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Abstrakt

V této práci vyšetřujeme Fuč́ıkovo spektrum okrajové úlohy druhého řádu s jednou Robinovou
a jednou nelokálńı okrajovou podmı́nkou. Dokážeme, že př́ıslušná lineárńı úloha má nekonečně
mnoho vlastńıch č́ısel a poskytneme jejich popis. Představ́ıme implicitńı popis Fuč́ıkova spektra
v prvńım kvadrantu. Pro speciálńı nastaveńı parametr̊u také dokážeme, že se Fuč́ıkovo spek-
trum skládá ze dvou spojitých křivek a najdeme parametrizaci těchto křivek.

Kĺıčová slova: Fuč́ıkovo spektrum, nelokálńı okrajové podmı́nky, Robinova podmı́nka, vlastńı
č́ısla

Abstract

In this thesis, we investigate the Fuč́ık spectrum for the second order boundary value problem
with one Robin and one non-local boundary conditions. We prove that the corresponding linear
boundary value problem has infinitely many eigenvalues and we provide the description of these
eigenvalues. We present a compact form of the implicit description of the Fuč́ık spectrum in the
first quadrant. We also prove for a specific setting of the parameters, that the Fuč́ık spectrum
consists of two continuous curves and the parametrization of these curves is provided.

Keywords: Fuč́ık spectrum, non-local boudary condition, Robin condition, eigenvalues
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Chapter 1

Introduction

The goal of this thesis is to investigate the Fuč́ık spectrum for the following boundary value
problem with one Robin and one non-local boundary conditions{

u′′ (x) + αu+ (x)− βu− (x) = 0, x ∈ (0, 1) ,

u (0) · sin c = u′ (0) · cos c,
∫ 1

0
u (x) dx = 0,

(1.1)

where α, β ∈ R and π
2 < c ≤ π

2 . By the Fuč́ık spectrum for the problem (1.1), we mean the set
(see Figure 1.1 and 1.2)

Σc :=
{

(α, β) ∈ R2 : the problem (1.1) has a non-trivial solution u
}
.

In the special case of c = π
2 , the problem (1.1) reads{
u′′(x) + αu+ (x)− βu− (x) = 0, x ∈ (0, 1),

u(0) = 0,
∫ 1

0
u(x) dx = 0,

and its corresponding Fuč́ık spectrum Σπ
2

is investigated in details in [3]. Thus, in this thesis,

we focus mainly to values of the parameter c ∈
(
−π2 ,

π
2

)
, we use the paper [3] as a starting

point for our study and we also follow the notation used in [3].
For α = β = λ, the problem (1.1) reduces to the following linear problem{

u′′(x) + λu(x) = 0, x ∈ (0, 1),

u(0) · sin c = u′(0) · cos c,
∫ 1

0
u(x) dx = 0,

(1.2)

and its eigenvalues λ (the values λ ∈ R such that the problem (1.2) has a non-trivial solution
u) determine points (λ, λ) ∈ Σc on the diagonal α = β. For c ∈

(
−π2 ,

π
2

)
, we show that λ > 0

is an eigenvalue for the problem (1.2) if and only if

cos
(√

λ−
√
λ · p

(√
λ, c
))

= cos
(√

λ · p
(√

λ, c
))

, (1.3)

where p
(√

λ, c
)

= − 1√
λ

arccot
(

1√
λ

tan c
)
. Moreover, let us note that in the special case of

c = 0, the equation (1.3) simplifies to

cos
(√

λ+
π

2

)
= 0,

the linear problem (1.2) reduces to{
u′′(x) + λu(x) = 0, x ∈ (0, 1) ,

u′(0) = 0,
∫ 1

0
u(x) dx = 0,

and all its positive eigenvalues are of the form λk = k2π2, k ∈ N.
For the original problem (1.1), we provide the following description for its Fuč́ık spectrum Σc

in the first quadrant of the αβ-plane. For c ∈
(
−π2 ,

π
2

)
and α, β > 0, we prove that (α, β) ∈ Σc

if and only if

1
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Fig. 1.1: The Fuč́ık spectrum Σc for different non-negative values of the parameter c.
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Fig. 1.2: The Fuč́ık spectrum Σc for different negative values of the parameter c.

G
(√

α,
√
β,

2
√
αβ√

α+
√
β

)
= 1 +

2

π

(√
β −
√
α
)

(1.4)

or

G
(√

β,
√
α,

2
√
αβ√

α+
√
β

)
= 1 +

2

π

(√
α−

√
β
)
, (1.5)

where the function G = G(a, b, t) is 2π-periodic in the third variable t and is defined by parts
in Definition 3. Let us point out that for α = β = λ, we have

G
(√

λ,
√
λ, t
)

= cos
(
t−
√
λ · p

(√
λ, c
))
− cos

(√
λ · p

(√
λ, c
))

+ 1

and thus, both equations (1.4) and (1.5) can be simplified to (1.3) in this case.
Finally, the next chapters are organized in the following way. The second chapter is devoted

to the linear problem (1.2) and we provide the description of all its eigenvalues. In the third
chapter, we return back to the original problem (1.1) and provide the implicit description of the
Fuč́ık spectrum Σc in the first quadrant and partially also in the second and fourth quadrants
of the αβ-plane. The fourth chapter is devoted to the problem (1.1) for the special case of
c = 0 and we show how to get the parametrization of the Fuč́ık spectrum Σ0 by two continuous
curves.



Chapter 2

Solvability of linear problems

In this chapter, we study the following linear boundary value problem{
u′′(x) + λu(x) = 0, x ∈ (0, 1) ,

u (0) · sin c = u′ (0) · cos c,
∫ 1

0
u(x) dx = 0,

(2.1)

where λ ∈ R and −π2 < c ≤ π
2 . More precisely, for fixed c ∈

(
−π2 ,

π
2

]
, we describe all values

λ ∈ R such that the problem (2.1) has a non-trivial solution u, i.e. we describe all eigenvalues
for the problem (2.1). By a non-trivial solution of the problem (2.1) we mean a function u ∈
C2(0, 1) ∩ C1 [0, 1] which is not identically zero and satisfies the differential equation in (2.1)
pointwise on the interval (0, 1), satisfies the Robin boundary condition at the point x = 0
(containing the parameter c) and the non-local boundary condition of integral form.
The general solution of the linear differential equation u′′(x) + λu(x) = 0, x ∈ R, can be
expressed as

u(x) =


C1√
λ

sin
√
λx+ C0 cos

√
λx for λ > 0,

A · (x− x0) for λ = 0,
C1√
−λ sinh

√
−λx+ C0 cosh

√
−λx for λ < 0,

(2.2)

where C0, C1, A, x0 ∈ R.
In the following lemma, we investigate eigenvalues of the problem (2.1) in the special case

of c = π
2 .

Lemma 1. For c = π
2 , there are infinitely many eigenvalues for the boundary value problem

(2.1). All these eigenvalues are positive and form the sequence (λIk)
+∞
k=1 , where λIk = 4k2π2, k ∈

N.

Proof. For c = π
2 , the first boundary condition in (2.1), i.e. u(0) · sin c = u′(0) · cos c, reads

u(0) = 0, (2.3)

and the integral condition in (2.1) remains the same as∫ 1

0

u(x) dx = 0. (2.4)

Now we split the proof according to the value of λ.

1. For λ > 0, we obtain using the general solution in (2.2) that

u(0) = C0.

Therefore C0 = 0 due to (2.3) and thus, all solutions u of the differential equation in (2.1)
such that the first boundary condition is satisfied are of the following form

u(x) =
C1√
λ

sin
√
λx.

3
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Let us assume C1 6= 0 to obtain a non-trivial solution u and let us evaluate the following
integral

∫ 1

0

u(x) dx =

∫ 1

0

C1√
λ

sin
√
λx dx

= − C1√
λ

[
1√
λ

cos
√
λx

]1
0

= −C1

λ

(
cos
√
λ− 1

)
.

The integral condition (2.4) is thus satisfied if and only if cos
√
λ = 1 or if and only if

(recall λ > 0)
λ = 4k2π2, k ∈ N.

2. For λ = 0, the linear differential equation in (2.1) simplifies to u′′(x) = 0 and thus the
general solution u can be expressed for A, x0 ∈ R as

u(x) = A · (x− x0).

This solution is trivial for A = 0 and thus let us assume that A 6= 0 in the following text.

Now we will evaluate the integral∫ 1

0

u(x) dx =

∫ 1

0

A · (x− x0) dx

= A

[
x2

2
− x0x

]1
0

= A

(
1

2
− x0

)
.

Using (2.4), we get x0 = 1
2 , since A 6= 0. Thus we have u(0) = −A2 6= 0, which is a

contradiction with (2.3). For c = π
2 , λ = 0 is not an eigenvalue for the problem (2.1).

3. For λ < 0, the linear differential equation in (2.1) has the general solution

u(x) =
C1√
−λ

sinh
√
−λx+ C0 cosh

√
−λx

for C0, C1 ∈ R and we get the value u(0) = C0. Thus C0 = 0 according to the condition
(2.3). Now we can evaluate the integral∫ 1

0

u(x) dx =

∫ 1

0

C1√
−λ

sinh
√
−λx dx

=
C1√
−λ

[
1√
−λ

cosh
√
−λx

]1
0

=
C1

−λ

(
cosh

√
−λ− 1

)
.

We assume C1 6= 0 to achieve a non-trivial solution. Therefore the integral condition (2.4)
reads cosh

√
−λ = 1, which cannot be satisfied since λ < 0. Thus, there are no negative

eigenvalues for c = π
2 .

Now, let us discuss the case λ > 0 for −π2 < c ≤ π
2 . For fixed C0, C1 ∈ R, the function u in

(2.2) can be also viewed as the solution of the following initial value problem (see Figure 2.1){
u′′(x) + λu(x) = 0, x ∈ R,
u(0) = C0, u′(0) = C1.

(2.5)

The following lemma gives us another form of the general solution (2.2) for λ > 0 (see Figure
2.2).



CHAPTER 2. SOLVABILITY OF LINEAR PROBLEMS 5
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Fig. 2.1: The solution u of the initial value problem (2.5) for λ = 1, C0 =
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Fig. 2.2: The solution u of the initial value problem (2.5) in the form of (2.6)
for λ = 1, A = 1, B = −π3 .

Lemma 2. For λ > 0, the general solution of the linear equation

u′′(x) + λu(x) = 0, x ∈ R,

is given by

u(x) = A sin
(√

λ (x−B)
)
, A ∈ R, B ∈

(
− π√

λ
, 0
]
. (2.6)

Proof. We prove that for λ > 0, the general solution in the form of (2.2) can be equivalently
written as (2.6).

1. Let’s start with (2.6), i.e. with u(x) = A sin
(√

λ (x−B)
)
, A ∈ R, B ∈

(
− π√

λ
, 0
]
. We

can manipulate the expression

u(x) = A sin
(√

λ (x−B)
)

= A sin
(√

λx−
√
λB
)

= A sin
(√

λx
)

cos
(√

λB
)

+A cos
(√

λx
)

sin
(
−
√
λB
)
.
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Now we can denote
C1 =

√
λA cos

(
−
√
λB
)
, (2.7)

and
C0 = A sin

(
−
√
λB
)
. (2.8)

Therefore we have C0, C1 ∈ R and we achieved the desired outcome in (2.2), where

u(x) =
C1√
λ

sin
√
λx+ C0 cos

√
λx.

2. Secondly, we find constants A and B to the fixed C0 and C1 in order to express (2.6).
Thus we will manipulate the expression (2.2).

(a) In the case of C0 = 0, we have

u(x) =
C1√
λ

sin
√
λx =

C1√
λ

sin
√
λ(x− 0),

and we can define

A =
C1√
λ

(2.9)

and
B = 0. (2.10)

We have C1 ∈ R and therefore A ∈ R as well. With new variables, we have achieved
(2.6), where

u(x) = A sin
(√

λ (x−B)
)
.

(b) Finally, let’s take a look at the case C0 6= 0. We can define

B = − 1√
λ

arccot

(
1√
λ
· C1

C0

)
, (2.11)

with values − π√
λ
< B < 0, due to the range of the function arccot. In the case of

C1 = 0, we have

u(x) = C0 cos
(√

λx
)

= C0 sin

(√
λ

(
x+

π

2
√
λ

))
,

which is the form of u(x) in (2.6) for A = C0 and B = − π
2
√
λ

. It remains to deal with

C1 6= 0. Thus, let us assume that C1 6= 0 and rewrite (2.2) into the following form

u(x) =
C1√
λ

sin
√
λx+ C0 cos

√
λx

=
C1√

λ cos(−
√
λB)

· sin
√
λx · cos(−

√
λB)+

C0

sin(−
√
λB)

· cos
√
λx · sin(−

√
λB).

Using (2.11) we obtain

C1√
λ cos(−

√
λB)

=
C0

sin(−
√
λB)

,

and therefore

u(x) =
C0

sin(−
√
λB)

·
(

sin
√
λx · cos(−

√
λB) + cos

√
λx · sin(−

√
λB)

)
=

C0

sin(−
√
λB)

· sin
√
λ(x−B)

=
C0

sin arccot
(

C1√
λC0

) · sin√λ(x−B).
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Since for all x ∈ R, we have sin arccot(x) = 1√
1+x2

(see Chapter 35 in [4]), we obtain

u(x) = C0

√
1 +

1

λ
· C

2
1

C2
0

· sin
√
λ(x−B).

Now let’s define

A = C0

√
1 +

1

λ
· C

2
1

C2
0

, (2.12)

where we have A ∈ R, since C0, C1 ∈ R, and we have

u(x) = A sin
√
λ(x−B),

which finishes the proof.

Remark 1. For λ > 0, we have obtained two possible expressions of the general solution for
the linear differential equation u′′(x) + λx = 0, x ∈ (0, 1) of the problem (2.1).

1. The first expression (2.2), i.e. u(x) = C1√
λ

sin
√
λx+ C0 cos

√
λx, for C0, C1 ∈ R, yields a

trivial solution if and only if C0 = C1 = 0.

2. The second expression (2.6), i.e. u(x) = A sin
(√

λ (x−B)
)
, for A ∈ R, B ∈

(
− π√

λ
, 0
]
,

yields a trivial solution if and only if A = 0.

The proof of Lemma 2 showed us a way of converting between two different expressions (2.2) and
(2.6) of the general solution of (2.1), i.e. in between u(x) = C1√

λ
sin
√
λx+C0 cos

√
λx, C0, C1 ∈ R

and u(x) = A sin
(√

λ (x−B)
)
, A ∈ R, − π√

λ
< B ≤ 0. The conversion from (2.6) to (2.2)

can be achieved by (2.7) and (2.8), i.e. by placing

C0 = A sin
(
−
√
λB
)
,

C1 =
√
λA cos

(
−
√
λB
)
.

And the conversion from (2.2) to (2.6) can be achieved by (2.9), (2.10), (2.11), and (2.12), i.e.
by placing

A =

{
C0 ·

√
1 + 1

λ ·
C2

1

C2
0

for C0 6= 0,
√
λC1 for C0 = 0,

B =

{
− 1√

λ
arccot

(
1√
λ
· C1

C0

)
for C0 6= 0,

0 for C0 = 0.

Using the general solution in the form of (2.6), we examine eigenvalues of the boundary value
problem (2.1) for λ > 0.

Lemma 3. For λ > 0, the boundary value problem (2.1) has a non-trivial solution if and only
if

cos
(√

λ−
√
λ · p(

√
λ, c)

)
= cos

(√
λ · p(

√
λ, c)

)
, (2.13)

where the function p : R+ ×
(
−π2 ,

π
2

]
→ R is defined as

p(l, c) :=

{
− 1
l arccot

(
1
l tan c

)
for c ∈

(
−π2 ,

π
2

)
,

0 for c = π
2 .

(2.14)
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Proof. Using Lemma 2, the general solution of the differential equation in the boundary value

problem (2.1) is given by u(x) = A sin
(√

λ(x−B)
)
, A ∈ R, B ∈

(
− π√

λ
, 0
]
. Thus, we get

u′(x) = A
√
λ cos

(√
λ(x−B)

)
.

Using the first boundary condition in (2.1), i.e.

u(0) · sin c = u′(0) · cos c, (2.15)

we can calculate B with respect to the value of c.

1. In the case of c = π
2 , the boundary condition (2.15) reads

u(0) = 0

and thus we have
A sin

(
−
√
λB
)

= 0.

To achieve a non-trivial solution, we have A 6= 0 (see Remark 1) and we obtain

B = 0.

2. Now, let us fix c ∈
(
−π2 ,

π
2

)
. Since cos c 6= 0, we can manipulate the condition (2.15) in

the following way

u′(0)

u(0)
=

sin c

cos c
,

u′(0)

u(0)
= tan c,

and therefore using (2.11)

B = − 1√
λ

arccot

(
1√
λ
· C1

C0

)
= − 1√

λ
arccot

(
1√
λ
· u
′(0)

u(0)

)
= − 1√

λ
arccot

(
1√
λ

tan c

)
.

To conclude, we get that B = p(
√
λ, c), where the function p is defined in (2.14). Moreover,

we have another expression for solutions of the differential equation in (2.1), such that the first
condition of (2.1) holds

u(x) = A sin
(√

λ
(
x− p

(√
λ, c

)))
, A ∈ R, c ∈

(
−π2 ,

π
2

]
.

The integral condition in (2.1) reads∫ 1

0

u(x) dx = 0, (2.16)

where u is given by u(x) = A sin
(√

λ
(
x− p(

√
λ, c)

))
. Therefore we get∫ 1

0

A sin
(√

λ
(
x− p

(√
λ, c

)))
dx = −A 1√

λ

[
cos
(√

λ(x− p(
√
λ, c))

)]1
0

= −A 1√
λ

(
cos
(√

λ(1− p(
√
λ, c))

)
− cos

(√
λ · p(

√
λ, c)

))
,

and thus the integral condition (2.16) is justified if and only if

cos
(√

λ(1− p(
√
λ, c))

)
= cos

(√
λ · p(

√
λ, c)

)
, c ∈

(
−π2 ,

π
2

]
.
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In the following two lemmas, we show that the solutions λ of the equation (2.13) (and
therefore the eigenvalues of the boundary value problem (2.1)) can be figured out using a
simpler non-linear equation (see Figure 2.3).

Lemma 4. For c ∈
(
−π2 ,

π
2

)
, the equation

− l · cot

(
l

2

)
= tan c (2.17)

has infinitely many solutions l > 0. All these positive solutions form the sequence (lk)
+∞
k=1 for

tan c > −2 and the sequence (lk)
+∞
k=2 for tan c ≤ −2. Moreover, we have that

2 (k − 1)π < lk < 2kπ, k ∈ N. (2.18)

Proof. Let us define the function g as the left hand side of the equation (2.17)

g(l) := −l · cot

(
l

2

)
, l > 0, l 6= 2kπ, k ∈ N,

the interval
Ik := (2(k − 1)π, 2kπ) ,

and finally let us denote by gk the restriction of g on the interval Ik.
We prove, that for all k ∈ N, the function gk is strictly increasing and therefore injective.

The right hand side of the equation (2.17) is tan c, which is a constant for fixed c ∈ (−π2 ,
π
2 )

and there exists at most one l ∈ Ik such that gk(l) = tan c. For all k ≥ 2, gk has the range of
R and therefore there is exactly one solution of (2.17) on Ik. For the case of k = 1, we proceed
separately and we show that the range of the function g1 is (−2,+∞).
For every interval Ik, k ∈ N, we get

dgk(l)

dl
= − cot

l

2
+

l

2 · sin2 l
2

= −
2 · cos l

2 sin l
2

2 · sin2 l
2

+
l

2 · sin2 l
2

=
l − sin l

2 · sin2 l
2

> 0,

since l > sin l for all l > 0.
Therefore, the function gk is strictly increasing and injective on the interval Ik, k ∈ N.
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For k ≥ 2, the range of the function gk is R since

lim
l→2(k−1)π+

gk(l) = lim
l→2(k−1)π+

−l cot
l

2
= −∞,

and

lim
l→2kπ−

gk(l) = lim
l→2kπ−

−l cot
l

2
= +∞.

And therefore there is exactly one solution lk of (2.17) for every interval Ik, k ≥ 2.
Now, let us consider the case of k = 1. The range of the function g1 is (−2,+∞) due to

lim
l→0+

g1(l) = lim
l→0+

−l · cot
l

2
= lim
l→0+

−l ·
cos l

2

sin l
2

= lim
l→0+

−2 ·
l
2

sin l
2

cos
l

2
= −2,

and

lim
l→2π−

g1(l) = lim
l→2π−

−l · cot
l

2
= +∞.

Given this range, there is exactly one solution l1 on the interval I1 = (0, 2π) for tan c > −2 and
there is no solution for tan c ≤ −2.

Lemma 5. For c ∈
(
−π2 ,

π
2

)
, there are infinitely many positive eigenvalues for the boundary

value problem (2.1). For tan c > −2, all these positive eigenvalues form two sequences (λIk)
+∞
k=1

and (λIIk )
+∞
k=1 such that

0 < λII1 < λI1 < λII2 < λI2 < ... < λIIk < λIk < ...

For tan c ≤ −2, all positive eigenvalues form two sequences (λIk)
+∞
k=1 and (λIIk )

+∞
k=2 such that

0 < λI1 < λII2 < λI2 < ... < λIIk < λIk < ...

Moreover, in both cases, we have that λIk = 4k2π2 and λIIk = l2k, where lk is the unique solution
of the nonlinear equation (2.17) such that (2.18) holds.

Proof. For c ∈
(
−π2 ,

π
2

)
, there are two possible types of solutions of the equation (2.13). Two

cosines are equal if and only if their arguments are equal except for the 2kπ-shift, k ∈ Z, or
one argument is equal to the negative of the second argument, again except for the 2kπ-shift,
k ∈ Z.

1. In the first case, we have for k ∈ Z that

√
λ
(

1− p(
√
λ, c)

)
=
√
λp(
√
λ, c) + 2kπ,

√
λ
(

1− 2p(
√
λ, c)

)
= 2kπ,

p(
√
λ, c) =

1

2
− kπ√

λ
. (2.19)

Since the value p(
√
λ, c) is negative for λ > 0 and c ∈

(
−π2 ,

π
2

)
, the equation (2.19) can

be satisfied only for k ∈ N. Now, using the definition (2.14) of p, we get for k ∈ N that

− 1√
λ

arccot

(
1√
λ

tan c

)
=

1

2
− kπ√

λ
,

arccot

(
1√
λ

tan c

)
= kπ −

√
λ

2
. (2.20)

The range of arccot is (0, π) and thus, using (2.20), we obtain for k ∈ N that

0 < kπ −
√
λ

2
< π,

2(k − 1)π <
√
λ < 2kπ.
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Moreover, (2.20) implies that

tan c = −
√
λ cot

(√
λ

2

)
, (2.21)

which is exactly the nonlinear equation (2.17) for l =
√
λ.

Thus, using Lemma 4, we obtain solutions λ of (2.21) as λIIk = l2k, k ∈ N.

2. In the second case, we have for k ∈ Z that

√
λ
(

1− p(
√
λ, c)

)
= −
√
λp(
√
λ, c) + 2kπ,

√
λ = 2kπ. (2.22)

The equation (2.22) can be satisfied only for k ∈ N due to λ > 0. Thus, we obtain solutions
of (2.13) of the second type λIk = 4k2π2, k ∈ N.

Now, let us continue to study the problem (2.1) for λ ≤ 0.

Lemma 6. For λ = 0, the boundary value problem (2.1) has a non-trivial solution if and only
if

tan c = −2.

Proof. Let us split the proof according to the value of c. Firstly, in the case of c = π
2 , zero is not

the eigenvalue for (2.1) due to Lemma 1. Secondly, for c ∈
(
−π2 ,

π
2

)
and λ = 0, the differential

equation of the problem (2.1) simplifies to u′′(x) = 0, x ∈ R. Its general solution is therefore
u(x) = A (x− x0) , A ∈ R, x0 ∈ R. Let us assume A 6= 0 since A = 0 leads to the trivial
solution. Using the integral condition of the boundary value problem (2.1), the value of x0 can
be determined as 1

2 since∫ 1

0

u(x) dx =

∫ 1

0

A (x− x0) dx = A

(
1

2
− x0

)
.

Indeed, x0 = 1
2 due to

∫ 1

0
u(x) dx = 0 and A 6= 0. Moreover, we have u(0) = −Ax0 = − 1

2A 6= 0.
Now, the first boundary condition in (2.1) can be manipulated in the following way (cos c 6= 0)

sin c

cos c
=
u′(0)

u(0)
,

tan c =
A

−A2
,

tan c = −2.

Lemma 7. For λ < 0, the boundary value problem (2.1) has a non-trivial solution if and only
if

tan c =
√
−λ coth

(
−
√
−λ

2

)
. (2.23)

Moreover, for tan c < −2, there exists exactly one λ < 0 such that (2.23) holds, and for
tan c ≥ −2, there is no λ < 0 such that (2.23) is satisfied.

Proof. Let us split the proof according to the value of c.

1. For c = π
2 , there are no negative eigenvalues according to Lemma 1.
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2. For c ∈ (−π2 ,
π
2 ) and λ < 0, the differential equation of the boundary value problem (2.1)

has the general solution in the form of

u(x) =
C1√
−λ

sinh(
√
−λx) + C0 cosh(

√
−λx), C0, C1 ∈ R.

This general solution can be equivalently written as

u(x) = A sinh(
√
−λ(x− x0)), A, x0 ∈ R,

which can be proven in an analogous way as Lemma 2.

Let us assume A 6= 0 since A = 0 yields a trivial solution.

Using the integral condition of the boundary value problem (2.1), the value of x0 can be
determined . First we evaluate the integral as

∫ 1

0

u(x) dx = A

∫ 1

0

sinh
(√
−λ (x− x0)

)
dx

= A
1√
−λ

(
cosh

√
−λ(1− x0)− cosh

(
−
√
−λx0

))
.

The integral condition
∫ 1

0
u(x) dx = 0 can therefore be satisfied if and only if

cosh
√
−λ(1− x0) = cosh

(
−
√
−λx0

)
.

Since cosh is an even function, the equality holds true if arguments on both sides are
equal or if one of them is equal to the negative of the second one. In the first case we
obtain (

√
−λ 6= 0)

√
−λ(1− x0) = −

√
−λx0,

1− x0 = −x0,

and therefore the condition cannot be satisfied.

In the second case, we have

√
−λ(1− x0) =

√
−λx0,

1− x0 = x0,

x0 = 1
2 .

Because x0 = 1
2 and u is a strictly increasing function on R, we get u(x) 6= 0.

Now the first condition of the boundary value problem (2.1) can be manipulated since
u(0) 6= 0 and cos c 6= 0

tan c =
u′(0)

u(0)
,

=
A
√
−λ cosh

(
−
√
−λx0

)
A sinh

(
−
√
−λx0

) ,

=
√
−λ coth

(
−
√
−λ

2

)
,

which is exactly (2.23).
It remains to study the solvability of (2.23), i.e. the solvability of the nonlinear equation

h(l) = tan c, (2.24)

where we denoted l := −
√
−λ and h(l) := −l · coth

(
l
2

)
.
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Since we have

lim
l→0−

h(l) = lim
l→0−

−l · coth
l

2
= lim
l→0−

−l
cosh l

2

sinh l
2

= −2,

lim
l→−∞

h(l) = lim
l→−∞

−l · coth
l

2
= −∞,

and the function h is strictly increasing for l ∈ (−∞, 0) , there is exactly one negative solution
of the equation (2.24) for tan c < −2 and there is no solution of the equation (2.24) for tan c ≥
−2.

At the end of this chapter, we summarize results concerning the boundary value problem
(2.1) in the following theorem.

Theorem 1. There are infinitely many eigenvalues for the boundary value problem (2.1).

1. For c = π
2 , all these eigenvalues are positive and form the sequence (λIk)

+∞
k=1 , where λIk =

4k2π2, k ∈ N.

2. For c ∈
(
−π2 ,

π
2

)
, all eigenvalues form two sequences (λIk)

+∞
k=1 and (λIIk )

+∞
k=1 such that

λII1 < λI1 < λII2 < λI2 < ... < λIIk < λIk < ...

Moreover, we have that λIk = 4k2π2 and λIIk = l2k, where lk for k ≥ 2 is the unique solution
of the nonlinear equation

− l · cot
l

2
= tan c (2.25)

on the interval (2 (k − 1)π, 2kπ) . For tan c > −2, the first eigenvalue λII1 = l21 is positive
and l1 is the unique solution of (2.25) on (0, 2π). For tan c = −2, the first eigenvalue λII1
is zero. Finally, for tan c < −2, the first eigenvalue λII1 = −l21 is negative and l1 is unique
solution of the nonlinear equation

−l · coth
l

2
= tan c

on the interval (−∞, 0).

Proof. For c = π
2 , the assertion follows from Lemma 1. For c ∈ (−π2 ,

π
2 ), using Lemma 5, we

obtain two sequences (λIk) and (λIIk ) of eigenvalues for the problem (2.1). Moreover, the first
element λII1 is discussed in Lemmas 6 and 7.



Chapter 3

Implicit description
of the Fuč́ık spectrum

This chapter is devoted to studying the structure of the Fuč́ık spectrum Σc for the problem{
u′′ (x) + αu+ (x)− βu− (x) = 0, x ∈ (0, 1) ,

u (0) · sin c = u′ (0) · cos c,
∫ 1

0
u (x) dx = 0,

(3.1)

where α, β ∈ R and −π2 < c ≤ π
2 . More precisely, for fixed paremeter c ∈

(
−π2 ,

π
2

]
, our goal is to

describe the Fuč́ık spectrum Σc as the set of all pairs (α, β) ∈ R2 such that the problem (3.1) has
a non-trivial solution u. As in the previous chapter, by a non-trivial solution of (3.1) we mean
a function u ∈ C2(0, 1)∩C1 [0, 1] which is not identically zero on (0, 1), satisfies the differential
equation in (3.1) pointwise on this interval and also satisfies both boundary conditions in (3.1).

The implicit description of the Fuč́ık spectrum Σc for the problem (3.1) is provided in [5],
but only for −π2 < c < 0. In the following section, we focus on α, β > 0 and show how to get the
implicit description of the Fuč́ık spectrum Σc in a new compact form for −π2 < c ≤ π

2 . Presented
compact description of Σc in the first quadrant extends known results in [3] concerning only
the special case of c = π

2 .
In the second section of this chapter, we provide the implicit description of some parts of

the Fuč́ık spectrum Σc for α · β < 0 (i.e. in the second and fourth quadrants of αβ−plane). Let
us note that similar description can be found in [5] (see Theorem 4 on page 511).

3.1 Compact description in the first quadrant

In this part, we deal with the problem (3.1) for α, β > 0, i.e. we investigate the following
problem {

u′′(x) + a2u+(x)− b2u−(x) = 0, x ∈ (0, 1) ,

u(0) · sin c = u′(0) · cos c,
∫ 1

0
u(x) dx = 0,

(3.2)

where we denoted a =
√
α and b =

√
β. Our goal is to describe all pairs (a, b) ∈ R+ ×R+ such

that the problem (3.2) has a non-trivial solution u. According to the basic facts stated in [3]
(see pages 182 and 183), it is enought to find all pairs (a, b) ∈ R+ × R+ such that the solution
u of the following initial value problem{

u′′(x) + a2u+(x)− b2u−(x) = 0, x ∈ R,
u(p(a, c)) = 0, u′(p(a, c)) = a · b > 0,

(3.3)

satisfies the integral condition ∫ 1

0

u(x) dx = 0, (3.4)

where the function p : R+ ×
(
−π2 ,

π
2

]
→ R is defined in (2.14) as

p(a, c) :=

{
− 1
aarccot

(
1
a tan c

)
for c ∈

(
−π2 ,

π
2

)
,

0 for c = π
2 .

(3.5)

14
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Fig. 3.1: The graph of the function p(·, c) : a 7→ p(a, c) for different values of c.
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Fig. 3.2: The graphs of the function p(a, ·) : c 7→ p(a, c) for different values of a.

It is straightforward to verify that the function p is a continuous function and its range is
the interval (−∞, 0] . Moreover, for fixed c ∈

(
−π2 ,

π
2

)
, the function p = p(·, c) as a function of

the first variable a > 0 is strictly increasing and has the range (see Figure 3.1)

Ran(p(·, c)) =

{
(− cot c, 0) for c ∈ (0, π2 ),

(−∞, 0) for c ∈
(
−π2 , 0

]
.

For fixed a > 0, the function p = p(a, ·) as a function of the second variable c ∈
(
−π2 ,

π
2

]
is also

strictly increasing (see Figure 3.2).
The solution u of the initial value problem (3.3) is T -periodic, where T = π

a + π
b > 0, and

has the following form on the interval (0, T ]

u (x) =


b sin (a (x− p)) for x ∈

(
0, p+ π

a

]
,

−a sin
(
b
(
x−

(
p+ π

a

)))
for x ∈

(
p+ π

a , p+ π
a + π

b

]
,

b sin
(
a
(
x−

(
p+ π

a + π
b

)))
for x ∈

(
p+ π

a + π
b , T

]
,

(3.6)

where we shortened the notation of p(a, c) as p. For better clarity, we use the abbreviated
notation p instead of p(a, c) in the following text.

Now, let us define the set

Mc :=
{

(a, b) ∈ R+ × R+ : the solution u of the initial value (3.7)

problem (3.3) satisfies
∫ 1

0
u(x) dx = 0

}
.

We have the following link between the setMc and the Fuč́ık spectrum Σc (see Figure 3.5 and
3.6):

1. If (a, b) ∈Mc then (a2, b2) ∈ Σc and (b2, a2) ∈ Σc.

2. If (α, β) ∈ Σc with α, β > 0 then (
√
α,
√
β) ∈Mc or (

√
β,
√
α) ∈Mc.

This implies that

Σc ∩ R+ × R+ =
{

(α, β) ∈ R+ × R+ :
(√

α,
√
β
)
∈Mc ∨

(√
β,
√
α
)
∈Mc

}
and thus, it is enough to describe only the set Mc.
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Definition 1. For a, b > 0, let us define

F (x) :=

∫ x

0

u(t) dt, x ∈ R,

where u is the solution of the initial value problem (3.3).

Using this definition, the integral condition (3.4) can be equivalently written as F (1) = 0.

Lemma 8. The function F satisfies the following equation

∀x ∈ R : F (x+ T ) = F (x) + F (T ), (3.8)

where T = π
a + π

b .

Proof. Since u is the T -periodic solution of the initial value problem (3.3), we get for all x ∈ R
that

F (x+ T ) =

∫ x+T

0

u(t) dt =

∫ x

0

u(t) dt+

∫ x+T

x

u(t) dt = F (x) +

∫ T

0

u(t) dt = F (x) + F (T ).

Lemma 9. The function F is T -periodic, where T = π
a + π

b , if and only if a = b.

Proof. Using the Definition 1 and (3.6), we have

F (x) =


− b
a cos (a (x− p)) + b

a cos (ap) for x ∈
(
0, p+ π

a

]
,

a
b cos

(
b
(
x−

(
p+ π

a

)))
+ b

a cos (ap) + b
a −

a
b for x ∈

(
p+ π

a , p+ π
a + π

b

]
,

− b
a cos

(
a
(
x−

(
p+ π

a + π
b

)))
+ b

a cos (ap) + 2 ba − 2ab for x ∈
(
p+ π

a + π
b , T

]
.

(3.9)
Using (3.6) we get

F (T ) =
2b

a
− 2a

b
+
b

a
cos (ap)− b

a
cos
(
a
(π
a

+
π

b
− p− π

a
− π

b

))
=

2b

a
− 2a

b

=
2T

π
(b− a) . (3.10)

Therefore, F(T) = 0 if and only if a = b and the assertion follows from Lemma 8.

Definition 2. For a, b > 0, let us define

G(x) := 1−
∫ x

0

(u(t)− ū) dt, x ∈ R, ū :=
1

T

∫ T

0

u(t) dt,

where T = π
a + π

b and u is the solution of the initial value problem (3.3).

Now, it is straightforward to verify that for all x ∈ R we have

G (x) = 1− F (x) +
F (T )

T
x = 1− F (x) +

2

π
(b− a)x, (3.11)

and also the function G can be evaluated using (3.9). For x ∈
(
0, p+ π

a

]
, we have

G(x) = b
a cos (a (x− p)) − b

a cos (ap) + 2
π (b− a)x + 1, for x ∈

(
p+ π

a , p+ π
a + π

b

]
, we get

G(x) = −ab cos
(
b
(
x−

(
p+ π

a

)))
− b
a cos (ap)− b

a+a
b+ 2

π (b− a)x+1 and for x ∈
(
p+ π

a + π
b , T

]
,

we obtain G(x) = b
a cos

(
a
(
x−

(
p+ π

a + π
b

)))
− b

a cos (ap) − 2 ba + 2ab + 2
π (b− a)x + 1, where

T = π
a + π

b .
Moreover, the integral condition (3.4) can be written as

G(1) = 1 +
F (T )

T
. (3.12)
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Fig. 3.3: Graph of the 2π-periodic function G(a, b, ·) : t 7→ G(a, b, t) for a = 2, b = 5 and c = 0.

Lemma 10. The function G is T -periodic, where T = π
a + π

b .

Proof. For all x ∈ R, using (3.11) and (3.8), we obtain

G(x+ T ) = 1− F (x+ T ) +
F (T )

T
(x+ T ) = 1− F (x) +

F (T )

T
x = G(x). (3.13)

In the following definition, we define a new function G = G(a, b, t). This function is 2π-periodic
in the third variable and is given by parts (see Figure 3.3 for a = 2, b = 5, c = 0). Another
examples of graphs of the function G(a, b, ·) can be seen in Figure 3.4.

Definition 3. Let us define the function P : R+ × R+ × R→ R as

P (a, b, t) :=

(
b

a
− a

b

)
t

π
+ 1, a > 0, b > 0, t ∈ R, (3.14)

and the function G : R+ × R+ × R→ R, which is 2π-periodic in the third variable

∀a > 0 ∀b > 0 ∀t ∈ R : G (a, b, t+ 2π) = G (a, b, t) ,

and is define for a > 0, b > 0, t ∈ (0, 2π] as

G (a, b, t) :=


b
a cos

(
a+b
2b t− ap

)
− b

a cos (ap) + P (a, b, t) for t ∈ I1,
a
b cos

(
a+b
2a (t− 2π)− bp

)
− b

a cos (ap) + P (a, b, t− π) for t ∈ I2,
b
a cos

(
a+b
2b (t− 2π)− ap

)
− b

a cos (ap) + P (a, b, t− 2π) for t ∈ I3,
(3.15)

where

I1 :=

(
0,

2b (π + ap)

a+ b

]
, I2 :=

(
2b (π + ap)

a+ b
, 2π +

2abp

a+ b

]
, I3 :=

(
2π +

2abp

a+ b
, 2π

]
,

and p stands for the value of p(a, c) defined in (3.5).

Theorem 2. The pair (a, b) ∈Mc if and only if a, b > 0 and

G
(
a, b,

2ab

a+ b

)
= 1 +

2

π
(b− a) . (3.16)

Proof. Let u be the solution of the initial value problem (3.3), where a, b > 0. The integral
condition (3.4) can be rewritten as (3.12).

Now, we prove that

∀x ∈ R : G(x) = G
(
a, b,

2ab

a+ b
x

)
. (3.17)

Let us define t(x) := 2ab
a+bx and split the proof according to the value of x.
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6
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t
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(c) a = 1, b = 1, c = 0

Fig. 3.4: Graph of the 2π-periodic function G(a, b, ·) : t 7→ G(a, b, t) for a = b = 1 and different
values of the parameter c.

1. Firstly, let us consider x ∈
(
0, p+ π

a

]
. Using the definition of t, we get t ∈

(
0, 2b(ap+π)a+b

]
and

G(x) =
b

a
cos (a (x− p))− b

a
cos (ap) +

2

π
(b− a)x+ 1

=
b

a
cos (ax− ap)− b

a
cos (ap) +

2

π
(b− a)

(a+ b) t

2ab
+ 1+(

b

a
− a

b

)
t

π
−
(
b

a
− a

b

)
t

π
− b

a
+
a

b
+
b

a
− a

b

=
b

a
cos

(
a

(a+ b) t

2ab
− ap

)
− b

a
cos (ap) +

(b− a) (a+ b) t

πab
+

P (a, b, t− π) +
b

a
− a

b
− b2 − a2

ab
· t
π

=
b

a
cos

(
(a+ b) t

2b
− ap

)
− b

a
cos (ap) +

b

a
− a

b
+ P (a, b, t− π)

= G (a, b, t) .
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2. Secondly, if x ∈
(
p+ π

a , p+ π
a + π

b

]
then t ∈

(
2b(ap+π)
a+b , 2π + 2abp

a+b

]
and we get

G(x) = −a
b

cos
(
b
(
x−

(
p+

π

a

)))
− b

a
cos (ap)− b

a
+
a

b
+

2

π
(b− a)x+ 1

= −a
b

cos

(
bx− bp− π b

a

)
− b

a
cos (ap) +

2

π
(b− a)x−

b

a
+
a

b
+ 1 +

(
b

a
− a

b

)
t

π
−
(
b

a
− a

b

)
t

π

= −a
b

cos

(
a+ b

2a
t− bp− b

a
π

)
− b

a
cos (ap) +

2

π
(b− a)

a+ b

2ab
t+ P (a, b, t− π)−

(
b2 − a2

ab

)
t

π

= G (a, b, t) .

3. And finally, if x ∈
(
p+ π

a + π
b , T

]
then t ∈

(
2π + 2abπ

a+b , 2π
]
, and we obtain

G(x) =
b

a
cos
(
ax− ap− π − a

b
π
)
− b

a
cos (ap)− 2

b

a
+ 2

a

b
+

2

π
(b− a)x+ 1

=
b

a
cos

(
a+ b

2b
t− ap− π − a

b
π

)
− b

a
cos (ap)− b

a
+
a

b
+

2

π
(b− a)

a+ b

2ab
t+ 1− b

a
+
a

b
+

(
b

a
− a

b

)
t

π
−
(
b2 − a2

ab

)
t

π

=
b

a
cos

(
a+ b

2b
t− ap− π − a

b
π

)
− b

a
cos (ap)− b

a
+
a

b
+(

b2 − a2

ab

)
t

π
+ P (a, b, t− π)−

(
b2 − a2

ab

)
t

π
=

= G (a, b, t) .

Thus, the equality in (3.17) holds for all x ∈ R, which means that the equality (3.12) is the
same as the equality (3.16) due to (3.10).

Corollary 1. We have that (a, b) ∈Mc if and only if a, b > 0 and

G
(
a, b,

2ab

a+ b

)
= P

(
a, b,

2ab

a+ b

)
. (3.18)

Proof. According to the definition (3.14), we get

P

(
a, b,

2ab

a+ b

)
=
b2 − a2

ab
· 2ab

(a+ b)π
+ 1 =

2

π
(b− a) + 1.

Therefore, the assertion is a direct consequence of Theorem 2.

Remark 2. Let us point out that for a = b =
√
λ > 0, we have

P (
√
λ,
√
λ, t) = 1,

G(
√
λ,
√
λ, t) = cos(t−

√
λp)− cos(

√
λp) + 1.

Moreover, in this case, the equation (3.18) reduces to

G(
√
λ,
√
λ,
√
λ) = P (

√
λ,
√
λ,
√
λ),

cos(
√
λ−
√
λp)− cos(

√
λp) + 1 = 1,

which is exactly the nonlinear equation (2.13). Recall that the solvability of the equation (2.13)
is provided in the proof of Lemma 5.
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Fig. 3.5: The set Mc in the first quadrant of the ab-plane for c = π
4 .
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Fig. 3.6: The Fuč́ık spectrum Σc in the first quadrant of the αβ-plane for c = π
4 .
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3.2 Description in the fourth quadrant

In this section, we investigate the problem (3.1) for α > 0 and β < 0 , i.e. we study the following
problem {

u′′(x) + a2u+(x) + b2u−(x) = 0, x ∈ (0, 1) ,

u(0) · sin c = u′(0) · cos c,
∫ 1

0
u(x) dx = 0,

(3.19)

where we denoted a =
√
α and b = −

√
−β. As in the previous section, let us introduce the

corresponding initial value problem{
u′′(x) + a2u+(x) + b2u−(x) = 0, x ∈ R,
u(p(a, c)) = 0, u′(p(a, c)) = 1,

(3.20)

where the function p is given by (2.14), and define the set

Nc :=
{

(a, b) ∈ R+ × R− : the solution u of the initial value (3.21)

problem (3.20) satisfies
∫ 1

0
u(x) dx = 0

}
.

We have the folloving link between the set Nc and the Fuč́ık spectrum Σc (see Figure 3.7 and
3.8): If (a, b) ∈ Nc then (a2,−b2) ∈ Σc and (−b2, a2) ∈ Σc.

Theorem 3. The set Nc consists of all pairs (a, b) ∈ R+ × R− such that

a >
π

1− p(a, c)
(3.22)

and

cosh

(
b− bp(a, c)− b

a
π

)
= 1 +

b2

a2
+
b2

a2
cos (ap(a, c)) . (3.23)

Proof. The solution u to the initial value problem (3.20) can be written as

u(x) =

{
1
a sin (a (x− p)) for 0 ≤ x ≤ p+ π

a ,

− 1
b sinh

(
b
(
x−

(
p+ π

a

)))
for x > p+ π

a .
(3.24)

At first, let us examine the case of p+ π
a ≥ 1. The solution u of the initial value problem (3.20)

is only positive on the interval (0, 1) and therefore, the integral condition
∫ 1

0
u(x) dx = 0 cannot

be satisfied.
At second, in the case of p+ π

a < 1, we have

a >
π

1− p

and using (3.24), we evaluate the integral
∫ 1

0
u(x) dx in the following way∫ 1

0

u (x) dx =

∫ p+π
a

0

1

a
sin (a (x− p)) dx+

∫ 1

p+π
a

−1

b
sinh

(
b
(
x−

(
p+

π

a

)))
dx

=
1

a2

[
− cos (a (x− p))

]p+π
a

0
− 1

b2
·
[
cosh

(
b
(
x−

(
p+

π

a

)))]1
p+π

a

=
1

a2
(1 + cos (ap))− 1

b2

(
cosh

(
b− bp− b

a
π

)
− 1

)
=

1

a2
+

1

a2
cos (ap) +

1

b2

(
1− cosh

(
b− bp− b

a
π

))
.

And thus, we obtain that the integral condition
∫ 1

0
u(x) dx = 0 is satisfied if and only if

cosh

(
b− bp− b

a
π

)
= 1 +

b2

a2
+
b2

a2
cos (ap) .
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Fig. 3.7: The set Nc in the fourth quadrant of the ab-plane for c = π
4 , where a0 is given by

a0 = π
1−p(a0,c) .
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Fig. 3.8: The Fuč́ık spectrum Σc in the fourth quadrant of the αβ-plane for c = π
4 , where a0 is

given by a0 = π
1−p(a0,c) .



Chapter 4

The Fuč́ık spectrum
as parametrized curves

In this chapter, we investigate the problem (1.1) for c = 0, i.e. we study the following problem{
u′′(x) + αu+(x)− βu−(x) = 0, x ∈ (0, 1) ,

u′(0) = 0,
∫ 1

0
u(x) dx = 0,

(4.1)

and our goal is to find the parametrization of its Fuč́ık spectrum Σ0. According to results from
the previous chapter, we proceed such that we find parametrizations of setsM0 and N0 (recall
(3.7) and (3.21) for c = 0).

4.1 The parametrization of the set N0

The set N0 is described by (3.22) and (3.23) in Theorem 3 for c = 0. For c = 0, we have
p(a, 0) = − π

2a and thus, N0 is the set of all pairs (a, b) ∈ R+ × R− (see Figure 4.1) such that

a >
π

2
and cosh

(
b− bπ

2a

)
= 1 +

b2

a2
. (4.2)

Theorem 4. The set N0 is a continuous curve η : (−∞, 0) → R2 with the parametrization
η (s) := (η1 (s) , η2 (s)), where functions η1, η2 : (−∞, 0)→ R are defined as

η1(s) =
π

2
− s√

cosh s− 1
, η2(s) = s− π

2

√
cosh s− 1.

Proof. First of all, let us denote

k :=
b

a
, s := b− bπ

2a
. (4.3)

Using the inequality in (4.2), we get that π
2a < 1 and that k, s < 0. Moreover, the condition

(4.2) can be equivalentely written as

cosh s = 1 + k2, k < 0, s < 0,

or as
k = −

√
cosh s− 1, s < 0. (4.4)

Now, the inverse transformation to (4.3) reads

a =
π

2
+
s

k
, b = s+

π

2
k,

and thus, using (4.4), we obtain

a =
π

2
− s√

cosh s− 1
= η1(s), b = s− π

2

√
cosh s− 1 = η2(s).

The continuity of the curve η is straightforward to verify, which finishes the proof.

24
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Fig. 4.1: The set N0 in the fourth quadrant of the ab-plane.

Remark 3. It is straightforward to verify that

lim
s→0−

(η1(s), η2(s)) =
(√

2 + π
2 , 0
)
.

Moreover, it is possible to show that both points
((√

2 + π
2

)2
, 0
)

and
(

0,
(√

2 + π
2

)2)
belong to

the Fuč́ık spectrum Σ0.

4.2 The parametrization of the set M0

The setM0 is described by (3.18) in Corollary 1 for c = 0. For c = 0, we have that p(a, 0) = − π
2a

and thus, M0 is the set of all pairs (a, b) ∈ R+ × R+ (see Figure 4.2) such that

G
(
a, b,

2ab

a+ b

)
= P

(
a, b,

2ab

a+ b

)
, (4.5)

where the function P is defined in (3.14) as P (a, b, t) =
(
b
a −

a
b

)
t
π + 1, the function G reads

G (a, b, t) =


b
a cos

(
a+b
2b t+ π

2

)
+ P (a, b, t) for t ∈ I1,

a
b cos

(
a+b
2a (t− 2π) + bπ

2a

)
+ P (a, b, t− π) for t ∈ I2,

b
a cos

(
a+b
2b (t− 2π) + π

2

)
+ P (a, b, t− 2π) for t ∈ I3,

(4.6)

and

I1 =

(
0,

bπ

a+ b

]
, I2 =

(
bπ

a+ b
, 2π − bπ

a+ b

]
, I3 =

(
2π − bπ

a+ b
, 2π

]
.

Theorem 5. The set M0 is a continuous curve µ : (0,+∞) → R2 with the parametrization
µ (s) := (µ1 (s) , µ2 (s)), where functions µ1, µ2 : (0,+∞)→ R are defined as

µ1 (s) :=


πn− π

2 + (s+ π − πn)
√

1−2n
cos s−2n+1 for s ∈ (2π (n− 1) , 2π (n− 1) + π] ,

n ∈ N,
s− πn+ π

2 + πn
√

2n+cos s
2n for s ∈ (2πn− π, 2πn] ,

n ∈ N,

µ2 (s) :=


s+ π − πn+

(
πn− π

2

)√
cos s−2n+1

1−2n for s ∈ (2π (n− 1) , 2π (n− 1) + π] ,

n ∈ N,
πn+

(
s− πn+ π

2

)√
2n

2n+cos s for s ∈ (2πn− π, 2πn] ,

n ∈ N.
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Fig. 4.2: The set M0 in the first quadrant of the ab-plane.

Proof. First of all, let us rewrite (4.6) in the following form

G (a, b, t) =


b
a cos

(
at
2b + t

2 + π
2

)
+ P (a, b, t) for t ∈

(
0, bπ

a+b

]
,

−ab cos
(
bt
2a + t

2 −
bπ
2a

)
+ P (a, b, t− π) for t ∈

(
bπ
a+b , 2π − bπ

a+b

]
,

b
a cos

(
at
2b + t

2 −
π
2 −

aπ
b

)
+ P (a, b, t− 2π) for t ∈

(
2π − bπ

a+b , 2π
]
,

(4.7)

Now, let us denote

k :=
b

a
> 0, t :=

2ab

a+ b
> 0, (4.8)

and rewrite the equation (4.5) (where G(a, b, t) is given by (4.7)) in the following equivalent
form

G̃(k, t) = P̃ (k, t), (4.9)

where

P̃ (k, t) =

(
k − 1

k

)
t

π
+ 1

and

G̃ (k, t) =


k cos

(
t
2k + t

2 + π
2

)
+ P̃ (k, t) for t ∈

(
0, kπ

k+1

]
,

− 1
k cos

(
t
2 + kt

2 −
kπ
2

)
+ P̃ (k, t− π) for t ∈

(
kπ
k+1 , 2π − kπ

k+1

]
,

k cos
(
t
2k + t

2 −
π
2 −

π
k

)
+ P̃ (k, t− 2π) for t ∈

(
2π − kπ

k+1 , 2π
]
.

(4.10)
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Let us point out that the inverse transformation to (4.8) has the following form

a =
t (k + 1)

2k
> 0, b =

t (k + 1)

2
> 0. (4.11)

Now, let us split the proof according to the value of t > 0.

1. Let us consider t ∈
(

0, kπ
k+1

]
. In this case, the equation (4.9) reduces to

k cos

(
t

2k
+
t

2
+
π

2

)
+ P̃ (k, t) = P̃ (k, t) ,

which can be equivalently written as

k sin
t(k + 1)

2k
= 0. (4.12)

The equality in (4.12) cannot be satisfied since k > 0 and 0 < t(k+1)
2k ≤ π

2 . Thus, for given

k > 0, there is no t ∈
(

0, kπk+1

]
such that (4.9) holds.

2. For

t ∈
(

kπ

k + 1
+ 2π (n− 1) , 2πn− kπ

k + 1

]
, n ∈ N, (4.13)

the condition (4.9) can be rewritten using the 2π-periodicity in the second argument

G̃ (k, t− 2π (n− 1)) = P̃ (k, t) ,

− 1

k
cos

(
t

2
− π (n− 1) +

kt

2
− kπ (n− 1)− kπ

2

)
+ P̃ (k, t− 2π (n− 1)− π) = P̃ (k, t) .

(4.14)

Now, let us denote

s :=
t

2
− π (n− 1) +

kt

2
− kπ (n− 1)− kπ

2
+ 2π (n− 1) (4.15)

and express t in terms of k and s as

t =
2s− 2πn+ 2π + 2knπ − kπ

k + 1
. (4.16)

According to (4.13), we have that s ∈ (2π (n− 1) , 2π (n− 1) + π] and the condition
(4.14) can be written as − cos (s) + k2 − 1− 2nk2 + 2n = 0 or equivalently (since k > 0)

k =

√
cos s− 2n+ 1

1− 2n
(4.17)

Finally, let us combine (4.16), (4.17) and (4.11) to obtain

a = πn− π

2
+ (s+ π − πn)

√
1− 2n

cos s− 2n+ 1
= µ1 (s) ,

b = s+ π − πn+
(
πn− π

2

)√cos s− 2n+ 1

1− 2n
= µ2 (s) ,

where s ∈ (2π (n− 1) , 2π (n− 1) + π].

3. For

t ∈
(

2πn− kπ

k + 1
, 2πn

]
, n ∈ N, (4.18)

the condition (4.9) can be rewritten as

G̃ (k, t− 2π (n− 1)) = P̃ (k, t) ,
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k cos

(
t− 2π (n− 1)

2k
+
t− 2π (n− 1)

2
− π

2
− π

k

)
+

2

k
−2k+P̃ (k, t− 2π (n− 1)) = P̃ (k, t) .

(4.19)
now, let us denote

s :=
t

2k
− π (n− 1)

k

t

2
− π (n− 1)− π

2
− π

k
+ π (2n− 1) (4.20)

and express t as

t =
2ks+ 2πn− 2knπ + kπ

k + 1
. (4.21)

Using (4.18), we have s ∈
(
−π + 2πn, − π

2 + 2πn
]

and the condition (4.9) reads
−k cos (s)− 2nk + 2n 1

k = 0 or, (since k > 0)

k =

√
2n

cos s+ 2n
. (4.22)

Now, let us combine (4.11), (4.21) and (4.22) to obtain

a = s− πn+
π

2
+ πn

√
2n+ cos s

2n
= µ1 (s) ,

b = πn+
(
s− πn+

π

2

)√ 2n

2n+ cos s
= µ2 (s) ,

where s ∈
(
−π + 2πn, − π

2 + 2πn
]
.

4. Finally, let us consider

t ∈
(

2πn,
kπ

k + 1
+ 2πn

]
, n ∈ N. (4.23)

In this case, using 2π periodicity of the function G̃ , the condition (4.9) reads

G̃ (k, t− 2πn) = P̃ (k, t) ,

which can be rewritten as

k cos

(
t− 2πn

2k
+
t− 2πn

2
+
π

2

)
+ P̃ (k, t− 2πn) = P̃ (k, t) . (4.24)

Now, let us denote

s :=
t

2k
− πn

k
+
t

2
− πn+

π

2
+ π (2n− 1) . (4.25)

Using (4.23), the values of s are in the interval s ∈
(
2πn− π

2 , 2πn
]
. Using (4.25), we get

t =
k (2s− 2πn+ π) + 2πn

k + 1
. (4.26)

The condition (4.24) reads −k cos s− 2nk + 2n 1
k = 0 and thus, we obtain (k > 0)

k =

√
2n

2n+ cos s
. (4.27)

And finally, using (4.11), (4.26) and (4.27), we get

a = s− πn+
π

2
+ πn

√
2n+ cos s

2n
= µ1 (s) ,

b = πn+
(
s− πn+

π

2

)√ 2n

2n+ cos s
= µ2 (s) ,

where s ∈
(
2πn− π

2 , 2πn
]
.
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It is straightforward to verify the continuity of functions µ1 and µ2, which finishes the proof.

Remark 4. According to Theorem 4, Theorem 5 and Remark 3, we have two continuous curves
which belong to the Fuč́ık spectrum Σ0 and are symmetric with respect to the diagonal α = β
and one of them is the curve γ : R→ R2 given by

γ(s) := (γ1(s), γ2(s)),

γ1(s) :=


η21(s) for s < 0,

(
√

2 + π
2 )2 for s = 0,

µ2
1(s) for s > 0,

γ2(s) :=


−η22(s) for s < 0,

0 for s = 0,

µ2
2(s) for s > 0,

where η1, η2 and µ1, µ2 are given in Theorem 4 and Theorem 5, respectively.



Chapter 5

Conclusion

In this thesis, we obtained the following main results:

1. The description of all eigenvalues for the linear boundary value problem (2.1) in Theorem 1.

2. The compact implicit description of the Fuč́ık spectrum Σc in the first quadrant in Theorem 2.

3. The parametrization of the Fuč́ık spectrum Σ0 by two continuous curves (see Remark 4).

Despite all our efforts, there are still some unanswered questions concerning the problem (1.1)
and its Fuč́ık spectrum Σc. Thus, at the end of this thesis, let us formulate at least some
conjectures (see Figure 1.1):

1. The Fuč́ık spectrum Σc and the set {(α, β) ∈ R2 : α · β < 0} (the union of the second
and fourth quadrants) are disjoint sets if and only if tan c = −2.

2. The set Nc introduced in (3.21) is an empty set if and only if tan c ≤ −2.

3. For −2 < tan c 6= 0, the set Nc is a continuous curve in the fourth quadrant of ab-plane.

4. There exists some q ∈ (−2, 0) such that for −2 < tan c < q < 0, the set Nc as a continuous
curve in the fourth quadrant continues to the third quadrant of ab-plane.
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