152 and it also improved its previous best mAP value from the color
experiments with an improvement of 0.0046. We see that this experimental setup probably
helped to combine the best from the color and noise augmentation groups for ResNet-50 while
alleviating the deformation of the images. The models reached their best performances at
the very end of the training again. As stated in the previous experiment too, it would also be
interesting to add additional epochs and scheduler step to try to increase their performance
further.
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Figure 36: The comparison of validation mAP progression of the runs trained with the color
or noise augmentations in the training image preparation pipeline.

We present all of the experiment results in Table 4. We highlight the best-performing
models in each experiment with underlined text and the overall best result for a given model
with bold text.

In the Table, we see that with the exception of two experiments, HRNet is the best-
performing model. We also notice that ResNet-50 is the worst model, except in the last
experiment where it outperforms ResNet-152. This best ResNet-50 achieved a better perfor-
mance than five trained HRNet models and nine trained ResNet-152 models (excluding the
baseline models). All of the best models are trained with the color and noise augmentations
combination and the last experiment yielded the best results for both HRNet and ResNet-50.

Baseline No augmentations Flip

HRNet 0.5918 0.8893 0.8999
ResNet-50 0.4807 0.8802 0.8884
ResNet-152 0.5330 0.8906 0.8946

Blur Color (C.) Noise (N.) Weather

HRNet 0.9042 0.9171 0.9157 0.9140
ResNet-50 0.8992 0.9091 0.9079 0.9019
ResNet-152 0.9020 0.9134 0.9114 0.9089

C. then N. N. then C. C. then N. tuned C. or N.

HRNet 0.9110 0.9122 0.9143 0.9180
ResNet-50 0.9080 0.9021 0.9069 0.9137
ResNet-152 0.9099 0.9142 0.9119 0.9127

Table 4: The best mAP values of the models achieved on validation dataset throughout the
experiments.
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Figure 37: The percentages of correct predictions at given thresholds for the selected models.

To validate the obtained results, we compute the percentage of correct predictions metric
which we introduced in Section 4.2. We compare the three baseline models with the models
trained without the use of augmentations and with the best models from Table 4. The
calculation is done on thresholds from 0.9 to 1960 pixels. Euclidean distance between the
keypoints is used as a distance metric and the metric is calculated on the images from the
validation dataset.

We compare the models at the distance thresholds of 100, 200, and 500 pixels. This
means that a correct pose prediction needs to be closer to ground truth than this threshold
for all of the predicted keypoints.

We choose the threshold values in pixels because we have no other means to measure
distance in the images. The usual approach would be to make the threshold to some distance
on the lynx’s body to reflect a distance in the physical world (e.g. withers to tail base
distance). However, the lynxes are angled in various ways and in different positions so this
kind of measurement fails.

We plot the results for different thresholds in Figure 37. The results at the given thresh-
olds are also in Table 5 in Appendix B. At the threshold 100, the best-performing model
is the best HRNet model with 75.41% of correct predictions. The best ResNet-50 model
performance is similar with 75.32%. However, ResNet-152 has 72.86% of correct predictions,
which means the trained model has more difficulty with fine predictions than the other best
models. The best models achieve more than 45% of correct predictions compared to the
baseline models and for HRNet and ResNet-50 roughly 5% more than the models trained
without augmentations.

a similar trend can be observed at the threshold value of 200 pixels. HRNet is the best-
performing model with 91.48% of correct predictions at this threshold. ResNet-50 is again
performing comparably with 91.25%. ResNet-152 manages to decrease the performance
difference observed at the previous threshold to roughly 1% with 90.22%. The percentages
of the best models again outperform the baseline models by roughly 30% to 45% and the
models trained without augmentations by roughly 5%.

At the last threshold value of 500, HRNet is again the best-performing model with 98.77%
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of correct predictions. At this threshold, both the ResNet-50 with 98.34% and the ResNet-
152 with 98.1% show comparable results to HRNet. The difference in the performance of
the best models and the baseline models ranges roughly from 12% to 21%. The difference
between the best models and models trained without augmentations is around 1%.

The augmentations helped to increase the percentage of correct predictions tremendously
over the baseline models. The percentage increase over the models without the augmenta-
tions is not as big, but the values achieved at threshold 100 show that the augmentations
help to achieve finer predictions.

7.3.3 Visualization

Having presented the experiment results, we now compare the model pose output to the
ground truth pose. First, we compare only the best models’ outputs to the ground truth.
These models are the best HRNet, ResNet-50, and ResNet-152 models from Table 4. All of
the images we present here were chosen from the validation dataset, meaning the models’
outputs are done on unseen data. They were also zoomed to show the area close to their
ground truth bounding box to better visualize the pose estimation results.

Figure 38: The ground truth pose and the poses predicted by the best models from Table 4
on an image from the validation dataset.
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We show the models’ predicted poses in Figures 38 and 39. In Figure 38, we see the
lynx in a difficult pose, where its left front paw is almost entirely occluded by the right
front paw and the head is tilted back in an unusual position. We notice that the models’
predictions for the back legs, tail base, and withers are very similar and close to ground
truth. The occluded front paw caused an issue for all of the models, but we also observe
lower confidence for these keypoints - the networks output confidence around 0.5 as opposed
to the non-occluded paw which has a confidence score around 0.7. The same occlusion issue
applies to the head keypoints. The models did manage to predict the pose for the unusual
head position as the nose is almost perfectly placed for all of the models. The confidence
scores reflect this by being around 0.9. The eye keypoints placement is hard since the left
eye is occluded and even the ground truth annotation could be up for discussion. However,
the occlusion is not reflected in the confidence score of the models. The models have higher
confidence in the occluded left eye keypoint placement (HRNet has 0.81 confidence for the
left eye as opposed to 0.72 for the right eye). We notice that the models try to connect the
nose, eye, and ear base keypoints with a straight line. This behavior is according to the
expectation we discussed in Section 2.1.

Figure 39: The ground truth pose and the poses predicted by the best models from Table 4
on an image from the validation dataset.

In Figure 39, we see the lynx in an almost perfect position for pose estimation. This is
because the lynx is visible clearly and the only occluded keypoints are the left eye and the left
ear base. However, the head position in the image makes these keypoints easily predictable.
The HRNet prediction and the ground truth position of these keypoints correspond to each
other closely. ResNet-50 model predicted the occluded keypoints slightly below the ground
truth annotation. ResNet-152 failed to place the head keypoints and confused the nose with
the sun patch in the background. The model probably tried to keep the distance between the
eyes and the nose relatively close. Because of this, it fixated the eye keypoints onto the black
patches below the actual eyes. This failure is at least somewhat reflected in the confidence
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Figure 40: HRNet predictions of different models. On the chosen image, the baseline HRNet
model presented in Table 1 had the worst OKS value out of all validation images. Top left
image is ground truth pose, top right image is the baseline model, bottom left image is
the model trained without augmentations from Section 7.2, bottom right is the best HRNet
model presented in Table 4 trained in the color or noise experiment.

scores - the nose, which was misplaced completely has a confidence score of 0.73 (compared
to 0.83 for ResNet-50 and 0.89 for HRNet). The rest of the keypoints were placed almost
perfectly by the models. The one visible difference between the models and the ground truth
is in the right back knee keypoint placement. The models all place the keypoint in a similar
location below the actual position. The confidence scores are also relatively high for the
models (around 0.86). This could mean that there are annotations in the training ground
truth data which are placing this keypoint lower than it actually is. However, we have not
observed this behavior in the previous Figure.

Having tested the models on handpicked images for the validation dataset, we now take
the images for which the baseline models presented in Section 7.2 have the worst OKS values.
We take the ground truth pose and compare it to three models - the baseline model, the
model fine-tuned using no augmentations, and the best model. We do this comparison for
all of the architectures and we visualize only the keypoints annotated in the ground truth
data.

We always visualize the ground truth on the top left image, the baseline model on the
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Figure 41: ResNet-50 predictions of different models. On the chosen image, the baseline
ResNet-50 model presented in Table 1 had the worst OKS value out of all validation images.
Top left image is ground truth pose, top right image is the baseline model, bottom left
image is the model trained without augmentations from Section 7.2, bottom right is the best
ResNet-50 model presented in Table 4 trained in the color or noise experiment.

top right image, the model using no augmentations on the bottom left, and the best model
on the bottom right.

In Figure 40 we visualize the image which has the worst OKS value for the baseline
HRNet model. There are only 9 visible keypoints in the image, the rest is occluded or out
of image bounds. We notice that most of the keypoints predicted by the baseline model are
not even located on the lynx. The aforementioned line that should form between the nose,
eyes, and ears is present at all and the lynx’s body proportions are also wrong. The model
trained without any augmentations is better with its throat and the front knees predictions.
The withers prediction is at least located on the lynx’s back. The head keypoints are also
located on the lynx as opposed to the baseline model, but the pose is very deformed. The
ear keypoints are close to the ground truth positions. The best model made an error only
in the lynxes head, and the predicted head keypoints at least somewhat correspond to the

51



Figure 42: ResNet-152 predictions of different models. On the chosen image, the baseline
ResNet-152 model presented in Table 1 had the worst OKS value out of all validation images.
Top left image is ground truth pose, top right image is the baseline model, bottom left
image is the model trained without augmentations from Section 7.2, bottom right is the best
ResNet-152 model presented in Table 4 trained in the noise then color experiment.

ground truth. However, the nose and eyes keypoint are located higher than in the ground
truth. The throat and withers keypoints are located almost perfectly as well as the right
knee. The left knee is occluded in the image and maybe should not have been annotated as
we agree more with the model’s prediction than with the ground truth placement.

In Figure 41 we show the image with the worst OKS value for the baseline ResNet-50
model. The lynx in this image is almost entirely visible and the difficulty comes from the
green image color and the camera noise that is present in the image. The keypoints in this
image are all visible except the right front paw. The baseline model is not able to handle
the green image at all with the prediction being all over the image and outside of the ground
truth bounding box (the box is not visualized in the image). The model’s performance
improves drastically for the model trained without augmentations and the predicted pose
resembles the actual pose in most of the keypoints. It misplaced the left back leg and the
head keypoints are deformed as in the HRNet model without augmentations. The other
keypoints are positioned sufficiently. The best model handles the green color and the image
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noise with ease, which could be because of the color and noise augmentations usage. The left
back leg prediction is better than the previous model’s prediction. The head keypoints are
again a little off with the left ear being slightly below the ground truth. The same applies
to the occluded left eye, which should be slightly more to the right. However, we can see the
deformation of the head from the previous model being fixed as the predicted head keypoints
resemble the ground truth head keypoints.

In Figure 42 we depict the image with the worst OKS value for the baseline ResNet-
152. This image is hard for pose estimation, because of the occlusion and the low image
brightness. The ground truth for this image is also poorly annotated with the head keypoints
being out of proportion with no head visible in the image. The right front paw is occluded
too and the annotation for it also seems out of proportion compared to the other paw. The
withers keypoint should probably be located closer to the lynx’s head as well.

The baseline model once again fails to predict the pose with most of the keypoints being
out of the bounding box (the box is not visualized in the image). The model trained without
any augmentations also fails to predict the pose but manages to locate withers, the tail base,
and the left front leg. The head keypoints are deformed again and fixated on the twig in the
foreground. The best model managed to do a very good job with the pose prediction. The
predicted head keypoints also make the head look deformed in a way, but it is much more in
proportion to the body than the ground truth one. Interestingly the left ear is deformed and
placed in almost the same location as the left eye keypoint. The head keypoints placement
also makes more sense with regard to the rest of the body. The withers keypoint is located
where it should have been annotated in the ground truth. The left back knee is placed to
the exact same coordinates as the right back knee and should be more in front. The length
of the right front paw is also out of proportion to the left front paw and since it is also
occluded, we can not say if the ground truth or the ResNet-152 placement is better.

Having visualized the predictions on the images with the worst OKS values for the
models, we notice that the final pose models were able to adapt and predict the poses of
the lynxes. Only the HRNet prediction of the head keypoints was insufficient, but we saw
this not being an issue for the other images where HRNet visually achieved a better pose
prediction than the other models. The augmentations helped the models to predict the pose
better as the mistakes done by the models trained without augmentations were corrected by
the best models. We also noticed head keypoints deformations for all of the models trained
without the augmentations. This could be caused by the models overfitting to training data
and being unable to place the head keypoints correctly.

We also visualize the pose estimation progression throughout the epochs in Figure 44
in Appendix C. The visualization is done on an image from the validation dataset for which
the baseline HRNet model has the second-worst OKS value. The experiment visualized is
the one color or noise experiment where the best HRNet model was trained. We notice the
predicted pose gradually improving as the model learns. The biggest difference is between
the baseline model and the model in epoch 10. We notice that the model is able to quickly
adapt to the blurry lynx and the differences between the subsequent epochs are more subtle.
An interesting phenomenon is the pose predicted in the 40th epoch. This estimated pose is
almost the same as the ground truth pose and there is a big decrease in the quality of the
predicted pose in epoch 60 compared to the 40th epoch. However, the overall mAP value on
the validation dataset for epoch 60 (0.9025 mAP) is better than for epoch 40 (0.8847 mAP).
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7.4 Importance of initialization

So far we have experimented with the heatmap-based pose models. In this Section, we
try to train the pose model with a keypoint head and try different initialization weights for
the model to show the pre-training importance.

For this experiment, we choose HRNet as our backbone architecture. We replace the
heatmap head with the DeepPose regression head introduced in [66] and implemented in
MMPose [51]. To connect the outputs from the convolutional layers into the fully connected
layers, we use global average pooling. For the training, we use the smooth-L1 loss from
Section 3.3 for all runs except one where we try to run an experiment with the MSE loss
from the same Section. The weights of the keypoint head are always randomly initialized
without any weights transferred. This means that the models start with a zero mAP value
on the validation dataset as we will see later.

The models are trained for 250 epochs with 5 epochs at the start being a linear warmup
with the warmup ratio of 1e−4. We use Adam optimizer with the initial learning rate (after
warmup) of 5e−4 and step scheduler with a learning rate decay factor of 0.5. We use 6 steps
at epochs 10, 60, 130, 180, 219, and 220.

We depict the results of the experiment runs in Figure 43. The runs which were trained
with the Animal-Pose backbone are denoted as “Animal-Pose initialization”, here we exper-
iment with the two losses and find no real difference in the overall mAP value progression
and the final mAP values. Hence we use smooth-L1 loss for the rest of the runs. The runs
trained with the backbone finetuned on the Lynx-Pose dataset are denoted as “Lynx-Pose
initialization”. This backbone is taken from the HRNet trained on the Color or Noise exper-
iment presented in Section 7.3.2. The last three runs are denoted as “Random initialization”
and the weights for the whole model are chosen randomly at the initialization.

Figure 43: The comparison of validation mAP progression in the experiments with the
different backbone initializations.

In Figure 43, we see the ascent of the mAP value achieved by the Animal-Pose starts
slowing down around epoch 200. The final values reached by these models are placed around
0.71. Similar behavior can be observed in the results achieved by the Lynx-Pose models.
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We notice a slower ascent after the 200th epoch with a final mAP value around 0.75. The
mAP value progression for models with random initialization starts slowing down after the
last scheduler steps at epochs 219 and 220 and stays around the mAP value of 0.28.

We notice the models could have been trained to a better final precision if we did not
use the last two scheduler steps at once and trained the networks for a longer time. This
is especially noticeable for the randomly initialized models. However, reaching the best
possible values is not the main goal of this experiment. We want to show the importance
and the effect of pre-trained weights on the training.

We observe that the pre-trained weights help tremendously with the initial and the final
performance. Both of the pre-trained models’ performances start rising quickly and reach
better mAP values. It is obviously not known if the randomly initialized networks would
show better results than the pre-trained networks if we let them run longer. The pre-trained
models achieve these “good” mAP values in a reasonable amount of time. We observe that
in the initial training stages, the pre-trained models show a similar increase in performance.
The interesting thing is the simultaneous rise in the mAP value of the Lynx-Pose models
in epoch 50. This is the point where these models overtake the Animal-Pose models in
performance and it stays this way until the end of the experiment.

Another observation we make is the difference between the best keypoint model per-
formance (mAP value of 0.7568) and the best heatmap model performance (mAP value of
0.9180). This is likely caused by the pre-trained heatmap head used for the heatmap model
as opposed to the randomly initialized keypoint head. This shows the importance of the pre-
trained weight even when it comes to a single network module and it would be an interesting
topic for further studies.
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8 Conclusion

In my thesis, the animal pose estimation task was tackled. The goal of the work was to
train a pose estimation model for the Eurasian lynx using the existing animal pose estimation
methods.

First, we introduced the animal pose estimation task and specified it for the lynx pose
estimation. We defined the limitations and constraints of our task, mainly with regard to
the expected input and output.

Then we described the two main deep neural network architectures used as a backbone for
the task of top-down 2D animal pose estimation, ResNet and HRNet. Along with the archi-
tectures, we also studied the current approaches to the neural network output - the keypoint
and the heatmap regression approaches. We discussed the advantages and shortcomings of
the approaches. We also briefly introduced MSE loss and smooth-L1 loss commonly used for
training.

Afterward, we studied the methods for pose estimation evaluation. We focused mainly
on the object keypoint similarity metric and the different interpretations of the scale term
used to calculate it. We proposed a solution to solve the numerical issues which emerged
with one scale term interpretation. Then we presented how object keypoint similarity is used
to calculate the commonly used mean average precision for pose estimation. We also studied
two other metrics for pose estimation evaluation - the percentage of correct keypoints and
the percentage of correct predictions.

We also presented the datasets available for the animal pose estimation tasks. First, we
introduced our novel Lynx-pose dataset for which we want to solve the pose estimation task.
Then, we introduced other datasets with the main focus on pose estimation for quadruped
mammals. The best dataset for our task was the Animal-Pose dataset which estimates pose
for a very similar set of keypoints for which pre-trained models exist in the MMPose toolbox.

In the last theoretical part of my thesis, image augmentations were introduced. We have
chosen augmentations that are all available in the MMPose and Albumentations toolboxes
to be able to later use them in our experiments. We divided the augmentations into five
groups and presented their input parameters and their modus operandi.

In the practical part of my thesis, the models for lynx pose estimation were trained.
First, we introduced the models we chose to train and the settings of the experiment. We
trained three models - HRNet-W32, ResNet-50, and ResNet-152 all pre-trained on the afore-
mentioned Animal-Pose dataset. We used the heatmap approach to pose estimation to fully
utilize the pre-training of the models. All of the models were implemented in the MMPose
toolbox and the training was also conducted with the same toolbox. After introducing the
models and settings, we used the presented augmentation techniques to augment the train-
ing images during training. Using these augmentations, we conducted several experiments
to find the best model. We used the presented mean average precision measured on the
validation dataset as the main evaluation metric. After finding the best models, we validate
their performance with the use of the percentage of correct predictions metric.

During the experiments, we observed that HRNet-W32 is consistently the best-performing
model. It achieved the best mean average precision value in most of the experiments and
also the best overall mean average precision value. This statement was also true for the
percentage of correct predictions, where it also outperformed the other models and had the
best ability to conduct fine-grained pose estimation. We also observed that while the best
ResNet-152 model has a better mean average precision value than the best ResNet-50 model,
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it is worse than ResNet-50 regarding the percentage of correct predictions, especially at a low
threshold. This can also somewhat be seen in the visualization of the model outputs. We
observed that the trained ResNet-152 model had a hard time estimating the lynx’s head
pose for a supposedly “easy” image.

In the last part of the thesis, we experiment with the direct keypoint regression approach
and also show the importance of pre-training for the network. We showed that without the
pre-trained weights, the model is not able to reach a sufficient mean average precision value
and would require significantly more epochs to train. We also observe the importance of the
pre-trained heatmap regression head. We used a randomly initialized keypoint head in the
experiments and the mean average precision value for the best model had mAP value lower
by 0.15 than the best heatmap model.

We provide all the source files and the weights for the trained models on https://

github.com/Tmajer/DP-Carnivore. The functionality of the pose models can also be tested
on https://huggingface.co/spaces/tmajer/Lynx-Pose-Estimation.

8.1 Future Work

Having successfully developed and trained a model for lynx pose estimation, we dedicate
this chapter to the introduction of the new questions and challenges that have arisen from
our empirical findings. We introduce the areas for future research and development in lynx
pose estimation that emerged in the experimental part of the thesis.

The first possible area of research is the augmentations. Since we experimented with only
a few of the possible combinations of augmentations, more studies on this topic could further
increase the performance of the models. Since we made several observations based on the
training runs, we also lay a foundation for a statistical study of the effect of augmentations.
The other hyperparameters used in the training pipeline were also fixed for our experiments
and different settings that would allow for faster or better training could be found.

The second area of research we found is a multi-head approach to pose estimation. It
would be interesting to experiment with a combination of a direct keypoint regression head
and a heatmap regression head. There are several tasks that arise ranging from the im-
plementation and integration of such head into the MMPose ecosystem to finding a good
aggregation function to combine the outputs of the heads.
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Appendix A - Augmentation parameters

Geometric transformations

Random scale s ∈ ⟨0.5, 1.5⟩
Random rotation θ ∈ ⟨−80◦, 80◦⟩
Random bounding box shift sh ∈ ⟨−0.16, 0.16⟩

sv ∈ ⟨−0.16, 0.16⟩
Half-body transformation t = 8

Blur transformations

Averaging blur k ∈ ⟨17, 33⟩
Gaussian blur k ∈ ⟨21, 45⟩
Motion blur k ∈ ⟨23, 49⟩
Median blur k ∈ ⟨29, 57⟩

Color transformations

Channel dropout v = 102
Color jitter kb ∈ ⟨0.35, 1.15⟩

kc ∈ ⟨0.35, 3.1⟩
ks ∈ ⟨0, 2.6⟩

kh ∈ ⟨−0.17, 0.07⟩
HSV transformation kh ∈ ⟨−40, 40⟩

ks ∈ ⟨−235, 180⟩
kv ∈ ⟨−80, 120⟩

RGB shift kr ∈ ⟨0, 95⟩
kg ∈ ⟨−95, 95⟩
kb ∈ ⟨−95, 0⟩

Random brightness and contrast kb ∈ ⟨0.4, 1.5⟩
kc ∈ ⟨−0.8, 0.5⟩
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Noise transformations

Downscale interpolation: nearest neighbor
s ∈ ⟨0.075, 0.15⟩

Additive Gaussian noise same for all channels: False
σ2 ∈ ⟨30, 100⟩

µ = 30
ISO noise i ∈ ⟨0.8, 1⟩

c ∈ ⟨0.01, 0.1⟩
Multiplicative noise scalar/matrix: matrix

same for all channels: True
km ∈ ⟨0.45, 1.55⟩

Posterize kr ∈ ⟨4, 6⟩
kg ∈ ⟨3, 5⟩
kb ∈ ⟨2, 4⟩

Sharpen α ∈ ⟨0.6, 1.0⟩
l ∈ ⟨0.6, 1.0⟩

Weather transformations

Random snow kb = 5
t ∈ ⟨0.3, 0.5⟩

Random sun flare c = rgb(255, 255, 255)
n ∈ ⟨6, 8⟩
r = 100px

Random rain θ ∈ ⟨−20◦, 20◦⟩
k = 9

kb = 0.75
c = rgb(200, 200, 200)
rain-type: drizzle

Random fog kf ∈ ⟨0.4, 0.7⟩
α = 0.05
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Tuned color and noise transformations

Downscale interpolation: nearest n. Channel dropout v = 102
s ∈ ⟨0.11, 0.18⟩ Color jitter kb ∈ ⟨0.425, 1.125⟩

Additive same for all ch.: False kc ∈ ⟨0.425, 2.325⟩
Gaussian σ2 ∈ ⟨40, 110⟩ ks ∈ ⟨0, 2.325⟩
noise µ = 30 kh ∈ ⟨−0.1525, 0.0625⟩
ISO noise i ∈ ⟨0.8, 1⟩ HSV kh ∈ ⟨−42, 42⟩

c ∈ ⟨0.01, 0.12⟩ transformation ks ∈ ⟨−145, 145⟩
Multiplicative scalar/matrix: matrix kv ∈ ⟨−75, 75⟩
noise same for all ch.: True RGB shift kr ∈ ⟨0, 105⟩

km ∈ ⟨0.4, 1.5⟩ kg ∈ ⟨−105, 105⟩
Posterize kr ∈ ⟨4, 6⟩ kb ∈ ⟨−105, 0⟩

kg ∈ ⟨3, 5⟩ Random brightness kb ∈ ⟨0.675, 1.325⟩
kb ∈ ⟨3, 5⟩ and contrast kc ∈ ⟨−0.625, 0.625⟩

Sharpen α ∈ ⟨0.6, 1.0⟩
l ∈ ⟨0.6, 1.0⟩

Appendix B - Percentages of Correct Predictions

t=100 t=200 t=500

HRNet Baseline 30.54 61.12 86.36
HRNet No augmentations 69.55 85.94 97.39
HRNet Best 75.41 91.48 98.77

ResNet-50 Baseline 19.67 44.02 77.45
ResNet-50 No augmentations 70.23 87.26 96.45
ResNet-50 Best 75.32 91.25 98.34

ResNet-152 Baseline 24.52 53.21 82.57
ResNet-152 No augmentations 70.49 87.17 97.39
ResNet-152 Best 72.86 90.22 98.10

Table 5: The percentages of correct predictions of the models on given thresholds.
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Appendix C - Pose Throughout the Epochs

(a) Ground truth pose. (b) Best model (Epoch 172).

(c) Epoch 0. (d) Epoch 10.

(e) Epoch 30. (f) Epoch 40.

(g) Epoch 60. (h) Epoch 140.

Figure 44: The pose estimation progression of HRNet trained during the color or noise
augmentations experiment throughout the epochs.
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