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Abstrakt

V této préci vysetfujeme Fuéikovo spektrum okrajové tilohy druhého fddu s jednou Robinovou
a jednou nelokalni okrajovou podminkou. Dokazeme, ze piislusnd linedrni iloha méa nekone¢né
mnoho vlastnich ¢isel a poskytneme jejich popis. Predstavime implicitni popis Fuéikova spektra
v prvinim kvadrantu. Pro specidlni nastaveni parametru také dokdzeme, ze se Fucikovo spek-
trum sklada ze dvou spojitych kiivek a najdeme parametrizaci téchto kiivek.

Kliéova slova: Fucikovo spektrum, nelokalni okrajové podminky, Robinova podminka, vlastni
cisla

Abstract

In this thesis, we investigate the Fuc¢ik spectrum for the second order boundary value problem
with one Robin and one non-local boundary conditions. We prove that the corresponding linear
boundary value problem has infinitely many eigenvalues and we provide the description of these
eigenvalues. We present a compact form of the implicit description of the Fuc¢ik spectrum in the
first quadrant. We also prove for a specific setting of the parameters, that the Fué¢ik spectrum
consists of two continuous curves and the parametrization of these curves is provided.

Keywords: Fuc¢ik spectrum, non-local boudary condition, Robin condition, eigenvalues
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Chapter 1

Introduction

The goal of this thesis is to investigate the Fucik spectrum for the following boundary value
problem with one Robin and one non-local boundary conditions

{u” (z) +aut (z) — Bu~ (x) =0, z€(0,1), (L1)

u (0) - sine = u’ (0) - cose, fol u(z) dz =0,
c

where o, 5 € R and Z <

(see Figure[1.1] and

Y= {(a, B) € R? : the problem (.1 has a non-trivial solution u}

< 5. By the Fucik spectrum for the problem (L.1)), we mean the set

In the special case of ¢ = 7, the problem (1.1 reads

{u”(m) +aut (z) —Bu” (z) =0, z€(0,1),
u(0) =0, fol u(z)dz =0,

and its corresponding Fuéik spectrum Y= is investigated in details in [3]. Thus, in this thesis,

we focus mainly to values of the parameter ¢ € (—%, g) , we use the paper [3] as a starting
point for our study and we also follow the notation used in [3].

For ao = 8 = A, the problem (|L.1]) reduces to the following linear problem

{u”(x) + du(x)

0, z€(0,1), 1.2)
) .

u(0) - sinc = 4/(0) - cosc, fol u(z)dz =0,

and its eigenvalues A (the values A € R such that the problem (1.2)) has a non-trivial solution
u) determine points (A, A) € X, on the diagonal o = 8. For ¢ € (=%, %) , we show that A > 0
is an eigenvalue for the problem (1.2)) if and only if

cos (\&—\F)\~p<\f)\,0)) :cos(ﬁm(\f)\,c)), (1.3)

where p (ﬁ, c) = f\%arccot (% tan c) . Moreover, let us note that in the special case of

¢ = 0, the equation (1.3]) simplifies to
cos (\f)\ + g) =0,
the linear problem (1.2]) reduces to

{u”(x) +u(z) =0, z€(0,1),
u'(0) =0, fol uw(z)dr =0,

and all its positive eigenvalues are of the form A\, = k272, k € N.

For the original problem , we provide the following description for its Fuc¢ik spectrum %,
in the first quadrant of the a8-plane. For ¢ € (fg, g) and «a, 8 > 0, we prove that («a, ) € 3.
if and only if
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Fig. 1.2: The Fucik spectrum 3. for different negative values of the parameter c.
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where the function G = G(a,b,t) is 2m-periodic in the third variable ¢ and is defined by parts
in Definition [3| Let us point out that for a = 8 = A, we have

g (\[\,ﬁ,t) = cos (tf ﬁ'p(\f/\,c)) — cos (\[\p(ﬁ,c)) +1
and thus, both equations and can be simplified to in this case.

Finally, the next chapters are organized in the following way. The second chapter is devoted
to the linear problem and we provide the description of all its eigenvalues. In the third
chapter, we return back to the original problem and provide the implicit description of the
Fucik spectrum Y. in the first quadrant and partially also in the second and fourth quadrants
of the af-plane. The fourth chapter is devoted to the problem for the special case of
¢ = 0 and we show how to get the parametrization of the Fucik spectrum ¥y by two continuous
curves.



Chapter 2

Solvability of linear problems

In this chapter, we study the following linear boundary value problem
u’(x) + Au(z) =0, x€(0,1), 2.1)
u(0) - sine =o' (0) - cose, fol u(z)dz =0, )
where A € R and —§ < ¢ < 3. More precisely, for fixed ¢ € (—%, g] , we describe all values
A € R such that the problem has a non-trivial solution u, i.e. we describe all eigenvalues
for the problem . By a non-trivial solution of the problem we mean a function u €
C?(0,1) N C*[0,1] which is not identically zero and satisfies the differential equation in
pointwise on the interval (0,1), satisfies the Robin boundary condition at the point z = 0
(containing the parameter ¢) and the non-local boundary condition of integral form.
The general solution of the linear differential equation u”(z) + Au(z) = 0, z € R, can be
expressed as

% sin vV Az + Cp cos vV Az for A > 0,
u(z) =4 A (z—z0) for A =0, (2.2)
\/C_lf)\ sinh v/ —Ax 4+ Cycoshv—Ax  for A\ <0,

where Cy, C1, A, zg € R.
In the following lemma, we investigate eigenvalues of the problem (2.1) in the special case

T
of c= 7.

Lemma 1. For ¢ = 3, there are infinitely many eigenvalues for the boundary value problem

(2.1). All these eigenvalues are positive and form the sequence ()\}IC)Z-:{ , where A\f, = 4k*n%, k €
N.

Proof. For ¢ = %, the first boundary condition in (2.1, i.e. u(0) - sinc = u/(0) - cos ¢, reads
u(0) =0, (2.3)

and the integral condition in (2.1)) remains the same as

1
/ u(z)dz = 0. (2.4)
0
Now we split the proof according to the value of \.
1. For A > 0, we obtain using the general solution in (2.2)) that

Therefore Cy = 0 due to (2.3)) and thus, all solutions u of the differential equation in ([2.1))
such that the first boundary condition is satisfied are of the following form

Ci .
u(x) = 7 sin vz

3
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Let us assume C # 0 to obtain a non-trivial solution u and let us evaluate the following
integral

/1 ( ) 1 Ol \/>
u(x dx:/ —sinVAxdz
0 0 VA

8 [

:—% (cosﬁ—l)‘

The integral condition (2.4]) is thus satisfied if and only if cos VA = 1 or if and only if
(recall A > 0)
A =4k?7% k e N.

2. For A = 0, the linear differential equation in (2.1)) simplifies to v”(z) = 0 and thus the
general solution u can be expressed for A,xy € R as

u(z) = A (x — xp).

This solution is trivial for A = 0 and thus let us assume that A # 0 in the following text.

Now we will evaluate the integral

Using (2.4), we get xq = %, since A # 0. Thus we have u(0) = —g # 0, which is a
contradiction with (2.3). For ¢ = 3, A = 0 is not an eigenvalue for the problem ({2.1).

3. For A < 0, the linear differential equation in (2.1)) has the general solution

sinh v —Az + Cy cosh v —A\x

u(z) = G

VA
for Cp,C1 € R and we get the value u(0) = Cy. Thus Cy = 0 according to the condition
(2.3). Now we can evaluate the integral

1
z)de = / sinh Az dx
[ wtarae = [ A sinh =3
1
cosh v/ —)\x}

0

O 1
Reite:
Y (cosh\/ifl)

We assume C; # 0 to achieve a non-trivial solution. Therefore the integral condition (2.4))
reads coshv/—\ = 1, which cannot be satisfied since A\ < 0. Thus, there are no negative

eigenvalues for ¢ = 7.

O

Now, let us discuss the case A > 0 for —5 < ¢ < 3. For fixed Cp, C1 € R, the function v in
(2.2) can be also viewed as the solution of the following initial value problem (see Figure

{u’(’(m) +Au(zx) =0, zeR, (25)

O) = Co, u'(O) = Cl.

The following lemma gives us another form of the general solution (2.2) for A > 0 (see Figure

232).
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Fig. 2.1: The solution u of the initial value problem (2.5) for A =1, Cy = V3 C = %

2

Fig. 2.2: The solution u of the initial value problem (2.5)) in the form of (2.6)
for \=1,A=1,B =%,

Lemma 2. For A > 0, the general solution of the linear equation
u'(x) + du(z) =0, z€R,
s given by

u(r) = Asin (VX(z—B)), AeR Be(-%.0]|. (2.6)

Proof. We prove that for A > 0, the general solution in the form of (2.2)) can be equivalently

written as (2.6)).

1. Let’s start with (2.6, i.e. with u(z) = Asin (ﬁ(m - B)) ,AcR, Bc (—%,0} . We

can manipulate the expression
u(z) = Asin (\A(m - B))
= Asin (\F/\IE — \f)\B)
= Asin (\[\x) cos (ﬁB) + Acos (\Aa@) sin (—\[\B) .
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Now we can denote

and

C1 = VAAcos (—\F/\B) , (2.7)

QpZAQn(—VXB>. (2.8)

Therefore we have Cy, C; € R and we achieved the desired outcome in (2.2)), where

u(z) = \C/HX sin vV Az 4 Cg cos VAz.

2. Secondly, we find constants A and B to the fixed Cy and C; in order to express (12.6).
Thus we will manipulate the expression ([2.2)).

(a)

In the case of Cy = 0, we have

u(z) = sm\fx— L sin vVA(z — 0),

VA VA
and we can define o
A=—L 2.9
7 (2.9)
and
B=0. (2.10)

We have C; € R and therefore A € R as well. With new variables, we have achieved

, where
u(z) = Asin (\/X (x — B)> .

Finally, let’s take a look at the case Cjy # 0. We can define
1 1 C’1>
B = ———arccot 2.11
VA (\f Co 211)

with values —% < B < 0, due to the range of the function arccot. In the case of
C1 = 0, we have

u(z) = Cycos (\[\x) = Cpsin (\A(z+ )>
(x) =Co 0 Vol
which is the form of u(x) in . 2.6)) for A= Cp and B = —2— It remains to deal with
C1 # 0. Thus, let us assume that C; # 0 and rewrite (2.2)) into the following form

u(zx) = & sin vV Az 4+ Cy cos V Az

VA
= \f)\cos?i\f/\B) -sin VAz - cos(—VAB)+
sin(—C\OﬁB) -cos V Az - sin(—VAB).
Using we obtain
Ch Co

VAcos(—vVAB) B sin(—v/AB)’

and therefore

—L- sin x - cos(— CcoS T - sin(—
ulz) = Vi) (sin vz - cos(~v/AB) + cos vz - sin(~VAB)
= Co - sin T —
 sin(— fB) YAz~ B)
— Co -sin\/X(x—B)~

Cy
sin arccot (fc )
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Since for all z € R, we have sin arccot(z) = 11_952 (see Chapter 35 in [4]), we obtain

1 C .
u(z) = Coy[1+ ~ - =& -sinVA(z — B).
N C
1 C?
= 1+~ =% 1
A=Cnf1+5 G (212)

where we have A € R, since Cy, C; € R, and we have

Now let’s define

u(z) = Asin VA(z — B),
which finishes the proof.

O

Remark 1. For A > 0, we have obtained two possible expressions of the general solution for

the linear differential equation u”(xz) + Az =0, x € (0,1) of the problem (2.1)).

1. The first expression (2.2)), i.e. u(x) = % sin v Az + Cy cos VAz, for Cy, Cy € R, yields a
trivial solution if and only if Cy = C1 = 0.

2. The second expression (2.6)), i.e. u(z) = Asin (\ﬂ (x — B)) ,for AeR, B e (—%,0} ,

yields a trivial solution if and only if A = 0.

The proof of Lemma showed us a way of converting between two different expressions (2.2)) and

(2.6]) of the general solution of (2.1)), i.e. in between u(x) = % sin VAz+Cy cos VAz, Cy,C1 € R

and u(zr) = Asin (ﬁ (r—B)), AeR, — 75 < B < 0. The conversion from (2.6) to (2.2
can be achieved by (2.7) and (2.8)), i.e. by placing

Cp = Asin (—\AB) ,

C, = VAA cos (—\F)\B) .

And the conversion from ([2.2]) to (2.6) can be achieved by ([2.9)), , (2.11)), and (2.12)), i.e.

by placing

1. C}
A:{Co«1/1+A~C§ for Cy # 0,

\/XCl fOI‘ Co = O,

1 1 .C
B —xarccot (\T\ : C—;) for Cy # 0,
0 for Cy = 0.

Using the general solution in the form of (2.6)), we examine eigenvalues of the boundary value

problem ([2.1)) for A > 0.
Lemma 3. For A > 0, the boundary value problem (2.1)) has a non-trivial solution if and only

if
cos (\A — V- p(VA, c)) = cos (\F)\ p(VA, c)) , (2.13)

where the function p : RT x (—g, g] — R is defined as

_1 1 _T 7z
pl.c) = {Olarccot(ltanc) force (-5,%). (2.14)
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Proof. Using Lemma 2] the general solution of the differential equation in the boundary value
problem is given by u(z) = Asin (\F/\(x — B)) , AeR, Be (—%,O]. Thus, we get
W (z) = AV cos (ﬁ(x - B)) .
Using the first boundary condition in , ie.
u(0) - sinc = u/(0) - cose, (2.15)
we can calculate B with respect to the value of c.
1. In the case of ¢ = 7, the boundary condition reads
u(0) =0

and thus we have

Asin (—ﬁB) =0.
To achieve a non-trivial solution, we have A # 0 (see Remark [I) and we obtain

B=0.

2. Now, let us fix ¢ € (—% g) . Since cos ¢ # 0, we can manipulate the condition (2.15)) in
the following way

and therefore using (2.11))

B ! a ccot< 1 Ol)
= ————arn —_— —
VA Vi Co

= ———=arccot (1 u’(O))
VA VA u(0)
1 1
= ———=arccot | —=tanc | .
To conclude, we get that B = p(v/\, ¢), where the function p is defined in (2.14). Moreover,

we have another expression for solutions of the differential equation in (2.1]), such that the first
condition of ([2.1]) holds

u(z) = Asin (\5 (x —-p (\5\, c))) , AeR, ce (—%, g] .

The integral condition in (2.1) reads

1
/ u(x)dx =0, (2.16)
0
where u is given by u(z) = Asin (\f)\ (x —p(VA, c))) . Therefore we get

[ s (VA (2= (VA €))) = =4 [oos (VA - VA 0)].

= —A% (cos (\F)\(l —p(VA, c))) — cos (\f)\ (VA C))) )

and thus the integral condition (2.16|) is justified if and only if
cos (\/X(l —p(V, c))) = cos (\f/\ p(VA, c)) , ce(-%,5].
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Fig. 2.3: The graph of the non-linear function y = —I - cot () (black curves) and the graph of
the constant function y = tanc for ¢ = 1.3 (the grey line).

In the following two lemmas, we show that the solutions A of the equation (2.13]) (and
therefore the eigenvalues of the boundary value problem (2.1))) can be figured out using a
simpler non-linear equation (see Figure .

Lemma 4. Force (—g, g), the equation

—1-cot (é) = tanc (2.17)

has infinitely many solutions | > 0. All these positive solutions form the sequence (lk)',::{ for
tanc > —2 and the sequence (lk)z;“; for tanc < —2. Moreover, we have that

2(k—1D)7m<lp <2km, keN (2.18)
Proof. Let us define the function g as the left hand side of the equation (2.17))

g(l) :locot(;>, >0, [+#2kn, k€N,

the interval
I .= (2(k — )m, 2kn),

and finally let us denote by g the restriction of g on the interval Ij.

We prove, that for all £ € N, the function g is strictly increasing and therefore injective.
The right hand side of the equation is tan ¢, which is a constant for fixed ¢ € (=%, )
and there exists at most one | € Iy such that gx(I) = tanc. For all k > 2, g has the range of
R and therefore there is exactly one solution of on I. For the case of k = 1, we proceed
separately and we show that the range of the function ¢; is (=2, +00).

For every interval I,k € N, we get

dgr (1) l l 2-cosLsini l ! —sinl
@ T I T T o an?l Tt >0
2 2

since [ > sin! for all [ > 0.
Therefore, the function gy is strictly increasing and injective on the interval I, k € N.
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For k > 2, the range of the function g is R since

l
I = lim —lcote =—
l—>2(lir—nl)7r+gk() l—>2(lir—nl)7r+ vy o

and

l
li [)= lim —lcot; = .
o) = i ety = e

And therefore there is exactly one solution I of (2.17) for every interval Iy, k > 2.
Now, let us consider the case of k = 1. The range of the function g; is (—2,+00) due to

COs L

l
lim g1(I) = lim —I-cot - = lim —- — 12 = lim —2-
=0+ =0+ 2 =0+ sin 3 1—0+ sin = 2

and

l
lim ¢1(I) = lim —I-cot 3= +o0.

l—27— l—27—

Given this range, there is exactly one solution /; on the interval Iy = (0,27) for tanc¢ > —2 and
there is no solution for tanc < —2.
O

Lemma 5. For c € (—g, g), there are infinitely many positive eigenvalues for the boundary
value problem (2.1)). For tanc > —2, all these positive eigenvalues form two sequences (Ai);:i
and ()\il);:i such that

0< AT <A <A< A <. <A< <

For tanc < —2, all positive eigenvalues form two sequences ()\i);::{ and ()\?)zj; such that

0< A <A< A <. <N <A <.
Moreover, in both cases, we have that A\, = 4k%7? and M= 11267 where i is the unique solution
of the nonlinear equation (2.17) such that (2.18) holds.

Proof. For ¢ € (=%, %), there are two possible types of solutions of the equation (2.13). Two
cosines are equal if and only if their arguments are equal except for the 2kw-shift, k € Z, or

one argument is equal to the negative of the second argument, again except for the 2km-shift,
keZ.

1. In the first case, we have for k € Z that

VA (1 —p(VX, c)) = Vp(VX, ) + 2k,

VA (1 - 21)(\57 c)) = 2km,
1 km

p(VA¢) = 5T (2.19)

Since the value p(v/A, ¢) is negative for A > 0 and ¢ € (—Z, g) , the equation (2.19)) can
be satisfied only for k£ € N. Now, using the definition (2.14) of p, we get for k € N that

1accot<1 ta > 1 kr
———ar —tanc| = - — —,
VA VA 2 VA

arccot (1 tan c) =km— @ (2.20)
vV 2

The range of arccot is (0,7) and thus, using (2.20)), we obtain for k£ € N that

A
0<k7rf§<7r,

20k —mr < VA <2k
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Moreover, (2.20]) implies that

tanc = —V Acot (?) , (2.21)

which is exactly the nonlinear equation (2.17) for I = v/\.
Thus, using Lemma we obtain solutions X of (2.21)) as A\}* =2, k € N.

2. In the second case, we have for k € Z that

VA (1 — p(VA, c)) = —V2p(VX, ¢) + 2k,

VA = 2k (2.22)

The equation ([2.22)) can be satisfied only for & € N due to A > 0. Thus, we obtain solutions
of (2.13)) of the second type i = 4k*n?, k € N.

O
Now, let us continue to study the problem (2.1)) for A <0.

Lemma 6. For A =0, the boundary value problem (2.1)) has a non-trivial solution if and only
if
tanc = —2.

Proof. Let us split the proof according to the value of c. Firstly, in the case of ¢ = 7, zero is not

the eigenvalue for due to Lemma |l Secondly, for ¢ € (—g, g) and \ = 0, the differential
equation of the problem simplifies to v”(z) = 0, = € R. Its general solution is therefore
u(x) = A(x —x0), A € R, o € R. Let us assume A # 0 since A = 0 leads to the trivial
solution. Using the integral condition of the boundary value problem , the value of zg can

be determined as 1 since

/Olu(x)dm:/OlA(x—xo) dx:AG—xo).

Indeed, z¢ = 3 due to fol u(z) dz = 0 and A # 0. Moreover, we have u(0) = —Azg = —3A # 0.
Now, the first boundary condition in (2.1) can be manipulated in the following way (cos ¢ # 0)

sine  w/(0)

cosc  u(0)’
A

tanc = —,
T2

tanc = —2.

O

Lemma 7. For A < 0, the boundary value problem (2.1)) has a non-trivial solution if and only
if

tanc = v/~ coth (_F> (2.23)

Moreover, for tanc < —2, there exists exactly one A < 0 such that (2.23|) holds, and for
tanc > —2, there is no A < 0 such that (2.23) is satisfied.

Proof. Let us split the proof according to the value of c.

1. For ¢ = 7, there are no negative eigenvalues according to Lemma
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2. For c € (=%, %) and A < 0, the differential equation of the boundary value problem (2
has the general solution in the form of

Gy
vV=A

This general solution can be equivalently written as

sinh(vV—Az) + Cy cosh(v—=Az), Cp,C1 € R.

u(zx) =

u(x) = Asinh(V-X\(z —20)), A,z €R,

which can be proven in an analogous way as Lemma
Let us assume A # 0 since A = 0 yields a trivial solution.

Using the integral condition of the boundary value problem (2.1]), the value of g can be
determined . First we evaluate the integral as

/ z)de = A/ blnh (x — m0)> dz

= A\/T)\ (COSh V=X — xy) — cosh < \/TAxo)) .

The integral condition fo x)dz = 0 can therefore be satisfied if and only if

cosh vV=A(1 — z) = cosh (—\/jxo> .

Since cosh is an even function, the equality holds true if arguments on both sides are
equal or if one of them is equal to the negative of the second one. In the first case we

obtain (v =\ # 0)
\/j(l - xO) = 7\/31,0’

1 -z = —mo,

and therefore the condition cannot be satisfied.

In the second case, we have

V—=A(1—x0) = V—Azo,
1 —x9 = o,

.’170:5.

Because zg = % and w is a strictly increasing function on R, we get u(z) # 0.

Now the first condition of the boundary value problem ([2.1)) can be manipulated since
u(0) # 0 and cosc # 0

w'(0)

u(0)’

B Av/ =X cosh (f\/j)\xo)

~ Asinh (f\/j)\xo) ’
_m>

2 )

tanc =

—Acoth (
which is exactly (2.23).
It remains to study the solvability of (2.23)), i.e. the solvability of the nonlinear equation
h(l) = tanc, (2.24)

where we denoted [ := —/—=X and h(l) := —I - coth (%).
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Since we have

l hi
lim A(l) = lim —I-coth~ = lim —I°2"2 — _9

1—0— . 1—0— sinh%

)

l
lim h(l) = lim —I-coth- = —o0,

l——o0 l——o0 2

and the function h is strictly increasing for [ € (—o0,0), there is exactly one negative solution
of the equation (2.24) for tanc < —2 and there is no solution of the equation (2.24)) for tanc >
—9. O

At the end of this chapter, we summarize results concerning the boundary value problem
(2.1) in the following theorem.

Theorem 1. There are infinitely many eigenvalues for the boundary value problem (2.1)).

5, all these eigenvalues are positive and form the sequence ()\i):z , where \j, =
4k?n? k € N.

1. Fore=7%

2. Force (—Z,%), all eigenvalues form two sequences (\), 25 and (AI),25 such that
MNE<A <A <A < <A <AL <

Moreover, we have that N}, = 4k*1% and \[t = 12, where Iy, for k > 2 is the unique solution
of the nonlinear equation

l
—1-cot 5= tan ¢ (2.25)

on the interval (2 (k — 1) w,2kn) . For tanc > —2, the first eigenvalue \i = 2 is positive
and ly is the unique solution of on (0,2m). For tanc = —2, the first eigenvalue A\t
is zero. Finally, for tanc < —2, the first eigenvalue \}* = —13 is negative and 1y is unique
solution of the nonlinear equation

—1- coth£ = tanc
2

on the interval (—o0,0).

Proof. For ¢ = 7, the assertion follows from Lemma |l For ¢ € (-7, 5), using Lemma [5, we
obtain two sequences () and (Af!) of eigenvalues for the problem (2.1). Moreover, the first
element AI! is discussed in Lemmas [f| and

O



Chapter 3

Implicit description
of the Fucik spectrum

This chapter is devoted to studying the structure of the Fu¢ik spectrum X, for the problem

(3.1)

{u” (z) +au™ (z) — Bu~ () =0, =z€(0,1),
u (0) - sinc = o' (0) - cosc, fol u(z) de =0,

where a, 8 € R and —F < ¢ < 7. More precisely, for fixed paremeter ¢ € (—%, g] , our goal is to

describe the Fuéfk spectrum .. as the set of all pairs (v, 8) € R? such that the problem has
a non-trivial solution u. As in the previous chapter, by a non-trivial solution of we mean
a function u € C2(0,1) N C' [0, 1] which is not identically zero on (0, 1), satisfies the differential
equation in pointwise on this interval and also satisfies both boundary conditions in .

The implicit description of the Fuéik spectrum X, for the problem is provided in [5],
but only for —F < ¢ < 0. In the following section, we focus on «, 3 > 0 and show how to get the
implicit description of the Fucik spectrum ¥, in a new compact form for —3 < ¢ < 7. Presented
compact description of ¥, in the first quadrant extends known results in [3] concerning only
the special case of c = 7.

In the second section of this chapter, we provide the implicit description of some parts of
the Fuéik spectrum ¥, for a8 < 0 (i.e. in the second and fourth quadrants of a«f—plane). Let

us note that similar description can be found in [5] (see Theorem 4 on page 511).

3.1 Compact description in the first quadrant

In this part, we deal with the problem (3.1) for o, 8 > 0, i.e. we investigate the following
problem

{u”(a:) +a?ut(z) —b*u=(z) =0, =x€(0,1), (3.2)

u(0) - sine = u/(0) - cosc, fol u(z)dz =0,
where we denoted a = /o and b = /f3. Our goal is to describe all pairs (a,b) € Rt x R such
that the problem (3.2) has a non-trivial solution u. According to the basic facts stated in [3]
(see pages 182 and 183), it is enought to find all pairs (a,b) € RT x RT such that the solution
u of the following initial value problem

{u”(m) +a?ut(z) —b*u=(z) =0, z€R, (3.3)

u(p(a,c)) =0, ' (p(a,c))=a-b>0,

satisfies the integral condition
1
/ u(z)dz =0, (3.4)
0
where the function p : R* x (=%, %] — R is defined in (2.14) as

pla,c) = {—iarccot (%tan c) for ¢ f (ﬂ—g, g) , (3.5)
0 for c = 3.

14
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Fig. 3.2: The graphs of the function p(a,-) : ¢ — p(a,c) for different values of a.

It is straightforward to verify that the function p is a continuous function and its range is

T

the interval (—oo,0]. Moreover, for fixed ¢ € (—5, 5) , the function p = p(+, ¢) as a function of
the first variable a > 0 is strictly increasing and has the range (see Figure

(—cote,0) for ce(0,7),
(—00,0)  force (~3,0].

Ran(p(-,¢)) = {

For fixed a > 0, the function p = p(a, ) as a function of the second variable ¢ € (=%, 5] is also
strictly increasing (see Figure [3.2)).

The solution w of the initial value problem is T-periodic, where T'= % + 7 > 0, and
has the following form on the interval (0,7

bsin (a (z — p)) forz € (0,p+ Z],
u(z) = { —asin (b (3:— (p—i— g))) for x € (p—l— - p—l—%—!—%], (3.6)
bsin(a(xf(p+§+%))) forxe(p+§+%, T],

where we shortened the notation of p(a,c) as p. For better clarity, we use the abbreviated
notation p instead of p(a,c) in the following text.
Now, let us define the set

M, = {(a, b) € RT x R™: the solution u of the initial value (3.7)
problem ([3.3) satisfies fol u(z)dr = 0}.

We have the following link between the set M, and the Fucik spectrum X, (see Figure and
3.6):

1. If (a,b) € M, then (a?,V?) € &, and (b?,a?) € ..
2. If (a, B) € ¥, with a, 8 > 0 then (/a,/B) € M, or (\/B,/a) € M..
This implies that

ECmR+xR+:{(a,5)eR+xR+: (\/a\/B) EM, V (\/B\/a) EMC}

and thus, it is enough to describe only the set M..
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Definition 1. For a,b > 0, let us define

F(z):= /Ozu(t) dt, x € R,

where u s the solution of the initial value problem .
Using this definition, the integral condition can be equivalently written as F'(1) = 0.
Lemma 8. The function F satisfies the following equation

VeeR: F(z+T)=F(z)+ F(T), (3.8)
where T'= 7 + 7.

Proof. Since u is the T-periodic solution of the initial value problem (3.3]), we get for all z € R
that

z+T T z+T T
F(x+T):/O u(t)dt:/o u(t)dt—i—/ u(t)dt:F(a:)—l—/O u(t)dt = F(z) + F(T).

O
Lemma 9. The function F' is T-periodic, where T'= = + 7, if and only if a = b.
Proof. Using the Definition |1 and (3.6)), we have
—gcos(a(x—p))—i—%cos(ap) for z € (0, p+ g],
F@ =1 Goos(olo—(pr2)) +heoslap) + 25 forac(prz pr i+,
—beos(a(z—(p+Z+7%)))+2cos(ap) +22 —2¢ forze (p+Z+7%, 7).
(3.9)
Using (3.6) we get
26 2a b b ™o T 7
=22 o o555 5)
(T) . b—i—ac%(ap) S cos (a a+b P
%
a b
2T
=—(b—a). 3.10
(- a) (3.10)
Therefore, F(T) = 0 if and only if @ = b and the assertion follows from Lemma O
Definition 2. For a,b > 0, let us define
x 1 T
G(z):=1 f/ (u(t) —u)dt, zeR, = —/ u(t) dt,
0 T Jo
where T = = + 7 and u is the solution of the initial value problem (3.3).
Now, it is straightforward to verify that for all x € R we have
F (T 2
Gx)=1-—F(z)+ ( )le—F(az)—l—f(b—a)a:, (3.11)

T T

and also the function G can be evaluated using (3.9). For = € (0, D+ g] , we have
G(z) = gcos(a(xfp)) - gcos(ap) +20b-a)z+1,forz € (p+Z, p+I+7F], we get
G(z)=—%cos(b(z— (p+7Z)))—Lcos(ap)—L4+%+2 (b—a)z+landforz € (p+ T+ F, T],
we obtain G(z) = 2cos(a(z— (p+Z+%))) — Lcos(ap) —22 +2% + 2 (b— a)x + 1, where
Tr=2>+7.

Moreover, the integral condition (3.4 can be written as

Gl)=1+—-~. (3.12)
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Fig. 3.3: Graph of the 2m-periodic function G(a,b,-) : t — G(a,b,t) for a =2,b =5 and ¢ = 0.

Lemma 10. The function G is T-periodic, where T' = = +
Proof. For all z € R, using (3.11]) and (3.8, we obtain

ol

G(x+T)=1—F(x+T)+¥(x+T):1—F(x)+F

In the following definition, we define a new function G = G(a, b,t). This function is 27-periodic
in the third variable and is given by parts (see Figure [3.3| for a = 2, b = 5, ¢ = 0). Another
examples of graphs of the function G(a,b,-) can be seen in Figure

Definition 3. Let us define the function P: RT x RT x R =+ R as

b t
P(a,b,t):<z>+1, a>0, b>0, teR, (3.14)
a ™

and the function G : RT x Rt x R — R, which is 2m-periodic in the third variable
Va>0Vb>0VteR: G(a,bt+27)=G(a,b,t),

and is define for a >0, b >0, t € (0,27] as

b cos (%2t — ap) — L cos (ap) + P (a, b,t) fort e I,
G (a,b,t) := ¢ 4 cos (%L (t — 27m) — bp) — Lcos (ap) + P (a,b,t —m)  fort€lp,  (3.15)
b cos (52 (t — 2m) — ap) — L cos (ap) + P (a,b,t —27) fort € I,
where
2 2 2 2
o= (o 22t (2(rdap) o o 2abp) (o 2abp
a+b a+b a+b a+b’
and p stands for the value of p(a,c) defined in (3.5)).
Theorem 2. The pair (a,b) € M, if and only if a,b > 0 and
2ab 2
—(b—a). .1
g(ab —|—b> +7r( a) (3.16)

Proof. Let u be the solution of the initial value problem (3.3), where a,b > 0. The integral
condition (3.4]) can be rewritten as (3.12)).

Now, we prove that

2ab
VeeR: G b, —— 3.17
T € (x) =6 (a > ) (3.17)
Let us define t(z) := fﬂx and split the proof according to the value of x.
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—‘rr N T O\./rr 2 \-/grr 4‘7‘!’

Fig. 3.4: Graph of the 27-periodic function G(a,b,-) : t — G(a,b,t) for a = b = 1 and different
values of the parameter c.

1. Firstly, let us consider x € (O,p + %] Using the definition of ¢, we get ¢t € (O, Qb(giigw)}
and
b
G(z)=—cos(a(z—p))——cos(ap)+ = (b—a)x+1
b b)t
= —cos (ax — ap) — — cos (ap) + — (b — (a;_b) 1+
a

. )
b_ayt (b _at b a b a
a b)) a b)m™ a b a b

= gcos (a(a+b)t —ap) —gcos(ap)+—(b_a)(a+b)t+

2ab

a b2 —ad® t
P B ST L
(a,0, 7T)+a b ab T
b (a+b)t b b a
= — — —_ = _— = P —
aCOS( 5% ap) acos(ap)—l—a b+ (a,b,t — )

=G (a,bt).
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2. Secondly, if x € (p+§,p+§+%] then ¢ € (%,2%4— % and we get

2
— (- 1
Z(b-a)z+

66 = ~eon (b~ (p+ 7)) - Leostep) - 224

b a a

a b b 2
=~ cos (bl’bpﬂ'a> facos(ap)+;(bfa)xf

boa (b eyt _(b_a\t
a b a b)w a b)) 7

a a+b b

_g CO; <2at — b — a7T> — — COS (G/p) +

2 a+b b2 —a?\ t
2y P ) i
7r(b a) 2abt+ (a,b,t —m) ( s )W
=G (a,b,t)

3. And finally, if x € (p +-+ 7, T] then t € (27r + 2{&’_’2,2%}, and we obtain

b a b b a 2
G(x)—gcos(ax—ap—w—gw>—Ecos(ap)—2a+25+;(b—a)x+1
*éos a——’_btfa a2 fécos(a)féJrng
o - PTTTRT) T T

2 a+b b a b a\t b —a?\ t
—(b— t+1——+4 - —— =) == —
7r( )2b * +b+(a b>7r ( ab >7r
_0 % ap—m -2 fécos( )79+g+
= 5 ap =T — ap 2

b2 —a?\ t b2 —a?\ t

( ab >W+P(a,b,t7r)< ab )7r
=G (a,b,t).

Thus, the equality in (3.17) holds for all z € R, which means that the equality (3.12)) is the
same as the equality (3.16]) due to (3.10]). O

Corollary 1. We have that (a,b) € M. if and only if a,b > 0 and

2ab 2ab
g (a, b, a—"—b) =P (a7 b, m) . (318)

Proof. According to the definition (3.14)), we get

2ab b? — a? 2ab 2
P<a,b, a ): P 1= (h-a)+ 1.
a

+b ab (a+b)m v

Therefore, the assertion is a direct consequence of Theorem O

Remark 2. Let us point out that for a = b=\ > 0, we have
P(VA V) =1,
G(VA, VA t) = cos(t — VAp) — cos(VAp) + 1.
Moreover, in this case, the equation reduces to
G(VA VA VA) = P(VA VA V),
cos(VA — VAp) — cos(VAp) +1 =1,

which is exactly the nonlinear equation (2.13). Recall that the solvability of the equation (2.13)
is provided in the proof of Lemma[5
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Fig. 3.5: The set M. in the first quadrant of the ab-plane for ¢ = 7.
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Fig. 3.6: The Fucik spectrum ¥ in the first quadrant of the a8-plane for ¢ = 7.
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3.2 Description in the fourth quadrant

In this section, we investigate the problem (3.1)) for « > 0 and 5 < 0, i.e. we study the following
problem

{w'u) +a’ut(2) + 0 (2) =0, w€(0,1), (3.19)

u(0) - sine = 4/(0) - cosc, fol u(z)dz =0,

where we denoted a = /o and b = —y/—f. As in the previous section, let us introduce the
corresponding initial value problem

u’(z) + a*ut(z) + b*u=(z) =0, =xz€R, (3.20)
u(p(a,c)) =0, u'(p(a,c)) =1, ’
where the function p is given by (2.14]), and define the set
N, = {(a, b) € RT x R™: the solution u of the initial value (3.21)

problem ([3.20) satisfies fol u(z) doe = 0}.

We have the folloving link between the set N, and the Fuéik spectrum . (see Figure and
B.8): If (a,b) € N, then (a2, —b?) € . and (—b%,a?) € 2.

Theorem 3. The set N, consists of all pairs (a,b) € RT x R~ such that

™
S 3.22
¢z p(a,c) (3.22)
and
cosh b —bp(a,c) b 1+ v + ’ cos (ap(a, c)) (3.23)
_ — —T — —_— _ . .
p ) a a2 0,2 p )
Proof. The solution u to the initial value problem (3.20)) can be written as
L - for 0 <z < s
u(z) = [{s'ln(a(m D)) ) 0r07m7]:+a, (3.24)
—gsmh(b(x—(p—i— 5))) forz >p+ 7.

At first, let us examine the case of p+ 2 > 1. The solution u of the initial value problem ({3.20)

is only positive on the interval (0, 1) and therefore, the integral condition fol u(z) de = 0 cannot
be satisfied.
At second, in the case of p + 7 < 1, we have

™

>
a 1—p

and using ([3.24]), we evaluate the integral fol u(z) dz in the following way

1 P+ 1 -
/0 u () dx:/o ésin(a(xfp)) da:Jr/p f%sinh<b(a:f(p+g))) dz

+5

= [~ cosa (x,p))]f:% g [eosh (b (2~ (+ Z)))L

= (11 cos (ap)) - blz (cosh (b by Zw> _ 1)

a

1 1 1 b
:(12+azcos(ap)+b2(l—cosh<b—bp—aﬂ')>.

And thus, we obtain that the integral condition fol u(x) dx = 0 is satisfied if and only if

b b2
cosh (b—bp——7 | =1+ — + — cos (ap) .
a a®>  a
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Fig. 3.7: The set N, in the fourth quadrant of the ab-plane for ¢ = F, where aq is given by
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Fig. 3.8: The Fucik spectrum ¥. in the fourth quadrant of the a3-plane for ¢ = 7, where ag is

given by ag = 71_1)(”%70).



Chapter 4

The Fucik spectrum
as parametrized curves

In this chapter, we investigate the problem (1.1)) for ¢ = 0, i.e. we study the following problem

{u”(a:) +aout(z)—pu () =0, x€(0,1),

W(0)=0,  fyu(z)dz =0, (4.1)

and our goal is to find the parametrization of its Fuéik spectrum Y. According to results from
the previous chapter, we proceed such that we find parametrizations of sets Mg and Ny (recall

(3.7) and (3.21]) for ¢ = 0).

4.1 The parametrization of the set N

The set N is described by (3.22) and (3.23) in Theorem [3| for ¢ = 0. For ¢ = 0, we have

p(a,0) = — 5= and thus, Ny is the set of all pairs (a,b) € RT x R~ (see Figure such that

0 br b?
a> 5 and cosh <b2a> :1+¥. (4.2)

Theorem 4. The set Ny is a continuous curve n : (—oo,0) — R? with the parametrization
n(s) :== (m (8),m2(s)), where functions ny,nz : (—o0,0) = R are defined as

T s T
§) == — ——, s)=8— —+vcoshs—1.
Proof. First of all, let us denote
b br
k:: —, ::b—i‘ 4'3
a y 2a (43)
Using the inequality in (4.2), we get that J- < 1 and that k,s < 0. Moreover, the condition
(4.2) can be equivalentely written as
coshs=1+k% k<0, s<0,
or as
k=—+Vcoshs—1, s<0. (4.4)
Now, the inverse transformation to (4.3) reads
T S T
a 5 + e s+ 5"
and thus, using (4.4)), we obtain
T s T
a=T (), b=s—Tveoshs=1=m(s).

The continuity of the curve 7 is straightforward to verify, which finishes the proof.

24
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-10

-15
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Fig. 4.1: The set Nj in the fourth quadrant of the ab-plane.

Remark 3. It is straightforward to verify that

lim ((s),ma(s)) = (V24 5,0).

s—0—

Moreover, it is possible to show that both points ((\/5 + %)2 , 0) and (0, (\/§ + §)2) belong to

the Fucik spectrum .

4.2 The parametrization of the set M,

The set M is described by (3.18) in Corollary|l|for ¢ = 0. For ¢ = 0, we have that p(a,0) = — -
and thus, Mg is the set of all pairs (a,b) € RT x RT (see Figure such that

2ab 2ab
b= ) =P (ab, = 4.
G (a. 22 ) =P (an 20, (4.5

where the function P is defined in (3.14) as P(a,b,t) = (2 —

a

%) % + 1, the function G reads

cos (“Tszt+g)+P(a,b,t) fort € I,
G(a,bt) =< %cos (%L (t—2m) + 22) + P(a,bt —7) forte Iy, (4.6)
b cos (G (t—2m) + %) + P(a,b,t —2m) for t € I,

and

b b br b
L =0, — I, = 2 — , Is=(2mr— ——, 27| .
! <’a—&—b}7 2 (a—&—b’ m a—l—b] 3 (W a+b W}
Theorem 5. The set Mg is a continuous curve p : (0,+00) — R? with the parametrization
w(s) = (u1(s), p2(s)), where functions py, ps : (0,400) = R are defined as

™m—%+(s+m7—7mn)\/ oy forse(2n(n—1), 2r(n—1)+7],

cos s—2n—+1
neN,
pa (s) = It
s —Tn+ 5+ wng/ R0 for s € (2mn —m, 27wn],
n €N,

s+m—mn+ (mn— %) /5220t for s e (2r(n—1), 2m(n—1) + 7,

n €N,

™ + (s —mn + g) 2n-$?oss for s € (2mn — 7, 2mwn],

n € N.




CHAPTER 4. THE FUCIK SPECTRUM AS PARAMETRIZED CURVES
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Fig. 4.2: The set My in the first quadrant of the ab-plane.
Proof. First of all, let us rewrite (4.6]) in the following form
Leos (g +5+5) + Plabt) for t € (0. 275
G (a,b,t) = —%cos (L 4+ & — bT) 4 P (a,b,t — 7) for t € (% 2 — abgb} ,

gcos(a—i—l—%—g—%ﬁ)—i—P(mb,t—Qw) for t € (27?—(1%7, 27r},

Now, let us denote

b 2ab
k:=—->0, t:= a >0,
a a+b

26

ISIE]

o[

(4.7)

(4.8)

and rewrite the equation (4.5) (where G(a,b,t) is given by (4.7))) in the following equivalent

form

G(k,t) = P(k,t),

where
1\ ¢
Pkt)=(k——-]—+1
(o= (k-3) 2+
and
keos (& + 5+ 2) + P (k,t) for t e (0, 5],
G (k,t) = —%cos(%Jr%f%r)JrP(k,tfﬂ) for t € k]%rl, 27*%}’

kcos(ﬁ—l—%—%—%)—i—ﬁ(k,t—%r) for t € (271'—,:“—;'1, 2#}.

(4.9)

(4.10)



CHAPTER 4. THE FUCIK SPECTRUM AS PARAMETRIZED CURVES

Let us point out that the inverse transformation to (4.8) has the following form

t(k+1) t(k+1)
- bi—i .
a ok >0, B) >0

Now, let us split the proof according to the value of ¢t > 0.

1. Let us consider t € (0, k’“—fl} In this case, the equation (4.9) reduces to

t t ~ ~
v - o P — P
kcos(2k+2+2>—|— (k,t) (k,t),
which can be equivalently written as

tk+1)
ok

k sin =0.

27

(4.11)

(4.12)

The equality in (4.12)) cannot be satisfied since k > 0 and 0 < tktD) < 5. Thus, for given

2k

k >0, there isno t € (O7 kk—fl] such that (4.9)) holds.
2. For

km km
te(k 1+ ﬁ(n ), ™ A J,nEN,

(4.13)

the condition (4.9) can be rewritten using the 27-periodicity in the second argument

G(k,t—2m(n—1))=P(kt),

km
k

Now, let us denote

s::%—7r(n—1)+%—kﬂ(n—1)—k§+2ﬂ(n—1)

and express ¢ in terms of k£ and s as

B 2s — 2mn + 27 + 2knmw — kn

t
E+1

—lcos<;—ﬂ(n—1)+k2t—k7r(n—1)—2)—|—I5(k,t—27r(n—1)—7r):f’(kj,t).

(4.14)

(4.15)

(4.16)

According to (4.13), we have that s € (2r(n—1), 27 (n — 1) + 7] and the condition
([4.14) can be written as — cos (s) + k% — 1 — 2nk? 4+ 2n = 0 or equivalently (since k > 0)

coss —2n+1
1—2n

k:

Finally, let us combine (4.16]), (4.17) and (4.11)) to obtain

_ 7r+( n ) 1—-2n — 1 (s)
GET Ty T T T coss —am + 1 P
T coss —2n+1
b—s+7r—7rn+(7m—§> W—ug(s),
where s € 2n(n—1), 2n(n— 1)+ 7.
3. For By
te 27m—77r7 2mn|, n €N,
kE+1

the condition (4.9) can be rewritten as

Gkt —2n(n—1)) = P (k,t),

(4.17)

(4.18)
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k cos (t—27r(n—1) + t=2r(n-1) —7T—7T>+]2€—2k:+P(k,t—27T(n—1)) =P (k,t).

2k 2 2k
(4.19)
now, let us denote
ot m(n—-1)t T
8= or PR w(n—1) 5 % +7(2n—1) (4.20)
and express t as
_ 2ks 4 2mn — 2knm + km (4.21)

k+1

Using ([£.18), we have s € (—m+2mn, — % +27n| and the condition (L.9) reads
—kcos (s) — 2nk + 2n4 = 0 or, (since k > 0)

2
Y P — (4.22)
cos s+ 2n

Now, let us combine (4.11]), (4.21]) and (4.22)) to obtain

T 2n + cos s
a=8s—Tmn+ -+ —(— =
2 2n
b=t (s—mnt D) /o (s)
=7n s—mn—+ — — s
2 2n 4+ cos s 12

where s € (—7r +2mn, — 5+ 271'77,}.
4. Finally, let us consider
€ <27m, k;LL + 27m] , neN. (4.23)
In this case, using 27 periodicity of the function G , the condition reads
G (k,t —2mn) = P (k,t),

which can be rewritten as

t—2mn  t-2 _ _
kcos< 21:” + 2”" + g) 4 P (k,t—2mn) = P (k,t). (4.24)

Now, let us denote

t ™ T
= — - — 4+ = — 2n—1). 4.2
s 5% . —1—2 7rn+2+7r(n ) (4.25)

Using (4.23)), the values of s are in the interval s € (27m -3, 27m] . Using (4.25)), we get

k(2s —2mn + ) + 27n
kE+1

The condition (4.24) reads —k cos s — 2nk + 2n¢ = 0 and thus, we obtain (k > 0)

2n
=4/ 4.27
2n + cos s ( )

And finally, using (4.11)), (4.26) and (4.27)), we get

/2n+coss
a—s—7rn+ —+ 7™
™
b—ﬂ'n—i— S—Td"n—l—*)ﬂ
2 2n+c0ss

where s € (27m -5 27m].

t=

(4.26)
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It is straightforward to verify the continuity of functions p; and ps, which finishes the proof.
O

Remark 4. According to Theorem[]], Theorem[5 and Remark[3, we have two continuous curves
which belong to the Fucik spectrum g and are symmetric with respect to the diagonal o = 3
and one of them is the curve v : R — R2 given by

v(s) == (11(8),72(8))s

is)  fors <o,
n(s) = (V2Z+3)? fors=0,
iB(s)  fors >0,

—n3(s) for s <0,
Yo (s) := 0 for s =0,
u3(s) for s >0,

where n1, N2 and p1, po are given in Theorem[]] and Theorem [, respectively.



Chapter 5

Conclusion

In this thesis, we obtained the following main results:

1. The description of all eigenvalues for the linear boundary value problem (2.1]) in Theorem [1l
2. The compact implicit description of the Fuéik spectrum 3 in the first quadrant in Theorem 21

3. The parametrization of the Fucik spectrum ¥ by two continuous curves (see Remark .

Despite all our efforts, there are still some unanswered questions concerning the problem (|1.1))
and its Fuéik spectrum .. Thus, at the end of this thesis, let us formulate at least some

conjectures (see Figure [1.1)):

1. The Fuéik spectrum . and the set {(a,3) € R? : -3 < 0} (the union of the second
and fourth quadrants) are disjoint sets if and only if tanc = —2.

2. The set N, introduced in (3.21)) is an empty set if and only if tanc < —2.
3. For —2 < tanc # 0, the set N, is a continuous curve in the fourth quadrant of ab-plane.

4. There exists some g € (—2,0) such that for —2 < tanc < ¢ < 0, the set N, as a continuous
curve in the fourth quadrant continues to the third quadrant of ab-plane.

30



Bibliography

[1] Coddington, E. A.; Levinson, N.: Theory of ordinary differential equations. New York,
Toronto, London: McGill-Hill Book Company, Inc. XII, 429 p. (1955).

[2] Fucik, S.: Solvability of nonlinear equations and boundary value problems. Mathematics
and its Applications, 4. Dordrecht — Boston — London: D. Reidel Publishing Company. X,
390 p. (1980).

[3] Kadlec, J.; Necesal, P.: The Fucik Spectrum as Two Regular Curves. NABVP 2018, Springer
Proceedings in Mathematics & Statistics 292, 177-198 (2019).

[4] Oldham, K. B.; Myland, J.; Spanier, J.: An atlas of functions. With Equator, the atlas
function calculator. With CD-ROM. 2nd ed. New York, NY: Springer. XI, 748 p. (2008).

[5] Sergejeva, N.: The Fucik spectrum for nonlocal BVP with Sturm—Liouville boundary con-
dition. Nonlinear Anal. Model. Control 19, no. 3, 503-516 (2014).

31



	Introduction
	Solvability of linear problems
	Implicit description of the Fucík spectrum
	Compact description in the first quadrant
	Description in the fourth quadrant

	The Fucík spectrum as parametrized curves
	The parametrization of the set N0
	The parametrization of the set M0

	Conclusion

