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Abstract

Due to the advances in performance capturing technologies, dynamic surface repre-

sentations, such as mesh and point cloud sequences, are becoming more and more

attractive ways of representing dynamic scenes. It is, however, quite challenging to

store such data efficiently or to process it in a temporally global manner, because of

the lack of explicit temporal correspondence information, which makes it hard to

exploit the temporal coherence. Although two subsequent frames of the sequence

may look nearly indistinguishable, it is difficult to establish the surface correspon-

dences, since some parts of the surface may have no corresponding counterpart in

some frames, due to self-contact.

Current methods for mesh sequence compression are to some extent able to

store such data more efficiently than intra-only approaches, which ignore tempo-

ral coherence. Quite prominent are approaches based on temporal models, which,

however, are currently limited by the type of data they are able to handle (e.g., mesh

sequences representing humans). Some of the methods achieve better compression

rates by discarding the original structure of the frames (the number of vertices and

connections between them), mainly because of the lack of temporal coherence in

vertex sampling but also because it is difficult to encode connectivity efficiently if

temporal coherence is exploited during geometry encoding. There are also meth-

ods that can handle general data and preserve the original structure, but these are

inefficient, and currently, it is preferable to ignore the temporal coherence and still

use an intra-only approach in such a case.

This thesis mainly focuses on the ability to encode more general data and on

the efficient encoding of the structure of the frames. We propose a novel temporal

model called tracked centers, which works with volume instead of surface corre-

spondences. This allows representing more general dynamic surfaces, as long as the

volume they enclose does not significantly change throughout the sequence. We also

present an improved algorithm for connectivity compression, which can potentially

be integrated into existing structure-preserving compression pipelines to achieve

better data rates.

This doctoral thesis was supported by the projects 22-04622L, 20-02154S and 17-07690S of

theCzech Science Foundation (GACR) and by theUniversity specific projects SGS-2022-015

and SGS-2019-016.
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Abstrakt

Díky pokrokům technologií pro snímání pohybu jsou struktury pro popis dynam-

ických povrchů, jako jsou sekvence polygonálních sítí či bodových mračen, čím dále

častěji používány pro reprezentaci dynamických scén. Taková data je ovšemnáročné

efektivně ukládat, či je časově globálně zpracovat, protože nejsou explicitně známy

časové korespondence mezi snímky, což komplikuje využití jejich časové koherence.

Ačkoli dva po sobě jdoucí snímky mohou vypadat téměř nerozeznatelně, je těžké

tyto korespondence mezi povrchy určit, protože některé oblasti na povrchu nemusí

mít kvůli kontaktu mezi jeho částmi žádné korespondující protějšky v některých

ze snímků.

Metody dostupné v současnosti jsou do určité míry schopny efektivnější kom-

prese nežli metody, které používají pouze prostorovou koherenci a tu časovou ig-

norují. Často se používají metody založené na časovýchmodelech, které ale omezují

typ dat, které jsou schopny zpracovat (např. pouze sekvence trojúhelníkových sítí

reprezentujících lidskou postavu). Některé metody zase dosahují lepších kompres-

ních poměrů tím, že nezachovávají originální strukturu snímků (počet vrcholů a

hrany mezi nimi), zejména kvůli časově nekoherentnímu vzorkování povrchu, ale

také protože je náročné kódovat efektivně konektivitu, pokud byla využita časová

koherence při kódování geometrie. Existují i metody, které jsou schopny kódovat

obecnější data i zachovat strukturu snímků, ty ovšem jsou neefektivní, a proto je

v takovém případě v současné době výhodnější ignorovat časovou koherenci a ke kó-

dování využít pouze té prostorové.

Tato práce se soustředí na schopnost zpracovat obecnější data a efektivní kó-

dování struktury snímků. Navrhujeme nový časový model nazvaný trasovaná centra,
který pracuje s objemovými korespondencemi místo povrchových. To umožňuje

reprezentaci mnohem obecnějších dynamických povrchů, dokud platí, že objem

uzavřený povrchem se po celou sekvenci zásadně nemění. Také představujeme

vylepšený algoritmus pro kompresi konektivity, který může být potenciálně zakom-

ponován do existujících kompresníchmetod, které zachovávají strukturu, pro zlepšení

výsledného datového toku.

Tato disertační práce byla podpořena projekty 22-04622L, 20-02154S a 17-07690SGrantové

agentury České republiky (GAČR) a univerzitními projekty SGS-2022-015 a SGS-2019-016.
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Introduction 1
3D surface representations, such as meshes and point clouds, have incredible rep-

resentative power. When studying a certain object or a collection of objects repre-

sented by a mesh or a point cloud, we can observe them from any desired viewpoint

and thus we are able to detect details that might not be observable in a static image.

However, this is often still insufficient to infer dynamic behaviour. For example,

given a scene consisting of a sphere and a box, we cannot tell whether any of the ob-

jects are static or if any force is being applied to them, if any collision occurs between

the two objects, and if so, whether any of the objects deforms. This can be addressed

by multiple representations (called frames) capturing the scene at consecutive points
in time (see Figure 1.1).

Figure 1.1: Selected frames of a dynamic scene inwhich a sphere is slightly deformed

by a collision with a box. Frames are sorted from left to right in order of appearance.

While modern surface scanning hardware can output such data at sufficient

frame rates, there are, unfortunately, only few publicly available datasets of mesh

or point cloud sequences. This can be attributed to their large size. For example,

the D-FAUST dataset [Bog+17] contains 129 sequences with over 40 000 meshes

overall, which requires around 129 GB of storage in an uncompressed form. While

the compression of a special class of mesh sequences with constant connectivity,

called dynamic meshes, is already considered a solved problem and certain recent

advancements have been made in the compression of dynamic point clouds, the
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1. Introduction

compression of general triangle mesh sequences (often called time-varying meshes)
remains an open problem. There are already a few methods that achieve satisfac-

tory compression rates and recently, the problem also recieved the attention of the

Moving Picture Experts Group (MPEG). However, the current methods either discard

the original structure of individual mesh frames, limit the type of input data they

are able to process or are outperformed by intra-only approaches which compress

each frame separately. We believe that providing an efficient structure-preserving

time-varying compression format to the public would motivate others to publish

new mesh sequence datasets.

Mesh sequence compression is also needed for tele-immersion. Tele-immersion

is a way of communicating in augmented or virtual reality, where a person is being

captured by a surface scanning device and the resulting 3D model is transmitted in

real-time to the receiver (see Figure 1.2). The objectives for compression are differ-

ent from those in the general scenario. Instead of preserving as much information

as possible, it is more important to achieve real-time performance. Although there

are time-varying compression methods that claim to achieve near-real-time perfor-

mance [Dou+14b], these are still too complex to be used in practical scenarios. For

this reason, intra-only approaches are currently preferred [Ort+16]. In this thesis,

we will focus only on the general scenario, since we believe that an efficient general

mesh sequence compression method might be altered to account for the real-time

scenario of tele-immersion.

Figure 1.2: Pipeline of the Holoportation tele-immersion system [Ort+16].

1.1 Summary of contributions
Error-propagation control in Laplacian mesh compression. Our first contribu-
tion is an algorithm for improving the performance of Laplacian mesh compression

under mechanistic distortion metrics, which can be used to encode static and dy-

namic meshes [VD18]. The method is based on a deeper exploration of the decoding

process. We have detected that the error accumulation of the original approach is

introduced by forward and backward substitution when solving a linear system.

8



1.2. Structure of the thesis

We limit the error accumulation in forward substitution by adjusting the values on

the go. This modification brings the performance of Laplacian mesh compression

undermechanistic distortionmetrics on par withmechanistic-distortion-optimised

compression methods.

Model-based molecular trajectory compression. The second contribution is a

method for compression of molecular dynamics trajectories [DMV20]. It was in-

spired by the efficiency of temporal-model-based compression methods. It uses a

newly proposed temporal model denoted canonical molecule, which captures static
local properties of the molecular structure. To the best of our knowledge, this is

the first method that efficiently utilizes the atom bond information. It substantially

outperforms current state-of-the-art methods.

Tracked centers. The third contribution is a temporal model for representing

dynamic surfaces, called tracked centers [DVV21; Dvo+22a; DHV23]. We track a

fixed set of points (denoted centers) inside a volume enclosed by the surface, each

representing a small volume surrounding it, whose positions vary in time. Themodel

was designed to address the limited versatility of current temporal models used in

time-varying mesh compression. It can be already used to encode time-varying

meshes, albeit without preserving the connectivity. It is also useful for temporally-

coherent editing and attribute mapping.

Priority-based connectivity coding for known geometry. In our fourth contribu-
tion, we propose a method to encode mesh connectivity if the vertex positions are

already known to both the encoder and decoder [Dvo+22b]. The method was de-

signed for time-varying mesh compression, where the geometry is mostly encoded

separately from connectivity. The connectivity is encoded during a priority-driven

traversal, which results in a symbol order that can be exploited by context-adaptive

coding. Combined with newly proposed criteria to predict, which vertices are con-

nected by an edge, and a prediction of boundary edges, the method achieves signifi-

cant compression performance gains over the state of the art.

1.2 Structure of the thesis
In the rest of this chapter, we will discuss mesh compression from a more general

point of view and also point out how the methods usually measure compression per-

formance. In Chapter 2, we will describe the mesh and point cloud representations

of dynamic surfaces. In Part II, we will comment on the current state of the art in

the compression of dynamic meshes (Chapter 3), time-varying meshes (Chapter 4)

9



1. Introduction

and dynamic point clouds (Chapter 5). The main focus will be on the compression

of time-varying meshes since this area is the most challenging of the three.

Part III will discuss our contributions. In Chapter 6, we will present our error

propagation controlling modification of the Laplacian mesh compression. Then we

will discuss our model-based method for compressing molecular dynamics trajecto-

ries in Chapter 7. Chapter 8 focuses on the tracked centers temporal model including

a description of all the published versions of the algorithm for obtaining the model.

In the last chapter of this part, we will present the priority-based connectivity cod-

ing method for known geometry. Finally, in Part IV, we will conclude the thesis and

discuss our future plans in terms of time-varying mesh compression and the future

of this area in general.

1.3 Problem Definition
This thesis considers the problem of mesh sequence compression. Compression

is the process of transforming input data 𝑋 , which are represented by a certain

sequence of 𝑚 bits, into a reduced representation of 𝑛 bits, where 𝑚 ≫ 𝑛, from

which one can obtain a reconstruction
ˆ𝑋 by a reverse process called decompression.

If the compression is lossless, 𝑋 and
ˆ𝑋 must be identical. In lossy compression,

ˆ𝑋

is distorted and is required to resemble 𝑋 only in a defined sense.

In our case, the input data is a sequence of triangle meshes represented by geom-

etry (positions of the vertices of the mesh), connectivity (information about how the

vertices of the mesh are connected) and other properties of each mesh. The scope

of our research is the compression of only the geometry and connectivity, with an

emphasis on geometric information. The data will be described in more detail in

Chapter 2.

In terms of mesh geometry compression, the majority of methods are lossy,

meaning the reconstructed positions are different from the original ones. This is

because positions are represented by vectors of floating point values, and such data

is quite difficult to efficiently encode in a lossless manner. Loss of the information

in this case is also less likely to be detected by a viewer than if it occurred in con-

nectivity.

For connectivity, the key criterion to classify a method as lossless is whether a

map exists between the vertices of the original and reconstructed mesh, which is

an isomorphism. Such a definition permits lossless methods to reorder vertices, as

long as the original structure (number of vertices and connections between them)

is preserved. In this thesis, mesh sequence compression methods that perform loss-

less connectivity compression will be denoted structure-preserving. Lossy methods

usually perform remeshing, simplification or filtering, which also implies loss of in-

formation in geometry. Unless the only purpose of the compressedmesh sequence is

10



1.3.1. Data Reduction Techniques

to be rendered (e.g., in entertainment or tele-immersion), it is desirable to preserve

its original structure.

Although we also propose a method for compression of a special class of mesh

sequences where the connectivity between the frames is static, our main focus is

the problem of structure-preserving general mesh sequence compression. At first

glance, one could assume that it should be simple to achieve better data rates than

the intra-only methods by considering temporal coherence. However, due to a lack

of temporal coherence in vertex sampling (the way the vertices are distributed over
the surface), it is surprisingly difficult to exploit such information. In this thesis,

we present techniques, that could contribute to a proposal of a novel compression

method that addresses the problem of structure-preserving general mesh sequence

compression. However, to this date, we have not presented such a method.

1.3.1 Data Reduction Techniques
In this section, we will briefly describe several key concepts of general data com-

pression frequently used in methods discussed in Chapters 3, 4 and 5.

The most prominent tool of lossy geometry compression is quantization, a pro-
cess of transforming a range or a large set of values into a smaller discrete set. The

simplest and most commonly used type of quantization is performed by the trivial

rounding:

𝑥̄ = 𝑟𝑜𝑢𝑛𝑑(𝑥/𝑞),

where 𝑥 is the input value and 𝑞 is a quantization constant that controls the resolution.
The values can be reconstructed up to a specified precision by simply multiplying

by the quantization constant:

𝑥̂ = 𝑞 · 𝑥̄.

In our scenario, the quantization is usually applied to point coordinates or to data

derived from them, which are usually real values represented in a single resp. double-

precision floating-point number format requiring 32 (resp. 64) bits for storage in an

uncompressed form. Assuming there are 𝑛 possible values after quantization, we can

already reduce the data rate by assigning each of the values a unique integer value

represented by

⌈
log

2
𝑛
⌉
bits. However, we may achieve better results by combining

quantization with other data-reduction techniques.

At the end of the compression pipeline, there is usually a lossless encoding

method, which attempts to exploit an underlying model of encoded symbols. In

terms of mesh compression, most methods use entropy coding (e.g., arithmetic or

Huffman coding [Huf52]), which can adjust the number of bits representing each

symbol according to its probability of occurrence in the data without consider-

ing the actual context. The entropy coding method attempts to obtain an average
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number of bits per encoded symbol that is close to its optimal lower bound – Shan-

non’s entropy:

𝐻 = −
∑︁
𝑥∈𝑆

𝑝(𝑥) log
2
𝑝(𝑥), (1.1)

where 𝑆 is a set of all possible symbols and 𝑝(𝑥) is a probability of occurence of
the symbol 𝑥. Less often, a dictionary-based codingmethod (e.g. LZW) is used. Such

methods attempt to exploit the context of data by searching for recurring patterns

of symbols and encoding a reference to a dictionary of patterns constructed during

encoding instead.

Compressed data contains a lot of redundant information that can be simply de-

duced from the coherence of values. A powerful tool for removing such redundancy

is a prediction. Instead of encoding the original value, the encoder can predict it

using the information available from already processed data (which is also available

during the decompression) and encode only the difference. The prediction itself is

a lossless process since it does not reduce the number of encoded values, however,

when combined with entropic coding, it may result in a decreased bit rate. In terms

of mesh sequence compression, we distinguish two types of prediction: intra- and
inter-based. Intra-based prediction exploits the coherence in a single frame, while

inter-based prediction exploits the temporal coherence between frames. The ma-

jority of compression methods we will discuss use both prediction types to some

extent. We will omit the description of intra-only methods, which are equivalent to

applying static mesh compression (a well-studied field) to each separate frame.

From Eq. 1.1, it follows that the higher the probability of the encoded symbol,

the lower the number of bits required to represent its single instance in entropy

coding. Similarly to prediction, one can use the information obtained from already-

processed values to reduce the data rate using context modelling. Instead of the overall
probability of symbol 𝑝(𝑥), a conditional probability 𝑝(𝑥 |𝑐𝑡𝑥), given a context 𝑐𝑡𝑥, is
utilized by the coder. If 𝑐𝑡𝑥 is chosen reasonably well, the conditional probability of

the correct encoded symbol should be higher. A context can be deduced fromvarious

information, e.g., the previously encoded value. Instead of a single context, a method

might also consider a set of predefined contexts 𝐶 = {𝑐𝑡𝑥1, 𝑐𝑡𝑥2, . . . , 𝑐𝑡𝑥𝑛} and

during encoding, select one based on certain criteria. This technique is called context
switching. Another technique, which aims to improve the odds of choosing the best

context, is context selection. It examines the data beforehand and selects which values

should be used to form the context. Other than working with the context directly, it

is also possible to use context-adaptive coding (e.g., CABAC [MSW03]) and influence

the performance by coding values in a certain order (e.g., ascending order).

Another powerful tool is dimensionality reduction. For a certain vector v ∈ R𝑛
,

the goal is to obtain a transformed vector v̂ ∈ X in a certain subspace X ⊂ R𝑛
of

dimension 𝑘 = 𝑑𝑖𝑚(X ), 𝑘 ≪ 𝑛, which we can represent more compactly. While

12
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there is no limitation on how this is achieved, due to its simplicity, most approaches

are based on orthogonal projection – for a certain vector u, the closest vector u𝑤 in

the direction of unit vectorw is computed as follows:

u𝑤 = (u ·w)w.

Given a set of orthonormal vectors 𝐵X = {x1, . . .x𝑘} forming a basis of X , the v̂
can be expressed as their linear combination:

v̂ =

𝑘∑︁
𝑖=1

𝛼𝑖x𝑖, (1.2)

where 𝛼𝑖 = v · x𝑖. It can be shown that v̂ = arg minw∈X ∥v −w∥
2
.While v̂ is still

of size 𝑛, we can actually encode a vector a = (𝛼1, . . . 𝛼𝑘)⊤, a ∈ R𝑘
. The v̂ can

be fully recovered using Eq. 1.2, as long as both the encoder and the decoder have

access to 𝐵X . Unless v ∈ X , the transformation is lossy. The process allows for

progressive coding by incrementally extending the basis and encoding additional

projection coefficients. The most crucial part is selecting the appropriate 𝐵X , with

the objective being to achieve the lowest possible data rate while discarding the

information that is less likely to be detected as missing.

One way to find 𝐵X is using Principal Component Analysis (PCA), which, for a
set of vectors in R𝑛

with centroid at origin, finds an ordered orthonormal basis

of the given space, where each basis vector represents a direction with the most

variance in data if the information present in previous basis vectors was removed.

This is achieved by singular value decomposition (SVD) of a matrix with encoded

vectors as rows. The PCA requires all the encoded vectors to be known, and thus

the basis cannot be constructed by the decoder. However, for a fairly coherent set

of encoded vectors, the majority of the information is present in the first few prin-

cipal directions, and a significant reduction of the number of encoded values can

be achieved even when the basis vectors are encoded alongside the projection co-

efficients. Note that there are ways to efficiently store PCA data, for example by

adaptive quantization, which exploits the fact that the importance of the present

information decreases for subsequent principal directions [VS09].

If the encoded vector v ∈ R𝑛
represents a signal over a certain discrete domain

(e.g., 𝑛 vertices of a mesh or a graph), 𝐵X can be chosen as a subset of frequency

basis. For a relatively smooth signal, most of the information is contained in lower

frequencies, and the high-frequency information can be discarded without being

noticeable. The dimensionality reduction, in this case, is equivalent to the Discrete
Fourier Transform (the projection) followed by a low-pass filter (selection of certain

elements of frequency basis to form the 𝐵X ). One can exploit the fact that in the

continuous case, the sine and cosine functions forming the frequency basis are
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eigenfunctions of the Laplace operator and find the 𝐵X as a set of eigenvectors of the

Laplacianmatrix L corresponding to a certain discretization of the Laplace operator

over the specified domain, as long as the L is real, symmetric, and positive semi-

definite. For this purpose, on graphs, the compressionmethods use a graph Laplacian

matrix. On meshes, this matrix corresponds to a discretization mostly referred to as

Kirchhoff’s (the connection between meshes and graphs will be explained in Section

2.1). Additionally, the Cotan discretization [PP93] can be used. In such a case, the

𝐵X is referred to as aManifold Harmonic Basis. However, since Cotan discretization
requires mesh geometry to construct 𝐿, some reference geometry must be known,

or it can be only used to compress other mesh properties. Full eigendecomposition

of L is not required since we are interested in only a selected subset of eigenvectors.

1.3.2 Performance Evaluation
The efficiency of lossless compression is quantified by the resulting data size. Lossy
compression, however, requires relating the size to the amount of introduced dis-
tortion. In the rest of this section, we will describe how such measures are evaluated

in terms of meshes.

While the overall size of the compressed data is the simplest measure, it is much

more difficult to relate the results between different input datasets. Much more

prominent is data rate, which measures the number of bits required to represent

a certain element of data, e.g., a vertex or a face. Another popular measure is the

compression ratio, the relationship between the sizes of the original and compressed

data.

Measuring the distortion that is present in compressed meshes is a much more

difficult problem. Depending on the purpose of the data, one must select the cor-

rect metric. Additionally, the performance of various compression methods differs

depending on the metrics used in the evaluation.

Technical applications require an upper bound on the error in absolute coordi-

nates, which is usually determined from the precision of the technology processing

the data (e.g., in manufacturing). These objectives require mechanistic error metrics

such as Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR), which

relate corresponding vertex positions in original and distorted meshes. When the

isomorphism between meshes is lost, one can use the Haussdorf distance or Cham-
fer distance. These are, however, much more expensive to evaluate, because they

require frequent closest-point query evaluation. An example of a static mesh com-

pression method that performs well under mechanistic criteria is the Parallelogram
prediction [TG98].

In other areas (e.g., in entertainment or marketing), visual similarity is much

more important. To this end, it is better to use perceptualmetrics. These metrics are
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shown to better correlate with human perception of distortion in data by comparing

their results to various user studies. Examples of such metrics areMSDM2 [Lav11],
DAME [VR12], FMPD [WTM12],TPDM [TWC14] andTPDMSP [Fen+18], to name a

few. Formore information on this topic, we refer the reader to the survey by Corsini

et al. [Cor+13]. An example of a static mesh compression method that performs well

under perceptual criteria is High-pass coding [SCT03].
An additional concern arises in the dynamic setting, where a sequence of meshes

is considered. Even for a small distortion, a large discrepancy between the frames

can occur. As an example of such behaviour, Corsini et al. [Cor+13] discuss a case

in which one frame of the animation is distorted by applying a sine function, while

the next frame is distorted by a cosine function. Although this distortion might

not be visible when examining the frames separately, it results in a flickering effect,

which is easily detectable when the frames are examined in fast succession. Quite a

fewmethods for compressing mesh sequences use static metrics applied on separate

frames even though such an approach cannot detect this behavior. This is because no

temporalmetric has been proposed for generalmesh sequences. Only a few temporal

metrics are designed for dynamic meshes, a special class of mesh sequences with

common connectivity (e.g. KG error [KG04] and STED [VS11]).

Not only do various methods perform differently under various metrics, but

their performance also differs for different data rates. For a more thorough eval-

uation of performance, Rate-Distortion (RD) curves are used. They show how the

change in data rate influences the distortion in a selectedmetric. Figure 1.3 shows an

example comparison of multiple compression methods using RD curves. It is trivial

to obtain an RD curve for a method that is controlled by a single parameter directly

influencing the data rate (e.g., the quantization constant). A more complex configu-

ration, however, requires an optimization process (e.g., [VP11]) to find a curve that

represents the best performance achievable by the method.

Figure 1.3: An example of an RD curve. While Method A performs better than

Method B at higher data rates, it is unclear which method has a better overall perfor-

mance. On the other hand, Method C outperforms other methods at all data rates.
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Mesh and Point Cloud
Representations of
Dynamic Surfaces

2

Data considered in this thesis is assumed to represent a continuously moving two-

dimensional, smooth manifold surface S embedded inR3
and sampled at discrete

points in time. A representation F𝑖 (resp.M𝑖 for mesh, P𝑖 for point cloud) of each

sampled time point 𝑡𝑖 will be referred to as a frame. The continuous movement

implies temporal coherence in frames in the sense that two consecutive frames are

often visually nearly indistinguishable.

The temporal coherence between the frames can be described by a correspondence
function 𝑓𝑖 𝑗 : F𝑖 ↦→ F𝑗, which for any point x ∈ F𝑖 assigns a corresponding

point 𝑓𝑖 𝑗(x) ∈ F𝑗 if it exists. Correspondences not only can be used for inter-frame

prediction but also allow temporally coherent mapping of values on the surfaces,

e.g., texture [BLW12].

There are multiple criteria to consider when choosing an appropriate surface

representation. The most important is representation versatility. We are interested

not only in what classes of surfaces can be represented but also at what cost. Other

things to consider are obtaining, rendering and processing complexity. Since this

thesis studies the representations from the compression perspective, we will also

list some specific properties for this problem.

2.1 Triangle Mesh Sequences
Triangle mesh is currently considered the most popular representation of 3D sur-

faces due to its simplicity, approximation quality, and native support on graphics

cards. It is a piecewise planar surface usually defined as M = (𝑉,𝑇), where 𝑉 is

a set of vertices, and 𝑇 is a set of triangles that connect them. A vertex is usually

represented by its geometry (position) and properties (normal, colour, texture coor-

dinate, etc.), while a triangle is represented as an ordered triplet of indices, and the

order of vertices induces its orientation (the direction of a normal). Considering a
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set of edges 𝐸 that form all the triangles in 𝑇 , we can also interpret the mesh as an

undirected graph 𝐺 = (𝑉, 𝐸). This allows the application of many techniques from

graph theory. When talking about mesh geometry, we will refer to the positions of

vertices, while connectivity will refer to the combinatorial information (vertex in-

dices, triangles, or edges). For the sake of simplicity, we will focus only on orientable

manifold meshes, i.e., meshes in which the orientation of triangles can be unified,

vertices coincide only with a single triangle fan, and no edge is connected to more

than two triangles. Nevertheless, some of the listed related work in Section 4 did

not make such assumptions.

2.1.1 Dynamic Mesh
Dynamic meshes (DMs) are a special class of triangle mesh sequences. The distin-

guishing property of a dynamicmesh is a common connectivity𝑇 shared by all frames:

𝑇0 = 𝑇1 = . . . = 𝑇𝑛−1 = 𝑇,

where 𝑛 is the number of frames. This also indicates that the number of vertices and

their order are constant through time. Only the geometry and properties change

between frames, and thus the connectivity needs to be encoded only once.

One of the main advantages of a dynamic mesh is that the vertex correspon-

dences are explicitly coded in the connectivity:

∀𝑣𝑘 ∈ 𝑉 : 𝑓𝑖 𝑗(x𝑖𝑘) = x𝑗
𝑘

for any pair of frames (𝑖, 𝑗), where x𝑖
𝑘
is the position of 𝑘-th vertex in the 𝑖-th

frame. The correspondence function for any point x𝑖 ∈ M𝑖 can be directly general-

ized from vertex correspondences using barycentric coordinates (𝜆𝑎, 𝜆𝑏, 𝜆𝑐) : x𝑖 =
𝜆𝑎x𝑖𝑎 + 𝜆𝑏x𝑖𝑏 + 𝜆𝑐x

𝑖
𝑐 in triangle 𝑡 = (𝑣𝑎, 𝑣𝑏, 𝑣𝑐), which contains 𝑥:

𝑓𝑖 𝑗(x𝑖) = 𝜆𝑎𝑓𝑖 𝑗(x𝑖𝑎) + 𝜆𝑏𝑓𝑖 𝑗(x𝑖𝑏) + 𝜆𝑐𝑓𝑖 𝑗(x
𝑖
𝑐) = 𝜆𝑎x

𝑗
𝑎 + 𝜆𝑏x

𝑗

𝑏
+ 𝜆𝑐x𝑗𝑐.

For dynamic meshes, the function 𝑓𝑖 𝑗 is always an isomorphism. Instead of treating

the geometry of each frame separately by assigning each vertex 𝑣𝑘 a positionx𝑖𝑘 ∈ R
3
,

a static meshM = (𝑉,𝑇) can be considered, where for each vertex 𝑣𝑘 the geometry

is represented as a trajectory t𝑘 ∈ R3𝑛
. This allows for global coding approaches (in

terms of time), e.g., PCA coding [VS07].

The simplest dynamic meshes are usually synthetic data obtained by continu-

ously deforming a certain shape using, for example, skinning. It is, however, often

more efficient to encode the deformation parameters than to encode the resulting

mesh sequence. More complex sequences are obtained by surface tracking or by

4D reconstruction (e.g., [Vla+08; Tev+12]); however, most methods require a prior
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mathematical model of the data as an input (e.g., template shape), and the whole

process is quite complex and prone to errors.

Visualizing a dynamic mesh usually consists of rendering the first frame and

then updating only the geometry, which allows for a higher rendering frequency.

While simple and easy to work with, the dynamic mesh lacks representation versa-

tility. Not only is the time-evolving topology not allowed, but since the connectivity

complexity directly influences the ability to represent fine details, any fine detail

must also be accounted for even if it appears only in a single frame.

2.1.2 Time-Varying Mesh
Time-varying mesh (TVM) is any mesh sequence in which the number of vertices

and/or connectivity changes over time. While the temporal coherence of the con-

nectivity might be present (e.g., in synthetic data), it cannot be generally assumed.

Thus, most of the time, the connectivity must be encoded for each frame separately.

Not only we cannot directly derive the correspondences of time-varying mesh

frames from the connectivity, but they are also difficult to estimate. This is caused

by the fact that the bijective property of the correspondence function is lost with

the merging and separation of parts (see Figure 2.1). This renders exploiting the

temporal coherence a much more difficult problem.

Figure 2.1: Example of bijectivity loss of correspondences. There are no correspon-

dences for vertices at the back of the arm in the highlighted area.

The earliest time-varying meshes were similar to dynamic meshes in the sense

that the connectivity changed only by simple updates (e.g., by subdivision, contrac-

tion, or vertex removal). More importantly, TVMs have been used to represent

dynamic volumetric environments (e.g., fluid simulations). Such data is usually ob-

tained by extracting the iso-surface of each frame from a particular implicit function.
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In recent years, improvements in the performance of capturing systems allowed

real-time surface capture of dynamic scenes. Such systems can output a large num-

ber of mesh frames; however, these contain a considerable amount of noise and

self-contact. This leads to frequent spurious topology changes, even for surfaces

that initially showed constant topology. While in some scenarios such noisy TVMs

could be converted to a dynamic mesh with great difficulty, often it is much more

preferable to work directly with the time-varying mesh data.

Visualizing a TVM requires rendering a different mesh in each separate frame,

whichmade it almost impossible to render at satisfying frame rates on past consumer-

grade devices. As computer technology advances, this is becoming less of an issue

and the advantages of the TVMs prevail. The connectivity can adapt to accommo-

date any detail in the data at any time, allowing an increase in the complexity of the

mesh frame only when it is necessary.

2.2 Dynamic Point Cloud
A point cloud is a set of points P = {x0, . . .x𝑚−1} ,x𝑘 ∈ R3

, sampled from the

represented surface, where 𝑚 is the number of points. Similarly to a triangle mesh

vertex, a point can be represented by its geometry and attributes. In the case of point

clouds, the literature does not consider any special cases of sequences in which only

the positions of points change over time, and any point cloud sequence is usually

referred to as a dynamic point cloud (DPC). From the compression standpoint, a point

cloud frame P𝑖 is equivalent to a meshM𝑖 = (𝑉𝑖, ∅) with an empty set of triangles.

For this reason, a dynamic point cloud compression combined with connectivity

coding can be considered a method for the compression of time-varying meshes

and, conversely, a TVM compression method that ignores the connectivity data can

be considered a method for compression of dynamic point clouds.

A correspondence function of point clouds can be defined only on the points

since the point cloud is discrete and there is no surface representation between

the points. Similarly to TVMs, correspondences on point clouds are generally not

bijective and are challenging to estimate.

Dynamic point clouds have also benefited from recent improvements in cap-

turing systems. Compared to time-varying meshes, they can be obtained at a much

lower cost. A special type of dynamic point cloud is obtained using LiDAR (Light

Detection and Ranging) sensors. Such sensors are usually mounted on a moving ve-

hicle (e.g., a car or drone) and emit light rays in rotating motion while measuring the

distance from the point where the ray hits the scanned environment. LiDAR data

is commonly used for navigating autonomous vehicles. Unlike the general point

clouds, the frames are usually also accompanied by additional measurements (e.g.,

accelerometer data). While it is possible to treat the LiDAR point cloud as an image,
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in which the position of each pixel represents cylindrical coordinates and the value

represents the distance, several compression methods treat it as a point cloud, while

still using its specific properties.

Rendering dynamic point clouds is easier than rendering TVMs since no con-

nectivity has to be passed to the GPU. The points are usually rendered as a certain

primitive, e.g., a cube, a sphere, or a disc. Selecting an appropriate scale for the

rendered primitives given the current viewpoint should result in the illusion of a

smooth surface.

Figure 2.2: Advantages of themesh representation over point clouds.Left: Separation
of geodetically distant vertices near in space. Right: Highly non-uniform represen-

tation. Illustrations are courtesy of Hanocka et al. [Han+19].

The main advantage of the point cloud representation over a triangle mesh is

its simplicity, which allows the storage and processing of even large models with

points numbered in the millions. On the other hand, since it lacks information

about connectivity, obtaining the direct neighbourhood of a point must be done by

querying positions in space, which is much more difficult than just examining the

edges in the case of a triangle mesh, and the result might contain points that are near

in space, but quite far apart in terms of geodetic distance. Additionally, the mesh

allows for a highly non-uniform representation in which planar regions with a lack

of detail can be represented by a small number of large triangles and, conversely,

regions with lots of detail can be represented by a large number of small triangles.

In the case of point clouds, highly non-uniform sampling might result in visible

holes in a surface during rendering. Both of these advantages of the triangle mesh

are shown in Figure 2.2.
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2.2.1 Voxelization
A majority of dynamic point cloud compression methods consider so-called vox-

elized point clouds. Voxelization is a process in which the point cloud is stored in a

cubic grid of size 2
𝑑 × 2

𝑑 × 2
𝑑
, where 𝑑 is a parameter controlling the level of detail.

Each cell is marked occupied or unoccupied, based on whether it contains any of the

input points. All the points inside an occupied grid cell are discarded and replaced

by the centroid of the cell. An octree is usually built from the binary occupancy data

(see Figure 2.3) since it allows more efficient storage and progressive coding.

Figure 2.3: Different levels of a single octree representing a voxelized point cloud.

Source: [Kam+12]

Voxelization is a process similar to quantization in the sense that the real-valued

coordinates of points are transformed into grid indices. However, it also alters the

number of points, compromising the one-to-one correspondence between the orig-

inal and voxelized data. This is why certain dynamic voxelized point cloud com-

pression methods claim to be lossless – the voxelized data already have reduced

precision.
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Dynamic Mesh
Compression 3
Due to the advantages of the dynamic mesh representation listed in Section 2.1.1,

it is possible to design highly efficient compression methods using both spatial and

temporal prediction. This is why the development of dynamic mesh compression

was so divergent from the development of time-varying mesh compression. As of

2023, this field is already considered well-studied. Current methods usually use

techniques like segmentation and clustering to group parts (frames or vertices) of

similar motion together, dimensionality reduction using PCA, wavelets to allow

progressive coding, or spatiotemporal prediction of vertex positions [Mag+15].

Since the main scope of this thesis is TVM compression, we will describe only

the most recent dynamic mesh compression methods and we will not group them

in sections as we will for TVM and DPC compression. Additionally, most of the

current methods usually combine multiple techniques at once, which makes such

categorization difficult. For more details about this field, we refer the reader to the

3D mesh compression survey by Maglo et al. [Mag+15].

3.1 Recent methods
Hajizadeh et al. [HE15] proposed to extract a set of keyframes from the sequence

based on a clustering of the frames. For each non-keyframe, the method finds the

optimum linear blending weights of the keyframes to predict its geometry. They

encode the blending weights and residuals.

Hachani et al. [HZP16] segment the vertices into patches based on heat diffusion

properties of the surface. Each patch is assigned a sequence of affine transforms

which map its positions in the first frame to the rest of the frames. The position

of each vertex is predicted as a weighted sum of these affine transforms at a given

frame, with fixed weights optimized over all the frames encoded once.

Hou et al. [Hou+17] proposed a data compression method based on sparse low-
rank matrix approximation (SLRMA), which decomposes a matrix into a product of

a sparse column-orthogonal matrix and a coefficient matrix. One of the domains
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where the authors tested this approach was dynamic mesh compression. In this

domain, SLRMA allows for exploiting both spatial and temporal coherence.

Lalos et al. [Lal+17] adapted the PCA approach for interactive scenarios. Their

method works with blocks of frames. The SVD is computed only for the first block.

For any subsequent block, it reuses the previous PCA basis and adapts it to ap-

proximate the current one using orthogonal iterations algorithm [Str97] without the

need for performing additional SVD. The method is also suitable for out-of-core

compression since it does not require all the frames to be available simultaneously.

In subsequent work, the orthogonal iterations approach was also combined with

laplacian compression to improve perceptual performance [ALM21].

Hajizadeh et al. [HE17] separated the geometry of frames into coarse and fine in-

formation. The coarse information is extracted by projecting the geometry into the

frequency basis of graph Laplacian. The fine detail information is the difference be-

tween the coarse and the original geometry represented in a local rotation-invariant

frame. Assuming the fine details do not change, only the details of the first frame

must be extracted and transmitted.

A similar approach was also proposed by Chen et al. [Che+18; Che+19]. For ex-

tracting the coarse information, they, however, use manifold harmonics basis [VL08].
This requires a certain geometry to be known so that a Cotan Laplacian matrix

can be constructed. For this reason, they cluster the frames and for each cluster, a

keyframe is encoded. To reintroduce the fine detail, they use the deformation transfer
algorithm [SP04].

Yang et al. [Yan+18a] proposed a progressive coding scheme, which also divides

the sequence into subsequences. The bounding frames of these subsequences are

selected by finding a certain number of points of highest curvature on a trajectory

curve of mesh centroid. These points should correspond to frames where the most

significant movement occurs. Each subsequence is then encoded by PCA, with pro-

jection coefficients further reduced by spectral graph wavelet transform [LJF13]. The

wavelet coefficients are encoded using CSPECK [LHS10].

In their subsequent work, Yang et al. [Yan+19] proposed a different approach,

albeit also based on studying differential properties of trajectory curves. This time,

they studied the similarity of curvature and torsion of vertex trajectory curves to

perform both temporal and spatial motion-based segmentation. The trajectories of

each segment are transformed into a frequency domain using Graph Fourier Trans-

form and coefficients corresponding to high-frequency information are discarded.

The rest of the coefficients are encoded using SPIHT [SP96].

The method proposed by Luo et al. [Luo+19] segments the sequence in both spa-

tial and temporal domains, thus obtaining patches under fairly simple deformation

that are encoded more efficiently than they would be if encoded together using PCA.

In later work, the authors were able to reduce the data rate further by incorporating
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different ways of storing PCA data [Luo+20; Luo+21].

To some extent, the method proposed by Hajizadeh et al. [HE19] is similar to the

one proposed by Hachani et al. [HZP16]. They also divide the surface into patches,

this time using k-means clustering over vectors containing coefficients of affine

transforms which map given vertex position between subsequent frames. To predict

vertex positions, they estimate a second-degree polynomial transform for each patch.

These transforms are also weighted, but the weights are assigned uniformly based

on the patches which are incident to the given vertex.

Arvanitis et al. [ALM19] proposed a scalable method, which transmits only a re-

duced number of vertices for each frame based on network capabilities. The vertices

to be transmitted are selected considering both spatial and temporal information.

The rest of the geometry is then reconstructed in a coarse and fine process.

3.2 Summary
Current methods for dynamic compression are already quite efficient in terms of

data rates, since the reconstructed data already looks indistinguishable from the

original at a data rate of 2 to 5 bits per vertex in a single frame, depending on the com-

plexity of the input data. The authors nowadays focus more on scalability [Lal+17;

Yan+18a; Yan+19; ALM19; ALM21], interactivity [Lal+17; ALM19; ALM21], or per-

ceptual performance [ALM21] or achieve only incremental improvements in terms

of data rates.

Due to the advances in the retrieval of TVMs, and the lack of versatility of dy-

namicmesh representation, the popularity of DM compression is rapidly decreasing.

This is also reflected in the fact thatMPEG is already abandoning the originalMPEG-

FAMC codec for dynamic meshes in favour of a more versatile method which also

handles TVMs. We believe that in the following years, this trend will continue and

that there might still be a few novel methods proposed, but any major breakthrough

is improbable.
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The field of TVM compression is already well-established, with the earliest known

publication from the year 2003 [GSK03]. Nevertheless, it is still considered an open

problem, which leads to applications preferring to use intra-only methods. In this

chapter, we briefly list all the methods we are aware of, which are categorized into

sections, based on the type of inter-prediction they use. Then,wewill also discuss the

current challenges and hint at relatedmethods or paradigms,which could potentially

be beneficial if one decides to address these challenges. The content of this chapter

is summarized in Table 4.1.

Table 4.1: Overview of existing methods for TVM compression. Methods are in the order in which

they appear in the chapter. Highlighted methods are considered state-of-the-art. Ref. column con-

tains the most relevant reference for the given method. Columns Versatility and Designed for show
the type of input data the method handles (see Section 4.5.2). Columns Iso. and Conn. show whether

the method preservers structure (Isomorphism) and whether it addresses connectivity coding (see

Section 4.5.1). The colour in the Conn. column indicates efficiency (green = efficient, orange = ineffi-

cient, red = not addressed). Symbol meaning: ✓ = Yes, ✗ = No, ❋ = Optional.

Method Ref. Category Subcategory Versatility Designed for I
s
o
.

C
o
n
n
.

Patch ICP [GSK03] ME — General Synthetic ✓ ✓

EBMA [HYA07] ME/Struct. — General General ✓ ✗

PCA-aligned patches [YA10] ME — General General ✓ ✓

Grid occupancy XOR [HYA08] Struct. Grid General General ✓ ✗

Semi-regular representation [YKL06] Model Tracked surface Const. GT Top. Const. Top ✗ -

Reeb graph matching [TSM07] Model Reeb graph Const. GT Top. Human ✗ -

Topology dictionary [TM12] Model Reeb graph General Human ✗ -

Skinned mesh [MYA08] Model Tracked skeleton Const. GT Top. Human ✗ -

Per-bone ICP [Dou+14b] Model Tracked skeleton Const. GT Top. Human ❋ ✓

Occupancy network [ZGT23] Model Neural model General General ✗ -

SkinOff [HKM04] Video Geometry video Textured Textured ✗ -

EIP geometry video [Xia+10] Video Geometry video Face Face ✗ -

Cut over local extrema [TM13] Video Geometry video General Human ✗ -

Polycube geometry video [Hou+14a] Video Geometry video Const. Top. Const. Top. ✗ -

VPCC + Edgebreaker [FJB20] Video Projection General General ✓ ✓

VDMC Nokia [Alf+22] Video Projection General General ✗ -

VDMC Tencent [Hua+22] Video Geometry video General General ✗ -

VDMC Apple [Mam+22] Model/Video Geometry video General General ✗ -

29



4. Time-Varying Mesh Compression

4.1 Motion estimation
Motion estimation (ME) is a technique often used in video compression. It assigns

so-called motion vectors to blocks of pixels of the previous frame describing how

these pixelsmoved. This information is then used for the prediction (or replacement)

of the current frame. It is possible to apply an analogous process for mesh sequence

compression by aligning parts of two subsequent frames. While motion estimation

is often used in approaches across our specified categories, the methods discussed in

this section rely on it solely. In general, these methods proceed as follows (see also

Figure 4.1): The first frame is encoded in an intra fashion. For each subsequent frame,

a reference shape is obtained by aligning the current frame with the previous frame

(or the previous keyframe). Parameters of the alignment are encoded as well so that

the reference shape can also be reconstructed by the decoder. This reference shape

is then used to predict (or replace) the coded frame. The main advantage of such

approaches is their simplicity which comes at the cost of compression performance.

Figure 4.1: Example pipeline of a TVM compression based on motion estimation.

Thin arrows represent the data flow, while bold arrows represent the order of op-

erations. M𝑖 denotes a mesh at the 𝑖-th frame and Mref denotes a certain mesh

(previous frame or keyframe) used to obtain a reference shapeR𝑖. The bar above a

symbol denotes data distorted by compression.

The first method to address TVM compression, although only for synthetic se-

quences, was proposed by Gupta et al. [GSK03]. It uses the iterative closest point

(ICP) algorithm [BM92] to rigidly map patches of the coded frame onto the whole

mesh of the previous frame. After alignment, the patches are refined to merge seg-

ments with a similar motion. Depending on the prediction error of vertex position

given the estimated rigid transformations, the vertices are divided into three sets.

The first group can be represented solely by the rigid transformation, the second

group requires correction vectors to be encoded and the rest is encoded without

exploiting temporal information. The method, however, expects temporal coher-
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ence in connectivity, since they assume it changes in simple updates (e.g., vertex

insertion/removal, subdivision), which, in general, does not occur in real-world

data.

Han et al. [HYA07] proposed a method based on the block matching algorithm

(BMA) [JJ81], a widely usedME technique in video compression. Themethod divides

the bounding box of the coded frame into cubic blocks of a specified size. The surface

patch in each block is then translated for its centroid to lie at the centre of the block.

For each block, a corresponding block in a defined search area of the previous frame

is found by matching the weighted average normal vectors of the patches. Positions

of vertices are predicted using correspondences derived from the nearest neighbour

search.

Another method based on the fitting of patches was proposed by Yamasaki et

al. [YA10]. Instead of registration, their approach first transforms all the patches into

a common local coordinate frame obtained by principal component analysis. Each

coded patch is predicted by a patch from the previous frame yielding the smallest

correction vectors. To reconstruct such a patch, the decoder needs the index of the

corresponding reference patch, the vertex correspondences between patches, the

correction vectors, and a rigid transform which moves the patch from the local

coordinate frame into the correct global position. Instead of encoding the vertex

correspondences explicitly, for each reference vertex, the number of corresponding

coded vertices is encoded followed by the matching correction vectors. This way,

the decoder can reconstruct the original set of vertices, albeit in a different order.

4.2 Prediction of data structures
Instead of working directly with the geometry, the methods in this category con-

struct spatial data structures over each frame and proceed with the inter-prediction

of such structures. Although there is only one method in this category for time-

varying meshes, in Section 5.2, we will discuss applying this technique to point

clouds, where it is fairly popular due to the input data usually being voxelized

point clouds stored in an octree. Compared to motion estimation, the prediction of

data structures is often much simpler, since no local matching between subsequent

frames is usually required.

Han et al. [HYA08] based their method on cubic binary grids. The method first

transforms all the frames so that their centroid lies at the origin to maximize their

overlap. Then, a coarse cubic grid is constructed over the sequences bounding box.

For each frame, a binary function on the grid is evaluated, which indicates whether

a cell contains any frame vertices. The temporal coherence is exploited using XOR

operation on two subsequent frames (see Figure 4.2). This information is then en-

coded using the run-length encoding (RLE). Each cell that contains mesh geometry

31
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is then further subdivided at a finer scale, ideally so that each subcell contains at

most a single vertex. This finer information is also encoded using RLE without fur-

ther exploiting the temporal coherence. In subsequent work, Ferreira et al. [Fer+10]

extended this approach for progressive coding using multiple levels of finer subdi-

visions.

Figure 4.2: Exploiting coherence of binary grids between subsequent frames using

XOR operation. Source: [HYA08]

4.3 Temporal-model-based methods
The most effective way to exploit temporal coherence in geometry is by employing

temporal models capturing the dynamic behaviour of the sequence. These mod-

els are usually constructed with a particular assumption over the properties of the

represented surface, such as static topology, articulated motion, or the sequence’s

representation of human performance. The model-based methods are fairly sim-

ilar to the ME-based, however, the main difference is that instead of using only

the information from the previous frame (or previous keyframe), they exploit the

global temporal information to some extent. An example model-based compression

pipeline is shown in Figure 4.3. Usually, the method first constructs the model con-

sidering all the frames (although somemethods construct the model on the go while

encoding individual frames). The model and the first frame of the sequence are then

encoded. For each subsequent frame, the model is used to construct a specific refer-

ence shapeR (not necessarily a mesh or a point cloud) from the previous frame (or

previous keyframe).R is then used for geometry prediction or replacement of the

current frame.

The model-based methods can be further divided into categories based on the

temporal model they use. The most prominent approach for obtaining a temporal

model in TVM compression is tracking. Its goal is to obtain a temporally consistent

representation of the original surface. This is usually done by gradually deforming

some template (e.g., a surface [Li+09] or a skeleton [MYA08]) to align it with subse-

quent frames. The models obtained by tracking give us some insight into temporal
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correspondences. However, different models might capture different underlying

information that could be used to reduce the redundancy of the data, for example,

the shape or the topological structure, without describing the relations between the

frames [ZGT23]. Note that many temporal models (e.g. a tracked surface) are them-

selves a reduced representation of the mesh sequence. For the sake of simplicity,

only the methods that directly concern compression were studied in this section.

Figure 4.3: Example pipeline of a TVM compression based on a temporal model

𝑀. Thin arrows represent the data flow, while bold arrows represent the order of

operations.M𝑖 denotes a mesh at the 𝑖-th frame andMref denotes a certain mesh

(previous frame or keyframe) used to obtain a reference shapeR𝑖. The bar above a

symbol denotes data distorted by compression.

The first model-based method for TVM compression was proposed by Yang

et al. [YKL06]. It replaces the original sequence with a dynamic mesh obtained by

tracking the remeshed first frame. The remeshing is performed by simplification

using the quadric error metric [GH97] followed by butterfly subdivision projected

on the original surface. This creates multiple levels of detail. The sequence is then

encoded progressively by exploiting the temporal coherence in an uplifting scheme.

Tung et al. [TSM07] utilised augmented multi-resolution Reeb graphs [TS05] of

geodesic integral function

𝜇 (𝑣) =
∫
S
𝑔 (𝑣, 𝑠) 𝑑𝑆, (4.1)

where 𝑔 is the geodesic distance between two points on a surface S , to capture the
topological properties of the frames. Considering how the graph nodes are con-

nected and whether they are located at the local extrema of the generating function,

they show that it is possible to manually devise rules which allow their tracking if

the underlying ground truth topology is known. The original mesh frames are re-

placed by the first frame deformed by this tracked graph structure. To accommodate

for the fact that the ground truth topology is usually unknown, the approach was
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later generalised [TM12] by incorporating a so-called topology dictionary. It clusters
frames according to the similarity of the underlying Reeb graphs. Frames in each

cluster are then replaced by a deformed representative frame (one that is the most

similar to all the frames in the cluster).

Maeda et al. [MYA08] proposed a compression method for Human TVMs that

replaces the sequence with the first frame deformed by a tracked skeleton. In a

subsequent work [NYA10], the method was further improved using adaptive sim-

plification and prediction of the first frame by a reference human triangle mesh to

allow transmission and displaying of such data on consumer-grade mobile devices

at the time (the year 2010).

The method proposed by Doumanoglou et al. [Dou+14a; Dou+14b] also uses

a tracked skeleton as a temporal model. The method per-bone aligns the skinned

meshes of the current frame and a selected intra-coded keyframe using ICP [BM92].

The aligning transformations are encoded. The aligned intra-coded frame is then

used for vertex position prediction identically to the prediction of Yamasaki et

al. [YA10]. The method can optionally preserve the original connectivity or the

compression rate can be further improved by replacing inter-coded frames with

aligned intra-only encoded keyframes. In the original work, the last intra-only frame

was always selected. The authors have also experimented with selecting the intra-

only frames for prediction based on skeleton matching criteria and periodicity de-

tection [Dou+14a], which in some cases led to an improvement in terms of rate-

distortion performance.

Zaghetto et al. [ZGT23] have recently filed a patent on a method that replaces

the mesh sequence by a neural representation using occupancy networks [Mes+19].

The method samples a coarse point cloud of the surfaces and learns the occupancy

functions from the original geometry. Only the point clouds and the weights of the

occupancy network are encoded. The proposition of the method seems promising,

however, since it was published through a patent, no performance evaluation was

given.

4.4 Video-based methods
Video compression methods are famous for their effectiveness in terms of exploit-

ing temporal coherence. For this reason, several methods for TVM compression

have focused on mapping the information contained in each frame into the image

domain and encoding such data as a video. These methods perform notably well on

textured mesh sequences since the video is a natural representation of time-varying

texture information. Themain challenge in video-based TVMcompression is to find

a mapping that produces the most temporally coherent images. Based on the type of

mapping approaches, the video-based methods can be further divided into two cate-
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gories - parametrization-basedmethods, which usually store geometry as a sequence

of Geometry images (GI) [GGH02] (positions in 3d as RGB values in the texture), of-

ten also referred to asGeometry videos (GV) (although GVwas initially a term coined

to sequence of GIs used to compress dynamic meshes [Bri+03]), and orthogonal-

projection-based methods, which project surface patches onto certain projection

planes and then represent the geometry using occupancy information (which pixel

is part of a certain patch) and the distance from the plane, similarly to depth im-

ages (see Figure 4.4). To achieve temporal coherence of images, the parametrization

methods focus on the temporally consistent cutting of the mesh frames before map-

ping them onto the 2D domain, while projection-based approaches focus on the

temporally consistent placement of patches. Note that the placement of geometry

is not required to be perfectly consistent, since the video codec usually also utilizes

ME in the video domain.

(a) Parameterization. Source: [GGH02] (b) Projection. Source: [Zhu+21]

Figure 4.4: The two main approaches of mapping mesh data onto the 2D domain.

The first authors, who considered video compression for TVMs, were Habe et

al. [HKM04]. Their parametrization-based method attempts to place the cut path

in places with lower texture complexity. Their main motivation is that the most

distorted texture is near the cut path. If the cut path lead through parts of com-

plex texture, the distortion would be much more visible. Although not verified ex-

perimentally, the authors also hint that such a cut path could be to some extent

temporally consistent.

For compression of TVMs representing facial expressions extracted from mo-

tion data (see Figure 4.5(a)), Xia et al. [Xia+10] proposed a so-called expression-

invariant parameterization (EIP). Themethod first cuts themeshM along geodesics

between the eyes and the mouth to obtain a surface with two boundary curves (an

outer boundary 𝜕M0 and an inner boundary 𝜕M1). These curves are mapped con-
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sistently into the parametric domain using arc-length parameterization. Then, har-

monic function 𝑓 on the mesh is constructed by solving the Laplace equations with

Dirichlet boundary conditions:

Δ𝑓 = 0

𝑓 (𝑢) = 0, 𝑢 ∈ 𝜕M0,

𝑓 (𝑣) = 1, 𝑣 ∈ 𝜕M1.

Analogically, a harmonic function 𝑔 is also obtained in the parametric domain. Fi-

nally, the gradient flow ∇𝑓 is identified with the gradient flow ∇𝑔. This process
is explained in Figure 4.5. In their subsequent work, the authors were able to im-

prove the compression performance of the approach by proposing different ways of

encoding the resulting video data [Xia+12; Hou+12; Hou+13a; Hou+13b; Hou+14b].

Figure 4.5: Expression-invariant parameterization (EIP). (a) Input data, (b) Per-

formed cut, (c) Harmonic function with Dirichlet boundary conditions, (d) Example

gradient flow curves, (e) Corresponding curves in the parametric domain, (f) Param-

eterization, (g) Geometry image. Source: [Xia+12].

A more sophisticated way of cutting the mesh to obtain temporal coherence

was proposed by Tung et al. [TM13]. They track the local extrema of the geodesic

integral function (see Eq. 4.1) and construct the cut as the shortest path between

them (see Figure 4.6). Authors claim that if selected properly, such points should

remain consistent unless a change in topology occurs.

A slightly different approach to compressing TVM as a sequence of geometry

images was proposed by Hou et al. [Hou+14a]. Instead of direct planar mapping, the

method maps frames to a polycube [Gar+13], which is cut at predefined edges and

flattened. Although the structure of the polycube must be known before encoding,

temporal coherence can be achieved by mapping consistently tracked salient points

(e.g., features of the human body) onto the same positions in the 2D domain (see
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Figure 4.7). In the original method, the video was decomposed into a low-rank

approximation representation. Some improvements were achieved by representing

the sequence as a linear interpolation between a set of keyframes, which were also

reordered to increase their temporal coherence [Hou+15].

Figure 4.6: Temporally consistent cut between local extrema of the geodesic integral

function. Source: [TM13].

Figure 4.7: The process of obtaining a temporally coherent geometry video using

polycube parameterization. (a) Salient points. (b) Polycube parameterization. (c) Ge-

ometry video. Source: [Hou+14a]

The MPEG-VPCC standard for compression of dynamic point clouds [ISO19],

which will be described in Section 5.4.1, has recently popularized the orthogonal

projection approach. Faramarzi et al. [FJB20] treated mesh geometry as a point

cloud and encoded it using this method. For connectivity coding, they incorporated

Edgebreaker [Ros99] or TFAN [MZP09] followed by encoding a vertex permutation

map. Graziosi [Gra21] later improved this approach by adapting it for dense meshes

and storing the connectivity as a 2D mesh. A similar pipeline is also described in
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Sony’s recent patent [GZT22], although it also describes an additional way of storing

connectivity using triangle rasterization.

4.4.1 MPEG V-DMC
At the 136th meeting of the MPEG (Moving Picture Experts Group) in October

2021, a call for proposals on TVM compression was issued [ISO21c]. Due to the ex-

istence of technologies for encoding geometric information through video already

established during the standardization of MPEG-VPCC [ISO19] (video-based point

cloud codec, see Section 5.4.1) and MIV [ISO21b] (multi-view video + depth codec),

the potential authors were strongly encouraged to incorporate the V3C (Visual Vol-

umetric Video-based Coding) standard [ISO21a], which was created by separating

the common generic parts of those two standards. Five companies contributed to

this call for proposals: InterDigital, Nokia, Tencent, Sony and Apple [Cho+22b].

In terms of geometry, the approach proposed by InterDigital [Mar+22] is intra-

only. It simplifies the frames using quadric error metric [GH97] and encodes them

using Google Draco [Gal+18]. The temporal coherence is exploited only in texture

data. Each mesh is segmented into patches which are parameterized using Boundary
First Flattening [SC17] to obtain local UV coordinates. All the patches are then or-

ganised into a regular grid in a global UV coordinate system. Intra- and inter-frame

reorganization of patches follows tominimize sharp transitions between neighbour-

ing tiles and to place patches of similar RGB values in time at the same tiles.

The response from Nokia [Alf+22] encodes geometry quite similarly to the

MPEG-VPCC [ISO19] method. Their patch-based approach performs temporal

patch alignment inside a group of pictures by packing patches of similar average

positions in 3D to similar areas in the image domain. They also combine the depth

and occupancy images into a single image in YCbCr 4:2:0 format, where the depth

is contained in the luma channel and occupancy in the chrominance.

The approach proposed by Tencent [Hua+22] uses aMulti-chart Geometry Im-
age [San+03] representation. They assume that a temporally coherent parameteriza-

tion is already known before coding and focus mainly on the means of preserving

the watertightness of the input meshes. To this end, they find boundary vertices of

all the patches and encode them separately including their UV and XYZ coordinates

(in predictive coding) and the information to identify the corresponding vertices at

neighbouring patches.

As of the time this thesis was being written (October of 2023), to the best of our

knowledge, no document directly describing the pipeline proposed by Sony was

released to the public. It was only briefly summarized in an overview paper by Choi

et al. [Cho+22a]. We can only assume from this text, that the method is probably

very similar to the approach proposed in Sony’s recent patent [GZT22].
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Although it also incorporates video coding, the method that was proposed by

Apple [Mam+22] is much closer to model-based approaches when considering our

classification. Their preprocessing of the sequence consists of a simplification fol-

lowed by a midpoint subdivision projected to the original surface. The simplified

mesh (called base mesh) is then encoded using Google Draco [Gal+18]. The displace-

ments between the subdivided mesh and the original surface are encoded using

wavelet transform. The wavelet coefficients are encoded as a video. The temporal

coherence is exploited by replacing the current base mesh with the base mesh of a

reference frame where possible. Then, instead of coding the whole base mesh, only

a motion field is required.

Out of the five proposals, the best compression performance was achieved by

Apple and InterDigital [Cho+22a]. At the 138th meeting, the proposal by Apple

was selected as a basis for the subsequent standardization process [Cho+22b]. The

standard is expected to be completed by October 2024 [MPE22].

4.5 Current challenges
Although it is apparent that there exists a redundancy of temporal information in

TVMs, for a long period, it was difficult for TVM compression methods to outper-

form intra-only approaches such as Google Draco [Gal+18] or weighted parallelo-

gram [VB13]. For this reason, the baseline method used to evaluate the performance

of MPEG V-DMC proposals was intra-only [ISO21c]. In the last 10 years, the ad-

vances in video- and model-based approaches led to a few quite effective methods

being proposed, which were able to outperform intra-only methods, however, at

the cost of sacrificing the original mesh structure [Mam+22; ZGT23], limitation of

the type of input sequences [Dou+14b; Dou+14a] or both [Xia+10; Hou+14a]. For

future research, we believe that it is important to focus on minimising such sacri-

fices and develop a method which can handle general input data while preserving

the original structure of the mesh. In the following subsections, we will focus on

ways of addressing these challenges individually.

4.5.1 Structure preservation

As already discussed in Section 1.3, preserving the structure means that for each

frame, there exists an isomorphic map between the connectivity of the original and

the decoded mesh. Whether any of the methods described in this chapter preserves

the structure or not and whether it also addresses compression of the connectivity,

is summarized in columns Iso. and Conn. of Table 4.1 (the colour indicates connec-

tivity coding efficiency).

39



4. Time-Varying Mesh Compression

The main reason why many approaches tend to reject the original structure

(number of vertices and connectivity) is that while the vertex sampling and the

connectivity information are linked to the temporally coherent shape, they usually

contain no temporal coherence. The model-based approaches usually encode the

original meshes only at keyframes (encoded intra-only) which are then gradually

deformed to replace the rest of the frames [YKL06; TSM07; MYA08; NYA10; TM12;

Mam+22]. The video-based approaches, on the other hand, deduce the connectiv-

ity from the decoded data [HKM04; Xia+10; Xia+12; Hou+12; Hou+13a; Hou+13b;

Hou+14b; TM13; Hou+14a; Hou+15; Alf+22; Hua+22]. This is because the frames

are densely resampled to the image domain, and thus vertices reconstructed from

neighbouring pixels can be connected by an edge. A surface extraction from the occu-

pancy network representation [ZGT23] also deduces a connectivity that is different

from the original. There is also a second motivation for not preserving the original

connectivity: remeshing to obtain a more exploitable structure. This is mainly used

in progressive approaches [YKL06; Mam+22], but for example, the proposal by In-

terDigital for the MPEG V-DMC [Mar+22] also performs simplification as a way of

further reducing the data rate.

The approaches based on ME [GSK03; HYA07; YA10] and prediction of data

structures [HYA08; Fer+10] can preserve the original set of mesh vertices. However,

most of these methods did not directly address the encoding of the connectivity

information [HYA07; HYA08; Fer+10].

The earliest method for TVM compression proposed by Gupta et al. [GSK03]

is the only one that assumes temporal coherence of connectivity between frames.

It thus encodes the connectivity using simple update operations. This, however,

works only on synthetic sequences and is highly impractical for real-world data

(e.g., 3D-scanned human actors).

Yamasaki et al. [YA10] were the first to acknowledge that the connectivity infor-

mation occupies a considerable amount of the compressed data stream and should

be considered if one proposes an efficient TVM compression method that preserves

the mesh structure. In static mesh compression approaches, the mesh connectivity

is usually encoded first and then used to drive the geometry coding. Unfortunately,

to the best of our knowledge, no one was ever able to propose a connectivity-driven

geometry coding method for TVMs that efficiently exploits temporal coherence.

Faramarzi et al. [FJB20] attempted to do this but failed in comparison to intra-only

approaches. Alternatively, the vertex positions can be encoded more efficiently sep-

arately, which leads to their reordering. Conventional connectivity coding meth-

ods (e.g., Edgebreaker [Ros99] or TFAN [MZP09]), however, also reorder vertices.

Some approaches used permutation maps to relate these two reordered sets [YA10;

FJB20], but this requires additional

∑𝑛−1

𝑖=0
log

2
(𝑚𝑖!) bits of data, where 𝑛 is the num-

ber of frames and 𝑚𝑖 is the number of vertices of the frameM𝑖, to be transmitted.
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Graziosi [Gra21] proposed to store the connectivity as a part of a 2D mesh. The

mesh shares the connectivity with the original frame, but the position of each vertex

stores the pixel coordinate in the image domain to which the original vertex was

mapped. This 2D mesh is then encoded using an intra-only method (e.g., Google

Draco). In Sony’s patent [GZT22], the connectivity is rasterized into an image and

then reconstructed by the decoder using segmentation. These two approaches are,

however, still quite impractical.

Connectivity coding for known geometry

From all the existing structure-preserving methods, the most effective way of stor-

ing the connectivity of a TVM was proposed by Doumanoglou et al. [Dou+14b].

They encode the geometry first and then use this information to predict the con-

nectivity based on the fact that if two vertices are close enough, they are very likely

connected by an edge. Their method uses a modified TFAN [MZP09] algorithm,

which instead of the conventional TFAN symbols encodes indices to the list of 𝑘

nearest neighbours.

Although not used in TVM compression, there are quite a few other connectiv-

ity coding methods given a fixed geometry. The field, in which the motivation for

this type of connectivity coding first arose, is progressive compression. Gandoin

et al. [GD02] have pointed out that for non-manifold meshes, it is better to encode

the geometry independently before the connectivity. Their method is based on kd-

tree decomposition. Subdividing a tree cell is equivalent to splitting a vertex into

two, with a certain connectivity update, which is encoded using the geometry as a

prediction. A similar connectivity update was also used by Peng et al. [PK05].

GEncode, a single-rate general mesh (e.g., surface or volume mesh) compression

scheme proposed by Lewiner et al. [Lew+06] encodes connectivity during a traversal

through themesh. To signalwhich vertex should be connected to the currently coded

cell (e.g., a face in a surfacemesh) themethod encodes an index in the list of candidate

vertices given a certain geometric function and a selected range of its values. The

method works for meshes of arbitrary topology and dimension embedded in spaces

of an arbitrary dimension.

Marais et al. [MGS07] claimed that due to advancements in point cloud com-

pression, it is possible to encode the geometry separately as a point cloud and then

exploit the global vertex position information to improve the performance of the

connectivity encoding. The triangles are encoded in a slightly modified fixed traver-

sal similar to the one used in the Edgebreaker algorithm [Ros99]. A position of a

tip vertex of the currently coded triangle is predicted using the parallelogram or

the midpoint scheme, which is then rotated and scaled to better match the vertices

ahead of the current gate, and the rank of the correct tip vertex in the list of nearest

41
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neighbours around the prediction is encoded.

For highly regular data, Chaine et al. [CGR09] proposed a connectivity cod-

ing approach based on surface reconstruction. Both the encoder and the decoder

perform an iterative surface reconstruction algorithm, and the encoder signals the

differences between the actual and the reconstructed surface. The method applies

only to triangles that are part of a Delaunay tetrahedralization of points. The rest

of the triangles must be encoded less efficiently.

4.5.2 Versatility
By dropping versatility (ability to process general input), one can make more as-

sumptions about the character of the encoded data. It is also important to distin-

guish between whether the method fails to process more general data or is merely

inefficient when compressing such data. Both of these properties for each method

are summarized in columns Versatility and Designed for of Table 4.1.
The most limiting assumption on input data was made by Gupta et al. [GSK03].

They expected synthetic data on input, which allowed them to efficiently encode

the connectivity, as was described in the previous section. The method does not fail

for general input sequences, but its performance is very poor on such data.

All themethods based on expression invariant parameterization [Xia+10; Xia+12;

Hou+12; Hou+13a; Hou+13b; Hou+14b] can handle only facial data and only in a

very specific form, which contains one outer boundary and three inner boundaries

located at both the eyes and themouth. This is due to themethod being incorporated

directly into the data acquisition pipeline.

The polycube-parameterization-based approach [Hou+14a; Hou+15] is limited

to sequences of constant topology, given by the fact that it uses a static polycube pro-

vided by the user, which reflects this topology. Although there are algorithms for

obtaining the polycube parameterization automatically even for surfaces of gen-

eral topology [Yu+14], to the best of our knowledge, there is no approach that

also achieves temporal coherence. Additionally, the authors only theorize that the

method works on TVMs and for experiments, they used dynamic meshes.

Since currently, the TVMs are primarily used for representing human actors,

there have been quite a few methods (mainly model-based) that are optimized to

work on human data. Assuming the TVM captures a performance of a human actor,

the method can expect a specific ground truth underlying structure (head, arms and

legs connected to the torso) and type of movement (articulated around joints), even

though noise introduced into data, for example, during scanning, might distort the

actual topology andmotion. These approaches can be divided into two classes: those

using tracked skeletons [MYA08; NYA10; Dou+14a; Dou+14b] and those using Reeb

graphs [TSM07; TM12; TM13]. While not stated in the original papers, it is theo-
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retically possible to adapt the skeleton-based approaches to sequences representing

articulated surfaces of different constant ground-truth topologies (Const. GT Top.
in Table 4.1) (e.g., animals, articulated robots), but this ground-truth structure must

be known before encoding. The Reeb-graph-based approaches can handle general

sequences of varying topology, although not efficiently, except the original approach

of Tung et al. [TSM07], which uses heuristic rules to detect spurious self-contact

in the topology of the graph, as these rules are designed only for human sequences.

Theoretically, a different set of rules could be designed for a different surface of

constant ground-truth topology, but this adaptation is much more difficult than the

adaptation of skeleton-based approaches for such data.

Constant ground-truth topology (Const. GT Top.) is also assumed by Yang et

al. [YKL06]. Although their method is agnostic of the character of the underlying

represented data, it is, to some extent, more limited than the approaches discussed in

the previous paragraph. Since it replaces the sequence by the first frame propagated

in time, it is crucial for the performance of the method that the first frame reflects

the underlying topology. For this reason, it works best on data of constant actual

topology of the frames.

The rest ofME-based [HYA07; YA10], prediction of data structure-based [HYA08]

and video-based [HKM04; FJB20; Gra21; GZT22; Mar+22; Alf+22; Hua+22] meth-

ods put no assumptions on the shape and structure of the represented data other

than the assumption of the presence of temporal coherence.

Versatile temporal models

Whilemost efficient in terms of geometry compression, themodel-based approaches

are notorious for limiting the type of data they can handle. This is, however, not

necessarily an issue of the used models, but usually of the approaches themselves.

There are model-based approaches that can handle general input [TM12; Mam+22;

ZGT23], unfortunately, none of themodels used in thesemethods is directly suitable

for structure-preserving compression.

It is certainly possible to extend the versatility of a constrained model. One

good example is the tracked template used by Yang et al. [YKL06]. Bojsen-Hansen

et al. [BLW12] presented a tracking pipeline for surfaces of evolving topology, which

can update the tracked template if a change in topology is detected and record map-

ping for the updated parts to preserve inter-frame one-to-one correspondences. The

result is a Time-varyingmeshwith temporally coherent connectivity. Unfortunately,

for structure-preserving compression, this model still has a large footprint, which

makes it impractical for structure-preserving TVM compression, since it must be

encoded alongside the data.

Although, to the best of our knowledge, there is only a single method for TVM
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4. Time-Varying Mesh Compression

compression based on deep learning techniques [ZGT23], in the future, this ap-

proach will likely become increasingly popular. There are many possible places in

the compression pipeline, where deep learning could be utilized, and it already is

used in different compression domains, for example, for context modelling of en-

tropy coder in point cloud compression [Bis+20], but the most probable part is once

again the temporal model. We will not go into depth on this topic, but examples of

deep learningmethods that could be potentially incorporated as a versatile temporal

model are the deformation field ofOccupancyFlow [Nie+19] andNeural Deformation
Graphs proposed by Božič et al. [Bož+21], to name a few.

4.6 Summary
The simplest methods for TVM compression are based on ME or the prediction of

spatial structures. These approaches are simple, can be simply adjusted to preserve

the original mesh connectivity and can handle general input. Their main drawback

is their inefficiency.

Current model-based methods are the most efficient in terms of compression

of TVM geometry. Both state-of-the-art methods for TVM compression can be

classified as model-based: the structure-preserving method of Doumanoglou et

al. [Dou+14b] and the future MPEG V-DMC method based on the proposal by Ap-

ple [Mam+22].

For textured TVMs, it is best to use a method which uses video compression.

These also work well for densely sampled TVMs with colours as vertex attributes.

They can mostly handle general input, but they are difficult to modify to preserve

the original connectivity.

We believe the research area of TVM compression still has a lot of gaps, mainly

the structural preservation and versatility, which were presented in the previous sec-

tion. Other than that, there is also a motivation for real-time compression [Ort+16],

where these two challenges can be potentially ignored, but current methods are ei-

ther too complex or inefficient to be used instead of intra-only approaches. For our

research, we focus on offline compression, with the potential of future adjustments

for real-time scenario once satisfactory compression rates are achieved.

The field of perceptual metrics of distortion for TVMswas alsomostly neglected

so far. It was only considered by MPEG when evaluating the proposals for MPEG

V-DMC, who, however, based their evaluation on perceptual metrics for videos.

To the best of our knowledge, there is no perceptual metric for TVMs that works

directly with its geometry.
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Compression 5
The TVM compression is much more closely related to the compression of DPCs

than the compression of DMs. This is because existing methods use similar tech-

niques for data reduction since there are also no explicit correspondences between

the frames. That is why we chose the same categorization into sections, albeit in a

different order, which reflects better the timeline of development in this field. The

content of this chapter is summarized in Table 5.1.

Table 5.1: Overview of existing methods for DPC compression. Methods are in the order in which

they appear in the chapter. Highlightedmethods are considered state-of-the-art.Ref. column contains

the most relevant reference for the given method. Columns Versatility and Designed for show the

type of input data the method handles. Columns Iso. show whether the method preservers structure

(Isomorphism). Symbol meaning: ✓ = Yes, ✗ = No, ❋ = Optional.

Method Ref. Category Subcategory Versatility Designed for I
s
o
.

Projection around skeleton [LKB10] Model/Video Skeleton/Projection Const. GT Top. Human ✗

Fitted triangle mesh [ACO16] Model Tracked surface Const. GT Top. Const. Top. ✗

Face detection [Yan+18b] Model Face detection Human Upper body ✗

Octree XOR [Kam+12] Struct. Octree General General ✓

Sorted occupancy values [GQ17] Struct. Octree General General ✓

Distance-based context [Que+18] Struct. Octree General General ✓

Super-resolution for octree [Gar+19] Struct. Octree General General ✓

MuSCLE [Bis+20] Struct. Octree General General ✓

Cellular automata transform [MPL20] Struct. Octree General General ✓

Silhouette4D [RPM21] Struct. Silhouette tree General General ✓

Super-resolution + CNN context [KT22] Struct. Octree General General ✓

Curve fitting [Dar+12] ME — Struct. light sc. Struct. light sc. ✓

Feature change detection [CK12] ME — General General ✗

Graph-based ME [TCF16] ME/Struct. — General General ✓

ICP macroblocks [MBC16] ME — General General ✗

k-d tree partitioned ME [Kat+17] ME — General General ✓

Correspondence-driven MC [QC17] ME — General General ✗

TSS extension to MPEG G-PCC [San+21] ME — General General ✗

Plane fitted LiDAR data [FLZ20] Video Range image LiDAR LiDAR ✗

MPEG V-PCC [ISO19] Video Projection General General ❋

Projection on rotating planes [Sch+19] Video Projection General General ❋

Global patch packing [Liu+19] Video Projection General General ❋

Patch resegmentation [SL22] Video Projection General General ❋

3D ME hint for HEVC [Li+20] Video Projection General General ❋

MPEG V-PCC + ME [Kim+20] Video/ME Projection General General ✗

Body part segmentation [Cao+20] Video/Model Projection Human Human ✗

View-PCC [Zhu+21] Video Projection General General ❋
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5.1 Temporal-model-based methods
As far as we know, the earliest DPC compression method that incorporates a tempo-

ral model as a primary paradigmwas proposed by Lien et al. [LKB10]. They combine

compression using a tracked skeleton with the video-based approach to achieve in-

teractive performance for a tele-immersion system. They fit the first frame of the

sequence to each subsequent frame using an articulated version of the ICP algo-

rithm [BM92] driven by the skeleton. Points around the links of the skeleton of

both the encoded and the first frame are projected into a cylindrical grid and the

difference between the two images is encoded.

Anis et al. [ACO16] replaced the original DPCwith a semi-regular TVM. For each

selected keyframe, they construct a coarse Poisson surface reconstruction [KH13]

which is then iteratively subdivided and fitted to the point cloud frame. This itera-

tive process is also applied to non-keyframes, albeit with the base mesh of the last

keyframe on the input. This way, each subsequence is represented by a dynamic

mesh and only the motion vectors must be encoded for non-keyframes to represent

the vertex trajectories. The hierarchical structure of the subdivided mesh allows

encoding the values using graph wavelet transform [NO13].

For the purposes of tele-immersion, Yang et al. [Yan+18b] designed a compres-

sion method for human upper bodies. Assuming a minimal movement of the head

of the captured person, a complete point cloud is encoded only for once every four

frames (I-frame). For the rest of the frames (P-frame), the method detects a human

face; only this part is transmitted and placed over the geometry of the I-frame.

5.2 Prediction of data structures
Since DPCs are usually stored in the voxelized form in octrees, many methods in-

corporate the prediction of data structures.

The earliest method using prediction of data structures was proposed by Kam-

merl et al. [Kam+12]. It is based on a binary serialization of an octree (see Figure 5.1).

When processing a certain non-empty node of the current frame, only the XOR dif-

ference between its value and the value of the corresponding node in the previous

frame is encoded. This approach is also one of the few that works even for data that

was not voxelized. While it stores the data in an octree, it allows optional encoding

of relative positions of points inside a cell.

Garcia et al. [GQ17] proposed a method which combines multiple previous oc-

trees into one for prediction. The nodes of the reference octree are sorted in ascend-

ing order of the bytes representing their occupancy, which results in a permutation

map of the nodes. This permutation is then applied to the nodes of the coded frame.

Since the values of both the reference and the coded frame are expected to be similar,
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5.2. Prediction of data structures

the values of the coded nodes should be almost in an ascending order, which can be

exploited by context-adaptive coding.

Figure 5.1: Serialization of an octree. A byte value is assigned to each non-leaf node

based on the occupancy of its child nodes. Source: [Kam+12]

Queiroz et al. [Que+18] modelled the occupancy probabilities given a distance

to the closest occupied voxel in a reference frame, which is obtained either as the

previous frame or a prediction of the current frame level-of-detail given the previous

frame and all the already encoded levels of detail of the current frame.

Anothermethod proposed byGarcia et al. [Gar+19] uses context switching based

on the predicted occupancy. The prediction is constructed hierarchically during

encoding based on the previous frame and the previously encoded level of detail of

the current frame by super resolution (see Figure 5.2).

(a) By Example (b) By Neighborhood Inheritance

Figure 5.2: Super-resolution modes for constructing the reference octree.

Source: [Gar+19]
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Biswas et al. [Bis+20] trained a neural network to model the context-based prob-

abilities of octree occupancy symbols. The considered context consists of the occu-

pancy of the ancestor nodes and the occupancy of the previous frame.

Milani et al. [MPL20] used cellular automata transform on octree occupancy

symbols to assign the most frequent symbols larger values. The resulting serializa-

tion contains large runs of 1-value bits, which is preferable when encoding such data

using arithmetic coding. Since the decoder does not know the symbol frequencies,

they can be deduced from the previous frame.

Peixoto et al. [PMR20] constructed a binary tree over a regular occupancy grid,

where each tree node contains a slice of the geometry along a selected principal

axis. The geometry in the slice is represented as a silhouette image (projection along

the selected axis). The structure of the tree and the encoding order allow some of

the values to be omitted from the coding stream. When estimating current symbol

probability, the rest of the values are encoded with context modelling, which con-

siders values at specified positions (e.g., neighbouring cells, the corresponding cell

in the previous frame). In their subsequent work [RPM21], the authors improved

the method’s compression rate using context selection, in which a specified number

of positions is selected from 24 predefined during preprocessing so that the entropy

is minimized.

Kaya et al. [KT22] used a convolutional neural network (CNN) to encode occu-

pancy values of an octree. A certain level of detail of the octree is encoded in layers

along a specified axis, each layer in blocks of size 2 × 2. Coding context is obtained

by upsampling the previously encoded level of detail from the current frame and

processed by the CNN to model the symbol probabilities. The method exploits tem-

poral coherence only to some extent: the CNN is pre-trained on a subset of frames

and encoded alongside the data. The neural network is then adapted to each frame

during encoding.

5.3 Motion estimation
There are only a few methods that are based solely on ME. For this reason, we will

list here all that use ME as the main technique for data reduction.

Daribo et al. [Dar+12] exploited that in the grid-pattern-based 3D scanned

frame, subsequent points usually lie on a spatial curve. They proposed multiple

spatio-temporal predictors to encode these curves, which also fit curves between

the frames.

Champawat et al. [CK12] perform corresponding octree node comparison using

specified features (number of points, mean position, eigenvectors and eigenvalues

of covariance matrix of positions and colours). Under specific conditions, the node

from the previous frame can be reused as is or translated or rotated to replace the
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current node. Otherwise, the current node is encoded the standard way (e.g. XOR

approach [Kam+12]).

The method proposed by Thanou et al. [TCF16] is an ME extension of the XOR

approach of Kammerl et al. [Kam+12]. They construct k-NN graphs of leaf nodes

of the octree constructed over the geometry of the previous and the current frame.

All the points are assigned feature vectors, which are then used to find correspon-

dences between the two frames. A few of the points are selected for motion esti-

mation and their motion vectors are propagated through the graph. Finally, the

previous frame is motion-compensated and the geometry is encoded as in the XOR

approach [Kam+12].

Mekuria et al. [MBC16] designed a lossy progressive compression algorithm

with near real-time performance based on ICP registration between macroblocks

(nodes of an octree 𝐾 levels above the final level of detail, where 𝐾 is a parame-

ter). When all specific criteria are met (e.g., a similar number of points), the coded

macroblock is replaced by the rigidly transformed geometry of the corresponding

macroblock in a reference frame.

Kathariya et al. [Kat+17] proposed a compression method based onmotion com-

pensation between blocks represented by cells of a k-d tree. It divides DPC into

subsequences. For each frame, the geometry is partitioned into blocks using split-

ting planes of a k-d tree constructed over the first frame of its subsequence. The

frame is then encoded block-by-block using the previous frame. Points are inserted

to (resp. removed from) each block of the reference frame so that it contains the

same number of points as the corresponding coded block. The method then finds

one-to-one correspondences between the points of the two blocks. These are en-

coded alongside residues.

Queiroz et al. [QC17] re-used the correspondences found during 3D surface

reconstruction [Dou+15] to compute the motion vectors. The frames are split into

cubic blocks of specified size. Currently coded block can be replaced by the motion-

compensated corresponding previous block if it provides a good approximation.

They also employ smoothing and morphological operations to close gaps caused by

the lossy compression.

Santos et al. [San+21] extended the intra-only algorithm of the MPEG G-PCC

standard [ISO20] to consider temporal coherence by incorporating the Three-Step

Search (TSS) algorithm [Kog81] commonly used in video compression. Matching

of the macroblocks and their final alignment for motion compensation was done

using ICP [BM92].
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5.4 Video-based methods
Video-based dynamic point cloud compression methods are mostly derived from

MPEG V-PCC [ISO19] which uses projection to transform geometry into the image

domain. To the best of our knowledge, only two methods were proposed indepen-

dently of MPEG V-PCC, one of which was already described in Section 5.1. The

second independent method was proposed by Feng et al. [FLZ20]. It converts Li-

DAR point cloud sequences into range images. Plane fitting is used to represent pixel

regions. The method exploits the accompanying sensory data to fit a coded frame

onto a keyframe. The method attempts to represent geometry by planes parallel to

those of the keyframe and if successful, only the offsets of the planes are encoded.

5.4.1 MPEG V-PCC and related methods

The growing need for an efficient compressionmethod for point cloud data was also

recognized by the MPEG. This led to the call for proposals in early 2017 [ISO17].

The work of Mekuria et al. [MBC16] was selected as a baseline for comparison

with all the proposed methods. As a result, 13 proposed solutions were collected

from various industry and research contributors and three different test model cases

were identified: TMC1 for static data (e.g., cultural heritage), TMC2 for dynamic

data, and TMC3 for dynamically acquired data (e.g., LiDAR). Eventually, due to the

similarities in the approaches, TMC1 and TMC3 were merged to form TMC13,

which led to the development of geometry-based point cloud compression (MPEG

G-PCC), the ISO/IEC 23090-9 standard [ISO20]. The method evolved from TMC2

is called video-based point cloud compression (MPEG V-PCC), the ISO/IEC 23090-

5 standard [ISO19]. Although there are plans to incorporate temporal prediction

into the G-PCC standard or its successor [LF19], as of now (October 2023) it is still

intra-only. For this reason, only the V-PCC standard and the work directly related

to it, which considers inter-prediction, will be described in this section.

As mentioned in Section 4.4, MPEG V-PCC [ISO19] is based on the orthogonal

projection of geometry into planar patches. First, the point normals are estimated.

Each point is then assigned to one of the predefined planes around the frame (e.g.,

planes that form the axis-aligned bounding box) with the closest normal. The points

are then clustered by grouping neighbouring points with similar orientations of

normals to create patches. Patches are then projected onto the corresponding plane

and assigned positions in the parametric domain by patch packing. In the first frame

in a group of frames, this process places the patches in order induced by the patch

index so that it is guaranteed that there is no overlap. For the rest of the frames,

patches are matched using intersection over union (IOU) and placed in similar po-

sitions to achieve temporal coherence. Three different images are generated: depth

50
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(distance of a point to the projection plane), occupancy (information on whether the

pixel contains geometry information, which is required due to the complex shape

of the patch) and attribute (e.g., colour). Note that two points in the same patch can

be projected onto the same position. In this case, V-PCC allows encoding multiple

images to allow lossless coding. Occupancy information is usually encoded with

reduced resolution, while depth and attribute images are padded with smooth tran-

sitions between values. The method allows additional smoothing in post-processing

to reduce the gaps between patches caused by quantization.

The method proposed by Schwarz et al. [Sch+19] was one of the contributions

to the initial call for proposals for point cloud compression. It was similar to the

proposal which eventually evolved into the V-PCC standard. Instead of segmenting

the point cloud into patches, the geometry is orthogonally projected as is onto a

series of planes rotating around the bounding box. Instead of using the occupancy

map, this information is signalled through the depth image. The temporal coherence

is exploited implicitly by the fact that points of two subsequent frames projected on

the same pixels are usually close to each other spatially.

To improve the temporal placement of patches, Liu et al. [Liu+19] used global

patch packing. This method performs the patch packing on all frames inside a group

of frames by tracking corresponding patches identified by IOU. While this achieves

a larger overlap of corresponding patches, the resulting video can be less compact

due to slight differences in the patch shapes between the frames. This was already

addressed by Shi et al. [SL22], who proposed to resegment the patches to remove

uncorrelated parts.

Li et al. [Li+20] focused on improving the V-PCC coding performance when

assuming the HEVC [Sul+12] algorithm is used for video compression. They used

3D motion estimation to hint to the video coder the 2D motion vectors between

the pixel positions of corresponding points.

This approach was extended by Kim et al. [Kim+20] to work regardless of the

video codec utilized. They encode keyframes using the unmodified V-PCC. For

the rest of the frames, only the 3D motion vectors and attribute differences are

encoded. Keyframes are selected as the frames, where the motion-compensated

approximation achieves an error above a specified threshold.

Cao et al. [Cao+20] proposed a model-based human DPC compression method

which utilizes MPEG V-PCC. The method uses deep learning to segment the point

cloud into body parts. For each body part, a sequence of affine transforms is found

representing its movement. The method selects a few keyframes, which are encoded

using V-PCC, and then used to replace the rest of the frames when deformed using

the found affine transforms.

View-PCC algorithm proposed by Zhu et al. [Zhu+21] uses global orthogonal

projection similarly to Schwarz et al. [Sch+19] but only to four planes (front, back,
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left and right). Patches are used only to represent points that were occluded in

the global projection. The method attempts to find corresponding local patches

using the IOU of patch 3D bounding boxes and then places corresponding patches

at similar positions in the image domain. If a camera viewpoint information is

provided, the method can further reduce the data rate by encoding only the visible

parts.

5.5 Current challenges
As of 2023, DPC compression is already considered a well-studied research area.

Nevertheless, it seems that new ideas are still being introduced. Currently, in terms

of inter-frame geometry compression, the researchers are still focused on improving

performance in the approaches based on the prediction of data structures, or in

video-based compression.

In the case of the prediction of data structures, the focus is on efficient ways

of modelling the context for occupancy symbols [GQ17; Que+18; Gar+19; Bis+20;

PMR20; RPM21; KT22]. The hierarchical property of these approaches also recently

gave motivation for efficient super-resolution, in which the goal is to predict the

structure of the next level of detail given the current level and previously encoun-

tered information [Gar+19; KT22].

Current video-based approaches are usually based on or inspired by the MPEG

V-PCC standard [ISO19]. The temporally coherent placement of projected patches

remains the main challenge [Liu+19; SL22], although this can be addressed by im-

proving motion estimation in video coding [Li+20].

5.6 DPC compression in the context of
TVMs

Despite the similarities between the problems of DPC and TVM compression, these

two research areas developed in quite different ways. One might argue that DPC

compression is already quite ahead in terms of compression efficiency. In this sec-

tion, we will point out some of the most interesting differences between the DPC

and TVM compression approaches. We will also discuss, which ideas from DPC

compression might be relevant for TVMs.

5.6.1 Differences
The most notable difference between the two areas is that it is much more com-

mon to preserve the original structure of data in DPC compression. The reason is

that it is much simpler to do so since there is no connectivity to be encoded and
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the only thing a method must preserve is the original number of points. Surpris-

ingly, the structure is mostly discarded by ME-based approaches [CK12; MBC16;

QC17; San+21], which in TVM compression is one of the categories where methods

preserve this information [GSK03; HYA07; YA10].

The most popular approaches in TVM compression are based on temporal mod-

els or video coding. While video-based methods are also popular in DPC compres-

sion, the most prominent approaches are based on the prediction of spatial data

structures. As already mentioned in Section 5.2, this is mainly due to the voxelized

data on input. While in TVM compression, this approach was used in only two al-

gorithms, which were proposed quite early on and only used spatial grids, in DPC

compression, it is used to this date and the current approaches are quite sophisti-

cated.

On the other hand, there are not as many model-based methods, although the

models used are fairly similar to the ones used in TVM compression. We do not

know why these approaches are not as popular as in TVM compression other than

the fact that the prediction of data structures is a much more intuitive approach in

this scenario. This, however, means that DPC compression methods are generally

more versatile, even though dynamic point clouds are used to represent the same

scenes as the ones represented by TVMs (mainly the human performances). The only

exception in versatility is LiDAR point cloud compression, in which if data obtained

during one rotation of the scanner is represented as a single frame, a specialized

method can be used [FLZ20]. Such a method can exploit the sensory data of the

scanner to align the frames and represent the data as range images since due to

the way the geometry was obtained, no line through the scanning position and any

point contains any other point.

Although video-based approaches are popular in both areas, before MPEG stan-

dardization efforts, these were not as common in DPC compression as they were in

TVM compression. This increase in popularity can be attributed to the increase in

the sampling density of the data. On coarsely sampled surfaces, which were more

common in the past, video-based approaches are inefficient in terms of geometry

compression. The reason why there were more video-based methods for TVM com-

pression before MPEG standardization is that their efficiency lay in texture com-

pression since this information is dense. However, texture also assigns attributes to

points on faces between the vertices. In the case of point clouds, even though there

are also methods for point cloud parameterization [SSC19], attributes are usually

only assigned to sampled points, which is equivalent to vertex attributes on meshes.

As a consequence, all the video-based DPC compression methods use orthogonal

projection to map points into the image domain.

In DPC compression, it is also more common to incorporate deep learning,

mostly used for context modelling [Bis+20; KT22]. In the future, we believe that this
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slight difference will disappear and that more and more approaches in both areas

will incorporate neural networks as a part of their pipeline.

5.6.2 Implications

The fact that the development in DPC compression is useful for TVMs has been

already shown multiple times with MPEG V-PCC. Faramarzi et al. [FJB20] treated

mesh geometry and attributes as point cloud data and compressed it using the V-

PCC. Instead of incorporating the approach into their pipeline, the proposals for

MPEG V-DMC adjusted it to work with mesh data [Mam+22; Mar+22; Alf+22;

Hua+22; GZT22]. We argue that MPEG V-PCC is not the only DPC approach that

can serve as an inspiration for TVM compression.

In terms of mesh geometry compression, more interesting approaches to exam-

ine are the ones using the prediction of spatial structures due to their performance

on coarsely sampled surfaces. One could once again combine a certain point cloud

codec (e.g. the Silhouette4D approach or its variants [PMR20; RPM21]) with con-

nectivity compression, although the connectivity coding must account for vertex

reordering. Note that as was shown by Thanou et al. [TCF16], it is also possible to

combine these approaches with other paradigms, for example, motion estimation

or temporal models.

Other than incorporating such methods as a whole, we can also find inspira-

tion in the techniques they use. One such example is working with the context of

encoded symbols, such as reordering values to an order exploitable by context adap-

tive coding [GQ17; MPL20], context modelling [Que+18; Gar+19; Bis+20; PMR20;

RPM21; KT22], context switching [Gar+19; PMR20] or context selection [RPM21],

which can be used when encoding any value, not necessarily the occupancy of a

voxel. This could be a way of exploiting any remaining coherence in the already

temporally predicted data.

Although it is also a consequence of the way the input data is stored, DPC com-

pression methods are more frequently hierarchical, which means that the geometry

is processed from coarse to fine levels of detail. This way, one can also use the coarse

information combined with the temporal information to predict the current level of

detail. In Section 5.5, we have alreadymentioned that currently, the most prominent

way to achieve this in DPC compression is super-resolution [Gar+19; KT22]. Some

TVM compression methods already use coarse-to-fine processing of the geome-

try [YKL06; HYA08; Mam+22], but only the method proposed by Han et al. [HYA08]

does not require remeshing.
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5.7 Summary
Although the fields of compression of TVMs and DPCs have similar objectives and

settings, and the approaches use similar paradigms, their development was con-

siderably different. From the two, the development of DPC compression can be

considered a bit ahead, mainly due to some challenges (e.g., connectivity coding)

being not of concern when compared to TVM compression. Regardless of the field

possibly being less challenging, there is lots of inspiration to be drawn for possible

further development of the field of TVM compression.

Current state-of-the-art methods preserving the structure use either video com-

pression (for dense point clouds) [ISO19] or prediction of spatial data structures

(for coarser data) [RPM21; KT22] and can achieve lossless compression of voxelized

data with rates of around 0.8 bits per occupied voxel [KT22]. Further reduction is

achieved by approaches that do not preserve the structure, which are mainly ME-

based [San+21], but there are also approaches based on MPEG V-PCC [Kim+20;

Cao+20; Zhu+21] that discard part of the data.

Even though the area of DPC compression is well studied, further improvements

for both lines of the research (video-based, prediction of spatial data structures) are

expected in the future. Also, deep learning is being incorporated more and more

and we believe this trend will continue.
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This chapter describes our first contribution relevant to the topic of this thesis.

In this work, we have focused on improving the performance of high-pass cod-
ing [SCT03] under mechanistic distortion metrics. It was our only contribution

to the field of DM compression. The paper was presented at SGP 2018 and pub-

lished in the Computer graphics forum journal [VD18]. An executable binary of our

reference implementation is available at http://meshcompression.org/sgp2018.

6.1 Background
High-pass coding, often called Laplacian mesh compression, is a compression strat-

egy based on encoding differential coordinates obtained by applying a discrete

Laplace operator to the input geometry [SCT03]. Assuming the geometry is rep-

resented by a matrix X ∈ R|𝑉 |×3
, the differential coordinate matrix D ∈ R|𝑉 |×3

is

obtained as follows:

D = MX,

where M ∈ R|𝑉 |×|𝑉 |
is a Laplacian matrix corresponding to the chosen Laplace

operator discretization. Naïvely, one could try to quantize and encode the values in

D and reconstruct the geometry by solving the Poisson equation:

M ˆX = ˆD,

where
ˆD is the matrix of differential coordinates distorted by quantization. How-

ever,M is a singular matrix (differential coordinates are translation invariant) and

the problem cannot be solved trivially. To this end, the original authors proposed

to select one or more vertices per connected component of the mesh as anchor ver-
tices [SCT03]. For each anchor vertex, a row with a single nonzero unit element at a

position corresponding to the index of such vertex is appended toM, and a rectan-

gular Laplacian matrixM+ is obtained. Using the rectangular Laplacian matrix, an
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extended differential coordinate matrix D+ is obtained. The values that are added

w.r.t. D are the positions of anchor vertices. With the linear system extended by

anchor data,
¯X can be reconstructed using the least squares method:

M⊤
+M+ ¯X = M⊤

+ ¯D+.

Due to the properties of the normal matrix M⊤
+M+ (symmetric, sparse, PSD), the

problem can be solved using Cholesky factorization. Since the geometry is the infor-

mationwewant to encode and is thus not available to the decoder, only the so-called

combinatoric discretizations of the Laplace operator, which can be constructed only

with the knowledge of mesh connectivity (Kirchhoff or Tutte discretizations), can

be used in High-pass coding.

The Laplacian mesh compression was also adapted to dynamic meshes [VP11].

The process is more or less the same, the only difference is that the input ma-

trix X now has different dimensions and stores vertex trajectories in an uncom-

pressed form or already reduced to some extent, for example using PCA [Váš+14] or

sparse and low-rank matrix approximation [Hou+17]. Additionally, the geometric

discretizations of the Laplace operator can be used (Cotan [PP93], MV [Flo03], In-

trinsic Delaunay [BS07]), as long as some geometry (e.g., an averagemesh) is encoded

beforehand [Váš+14].

Figure 6.1: A typical result obtained by mesh compression. The original on the far left has

been compressed down to a 35kBfile (i.e. at 11 bpv) using fourmethods, from left to right: the

proposed approach, high-pass coding, error diffusion and weighted parallelogram encoding.

The red channel was preserved from the original, i.e. any red/cyan tint indicates an error.

While the weighted parallelogram result appears noticeably rougher than the original, the

Laplacian-based methods preserve the original smoothness. The high-pass coding result is,

however, visibly deformed, and the chin close-up reveals that not even the error diffusion

modification eliminates deformations completely.

Mechanistic approaches (e.g., parallelogram prediction [TG98] or weighted par-

allelogram [VB13]), whichwork directlywith Euclidean coordinates of vertices, tend

to produce high-frequency artifacts at low data rates that are easily visible, especially
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in flat or generally smooth parts of input surfaces. The high-pass coding approach,

on the other hand, tends to produce low-frequency distortion, which is much less

likely to be detected visually. However, it does not perform well under mechanistic

measures since it is not able to control the upper bound of the absolute coordinate

error – while the positions of anchor points are distorted only by the quantization,

the distortion of the positions of other vertices is influenced by the distortion of all

the vertices lying between the given vertex and the nearby anchor points. This issue

was already addressed in [AK15; LV14], however, while both approaches improve

the mechanistic properties, neither of them brings the performance on par with

parallelogram prediction. A visual comparison of the distortion introduced by these

approaches is shown in Figure 6.1.

6.2 Algorithm description
Our approach is based on two proposals. The first is to encode the anchor data

separately and use a reduced Laplacian matrixM′
instead ofM+. It is obtained by re-

moving all the rows and columns corresponding to anchor vertices from the original

matrix and updatingD so that it contains known values. If at least one anchor point

is selected per connected component,M′
has full rank and the reconstruction can be

done by solving a simple linear system. If the original Laplacian matrixM was sym-

metric and positive semi-definite (PSD), which is the case for Kirchhoff and Cotan

discretizations, the Cholesky decomposition can be applied to the reduced matrix

as well. This approach was already studied in the original work [SCT03]; however,

the authors pointed out that it led to higher error accumulation and caused spikes

around anchor points. Nevertheless, we show that when it is combined with the

following process, these issues are mitigated.

The key novelty of our approach is based on a deeper exploration of the recon-

struction process. The decoder first constructs the factor of the Cholesky decom-

position L such that LL⊤ = M′
. Then, it solves L ¯Y = ¯D by forward substitution.

Finally,
¯X is obtained by solving L⊤ ¯X = ¯Y. Our focus is on the forward substitution.

An 𝑖-th row of
¯Y is computed as follows:

ŷ𝑖 =
ˆd𝑖 −

∑𝑖−1

𝑗=1
𝐿𝑖,𝑗ŷ𝑗

𝐿𝑖,𝑖
.

The error accumulation is caused by the influence of the distortion introduced in

the previous 𝑖 − 1 rows. However, the encoder knows the ground-truth value of

Y = L⊤X. We thus propose adjusting the value of
ˆd𝑖 on the fly so that ŷ𝑖 is as close

as possible to its original value. While some error accumulation is also present in

backward substitution, the total effect is substantially reduced by having an error-

limited
¯Y.
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6.3 Experimental results
We have tested our approach on both the static and dynamic meshes. To measure

the performance, we used both mechanistic and perceptual distortion metrics. The

data rates reported in this section also contain connectivity information, which was

in all the cases encoded using the Edgebreaker algorithm [Ros99]. In all experiments,

we use 0.1% of vertices as anchor points, chosen at random. Other than that, we

have also measured the computational performance of our method.

6.3.1 Static meshes
In the case of static meshes, we have compared the results of our approach with

the results achieved using weighted parallelogram (WP) [VB13], high-pass coding

(HPC) [SCT03] and error diffusion (Diffusion) [AK15]. HPC andDiffusion used Tutte

Laplacian, while our approach worked with the Kirchhoff discretization since that is

the one that yields the PSD Laplacian matrix. The mechanistic error was measured

using MSE, while perceptual performance was evaluated using dihedral-angle mesh

error (DAME) [VR12].
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Figure 6.2: RD curve comparison for Palmyramodel.

An example comparison of RD curves for both error metrics is shown in Fig-

ure 6.2. In terms of MSE, our method achieves results comparable to WP. Moreover,

at very low data rates (between 2.5 and 7.5 bpv for the Palmyra model), it even

achieves the best results from all four approaches. In terms of perceptual perfor-

mance, it achieves comparable results to all HPC-based approaches.

We have also compared the results of the four approaches with the quantisa-

tion set to achieve the data rates of 10 and 15 bpv. This experiment was performed

on 7 selected models commonly used for benchmarking in computer graphics (see

Table 6.1) and 1723 models from thingi10k dataset [ZJ16], which were all the mod-

els that had more than 2000 vertices and did not cause a failure of any of the four
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compression methods. In the case of thingi10k dataset, we have measured relative

performance to the state-of-the-art method given the error metric (see Table 6.2).

Both results show that our method performs comparably to state-of-the-art meth-

ods in both mechanistic and perceptual criteria.

Table 6.1: Static mesh compression results in comparison with high-pass coding

(HPC) [SCT03], error diffusion [AK15], and weighted parallelogram (WP) [VB13].

DAME MSE

rate

[bpv]

proposed HPC Diffusion WP proposed HPC Diffusion WP

bunny 10 4.046E-08 3.507E-08 4.368E-08 8.894E-08 9.877E-09 6.819E-07 3.758E-08 8.874E-09

35946 15 1.166E-08 1.063E-08 1.291E-08 2.596E-08 7.318E-10 4.203E-08 3.541E-09 7.490E-10

bimba 10 9.975E-06 8.628E-06 1.060E-05 3.118E-05 1.094E-05 5.962E-04 5.643E-05 7.449E-06

8857 15 6.056E-07 5.965E-07 6.807E-07 8.626E-06 9.278E-07 4.329E-05 5.063E-06 5.919E-07

fandisk 10 1.520E-04 1.141E-04 1.573E-04 5.909E-04 3.748E-05 1.278E-02 1.639E-04 4.143E-05

6475 15 3.756E-05 3.018E-05 4.066E-05 1.221E-04 1.893E-06 8.643E-04 1.058E-05 2.975E-06

maxplanck 10 1.645E-05 1.605E-05 1.877E-05 3.347E-05 4.820E-06 3.367E-04 3.137E-05 4.322E-06

25445 15 5.411E-06 5.348E-06 6.073E-06 9.277E-06 4.795E-07 3.062E-05 2.408E-06 3.396E-07

chindragon 10 9.577E-04 8.346E-04 1.038E-03 2.315E-03 4.843E-04 2.319E-02 2.212E-03 5.310E-04

585018 15 3.622E-04 3.251E-04 3.866E-04 7.176E-04 5.463E-05 2.384E-03 2.522E-04 5.072E-05

palmyra 10 1.476E-05 1.450E-05 1.635E-05 2.757E-05 8.002E-06 3.893E-04 4.888E-05 7.350E-06

492465 15 4.749E-06 4.541E-06 5.031E-06 7.240E-06 7.950E-07 3.563E-05 4.421E-06 5.322E-07

welshdragon 10 1.086E-02 1.180E-02 1.187E-02 2.083E-02 6.320E-03 3.391E-01 3.332E-02 5.401E-03

291892 15 3.446E-03 3.529E-03 3.599E-03 5.188E-03 5.810E-04 3.039E-02 3.065E-03 3.568E-04

Table 6.2: Relative compression performance comparison for results obtained from

1723 models selected from thingi10k dataset [ZJ16].

10 bpv 15 bpv

proposed HPC Diffusion WP proposed HPC Diffusion WP

D
A
M
E avg 1.380 1.192 1.307 38.87 1.315 1.176 1.232 24.15

stdev 0.781 0.628 0.503 1076 0.802 0.498 0.469 378.8

median 1.127 1.000 1.169 2.490 1.121 1.000 1.140 2.090

M
S
E

avg 13732 16038 13756 185.9 289659 300835 289963 237.7

stdev 568038 569510 568585 3621 1.2E+07 1.2E+07 1.2E+07 6767

median 1.054 124.7 5.438 1.000 1.322 117.1 6.511 1.000

6.3.2 Dynamic meshes
For dynamic mesh compression, we have compared 3 different coding approaches:

unmodified Laplacianmesh compression [VP11; Váš+14], error diffusion [AK15] and

our approach, combined with 2 discretizations of Laplace operator yielding positive

semi-definite Laplacian matrix (Kirchhoff and Cotan), which overall generated 6

different configurations. Vertex trajectories on input were already reduced using

PCA projection on the first 100 basis vectors. The comparison was done on selected

models from commonly used dynamic mesh datasets [AG04; Vla+08]. We have used

KG error [KG04] for mechanistic and STED [VS11] for perceptual performance.
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RD curve comparison for the samba sequence is shown in Figure 6.3. Due to poor
conditioning of the normalmatrix, Cotan discretization yieldsworse results at lower

data rates. However, since our approach works with the reduced Laplacian matrix,

this issue is prevented and the results are always on par with the best approach at

a given data rate. Table 6.3 shows that on all the tested datasets at data rates of 1.5

bits per frame per vertex (bpfv), our method achieves the best results, or is on par

with the best approach for a given sequence.
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Figure 6.3: RD curve comparison for samba sequence.

Table 6.3: Dynamic mesh compression results at 1.5 bpfv in comparison concerning

different Laplace operator discretizations.

dataset Kirchhoff

Diffusion

Kirchhoff

Proposed

Kirchhoff

Cotan

Diffusion

Cotan

Proposed

Cotan

S
T
E
D

samba 0.0236 0.0247 0.0215 0.0145 0.0141 0.0125

march 0.0221 0.0223 0.0200 0.0148 0.0147 0.0138

handstand 0.0376 0.0405 0.0345 0.0358 0.0502 0.0246

jump 0.0220 0.0213 0.0209 0.0199 0.0193 0.0197

K
G

samba 1.0474 0.5165 0.2643 0.8621 0.4093 0.1968

march 0.8566 0.4777 0.2943 0.5882 0.3659 0.2665

handstand 1.5786 0.8550 0.4320 1.7947 1.3516 0.3721

jump 0.6632 0.3213 0.2901 0.4956 0.2991 0.2879

6.3.3 Computational performance
Working with the reduced Laplacian matrix instead of the normal matrix results in

a performance improvement in decompression. This improvement is due to the al-

gorithm not having to evaluate the normal matrix and the reduced Laplacian matrix

having a smaller fill-in, which also means a smaller fill-in of the factor matrix. The

normal matrix also has a roughly squared condition number in comparison with the
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reduced Laplacian. This can be seen in Table 6.4, where we measured the condition

number of the matrix used for decompression, and times spent in factorization and

solving phases. One drawback of our method in terms of computational perfor-

mance is that the encoder now also has to perform the factorization to propagate

the error. Nevertheless, the decoding time is usually considered more important

since the data is expected to be encoded only once but decoded possibly multiple

times.

Table 6.4: Condition number and times spent during factorization and solving

phases (ms) for selected static meshes.

reduced Laplacian rectangular Laplacian

dataset cond. number

factor

[ms]

solve

[ms]

cond. number

factor

[ms]

solve

[ms]

bunny 6.24E+03 145 29 3.54E+06 952 47

bimba 6.21E+03 15 2 2.39E+06 84 11

fandisk 5.64E+03 15 2 3.13E+06 77 10

maxplanck 6.22E+03 70 7 3.35E+06 518 35

chindragon 1.54E+04 12158 490 4.08E+07 99635 1423

palmyra 8.75E+03 6175 274 1.02E+07 67793 890

welshdragon 1.73E+04 945 123 4.66E+07 6782 344

6.4 Summary
We have proposed a modification of the high-pass coding scheme, which achieves

better control over the propagation of error in the reconstruction process by adjust-

ing the quantized values during forward substitution. Some error is still accumulated

during the subsequent back-substitution. Nevertheless, we have shown that this

modification considerably improves the mechanistic performance of the method

on both static and dynamic meshes when compared to the current state of the art.

The modification also improves the computational performance of the decoder. The

most significant limitation of the approach is, however, its performance on highly

regular meshes, where the differential coordinates are usually of small magnitude.

On such surfaces, the method tends to overcompensate in a zig-zag pattern, raising

the entropy to higher values than those of the original method.

Although we planned to further improve upon this approach, due to the decline

in the popularity of the fields of static and dynamic mesh compression since pub-

lishing this work, we have eventually decided to pursue different goals, mainly the

design of temporal models for TVM compression.
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In this chapter, we will discuss our method for compressing molecular dynamics

(MD) trajectories. To exploit the temporal coherence in such data, we have developed

a temporal model denoted canonical molecule, which captures the general features
common in all the input frames. This work was published in the Journal of Molecular
Graphics andModelling [DMV20]. The source code of themethodwas released under

Apache License v2.0 and its current version is available at https://jandvorak-uwb.

github.io/pmc/.

7.1 Molecular trajectories
MD trajectories represent the movement of molecular systems computed during

MD simulations. Analogously to dynamic surface representations (TVMs, DMs and

DPCs), we can think of the MD trajectories as a sequence of captured states of

the represented smoothly moving molecular system, sampled at different discrete

points in time. Assuming the studied molecules do not undergo any chemical reac-

tion throughout the simulation (i.e., bonds between atoms do not change), we can

represent the MD data as a single unoriented graph 𝐺 = (𝑉, 𝐸) (each molecule cor-

responding to a single connected component), where𝑉 is a set of atoms and 𝐸 is a set

of bonds between them. Each atom is assigned a vector v𝑖 =
[
v1

𝑖
, v2

𝑖
, . . . , v𝑛

𝑖

]
∈ R3𝑛,

where v𝑓
𝑖
is the position of the atom in the frame 𝑓 , and 𝑛 is the number of frames.

This is similar to the graph representation of a dynamic mesh.

With increasing computational power,more complexmacromolecules and longer

trajectories of their atoms can be simulated. However, this data also becomes in-

creasingly large, with datasets often occupying several gigabytes of disk space. For

molecular data, compression approaches aiming tominimise mechanistic distortion

are more desirable (yet there are few methods based, for example, on PCA, e.g., the

PCZ format) since the compressed data is expected to be further analyzed after de-
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compression. Most of the compression formats in use are being developed as a part

of various MD simulation tools (e.g., Gromacs XTC [GRO18] and TNG [SLS11]).

HRTC [Huw+16], the most recent compression format, promises data rates below

1 bit per coordinate (bpc), however, we were unable to reproduce such results in our

experiments. The current limitation of the previous work, in our opinion, is that

the atom bond information is not exploited to its full potential.

7.2 Algorithm description
Our key observations are that the molecular movement is quite constrained (e.g.,

the distance between two atoms forming a bond does not change much throughout

the sequence) and that the greatest variance in atom positions over time occurs in

so-called dihedral angle movement (see Figure 7.1). To exploit this information, we

propose to construct the canonical molecule, which is a hypothetical molecule frame

with connectivity identical to the compressed data and atom locations v̂𝑖 chosen to

locally fit all the frames.

Figure 7.1: Molecular movement is mainly constrained to so-called dihedral angles.

The algorithm proceeds as follows: first, the canonical molecule is constructed

and encoded (see Section 7.2.1). Then the data is encoded during a bond-induced

connectivity traversal. In each traversal step, unprocessed neighbours of a partic-

ular atom are frame-by-frame encoded by locally aligning the canonical molecule

to the currently processed frame and coding the alignment information and local

corrections (see Section 7.2.2).

7.2.1 Canonical molecule
The canonical molecule is constructed incrementally, starting with a single atom

and its neighbourhood, and determining additional atom locations in a Depth First

Search (DFS) traversal of the connectivity.

The first atom 𝑖 is chosen arbitrarily while preferring vertices of valence at least

2. Its position v̂𝑖 in the canonical molecule is the average position computed over

all frames. The position of each neighbour 𝑗 is determined concerning the relative
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7.2.1. Canonical molecule

position in the first frame as follows:

v̂𝑗 = v̂𝑖 +
(
v1

𝑗 − v1

𝑖

)
.

Next, a DFS is started from the initial atom and in each step, the locations of

all neighbours of a particular atom are determined. In each step, there is an atom 𝑖

and its predecessor in DFS with an index 𝑝, whose positions v̂𝑖 and v̂𝑝 were already
determined, and a set of indices of neighbours C, whose positions are yet to be

determined:

C = { 𝑗 ∈ N (𝑖) | 𝑗 ∉ D} ,

whereN (𝑖) is the neighbourhood of 𝑖-th atom, andD is a set of indices of all vertices,

whose canonical positions are already determined.

First, we center all the local neighbourhoods in all frames, so that v̂𝑖 coincides
with the origin. Next, we align all the local neighbourhoods in all frames so that the

vector v̂𝑝 - v̂𝑖 coincides with the negative direction of the Z axis of the coordinate

system. Having a unit vector v = (𝑥, 𝑦, 𝑧) to be aligned, an aligning rotation matrix

Mv can be constructed as

Mv =


−𝑦
ℎ

𝑥
ℎ

0

𝑧𝑥
ℎ

𝑧𝑦

ℎ
−

(
𝑥2

ℎ
+ 𝑦2

ℎ

)
−𝑥 −𝑦 −𝑧

 ,
where ℎ =

√︁
𝑥2 + 𝑦2.

In each frame, we construct the previous edge direction

e𝑓 =
(
v𝑓𝑝 − v𝑓

𝑖

)
/ ∥v𝑓𝑝 − v𝑓

𝑖
∥,

and transform all neighbouring vertices into a common coordinate system as

v̄𝑓
𝑗
= Me𝑓

(
v𝑓
𝑗
− v𝑓

𝑖

)
.

Now, we must find a set of positions that captures the distribution of the lo-

cal neighbourhoods. Note that the alignment by matrixMv results in an arbitrary

rotation around the Z axis. We must account for this by solving for an angle of

rotation for each frame as well. We formulate the problem as a variational problem

of minimizing the following energy:

𝐸 =
∑︁
𝑓

∑︁
𝑗

∥v̂𝑗 − R𝛼𝑓 v̄
𝑓

𝑗
∥2, R𝛼𝑓 =


cos 𝛼𝑓 − sin 𝛼𝑓 0

sin 𝛼𝑓 cos 𝛼𝑓 0

0 0 1

 , (7.1)

over the unknown positions v̂𝑗 of the vertices 𝑗 ∈ C in the canonical molecule and

unknown rotation angles 𝛼𝑓 . The energy is optimised iteratively. Starting with some
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7. Model-based Molecular Trajectory Compression

initial guess on the positions v̂𝑗, we alternate two steps: determining optimal rotation

angles with positions fixed, and determining optimal positions with rotation angles

fixed (See Figure 7.2). Since the total energy is positive and decreases in each step, the

algorithm converges to a minimum. In our verification experiments, this minimum

always turned out to be the global minimum of the energy, and only five iterations

sufficed to obtain a result that was very close to it.

Figure 7.2: Construction of a canonical molecule for the neighbourhood of a single

atom. a) Input positions (each colour represents the situation in a different frame).

b) The initial guess. c) Determining optimal rotation angles. d) Determining optimal

positions. The result of d) will be used as the initial guess for the next iteration until

convergence.

Having the canonical positions fixed and considering a single unknown angle

𝛼𝑓 , minimizing Eq. (7.1) can be rewritten as a 2D rotation alignment problem

𝛼𝑓 = arg min

𝛼

∑︁
𝑗

∥v̂𝑗 − R𝛼v̄
𝑓

𝑗
∥2. (7.2)

A closed-form solution is derived as follows:

𝛼𝑓 = arg min

𝛼

∑︁
𝑗

(
v̂𝑗 − R𝛼v̄

𝑓

𝑗

)⊤ (
v̂𝑗 − R𝛼v̄

𝑓

𝑗

)
= arg min

𝛼

∑︁
𝑗

(
v̂⊤𝑗 v̂𝑗 − 2v̂⊤𝑗 R𝛼v̄

𝑓

𝑗
+

(
R𝛼v̂𝑗

)⊤ R𝛼v̄
𝑓

𝑗

)
Since R⊤

𝛼 = R−1

𝛼 , the last term can be rewritten as

(
R𝛼v̂𝑗

)⊤ R𝛼v̄
𝑓

𝑗
= v̂⊤

𝑗
R−1

𝛼 R𝛼v̄
𝑓

𝑗
=

v̂⊤
𝑗
v̄𝑓
𝑗
. This term is constant and thus can be omitted in the minimization, as well as

the first term v̂⊤
𝑗
v̂𝑗.Minimization of the remaining termmay be further simplified by
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7.2.2. Prediction scheme

omitting the multiplicative constant and rewriting it as maximization of its negative

as follows:

𝛼𝑓 = arg max

𝛼

∑︁
𝑗

v̂⊤𝑗 R𝛼v̄
𝑓

𝑗

= arg max

𝛼

∑︁
𝑗

(
𝑥̂ 𝑗

(
cos 𝛼𝑥̄

𝑓

𝑗
− sin 𝛼 𝑦̄

𝑓

𝑗

)
+

𝑦̂𝑗

(
sin 𝛼𝑥̄

𝑓

𝑗
+ cos 𝛼 𝑦̄

𝑓

𝑗

)
+ 𝑧 𝑗𝑧𝑓𝑗

)
= arg max

𝛼

©­«cos 𝛼
∑︁
𝑗

(
𝑥̂ 𝑗 𝑥̄

𝑓

𝑗
+ 𝑦̂𝑗 𝑦̄𝑓𝑗

)
+

sin 𝛼
∑︁
𝑗

(
𝑦̂𝑗 𝑥̄

𝑓

𝑗
− 𝑥̂ 𝑗 𝑦̄𝑓𝑗

)ª®¬
= atan2

©­«
∑︁
𝑗

( 𝑦̂𝑗 𝑥̄𝑓𝑗 − 𝑥̂ 𝑗 𝑦̄
𝑓

𝑗
),
∑︁
𝑗

(𝑥̂ 𝑗 𝑥̄𝑓𝑗 + 𝑦̂𝑗 𝑦̄
𝑓

𝑗
)ª®¬ .

Since the angles are independent of each other, they can be solved for independently.

Next, having the angles fixed, the canonical molecule positions are updated. This

is trivial, since the solution of minimizing the energy given by Eq. (7.1) with fixed

angles can be expressed as

v̂𝑗 =
1

𝐹

∑︁
𝑓

R𝛼𝑓 v̄
𝑓

𝑗
.

This iterative process yields the shape of the local neighbours with the entry

edge aligned with the Z axis. To obtain global positions, the reverse mapping is

applied. With the global position of the preceding atom v̄𝑝 and the global position
of the current atom v̄𝑖, the vector p =

(
v̄𝑝 − v̄𝑖

)
/ ∥v̄𝑝 − v̄𝑖∥ is used to build the

required rotation matrixM⊤
p .

After the canonical molecule is constructed, it is encoded using a simple predic-

tive compression method. The molecule is again traversed during a DFS and the

traversal predecessor positions are used as predictions. The corrections are then

quantized and encoded using an entropy coder.

7.2.2 Prediction scheme
TheMD trajectories are also encoded during aDFS traversal; however, the canonical

frame is used for prediction.

71



7. Model-based Molecular Trajectory Compression

The position of the initial vertex v𝑓
𝑗
in the current frame 𝑓 is predicted by its po-

sition in the canonical molecule. The corresponding correction vector is computed

as:

c𝑓
𝑗
= v𝑓

𝑗
− v̂𝑗.

The encoded position of the initial vertex is then used to predict the positions of its

neighbours.

Figure 7.3: The situation during one step of aDFS traversal. Already encoded vertices

are black, vertices to be encoded are white, and the current vertex is 𝑖.

In each step of the DFS traversal, the newly visited vertex will be denoted 𝑖 and

its predecessor on the path to the root will be denoted 𝑝, see Figure 7.3. A set C
contains all neighbours of 𝑖 that are still to be encoded and the set P of preceding

neighbours of 𝑝 is defined as:

P = {𝑘 ∈ N (𝑝) | 𝑘 ≠ 𝑖} .

The local neighbourhood in the canonicalmolecule and the local neighbourhood

in the current frame 𝑓 are transformed into a common coordinate system, where

both
¯v̂𝑖 (transformed v̂𝑖) and v̄

𝑓

𝑖
(transformed v𝑓

𝑖
) coincide with the origin and both

edges to the predecessor 𝑝 are aligned to the negative direction of the Z axis. This

is almost identical to the alignment discussed in Section 7.2.1, only this time it is

necessary to also transform v̂𝑘 and v𝑓
𝑘
for all 𝑘 ∈ P . After that, a registration is

applied using Eq. (7.2) to align all
¯v̂𝑘 to their corresponding counterparts v̄𝑓

𝑘
. The

result is a rotation matrix R𝛽 , which transforms both local neighbourhoods into a

unique initial state. This rotation is then applied to positions of all 𝑗 ∈ 𝐶 as follows:

p𝑗 = R𝛽
¯v̂𝑗,

u𝑓
𝑗
= R𝛽v̄

𝑓

𝑗
.

To compensate for the dihedral angle movement, the encoder estimates an an-

gle 𝛼 which represents rotation R𝛼 aligning p𝑗 and u𝑓
𝑗
, similarly to Eq. (7.2). The

corrections are then calculated as follows:

c𝑓
𝑗
= u𝑓

𝑗
− R𝛼p𝑗.
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The alignment angle 𝛼 and all the corrections are then quantized and encoded using

a Huffman coder [Huf52]. To exploit the temporal coherence in the alignment angles,

only the differences between two subsequent quantized values are encoded.

To reconstruct the atom position during decoding, the decoder follows the en-

coding process to obtain the predictions p𝑗. The reconstructed positions of decoded
vertices r𝑓

𝑗
are then calculated as:

r𝑓
𝑗
= r𝑓

𝑖
+M⊤

e𝑓

(
R𝛼p𝑗 + c𝑓

𝑗

)
,

where Me𝑓 is a rotation matrix mapping the edge between vertices 𝑖 and 𝑝 to the

Z-axis. Note that 𝛼, p𝑗 and c
𝑓

𝑗
are all distorted by the compression.

7.3 Experimental results
We demonstrate the applicability of our compression method on several datasets.

Protein datasets (p53, ARID andDhaA31) come from the research of certain enzymes

and their mutations and from cancer research. Models of liquids (ethanol, water) are

also included. Quantitative information about all tested datasets is listed in Table 7.1.

Table 7.1: Datasets information - the number of atoms, snapshots, the timestep Δt
and the absolute size of uncompressed data for 32 bpc (1 GB = 10

9
bytes).

Atoms Snapshots Δt [ps] Size [GB]

p53 3 008 11 501 4 0.42

p53-0.05 3 008 12 001 0.05 0.43

ARID 2 127 62 501 16 1.60

DhaA31 4 645 100 000 2 5.57

ethanol 4 500 10 001 1 0.54

water 4 000 10 001 1 0.48

7.3.1 Configuration
The compression performance of our method is controlled by three quantization

parameters:

• Canonical molecule quantization 𝑞𝑐

• Angle quantization 𝑞𝑎

• Residual quantization 𝑞𝑟

To achieve low data rates, it is crucial to assign these parameters an appropriate

value. Although only 𝑞𝑟 influences the data distortion, it is necessary to adjust the
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7. Model-based Molecular Trajectory Compression

remaining parameters as well. Optimal values of 𝑞𝑎 and 𝑞𝑐 depend on 𝑞𝑟 . When

encoding with very low precision, it is redundant to use too precise prediction. On

the other hand, highly inaccurate prediction causes a significant increase in data

rate, which is more apparent at higher precision.

For 𝑞𝑟 ∈ {0.1, 0.01, 0.001, 0.0001}, we first fixed 𝑞𝑎 and measured the bitrate

for various values of 𝑞𝑐, then the same experiment was executed with fixed 𝑞𝑐 and

various values of 𝑞𝑎. To capture the relation between 𝑞𝑟 and the remaining parame-

ters, we identified for each tested value of 𝑞𝑟 the best configuration of the remaining

parameters.
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Figure 7.4: Relation between data rate and precision of quantization of canonical

molecule on DhaA31 dataset. Data rate axes are not consistent between charts.

Figure 7.4 shows the relation between data rate in bits per coordinate (bpc)

and 𝑞𝑐 for dataset DhaA31. For other datasets, the results exhibit similar behaviour.

When focusing on the results of a single value of 𝑞𝑟 (for example Figure 7.4c), one can

observe the increase of bitratewith very low precision. However, very high precision

still does not cause any significant data rate increase, since the size of the canonical

molecule data is only a small fraction of all the encoded data. We expect that the

influence of a higher precision of canonical molecule is significant for datasets with
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fewer frames, but such datasets usually do not require any compression at all. When

comparing the results of different values of residual quantization 𝑞𝑟 , one can see that

for a lower residual precision, the point where the entropy starts to significantly

increase is lower than in the case of the higher precision. However, the difference is

quite small. Additionally, for any of the tested values of 𝑞𝑟 , we can select any value

of 𝑞𝑐 between 0.00015 and 0.0015 and obtain satisfactory results. This is supported

by Table 7.2, which shows the best-found values of 𝑞𝑐 for each 𝑞𝑟 and each dataset.

Table 7.2: Best found values of 𝑞𝑐 for all tested datasets

𝑞𝑟 = 0.0001 𝑞𝑟 = 0.001 𝑞𝑟 = 0.01 𝑞𝑟 = 0.1

ARID 0.00063 0.00125 0.00125 0.00315

DhaA31 0.0008 0.0008 0.0008 0.0112

p53 0.0018 0.0018 0.002 0.01

p53-0.05 0.002 0.00224 0.00224 0.0112

ethanol 0.01 0.018 0.01 0.01

water 0.08 0.1 0.1 0.1
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Figure 7.5: Relation between data rate and precision of quantization of angles on

ARID dataset. Data rate axes are not consistent between charts.
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Figure 7.5 visualizes how changing values of 𝑞𝑎 affects the data rate for the ARID

dataset. As with the experiment with 𝑞𝑐, the results for various datasets were very

similar with a single exception being the water dataset, for which no angle data is

encoded. In all cases, the best values were found around 𝑞𝑎 = 0.1 (see Table 7.3).

However, the 𝑞𝑎 still depends on 𝑞𝑟 since with increasing precision of residual quan-

tization the best precision of angles also increases.

Table 7.3: Best found values of 𝑞𝑎 for all tested datasets

𝑞𝑟 = 0.0001 𝑞𝑟 = 0.001 𝑞𝑟 = 0.01 𝑞𝑟 = 0.1

ARID 0.112 0.112 0.112 0.16

DhaA31 0.112 0.112 0.112 0.16

p53 0.1 0.112 0.112 0.16

p53-0.05 0.1 0.112 0.112 0.14

ethanol 0.16 0.28 0.28 0.355

The results show that a connection between 𝑞𝑟 and the rest of the configuration

parameters exists, however, it is so weak, that it is possible to pick static parameters

and the results are still satisfactory. For this reason, we have decided to use static

configuration 𝑞𝑐 = 0.001 and 𝑞𝑎 = 0.1 in the rest of the experiments. This makes the

𝑞𝑟 the only parameter that controls the rate and the distortion. Tables 7.4 and 7.5

show the data rate cost of using static configuration instead of the experimentally

found best values.

Table 7.4: Data rate difference in bpc when using 𝑞𝑐 = 0.001 instead of best found

values

𝑞𝑟 = 0.0001 𝑞𝑟 = 0.001 𝑞𝑟 = 0.01 𝑞𝑟 = 0.1

ARID 8.17E-04 2.82E-05 3.43E-05 1.72E-04

DhaA31 1.26E-05 6.99E-06 2.99E-05 1.62E-03

p53 2.73E-04 1.87E-04 1.86E-04 1.57E-03

p53-0.05 3.33E-04 1.80E-04 2.33E-04 2.49E-03

ethanol 1.67E-03 1.01E-03 8.55E-04 7.89E-04

water 1.17E-03 1.05E-03 1.04E-03 9.34E-04

Table 7.5: Data rate difference in bpc when using 𝑞𝑎 = 0.1 instead of best found

value

𝑞𝑟 = 0.0001 𝑞𝑟 = 0.001 𝑞𝑟 = 0.01 𝑞𝑟 = 0.1

ARID 1.64E-03 1.65E-03 3.17E-03 3.36E-02

DhaA31 3.23E-03 2.95E-03 3.96E-03 3.62E-02

p53 0 3.48E-04 2.01E-03 3.35E-02

p53-0.05 0 1.62E-03 3.40E-03 2.62E-02

ethanol 1.40E-02 4.15E-02 4.31E-02 6.49E-02
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7.3.2 Rate-distortion comparison
RDcomparisonwas done against XTC [GRO18], TNG [SLS11] andHRTC [Huw+16].

To measure the distortion, we used the maximal Euclidean distance between the

original and the reconstructed position of any atom in any frame:

𝑒𝑟𝑟 = max

𝑖,𝑓




r𝑓𝑖 − v𝑓
𝑖




 . (7.3)

Note that this error measure is more sensitive than MSE. The default configura-

tion was used for competing methods with one exception of qp-ratio (the ratio of
quantization to approximation error) of HRTC, which was set to 𝑞𝑝 = 0.1 since it

provided consistently better results than the default value. The main interest was in

the precision of 2 decimal places (in Å) since this is the same as the default precision

of the XTC [GRO18] and TNG [SLS11] formats (3 decimal places, in nanometers).

The rate-distortion comparison was evaluated on ARID, DhaA31, p53, water and

ethanol datasets. Example RD curve for protein datasets is shown in Figure 7.6a and

for liquids in Figure 7.6b.
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Figure 7.6: Comparison of rate-distortion curves of tested compression methods

on selected datasets.
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For proteins, our proposed compression scheme outperformed all compared

methods. The difference w.r.t. the XTC algorithm was usually around 5 bpc and

3-4 bpc w.r.t the TNG algorithm when comparing results of equal precision. The

HRTC performed worst in all cases. In the case of liquids, the difference w.r.t TNG

and XTC was less significant. In fact, at very high precision, both methods obtained

better results. However, our method still performed best at the precision usually

used in lossy compression.

7.3.3 File size comparison

We have compared the results of PMC against other state-of-the-art methods and

file formats in terms of bpc and the absolute compressed file size in gigabytes. Other

than the methods compared in the previous section, we have also included the MD-

Traj H5 file format and a PCA-based compression scheme implemented in the PCA

Suite package (PCZ). The parameters of all tested methods were tuned to achieve a

good compression with a limited maximal error given by Eq. (7.3). We have consid-

ered the default precision limit of XTC coordinates in Gromacs, which allows the

deviation of each coordinate from its original value by +/− 0.005 Å. This gives us

the maximal error limit 𝑒𝑟𝑟 =
√

0.005
2 + 0.005

2 + 0.005
2 ≈ 0.00866 Å. The results

are summarized in Table 7.6. In the case of HRTC and PCZ, we were not able to

always achieve these error limits. For this reason, we also list the corresponding

errors.

Our method (PMC) achieved on average 5.2 bpc on protein datasets and 7.25

bpc on liquids for the error threshold 0.00866 Å, which is better than the results

of other tested methods. Nevertheless, we believe that other methods can be more

powerful in certain situations, for example, when atoms do not movemuch between

snapshots (higher sampling rate) or when the model does not have a stable three-

dimensional structure.

Table 7.6: Comparison of the proposed PMC against other formats in terms of the

absolute and relative size of compressed data (lower values are better, 1 GB = 10
9

B). The maximal allowed error limit (Eq. (7.3)) was ≈ 0.00866 Å. HRTC and PCZ

may exceed this limit.

Relative size of compressed data [bpc] Absolute size of compressed data [GB] Max. error [Å]

H5 XTC TNG HRTC PCZ PMC H5 XTC TNG HRTC PCZ PMC HRTC PCZ

p53 13.4 10.1 8.0 10.2 9.4 5.2 0.17 0.13 0.10 0.13 0.12 0.07 0.00875 2.54

p53-0.05 11.9 10.2 6.4 8.2 9.7 5.1 0.16 0.14 0.09 0.11 0.13 0.07 0.00880 1.55

ARID 14.1 10.2 9.0 16.5 5.6 5.2 0.70 0.51 0.45 0.82 0.28 0.26 0.00050 3.72

DhaA31 14.7 10.1 8.1 12.9 6.6 5.2 2.57 1.77 1.41 2.24 1.15 0.91 0.00906 3.56

ethanol 15.5 9.4 9.4 14.6 7.5 7.0 0.26 0.16 0.16 0.25 0.13 0.12 0.00883 25.79

water 15.4 8.8 8.8 13.8 14.7 7.5 0.23 0.13 0.13 0.21 0.22 0.11 0.00876 11.91
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7.3.4 Running time evaluation
We have also compared the running time of the proposed PMC method against

implementations of the XTC, TNG and HRTC compression algorithms on all tested

datasets. We were able to parallelize the calculation and encoding/decoding of the

predictions, while the encoding of time-coherent angles remained single-threaded.

All tests were performed on an Intel
©
Core

TM
i7-4930K CPU running at 3.40GHz.

This CPU offers 12 logical cores (6 physical cores with hyper-threading support)

and the system has 64 GiB RAM (1600 MHz). The results in Tables 7.7 show the

comparison of encoding and decoding times. For large molecules, the proposed

method is approximately twice as slow compared to XTC, which turned out to be

the fastest single-threadedmethod, but the decoding performance is similar for both

methods. In the case of liquids, the decoding times are three times slower.

Table 7.7: Performance of the proposed PMCmethod compared against XTC, TNG

and HRTC.

Encoding time [s] Decoding time [s]

Method PMC XTC TNG HRTC PMC XTC TNG HRTC

Threads 12 1 1 1 1 12 1 1 1 1

p53 3.1 9.0 3.9 5.6 161.9 3.3 6.0 4.9 5.6 18.5

p53-0.05 4.4 10.8 5.3 7.1 161.6 3.4 6.1 5.0 5.6 18.4

ARID 11.5 34.9 16.8 22.5 616.8 8.7 20.1 19.9 22.1 73.1

DhaA31 40.8 124.2 56.7 80.6 2191.9 29.2 69.8 69.5 80.7 270.0

ethanol 7.2 10.8 6.5 9.0 222.3 12.9 14.2 6.1 7.4 26.5

water 7.1 7.1 5.6 14.7 190.3 16.2 16.0 5.3 28.9 22.2

7.4 Summary
We have presented a new method for the compression of MD trajectories. The

method utilizes the information about atomic bonds in amolecule, captures the local,

mostly rotational, movement of atoms with respect to their bonded neighbours,

and uses this information for the prediction of atom positions in each frame. This

approach allows us to exploit the local stiffness that results from chemical bonds,

rather than relying on global stability. For proteins, the method achieves the average

data rate of 5.2 bpc (bits per coordinate) with the maximal error 0.00866 Å. The

results are substantially better than the results obtained with other state-of-the-art

methods and allow either saving 1.3-3.8 bits per coordinate at the same precision

or providing up to 10× better precision at the same data rate.
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Inspired by the success of the temporal-model-based approaches, such as the one

proposed by Doumanoglou et al. [Dou+14b], we have decided to focus on ways of

extending these approaches to more general mesh sequences. As a result, we have

proposed a novel temporalmodel for TVMs denoted tracked centers. The initial work
presented at ICCS 2021 [DVV21] is discussed in Section 8.3. Since then, we have

been able to publish two additional improvement papers. The first improvement

was presented at SMI 2021 and published in Computers & Graphics [Dvo+22a] (see
Section 8.4). The current version of the model was presented at ICCS 2023 [DHV23].
Since this paper presents two distinct contributions, these will be discussed in sep-

arate sections (Sections 8.5 and 8.6). The source code containing the versions of

our method presented in our two most recent papers was released under MIT

License and is available at https://gitlab.kiv.zcu.cz/jdvorak/arap-volume-

tracking.

8.1 Motivation
The most popular way of obtaining a temporal model to represent TVMs is sur-

face tracking. Usually, a certain template surface is sequentially aligned to all the

frames using non-rigid registration [MS10; Li+09]. The simplest methods rely on

the template surface being given a priori and on an assumption that it reflects the

ground-truth topological information. Such methods usually fail in the presence of

frequent self-contact in the input. This issue might be mitigated to some extent by

subdividing the surfaces into patches [CBI10; HBI13], or by identifying frames with

significant changes in appearance and working with subsequences between such

frames [Guo+15; Col+15; Pra+17; Moy+21]. Bojsen-Hansen et al. [BLW12] detect

topology changes and adjust the template shape accordingly, however, they incor-

rectly assume surface correspondences to be bijective outside of the adjusted parts.

81

https://gitlab.kiv.zcu.cz/jdvorak/arap-volume-tracking
https://gitlab.kiv.zcu.cz/jdvorak/arap-volume-tracking


8. Volume Element Tracking for Time-Varying Meshes

Budd et al. [Bud+12] build a shape similarity tree, which allows alignment of the

more similar rather than subsequent frames.

In many practical scenarios where a surface is captured from multiple view-

points, the overall enclosed volume changes negligibly – it does not suddenly appear

or disappear. This, however, does not hold for the surface itself: a part might disap-

pear due to self-contact (see Figure 8.1). For this reason, some methods incorporate

volume information into tracking. For example, Wuhrer et al. [Wuh+15] used a

finite-element method to model the deformation of the provided template in places

where no correspondence was found. Slavcheva et al. [SBI17] used eigenfunctions of

the Laplacian operator on signed distance field evolution to model correspondences.

The most relevant approach to our work was proposed by Huang et al. [Hua+16;

Hua+18], who performed non-rigid registration of centroidal Voronoi tessellations

(CVTs). However, their approach does not enforce the smooth movement of the

represented surface, which might result in high-frequency tracking errors.

time

sp
a

ce

captured surface

hidden surface due to self-contact

tracked position of a center

Figure 8.1: Schematic of volume tracking in 1D space: During the sequence, two

objects (green and blue) touch and then separate.

Recently, machine learning models became popular for representing temporal

sequences. These are especially successful on sparse data (e.g., single-view RGBD

video). Relevant to our work is, for example, OccupancyFlow [Nie+19], a learned

occupancy function deformed by a neural vector field, as well as the work of Božič

et al. [Bož+21] who train a neural deformation graph. The main limitation of neural

models is, however, that working with them is less intuitive.

One additional thing to consider, if one plans to use a certain model in com-

pression, is its data footprint since the model will be encoded alongside the data.

While the tracked template surface can be encoded efficiently as a dynamic mesh,

attempts to adapt it to the encountered topology changes (e.g., by Bojsen-Hansen

et al. [BLW12]) quite often require large amounts of additional data to be stored.
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8.2 Tracked centers
Instead of points on the surface, we propose to track a fixed set𝐶 of 𝑘 points (denoted

centers), each representing a small volume surrounding it, whose positions vary in

time. Each center follows a certain trajectory c𝑖 =
[
c(0)
𝑖
, c(1)
𝑖
, . . . , c(𝑛−1)

𝑖

]
∈ R3𝑛,

where 𝑛 is the number of frames and c(𝑓 )
𝑖

is the position of the i-th center in the f-th

frame. Regardless of the method used to obtain them, the centers should

• cover all parts of the input object in each frame,

• be distributed evenly over the volume of the objects in each frame and

• move consistently in time, i.e. neighbouring centers should move coherently.

As will be discussed in the following sections, the difference between individual

proposed approaches is mainly in the interpretation of the last objective: whether

the movement consistency is global or only frame-by-frame, what information is

used to model center neighbourhood and what moving coherently means. These

differences are summarized in Table 8.1.

Table 8.1: Major differences between our proposed pipelines for obtaining tracked

centers.

Method Ref. Consistency Neighborhood Movement

PBT [DVV21] Frame-by-frame Proximity Smooth vector field

ARAP tracking [Dvo+22a] Frame-by-frame Proximity and IIR filtered

motion dissimilarity

As-rigid-as-possible

Max-based affinity [DHV23] Frame-by-frame Maximum of both proxim-

ity andmotion dissimilarity

As-rigid-as-possible

Global optimization [DHV23] Global Maximum of motion dis-

similarity

As-rigid-as-possible

Similarly to point clouds, the tracked centers are not connected. There is only

a particular notion of a center neighbourhood. For this reason, they can represent

surfaces of arbitrarily changing topology, as long as the surface provides a sufficient

notion of the inside/outside distinction. The model was also designed with data

footprint in mind. Since the ordering of the centers in each frame is consistent, we

can treat such data globally and reduce the center trajectories using PCA and encode

it efficiently, for example by the COBRA algorithm [VS09].

8.3 Proximity-based tracking
In the original method, we modelled the center neighbourhood using the spatial

proximity in the given frame. For this reason, in our subsequent work, we denote
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this method the Proximity-based tracking (PBT). The method proceeds frame-by-

frame, meaning that when computing the positions of centers in a certain frame, it

only considers the given frame and the previous frame.

8.3.1 Algorithm description
First, the frame is converted into a dense regular square voxel grid by sampling

the indicator function 𝐼𝐹 (𝑓 ) (x), which returns 1 in the interior and 0 otherwise.

To compute the indicator function, we originally used the ray-shooting technique,

essentially evaluating the number of intersections with the surface along a certain

ray. Choosing axis-aligned rays allows reusing the previously computed intersection

points for evaluating a whole column of the regular sampling grid. Note that this

is only possible for watertight models. Alternatively, the method can also accept

the sequence of voxel grids directly as input, which means that it can be applied

to any sequence of shapes for which it is possible to determine the inside/outside

information with an acceptable amount of certainty (e.g., implicit representations,

point clouds, etc.).

Center positions c(𝑓 )
𝑖

are initially set by sampling 𝑛 random occupied voxels. To

achieve a uniform distribution of the centers in the volume, we perform Lloyd’s

algorithm [Llo82]: For each center, its Voronoi cell 𝑉
(𝑓 )
𝑖

of occupied voxel positions

is iteratively evaluated, such as

𝑉
(𝑓 )
𝑖

=

{
x : 𝐼𝐹 (𝑓 ) (x) = 1 ∧ ∥x − c(𝑓 )

𝑖
∥ ≤ ∥x − c(𝑓 )

𝑗
∥
}
, (8.1)

for every 𝑗, and the center is moved to the centroid x̄(𝑓 )
𝑖

of such cell (see Figure 8.2).

The Lloyd’s algorithm ends after a fixed number of iterations. For the first frame,

the tracking already terminates.

Figure 8.2: A single step of Lloyd’s algorithm: each center (red) is moved to the

centroid of its corresponding Voronoi cell (black).

For any subsequent frame, after distributing the centers uniformly in the vol-

ume, we continue by estimating correspondences between the centers of the current

and the previous frame. Interpreting the correspondence estimation as an optimal
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assignment problem, we use the Kuhn–Munkres (also known as Hungarian) algo-
rithm [Kuh55]. For the weights of the candidate pairs, we use squared distances.

However, we also penalize any pairs for which the line connecting the two corre-

sponding centers passes outside of the object (see Figure 8.3).

Figure 8.3: Red and green dots represent different samplings of the same grey do-

main. The red correspondence lies partially outside of the domain and thus should

be penalized.

Finally, we apply an optimization process to ensure the consistency of the rep-

resented movement. Our energy 𝐸(𝑓 )
consists of uniformity and smoothness terms:

𝐸(𝑓 ) = 𝐸
(𝑓 )
𝑢 + 𝛽𝐸(𝑓 )

𝑠 . The uniformity term is evaluated as a squared distance to the

centroid x̄(𝑓 )
𝑖

of the Voronoi cell 𝑉
(𝑓 )
𝑖

(see Eq. 8.1):

𝐸
(𝑓 )
𝑢 =

1

2

∑︁
c𝑖∈𝐶

∥c(𝑓 )
𝑖

− x̄(𝑓 )
𝑖
∥2. (8.2)

Similar to Lloyd’s algorithm, it ensures uniform distribution of centers inside the

volume. The movement between frames can be represented by a vector field v sam-

pled at the centers in the previous frame. We measure the smoothness of the move-

ment by a squared length of Laplacian Δv using the Laplace operator discretization

proposed by Belkin [BSW08]:

𝐸
(𝑓 )
𝑠 =

∑︁
c𝑖∈𝐶

∥Δv
(
c(𝑓−1)
𝑖

)
∥2 =

1

|𝐶 |
∑︁
c𝑖∈𝐶

∥
∑︁
c𝑗∈𝐶

𝐻 𝑡
(
c(𝑓−1)
𝑖

, c(𝑓−1)
𝑗

) (
v𝑗 − v𝑖

)
∥2,

where v
(
c(𝑓−1)
𝑖

)
= c(𝑓 )

𝑖
− c(𝑓−1)

𝑖
= v𝑖 is a displacement vector between the position

of the center in the previous frame and its current position, and

𝐻 𝑡 (x, y) = 1

(4𝜋𝑡) 5

2

exp

(
−∥x − y∥2

4𝑡

)
is a Gaussian kernel with parameter 𝑡. 𝐻 𝑡

can also be interpreted as a proximity

weight capturing the notion of center neighbourhood. The closer the points x and

y are, the higher the value of 𝐻 𝑡 (x, y).
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To optimize this energy, we use gradient descent, i.e. in a series of steps, the

centers are shifted in the direction of the sum of the gradients of the two energy

terms. The procedure is terminated after a set maximum of iterations has been

performed, or when the gradient is sufficiently small for each c(𝑓 )
𝑖
. However, the

center positions obtained using the initial Lloyd’s algorithm already represent the

local optimum of the uniformity term 𝐸
(𝑓 )
𝑢 . Unfortunately, the gradient of 𝐸

(𝑓 )
𝑠 is

often not strong enough to exit this local optimum. To this end, we perform a few

iterations considering only 𝐸
(𝑓 )
𝑠 and then continue with the full energy 𝐸(𝑓 )

.

Tracking results of this method for three human mesh sequences (one TVM and

two DMs) are shown in Figure 8.4. To colour the results, we use PCA projection

coefficients in the first three principal directions. We normalize these coefficients

and interpret them as an RGB value. Such colouring shows the center consistency,

but can also serve as a way of detecting irregularly tracked centers (irregularities),
i.e., centers that moved to parts of the volume, where they should not belong since

such centers often have a different colour than their neighbours. Note that centers

are represented in our visualizations as spheres of a certain radius chosen solely for

clarity of results.

Figure 8.4: Results of the Proximity-based tracking on selected human performance

datasets.

8.3.2 Limitations
Our initial work was innovative in the way of proposing the tracked centers tem-

poral model and the objectives for obtaining the center trajectories. The algorithm

we proposed in this paper is, however, quite limited.

Some limitations have been identified in the optimization process. By modelling

the center movement smoothness with a vector field, the method often prefers

local displacements over a global rotational movement. This can be seen in Fig-

ure 8.7b, which shows tracking results of half a revolution of a pentagonal prism.

The proximity-based weights in the smoothness term ignore the topology of the

volume, whichmeans that two topologically distant parts influence each other when

in near proximity (see Figure 8.5). Also, the optimization strategy of using a gradient
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descent turned out to be quite inefficient and required too many iterations without

any guarantee of convergence.

Figure 8.5: Influence of topologically distant parts in the smoothness energy term

𝐸
(𝑓 )
𝑠 of proximity-based tracking.

Even without considering the optimization, the algorithm is considerably slow,

mainly because of the uniform initialization of the centers in the volume and the

correspondence estimation for each frame, which in our subsequent work, both

turned out to be unnecessary. The errors in correspondence estimation were also

one of the main causes of a large number of irregularities, alongside the proximity-

based weights. These irregularities can be seen in Figure 8.4, mainly on the hands

and legs.

8.4 As-rigid-as-possible volume tracking
In the following work, we have focused on improving the robustness of the process

of obtaining the centers. Since the method also uses an infinite-impulse-response (IIR)
filter to accumulate temporal information on center neighbourhood, we refer to this

method in our experiments as IIR-based tracking.

8.4.1 Overview of the improvements
In this work, we significantly improve the quality of tracked centers, mainly by in-

corporating anAs-rigid-as-possible (ARAP)movement energy term (see Section 8.4.2)

and by modelling the center neighbourhood by a so-called center affinity (see Sec-
tion 8.4.4). The ARAP energy permits a more efficient optimization strategy, which

will be discussed in Section 8.4.3. We also propose two metrics, which together give

a certain notion of the quality of tracking results.

We have also made some significant changes in the tracking pipeline. Firstly, we

use a publicly-available implementation of Fast winding number [Bar+18] algorithm
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available in the IGL Library [JP+18] for evaluating the 𝐼𝐹 (𝑓 ) (x). This way, not only
the input sequence is not required to be watertight and without self-contacts, but

we are also able to track mesh sequences containing non-manifold frames.

One of the most problematic parts of the original pipeline was the correspon-

dence estimation. Combined with the initial distribution of centers, its goal was to

provide an initial configuration for the optimization process. In our experiments,

however, it turned out that much better results were obtained when the initial con-

figuration was created by extrapolating the centers from the previous frame. Not

only does this adjustment make the tracking more stable, but it also does not require

the application of the Lloyd’s algorithm to each frame – only to the first one.

8.4.2 ARAP energy

We incorporated a different coherent movement term 𝐸
(𝑓 )
𝐴
, inspired by the as-rigid-

as-possible (ARAP) approach already used in various similar optimization scenar-

ios [ACL00]. The ARAP energies ensure that points move rigidly or nearly rigidly

with their neighbourhood. This energy is notably useful for representing surfaces

undergoing piecewise rigid motion. We evaluate this energy as follows:

𝐸
(𝑓 )
𝐴

=
1

2

∑︁
c𝑖∈𝐶

∥c(𝑓 )
𝑖

− p(𝑓 )
𝑖
∥2,

where p(𝑓 )
𝑖

is a prediction of the center position obtained using a rigid transforma-

tion estimated from the movement of neighbouring centers and affinity weights

from the previous frame 𝑤(𝑓−1)
(see Section 8.4.4):

p(𝑓 )
𝑖

= A(𝑓 )
𝑖|𝑤(𝑓−1)

(
c(𝑓−1)
𝑖

)
= R (𝑓 )

𝑖|𝑤(𝑓−1)c
(𝑓−1)
𝑖

+ t(𝑓 )
𝑖|𝑤(𝑓−1) .

Considering center positions fixed, the rigid transformationA(𝑓 )
𝑖|𝑤 =

(
R (𝑓 )
𝑖|𝑤 , t

(𝑓 )
𝑖|𝑤

)
at a

frame 𝑓 given a certain set of weights 𝑤 is found minimising(
R (𝑓 )
𝑖|𝑤 , t

(𝑓 )
𝑖|𝑤

)
= arg min

R∈SO(3),t∈R3

∑︁
𝑤(𝑖,𝑗)≥𝜇

𝑤(𝑖, 𝑗)



c(𝑓 )𝑗 −

(
Rc(𝑓−1)

𝑗
+ t

)


2

,

where 𝜇 = 0.001 is a threshold parameter to speed up the computation process by

considering only relevant weights. Such transformation can be found in closed form

using singular-value decomposition [SR16].

8.4.3 Optimization strategy

The updated overall energy 𝐸(𝑓 ) = 𝐸
(𝑓 )
𝐴

+ 𝛽𝐸(𝑓 )
𝑢 incorporates the ARAP smoothness

energy, but for uniformity energy 𝐸
(𝑓 )
𝑢 , we still use the same formulation as in Eq. 8.2.
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The default value used in our experiments was 𝛽 = 1. Finding an optimum in a

closed form is non-trivial since both p(𝑓 )
𝑖

and x̄(𝑓 )
𝑖

depend on the optimized center

positions. However, if we consider them fixed, we can obtain the optimal center

positions as follows:

c(𝑓 )
𝑖

=
p(𝑓 )
𝑖

+ 𝛽x̄(𝑓 )
𝑖

1 + 𝛽 .

These, however, do not represent the optimum of the original energy. Neverthe-

less, we can now fix the c(𝑓 )
𝑖

and recompute p(𝑓 )
𝑖

and x̄(𝑓 )
𝑖
. Similarly to Lloyd’s algo-

rithm [Llo82], we can alternate between these two steps. The optimization process

is terminated when the change in c(𝑓 )
𝑖

is sufficiently small or a fixed number of

iterations has been reached.

8.4.4 Center affinity
In Section 8.4.2, we assumed that there is information available on the affinity of

the tracked centers. This information is updated after each frame, and it captures

the current confidence that two centers are physically connected and thus move

together.

In the first frame, there is little information to work with, so we estimate the

center affinity simply from the centers’ proximity: using a Gaussian function, nearby

centers are assigned a high affinity (up to a unit value), while for remote centers the

affinity decreases to zero at a rate controlled by the 𝜎𝑝 parameter:

𝑎
(𝑓 )
𝑝 (𝑖, 𝑗) = exp

(
−𝜎𝑝 ·




c(𝑓 )𝑖 − c(𝑓 )
𝑗




2

)
.

In the subsequent frames, the center affinity should be estimated in a more sophis-

ticated way, because proximity does generally not imply center affinity. Since the

purpose of center affinity is to quantify whether or not the centersmove together, we
can exploit a by-product of the smoothness energy computation from the previous

frame: after each step of the optimization, each center has a rigid transformation as-

signed, which describes themovement of the center and its neighbourhood. It seems

reasonable to derive the center affinity from the dissimilarity 𝑑𝑖

(
A(𝑓 )
𝑖|𝑤(𝑓−1) ,A

(𝑓 )
𝑗|𝑤(𝑓−1)

)
of their associated rigid transformationsA(𝑓 )

𝑖|𝑤(𝑓−1) andA
(𝑓 )
𝑗|𝑤(𝑓−1) :

𝑎
(𝑓 )
𝑚 (𝑖, 𝑗) = exp

(
−𝜎𝑚 · 𝑑(𝑓 )

𝑖

(
A(𝑓 )
𝑖|𝑤(𝑓−1) ,A

(𝑓 )
𝑗|𝑤(𝑓−1)

)
2

)
,

To allow a more intuitive control over the width of both Gaussian functions, the

process is actually controlled by parameters 𝜌𝑝 and 𝜌𝑚 so that 𝜎𝑝 = − ln(0.5)/𝜌2

𝑝 and

𝜎𝑚 = − ln(0.5)/𝜌2

𝑚. These parameters determine at which distance the Gaussian
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function drops to 0.5. Values that worked well in our experiments were 𝜌𝑝 = 0.1861

and 𝜌𝑚 = 0.00388.

Although it is not easy to compare rigid transformations in general, feasible

options have been discussed [Bot+07; Pot+06; HDV19]. The overall observation is

that the transformation (dis)similarity can be meaningfully evaluated only with the

knowledge of the locations that undergo the given transformation. Here, we can

reuse another by-product of the previous algorithm steps: for each center, we can

keep the set 𝑉
(𝑓 )
𝑖

of voxel locations that form the discretization of the cell associ-

ated with the given center. With those locations, we can relate the transformation

dissimilarity to the difference in the effect of the two transformations on the voxel

center locations:

𝑑
(𝑓 )
𝑖
(A,B) = 1

|𝑉 (𝑓 )
𝑖

|

∑︁
v𝑘∈𝑉 (𝑓 )

𝑖

∥A(v𝑘) − B(v𝑘)∥ .

A nice property of such a formulation is that after certain precomputations, it can

be evaluated with complexity that is independent of the number of input voxels

(see [HDV19] for details). As a result, it is computationally feasible to evaluate all

pairwise center affinity values this way.

Finally, we observe that the center affinity notion must accumulate informa-

tion from the previous frames in order to propagate information throughout the

sequence processing. Using an IIR filter is a simple way to achieve this goal. The

filtered transformation affinity 𝑎
(𝑓 )
IIR

is computed as

𝑎
(𝑓 )
IIR
(𝑖, 𝑗) = 𝛼𝑎(𝑓 )𝑚 (𝑖, 𝑗) + (1 − 𝛼)𝑎(𝑓−1)

IIR
(𝑖, 𝑗).

where the parameter 0 < 𝛼 < 1 controls the response falloff (𝛼 = 0.01 worked well

with our data). The final weights used in Eq. 8.3 are computed as a product of prox-

imity affinity 𝑎
(𝑓 )
𝑝 (𝑖, 𝑗) and filtered motion affinity 𝑎

(𝑓 )
IIR
(𝑖, 𝑗), since the conjunction of

these two factors captures the desired notion of center affinity, i.e.

𝑤(𝑓 ) (𝑖, 𝑗) = 𝑎(𝑓 )𝑝 (𝑖, 𝑗) · 𝑎(𝑓 )
IIR
(𝑖, 𝑗). (8.3)

where 𝑤(𝑓 ) (𝑖, 𝑗) is the affinity of the center 𝑗 with the center 𝑖 in the frame 𝑓 . Note

that the proximity affinity is not IIR filtered; this allows the algorithm to quickly

react to situations when centers drift apart by reducing their final affinity.

After updating the center affinity, the algorithm moves on to process the next

frame. Note that since the affinity is updated only once per frame, evaluating it

for all pairs of centers is not a computational bottleneck for center counts such as

1000, as used in our experiments. If substantially more centers should be tracked,

the potential performance impact could be mitigated by restricting some of the

computation to pairs with high enough 𝑎
(𝑓 )
𝑝 (𝑖, 𝑗).
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8.4.5 Volume tracking quality metrics
Quantifying the quality of the tracking result is not straightforward, as there are

contradicting aspects that need to be considered. On the one hand, the result is

expected to be a set of center trajectories that are smooth and simple in a certain

sense; however, optimizing only for smoothness leads to a singular solution. In order

to avoid this, it is necessary to also consider whether each frame has been fully and

uniformly covered by the centers.

For this reason, we used a pair of statistics that captures these two aspects of vol-

ume tracking. First, principal component analysis compactness (PCAC) quantifies the
complexity of the extracted trajectories. Each extracted center trajectory is repre-

sented by a vector of length 3𝑛 of concatenated x-, y-, z- coordinates. These vectors

form a set of samples in a 3𝑛-dimensional space. Transforming them into a PCAbasis

provides another set of 3𝑛 decorrelated coordinates a𝑖 =
[
𝑎
(0)
𝑖
, 𝑎

(1)
𝑖
, . . . , 𝑎

(3𝑛−1)
𝑖

]
∈

R3𝑛
for each trajectory. Most of the variance will presumably be concentrated in

the first few coordinates, and with the complexity of the tracked trajectories, this

concentration is going to become less prominent. In general, the complexity of the

trajectories is given by the complexity of the input movement itself, together with

the redundant complexity caused by tracking errors.

The concentration can be quantified using the following statistic:

𝑃𝐶𝐴𝐶 =

3𝑛−1∑︁
𝑖=0

𝑖

𝑘−1∑︁
𝑗=0

���𝑎(𝑖)𝑗 ��� ,
where 𝑘 is the number of tracked centers. If all the variance is concentrated in the

first principal component, then the value of PCAC will be zero, indicating the best

possible compactness. With increasing complexity, the value of the PCAC statistic

will increase, indicating the possible presence of tracking errors. Note that lower

PCAC also implies less information to be stored during PCA-based dimensionality

reduction if one desires to compress such data.

For each center, wemay also compute the number of voxels

���𝑉 (𝑓 )
𝑖

��� that form their

cell in each frame. For ideal uniform coverage, this number should be the same for

all centers in each frame; however, due to pursuing other objectives as well, it often

deviates. The average relative standard deviation can be used as a quantification of

the deviation from uniformity (DFU):

¯𝑉 (𝑓 ) =
1

𝑘

𝑘−1∑︁
𝑖=0

���𝑉 (𝑓 )
𝑖

��� ,
𝐷𝐹𝑈 (𝑓 ) =

√√√
1

𝑘

𝑘−1∑︁
𝑖=0

(���𝑉 (𝑓 )
𝑖

��� − ¯𝑉 (𝑓 )
)

2

.
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𝐷𝐹𝑈 =
1

𝑛

𝑛−1∑︁
𝑓=0

𝐷𝐹𝑈 (𝑓 )

¯𝑉 (𝑓 )

To show the superiority of onemethod over another, the better onemust provide

better results in one criterion while also achieving better or comparable results in

the other. To this end, we measured the performance of our approach and PBT

with default parameters, lowering only the strength of the smoothness term of our

optimized energy in cases in which the competing method provided a better DFU.

8.4.6 Experimental results
To demonstrate the contribution of our method, we compared our tracking results

with the results of proximity-based tracking (PBT). To the best of our knowledge,

this is the only method that we can objectively compare to since the output results

are compatible. While some artificial scenarios could be considered (e.g. propagat-

ing volumetric elements using the deformation graph obtained from [Bož+21] or

using the vector field of [Nie+19]), the results would be biased due to incompatible

objectives.

8.4.6.1 Main experiment

The experiment was performed on three synthetic datasets of simple shapes under

rigid or near rigid motion (see Figure 8.6). To simulate topological noise, we dis-

torted the data by representing it by an implicit function (signed-distance function)

sampled on a coarse grid (50 samples along the longest dimension of bounding box

for collision dataset and 128 samples for gears dataset) and reconstructing it by the
marching cubes algorithm [LC87]. This distortion yields merged objects when they

are in contact, as can be seen for the gears dataset. The comparison was also done for

five human performance datasets: a commercially available watertight time-varying

mesh sequence casual_man, dynamic mesh sequence samba available for academic

purposes [Vla+08] and three selected sequences from theD-FAUST dataset [Bog+17].

This dataset consists of multiple captured performances from multiple test subjects.

Individual meshes are noisy, they contain holes, and some frames even have isolated

points and walls of the surrounding environment. By filtering the meshes and the

sampled indicator functions, we were able to obtain a volumetric representation

that was robust enough to allow for consistent tracking performance. Although

for the samba dataset, there are explicit surface correspondences between frames

available, we treat the sequence as if this information was unknown. The resulting

statistics are shown in Table 8.2.
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8.4.6.1. Main experiment

Figure 8.6: Synthetic datasets used in our experiments. From left to right: pentago-
nal_prism, a simple object undergoing rotation around the y-axis; collision, collision
of a ball and a box; and gears, two gears rotating against each other.

Table 8.2: Comparison of measured quality of the volumetric tracking. Highlighted

are the best results for a given dataset.

IIR PBT

no. of frames PCAC DFU PCAC DFU

pentagon_prism 50 0.703 0.050 2.076 0.091

collision 60 1.198 0.074 1.444 0.093

gears 101 1.816 0.071 2.413 0.072

casual_man 546 14.184 0.154 19.756 0.158

samba 175 6.539 0.218 9.310 0.226

DF_50020_knees 515 6.764 0.179 9.202 0.094
DF_50009_chicken_wings 212 3.583 0.155 4.771 0.099
DF_50004_jumping_jacks 360 7.826 0.175 10.632 0.084

The IIR-based method yields the best measures for all the synthetic datasets. For

the casual_man and samba datasets, we had to lower the smoothness term strength

parameter 𝛽 to 0.6 to obtain comparable DFU values to PBT, nevertheless; we be-

lieve that the default parameter provides visually more plausible results. For the

D-FAUSTdataset, the IIR-based tracking yielded visually the best results for smooth-

ness strength 𝛽 = 0.8.

Examining the results visually reveals the limitations of PBT: it cannot handle

global rotations (see Figure 8.7) and the contact or proximity of two parts moving

in different directions (see Figure 8.8). Figure 8.9 shows the tracking results for the

casual_man dataset, with the 𝛽 parameter lowered to obtain a comparable 𝐷𝐹𝑈

measure. The performance of both methods was similar for the D-FAUST dataset

and we were unable to find a configuration that yielded the best results for both

measures. We believe that this is due to the limited occurrence of self-contact of

disjoint parts or their proximity.
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(a) IIR (b) PBT

Figure 8.7: Tracking results for the pentagonal_prism dataset. After half a revolution, the

green centers tracked by the IIR method were correctly rotated with the corner of the prism.

The movement of the centers tracked by PBT did not capture the global movement at all,

and the positions of the green centers are similar to those in the initial frame.

(a) IIR (b) PBT

Figure 8.8: Tracking results for the gears dataset; the top row shows the results for the first

frame, and the bottom row shows the results for frame 81. Although some centers were

incorrectly tracked by the IIR method in the first few frames (notice the inconsistencies in

colouring), PBT tracks even more centers incorrectly, both centers in the first few frames

and centers later in the sequence.

8.4.6.2 Robustness

We have also studied the robustness of both methods to various sampling artifacts.

First, we measured the influence of temporal sampling. In this experiment, we have

temporally subsampled the casual_man and samba datasets by selecting every second
(resp. third) frame. Lowering the frame rate results in larger differences between

consecutive frames. Results are shown in Table 8.3. For reference, we have also

included the measures for the case, where the frames were subsampled in post-

processing from the tracking results of original sequences.
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(a) IIR (b) PBT

Figure 8.9: Tracking results for the casual_man dataset with similar 𝐷𝐹𝑈 values.

Notice the inconsistency in the colouring of the centers that are tracking the legs.

Table 8.3: Influence of temporal sampling on the tracking quality. Highlighted are

the best values achieved between IIR-based tracking and PBT.

IIR PBT Post. sub.

no. of frames PCAC DFU PCAC DFU PCAC DFU

casual_man

273 11.777 0.227 16.753 0.256 13.448 0.156

182 9.923 0.292 14.524 0.344 12.593 0.154

samba

88 4.965 0.294 6.858 0.318 5.871 0.218

59 4.146 0.405 5.418 0.384 5.295 0.218

When compared to PBT, the IIR approach achieved better PCAC values, while

also achieving better or comparable DFU values. We believe that this is due to the

assignment step of PBT, which is more prone to error when the difference between

consecutive frames grows. Additionally, the IIR method is better suited for large

movements.

Compared to the results subsampled in post-processing, the IIR approach achieved

larger DFU values for the same configuration, which was expected, since this ap-

proach had to account for faster movement. Surprisingly, the PCAC values are

smaller, althoughwhen compared visually, the results subsampled in post-processing

are much more pleasing. This, however, merely points to a property of the PCAC

metric - it measures the complexity of the movement, rather than its quality. While

the low-frequency movement information might be similar, the results subsampled

in post-processing capture additional higher-frequency information, which was not

present in the subsampled data. Nevertheless, the PCAC values of PBT were higher
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than for reference data in all cases.

To demonstrate how both methods perform on noisy data, we have constructed

datasets with different levels of noise from collision and gears sequences. The noise
was introduced in the topological distortion step described in Section 8.4.6.1 by

adding a random value 𝑥 ∼ 𝑁 (0, 𝜎2) of Gaussian distribution to each sampled SDF

value, or by decreasing the grid resolution. Examples of resulting noisy data are

shown in Fig. 8.10. Since we expected that the noise in sampled values would cause

an increase in the difference of the neighbouring centers motions, we have increased

the value of parameter 𝜌𝑚 = 0.05, which controls the width of the Gaussian function

formotion affinity. In the case of decreased grid resolution, we used the default value.

Figure 8.10: Examples of noise used in our experiments. From left to right: Distorted

SDF samples, decreased marching cubes grid resolution and a combination of both.

Results for the collision dataset are shown in Table 8.4. For noise included only in
the sampled implicit function, our method achieved better PCAC value with compa-

rable DFU value relative to PBT. However, the tracked result contains a fast rotation

of centers representing the upper ball (see Fig. 8.11). We believe that the rotation

is caused by the noise interpreted as movement and by the fact that rigid sphere

tracking is inherently ambiguous. The PCAC value is smaller since the rotation

is captured by a few principal components, which is less penalized than the high-

frequency movement present in the results of PBT. Our method performs better

than PBT on data distorted by a coarser grid. Although we were unable to find a

configuration that yields a better DFU value for the coarsest grid resolution, the

results are visually much better, since the results of PBT involve a large number of

centers moving between objects. When both distortion types were combined, we

were also unable to find a configuration that yields a better DFU value. The DFU of

IIR-based tracking result is higher because this model provides better rigidity and

tracks the underlying objects rather than capturing the noise as much as PBT.

8.4.7 Limitations
In this work, we were able to significantly reduce the number of irregularities. How-

ever, we were still unable to fully prevent their occurrence. While we believe, that

some are caused by the fact that the method only considers two subsequent frames,

some of the irregularities are caused by the way how the temporal information is
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accumulated. Not only is there no temporal accumulation of spatial proximity, but

the IIR filter in themotion affinity turned out to be inefficient in capturing the global

temporal information.

Figure 8.11: Incorrectly detected rotation induced by noise.

Table 8.4: Tracking results for the collision dataset distorted by noise. Highlighted
are the best values achieved between the IIR-based method and PBT.

IIR PBT

res. 𝜎 PCAC DFU PCAC DFU

128 0.05 2.265 0.066 2.988 0.063
32 — 1.154 0.054 1.277 0.054
16 — 1.248 0.083 1.523 0.067
16 0.05 4.409 0.152 6.287 0.105

8.5 Maximum-distance-based affinity
In our most recent work, we have been able to further improve the quality of the

frame-by-frame tracking pipeline by incorporating center affinity weights based on

the maximal value encountered up to and including the currently processed frame.

Similarly to the original weight formulation in Eq. 8.3, the new weight is also

computed as a product of spatial proximity and motion dissimilarity:

𝑤̃(𝑓 ) (𝑖, 𝑗) = 𝑎̃(𝑓 )𝑝 (𝑖, 𝑗) · 𝑎̃(𝑓 )𝑚 (𝑖, 𝑗).

The difference is how the center proximity 𝑎̃
(𝑓 )
𝑝 (𝑖, 𝑗) and the motion dissimilarity

𝑎̃
(𝑓 )
𝑝 (𝑖, 𝑗) are formulated.

The previous methodmeasured the spatial center proximity using the Euclidean

distance of centers in a single frame, ignoring the information from previous frames.

The main limitation of such an approach is the fact that as two topologically distant
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or separated parts come to near proximity, the affinity between their centers in-

creases. Assuming the tracked sequence represents piecewise rigid objects, it could

be more appropriate to use geodesic distance inside the volume, which, ideally,

should be roughly constant throughout the sequence. However, due to self-contact

present in real-world data, the topological information in a given frame might be

incorrect, resulting in the introduction of an erroneous decrease in such a measure.

Additionally, geodesic distance is computationally expensive to evaluate at the fre-

quency required by the tracking pipeline. When examining the relative positions of

a certain pair of centers in time, we observe that the Euclidean distance between

them fluctuates, but it is never larger than their geodesic distance. Note that our goal

is not to evaluate this quantity precisely, but to correctly differentiate between the

truly connected neighbours of a center and the topologically distant centers in near

proximity (see Figure 8.12). We therefore proposed to approximate this quantity by

the largest Euclidean distance encountered in all frames up to and including the

current frame:

𝑎̃
(𝑓 )
𝑝 (𝑖, 𝑗) = exp

(
−𝜎𝑝 · max

0≤𝑙≤𝑓




c(𝑙)𝑖 − c(𝑙)
𝑗




2

)
.

Figure 8.12: Spatial proximity in a single frame might not reflect the underlying

topology of the represented object. Left: Two topologically distant points in near

proximity. Right: Examining a different frame reveals that they should not be con-

sidered as neighbouring/affine.

An analogous observation can be made about the similarity of the movement. If

a pair of centers moved significantly differently in the past, then they cannot both

belong to the same rigid part, even when the movement has been almost identical
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in several previous frames. Instead of an IIR filter, we thus propose to also use the

maximum dissimilarity over all already processed frames:

𝑎̃
(𝑓 )
𝑚 (𝑖, 𝑗) =


1, 𝑓 = 0

exp

(
−𝜎𝑚 · max1≤𝑙≤𝑓 𝑑

(𝑙)
𝑖

(
A(𝑙)
𝑖|𝑤̃(𝑙−1) ,A

(𝑙)
𝑗|𝑤̃(𝑙−1)

)
2

)
, otherwise

.

In the first frame, we have no information about themovement, thereforewe assume

there is no difference and instead solely rely on 𝑎̃
(0)
𝑝 (𝑖, 𝑗) when computing the affinity

weights.

Setting Gaussian widths 𝜎𝑚 and 𝜎𝑝 (resp. 𝜌𝑚 and 𝜌𝑝) to obtain satisfactory re-

sults is a task specific to the scale of the data and complexity of the motion. In our

experiments, we have obtained the best results with 𝜌𝑝 = 𝜌𝑚 = 0.125 for human per-

formance capture. For synthetic datasets, where the bounding box was significantly

larger and the motion was mainly rigid, we have determined that the best results

were obtained with 𝜌𝑝 = 0.2 and 𝜌𝑚 = 0.05.

The previous IIR-filter-based affinity depends on a falloff parameter 𝛼, which

controls how the affinity reacts to occurring changes. Setting 𝛼 too low results in

slow reactions. On the other hand, too high 𝛼 means that the affinity "forgets" the

separation that occurred in the past faster. Our new formulation of affinity reacts

more dynamically to changes and also captures every observed separation.

8.5.1 Experimental results

To evaluate how the previous frame-by-frame tracking pipeline benefits from the

proposed maximum-distance-based affinity, we have compared the new tracking

results with those reported previously using default configurations for both meth-

ods. The comparison included all the previously studied datasets (including selected

sequences from D-FAUST dataset [Bog+17]) except for pentagonal_prism and col-
lision datasets, which we believe were already tracked correctly with the previous
method. The results are shown in Table 8.5.

Incorporating the newly proposed affinity results in a considerable improvement

over the original affinity on all the sequences. Visually, the results contain fewer

irregular centers, which can be seen when assigning each center a consistent colour,

and the centers exhibit a better coverage over problematic parts (see Figure 8.13).

One limitation of the maximum-distance-based affinity is its sensitivity to noise,

since it may cause two affine centers to be treated as separated if the data contains

erroneous movement even just for a single frame. In such cases, we advise using the

original IIR-based affinity or computing the affinities from 𝑙-th largest encountered

value instead of the maximum.
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Table 8.5: Comparison of frame-by-frame-tracked results using proposed and orig-

inal (IIR) affinity. Highlighted are the best results for a given dataset.

𝑛 Proposed IIR

PCAC DFU PCAC DFU

gears 60 1.785 0.070 1.816 0.071

casual_man 545 10.587 0.127 12.289 0.206

samba 175 5.060 0.215 5.547 0.262

DF_50020_knees 515 5.117 0.111 6.764 0.179

DF_50009_chicken_wings 212 2.855 0.116 3.583 0.155

DF_50004_jumping_jacks 360 6.040 0.130 7.826 0.175

(a) Proposed (b) IIR

Figure 8.13: Tracking results for casual_man dataset.

8.6 Tracking improvement with global
optimization

One of the drawbacks of the previous tracking pipeline is that it is a frame-by-

frame procedure, gathering information about the nature of the objects captured

in the data in chronological order. This approach prevents the information from

frames that appear later in the sequence from influencing the tracking results (and

the induced correspondence information) of preceding frames. This leads to cer-

tain artifacts in the tracking results, which in turn hinder the application of the

tracking in scenarios that are sensitive to tracking errors, such as compression or

time-consistent editing.
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Optimizing the centers globally, however, depends strongly on initialization.

To this end, we propose to first obtain tracked centers using the frame-by-frame

procedure, followed by a post-processing, in which the results are improved using a

global optimization. Adjusting the trajectories of irregular centers to revert tracking

errors is quite a difficult task and might also lead to the introduction of additional

irregularities into tracking results. We instead propose to detect and filter such

centers out.

8.6.1 Irregular center detection
Once the frame-by-frame tracking is finished (regardless of the affinity weights

used), we can analyse the achieved results and detect the irregular centers. To this

end, we evaluate an irregularity measure 𝐼𝑖 = min𝑗



c𝑖 − c𝑗


2

2
,where c𝑖 is the center

trajectory and ∥·∥2

2
is the squared Euclidean norm. If a center is correctly tracked,

there should exist another center with a similar trajectory in near proximity. Since

an irregular center changes suddenly its relative position to its neighbouring centers,

even the distance to the closest center to its trajectory is expected to be higher than

for the correctly tracked centers (see Figure 8.14).

Figure 8.14: Irregular center detection using distance to closest trajectory. Arrows

indicate distances that contributed to the computation. Red trajectory has a much

higher 𝐼𝑖 and is correctly detected as irregular.

The value of 𝐼𝑖 must be considered in the context of the values of all centers,

as it depends on various factors, e.g., center count, the scale of the data and the

dynamics of the movement. We can also use this measure to quantify the success of

tracking in terms of the presence of irregular centers, by sorting all the values in

descending order and plotting them as a curve. By comparing the curves resulting

from different tracking methods, we can determine which results are less affected

by the presence of irregular centers (see Figure 8.15), as long as the results were

tracked in the same input sequence and the center count is similar (although not
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necessarily equal). When attempting to improve the tracking results, one of our

goals is to narrow or eliminate the part of the curve with 𝐼𝑖 significantly higher than

the correctly tracked centers, while not significantly increasing the irregularity of

such centers.

Figure 8.15: Comparison of largest 100 values of 𝐼𝑖 for volume tracking results

obtained using IIR-based affinity and max-based affinity on casual_man dataset.

8.6.2 Global optimization

Simply removing a certain number of centers with the highest 𝐼𝑖 actually does not

lead to an improvement in terms of flattening the irregularity curve. The uniformity

of the centers distribution is violated since removed centers leave an uncovered vol-

ume. Re-running the frame-by-frame tracking with the irregular centers removed

might still not prevent new irregular centers from appearing, even when the final

affinity weights obtained in the initial tracking are utilised. Instead, we propose

to follow the irregular center removal with adjustment of the remaining tracked

trajectories of centers in a global optimization process.

The objectives of the global optimization are identical to the frame-by-frame

tracking.Weoptimize a global energy
ˆ𝐸 consisting of uniformity andmotion smooth-

ness energy terms
ˆ𝐸 = ˆ𝐸𝑠 + ˆ𝛽 ˆ𝐸𝑢.

The uniformity term is the same as in the frame-by-frame tracking, except that

it is evaluated for all the frames in the sequence at once:

ˆ𝐸𝑢 =
1

2

𝑛−1∑︁
𝑓=0

𝐸
(𝑓 )
𝑢 =

1

2

∑︁
c𝑖∈𝐶

𝑛−1∑︁
𝑓=0

∥c(𝑓 )
𝑖

− x̄(𝑓 )
𝑖
∥2.
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If we consider the centroids x̄(𝑓 )
𝑖

fixed, we can approximate the gradient by these

partial derivatives:

𝜕 ˆ𝐸𝑢

𝜕c(𝑓 )
𝑖

≈ c(𝑓 )
𝑖

− x̄(𝑓 )
𝑖
.

The global smoothness energy is evaluated as

ˆ𝐸𝑠 =
1

2

©­«
∑︁
c𝑖∈𝐶

𝑛−1∑︁
𝑓=1




c(𝑓 )𝑖 − p(𝑓 )
𝑖




2

+
∑︁
c𝑖∈𝐶

𝑛−2∑︁
𝑓=0




c(𝑓 )𝑖 − q(𝑓 )
𝑖




2ª®¬ ,
p(𝑓 )
𝑖

= A(𝑓 )
𝑖|𝜔

(
c(𝑓−1)
𝑖

)
,

q(𝑓 )
𝑖

= A(𝑓+1)
𝑖|𝜔

−1
(
c(𝑓+1)
𝑖

)
,

where p(𝑓 )
𝑖

and q(𝑓 )
𝑖

are forward and backward rigidmotion predictions of the center

position at frame 𝑓 , using rigid transformations estimated given overall movement-

based affinity weights 𝜔 (see Eq. 8.4). Considering such predictions fixed, the partial

derivatives, which form the approximated gradient, are as follows:

𝜕 ˆ𝐸𝑠

𝜕c(𝑓 )
𝑖

≈


c(𝑓 )
𝑖

− q(𝑓 )
𝑖
, 𝑓 = 0

c(𝑓 )
𝑖

− p(𝑓 )
𝑖

− q(𝑓 )
𝑖
, 1 ≤ 𝑓 ≤ 𝑛 − 2

c(𝑓 )
𝑖

− p(𝑓 )
𝑖
, 𝑓 = 𝑛 − 1

The optimization process is iterative, working with a set of trajectories𝐶, whose

initial values are given by the original tracking results with irregular centers re-

moved. In each iteration, we evaluate the energy
ˆ𝐸(𝐶) and the approximated gradi-

ent ∇ ˆ𝐸, and construct a candidate set of trajectories ¯𝐶, where the center positions

are calculated as

c̄(𝑓 )
𝑖

= c(𝑓 )
𝑖

− 𝜆
(
𝜕 ˆ𝐸𝑠

𝜕c(𝑓 )
𝑖

+ ˆ𝛽
𝜕 ˆ𝐸𝑢

𝜕c(𝑓 )
𝑖

)
.

First, lambda is set to 𝜆 = 0.1 and then it is iteratively scaled by
1

2
until

ˆ𝐸( ¯𝐶) is
smaller than

ˆ𝐸(𝐶), or a specified number of attempts has been reached. If an im-

provement in terms of energy is achieved, we set 𝐶 = ¯𝐶 and continue to the next

iteration. Otherwise, the process is terminated and 𝐶 is the resulting set of trajec-

tories. The optimization process can also be terminated after a specified number of

iterations (20 in our experiments).

Such an optimization strategy does not necessarily converge to a global opti-

mum. If an irregular center was left in the initial set𝐶, the local steps in the gradient

direction will not straighten its trajectory in order to eliminate the transition be-

tween disconnected components. The locality of the changes is, however, also an

advantage, since the local trajectory adjustments ensure that the objectives are met,

while not introducing any large sudden changes, and therefore no new irregular

centers can appear.
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8.6.3 Global affinity based on movement
The affinity utilised in the global optimization process directly considers only the

dissimilarity of motion:

𝜔(𝑖, 𝑗) = exp

(
−𝜎gm · max

0≤𝑓<𝑛
𝑑
(𝑓 )
𝑖

(
A(𝑓 )
𝑖|𝜔max

,A(𝑓 )
𝑗|𝜔max

)
2

)
, (8.4)

where 𝜎gm is a parameter controlling the tolerance of the affinity to dissimilar mo-

tions. The overall spatial proximity 𝜔max(𝑖, 𝑗) of centers is also considered, but only
for estimating the transformationsA(𝑓 )

𝑖|𝜔max

:

𝜔max(𝑖, 𝑗) = exp

(
−𝜎gp · max

0≤𝑓<𝑛




c(𝑓 )𝑖 − c(𝑓 )
𝑗




2

)
.

The motivation to mainly rely on the motion information instead of using both

motion and proximity combined is the following: If a center belongs to a large rigidly

moving part of the object, we want it to be influenced by the whole part rather than

only a certain small neighbourhood around it. Having all the positions in each frame

at hand, we can confidently rely solely on this information without worrying about

the rigid part suddenly splitting in a later frame (see Figure 8.16).

(a) Combined (b) Motion only

Figure 8.16: Affinity for global optimization. Combined spatial and movement in-

formation (a) leads to a fairly small center neighbourhood. The global affinity con-

sidering motion only (b) allows working with large rigidly moving parts as a whole.

8.6.4 Irregular center removal strategy
Removing a large number of detected irregular centers before the global optimiza-

tion might result in large volume areas not covered by any center, so the optimiza-

tion process might struggle to appropriately cover them. In our experiments, we

have observed that it is more appropriate to iterate over the irregular center removal

and optimization, with only a small number of centers removed in each iteration.

104



8.6.5. Experimental results

The user can specify, how many iterations will be performed and the number of the

most irregular centers that will be removed in each iteration.

8.6.5 Experimental results
We first evaluate our post-processing on synthetic data for which the ground truth

tracked centers trajectories are known. We show the benefits of running the global

optimisation even without removing any center. This experiment also highlights

additional limitations of PCAC and DFU metrics. Then, we also study the influence

of various irregular center removal strategies.

8.6.5.1 Global optimisation without center removal

Evaluating tracking quality solely based on PCAC and DFU is limited since the op-

timum of both does not lie at zero (at least for a discretized volume in the case of

DFU). To this end, we have created a synthetic dataset, for which, given the cen-

ter positions in the first frame, we are able to obtain ground truth optimal center

trajectories. The dataset consists of two rigidly moving objects (a unit cube and a

unit tetrahedron) that first come in self-contact and then separate after a certain

number of frames. The trajectories are obtained by assigning each center to the

corresponding object and propagating it using rigid transformations determined

from the motion of the vertices of the cube/tetrahedron. Having the ground truth

trajectories 𝐶gt and a tracking result 𝐶, c(0)
gt𝑖

= c(0)
𝑖

for all 𝑖, we can now evaluate

the tracking quality of 𝐶 using mean-squared error of positions and mean-squared

motion error:

𝑀𝑆𝐸 =
1

𝑘(𝑛 − 1)

𝑛−1∑︁
𝑓=1

𝑘−1∑︁
𝑖=0




c(𝑓 )
gt𝑖

− c(𝑓 )
𝑖




2

,

𝑀𝑆𝑀𝐸 =
1

𝑘(𝑛 − 1)

𝑛−1∑︁
𝑓=1

𝑘−1∑︁
𝑖=0

𝑑
(𝑓 )
𝑖

(
A(𝑓 )

gt𝑖
,A(𝑓 )

𝑖

)
2

,

where 𝑑
(𝑓 )
𝑖

is evaluated on voxel positions of Voronoi cells corresponding to ground

truth center positions.

In this experiment, we have compared the tracking results obtained by the frame-

by-frame tracking using IIR and the proposed affinity with their respective default

configurations and both such results post-processed using the global optimization

without removing any center. In the global optimization, we have set 𝛽 = 0.1, since

the uniformity of distribution was already close to the ground truth value and 𝜌
gm

=

0.005. The results are shown in Table 8.6.

The results demonstrate, that the frame-by-frame tracking with our proposed

affinity already achieved satisfying results in terms of DFU and MSE. Neverthe-
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less, we were able to achieve an improvement using global optimization in terms

of PCAC and estimated transformations. Both frame-by-frame tracking and global

optimization approaches using our proposed affinity achieved DFU lower than the

ground-truth value. This implies that minimizing such a measure is not always

desirable. IIR-based frame-by-frame tracking benefited the most from global opti-

mization, however, it did not achieve the best results.

Table 8.6: Quantitative comparison of various tracking results and ground truth

center trajectories. Highlighted are the best results.

PCAC DFU MSE MSME

Ground truth 1.078 5.65E-02 — —

Proposed 1.492 5.62E-02 1.93E-04 5.521E-04

Proposed + global 1.236 5.60E-02 1.94E-04 5.519E-04
IIR 1.511 5.77E-02 2.08E-04 5.522E-04

IIR + global 1.249 5.70E-02 2.60E-04 5.5194E-04

8.6.5.2 Irregular center removal

In this experiment, we have studied the effects of various strategies for removing

20 irregular centers from tracking results obtained through frame-by-frame track-

ing with our proposed affinity on the casual_man dataset from Section 8.5.1. The

strategies differed in the number of global optimizations performed 𝑛go and in the

number of removed centers in each optimization 𝑛rem. The parameters of the global

optimization were as follows: 𝜌gp = 0.125, 𝜌gm = 0.03 and
ˆ𝛽 = 0.5. Note that these

values were selected empirically and slightly different values yield similar results.

Table 8.7 shows the measured PCAC and DFU values and the irregularity curves

are shown in Fig. 8.17. For comparison, we also include results for center removal

without global optimization.

Table 8.7: Comparison of PCAC and DFU measures for various irregular center re-

moval strategies on casual_man dataset frame-by-frame tracked using our proposed

affinity.

𝑛rem 20 20 4 1

𝑛go — 1 5 20

PCAC 10.154 8.760 8.578 8.869

DFU 0.160 0.149 0.144 0.134

With growing 𝑛go, the improvement process achieves better coverage of volume,

which is reflected in the DFU measure. However, we can also see a negative trend
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in terms of irregularity. Best values of PCAC were achieved with 𝑛go = 5. This

is also reflected in a visual inspection of results (see Fig. 8.18). Fig. 8.18a shows

centers that were detected as irregular. It can be seen that the detected centers

indeed travel across different body parts. The increased irregularity with growing

𝑛go is reflected by certain number of centers oscillating to cover a larger volume,

which is unfortunately visible only when the tracked centers are animated.

Figure 8.17: Comparison of first 100 𝐼𝑖 after center removal.

(a) Irregular centers (b) Without optimization

(c) 𝑛rem = 20, 𝑛go = 1 (d) 𝑛rem = 4, 𝑛go = 5 (e) 𝑛rem = 1, 𝑛go = 20

Figure 8.18: Results for various irregular center removal strategies for casual_man
dataset with target of 20 centers to be removed. Highlighted are the areas with the

most notable differences.
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8.7 Applications
In this section, we discuss some examples of how the tracked centers could be uti-

lized in various scenarios in mesh sequence processing. Although these applications

are agnostic of the pipeline used to obtain the center trajectories, the usability of

the model is directly connected to the tracking quality. Unless otherwise stated in

the description of the individual application, we assume the tracking results to con-

tain as few tracking irregularities as possible and to achieve regular coverage of the

volume enclosed by the individual frames.

8.7.1 Surface approximation
Like many other temporal models (e.g., a tracked surface), the tracked centers can

be used as a reduced representation of the dynamic surface they capture. There are

various possibilities for how this could be achieved. We experimented in our initial

work [DVV21] with an approach based on implicit surface representation, which

represents a surface as an iso-surface 𝑔(x) = 0 of an implicit function 𝑔 : R3 → R.

One of the most convenient implicit functions is the signed-distance function (SDF),
which returns the distance of a point to the surface, multiplied by−1 if the point lies

inside of the volume enclosed by the surface. The convenience stems from the ability

to efficiently perform boolean operations over SDF-represented surfaces using min

and max functions.

When examining the tracking results of our initial tracking pipelinewith centers

represented as spheres, we noticed that the silhouette of tracked results mostly

resembled the silhouette of the original frames. This gave us an idea to approximate

the original surface with sphere SDF primitives. SDF of a sphere 𝑆 = (c, 𝑟) with
center c and a radius 𝑟 can be evaluated as

𝑔𝑆 (x) = ∥c − x∥ − 𝑟.

Instead of a trivial union of the spheres, which would cause sharp creases in places

where the sphere primitives intersect, we compute the resulting implicit function

𝑔 (𝑓 ) (x) approximating a frameM𝑓 using a smooth blending of these primitives:

𝑔 (𝑓 ) (x) = −1

𝛾
log

2

(∑︁
c𝑖∈𝐶

exp2

(
−𝛾 ·

(
∥c(𝑓 )

𝑖
− x∥ − 𝑟

)))
, (8.5)

where 𝛾 is a smoothing parameter. Note that we use a single value of radius for

all the centers, but it can be fine-tuned for each center separately. Additionally, a

different SDF primitive could be utilized. For example, one could assign each center

an ellipsoid skewed to reflect the shape of the corresponding Voronoi cell in each

frame. The shape of the primitive could also be derived considering all the frames,
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8.7.1. Surface approximation

however, such a shape would have to be rotated in each frame given the estimated

rigid motion of centers.

A simple TVM compression method that does not preserve the structure of the

frames can be designed using this formulation. Considering only sphere primitives

of fixed radius, one can compress the TVM by encoding the center positions (e.g.,

using the COBRA algorithm [VS09]) and parameters 𝛾 and 𝑟. The surface can then be

reconstructed using surface extraction algorithms such as marching cubes [LC87]

or dual contouring [Ju+02]. Alternatively, the surface can be rendered directly using

the raymarching algorithm [Har96].

Figure 8.19 shows an example surface approximation of a single frame from the

casual_man dataset using 4000 centers tracked by a frame-by-frame algorithm with

maximum-based affinity. The parameters 𝛾 and 𝑟 were set empirically. This visual-

ization reveals the main limitation of such a representation: lack of surface detail.

For it to be preserved, a different representation, e.g., using centers as a deformation

model (see the following section) for propagating a single frame, would have to be

used. Such an approach is, however, much more sensitive to tracking irregularities.

The surface approximation using Eq. 8.5, on the other hand, does not require perfect

results, only a decent coverage of the volume and a consistent movement in terms

of compressibility of centers, i.e., there can be any amount of irregularities, as long

as the PCAC of such tracking result is reasonably low.

(a) Original (b) Approximation

Figure 8.19: Example surface approximation of a single frame selected from the

casual_man dataset.
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8.7.2 Deformation model
Given a certain frame M𝑓 and the positions of the centers in such a frame, it is

possible, similarly to skeletal animation, to deform such a frame by first moving the

centers and then distributing this motion to the surface.

There are various ways of formulating such a deformation model, the simplest

one being to assign each vertex of the frame a transformation of the closest center.

This, however, creates blocking artifacts at the boundaries of regions influenced

by different centers. A more sophisticated approach can be inspired by embedded
deformations [SSP07]:

v̄(𝑓 )
𝑖

=
∑︁

𝑗∈𝑁𝑘 (𝑣𝑖)
𝑤𝑗

(
v(𝑓 )
𝑖

) [
R𝑗

(
v(𝑓 )
𝑖

− c(𝑓 )
𝑗

)
+ c(𝑓 )

𝑗
+ t𝑗

]
, (8.6)

where 𝑁𝑘(𝑣𝑖) is the set of 𝑘 nearest centers to vertex 𝑣𝑖, the rotation matrix R𝑗

and the translation vector t𝑗 represent the input rigid motion of the center c(𝑓 )
𝑗

and

𝑤𝑗

(
v(𝑓 )
𝑖

)
is a deformation weight calculated as

𝑤𝑗

(
v(𝑓 )
𝑖

)
=

(
1 − ∥v(𝑓 )

𝑖
− c(𝑓 )

𝑗
∥/𝑑max

)
2

, (8.7)

where 𝑑max is the distance to the 𝑘 + 1 nearest center. Example results of the centers

being applied as a deformation model are shown in Figure 8.20.

8.7.3 Feature vectors
For a frame M𝑒 and its corresponding center configuration, we can construct a

function f (𝑒) (x) that assigns a certain point x a feature vector based on the relative

position of the point to the individual centers. Assuming the relative positions of the

centers to the surface in close proximity should not significantly change throughout

the sequence, it might be possible to formulate f (𝑒) (x) so that feature vectors of

corresponding points in different frames have fairly similar values. Having such

feature vectors should be beneficial in various mesh sequence processing tasks, for

example, in surface correspondence estimation (see Section 8.7.6) or in attribute

mapping (see Section 8.7.7).

One example formulation that should achieve such a property assigns each point

a vector with components evaluated as

𝑓
(𝑒)
𝑖

(x) = exp

(
−𝜎 ∥x − c(𝑒)

𝑖
∥2

)
,

where c𝑖 is the position of the center corresponding to such a component and 𝜎

is a certain parameter controlling the falloff radius. The main limitation of such

formulation is the high dimension of resulting feature vectors.
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If one desires control over the dimension of feature vectors, it is possible to

formulate f (x) using PCA over center trajectories:

f (𝑒) (x) =
∑︁

𝑗∈𝑁𝑘 (x)
𝑤𝑗 (x) a𝑗,

where 𝑁𝑘 is the set of 𝑘 nearest centers to x, 𝑤𝑗 (x) are weights defined in Eq. 8.7,

and a𝑗 =
[
𝑎
(0)
𝑗
, 𝑎

(1)
𝑗
, . . . , 𝑎

(𝑙−1)
𝑗

]
∈ R𝑙

is the vector of first 𝑙 decorrelated coordinates

of the trajectory of the center c𝑗.

8.7.4 Temporally coherent editing
Staticmesh editing is one of themost researched areas in the field ofmesh processing.

The attention it received is mainly due to its ability to support the creative process

in design and animation. For more details about mesh editing of a single shape, we

refer the reader to the survey of Yuan et al. [Yua+21].

In some cases, it is desirable to edit mesh sequences. Applying static mesh editing

techniques on individual frames is, however, difficult since one cannot automatically

propagate the edits throughout the sequence and any editing discrepancy between

subsequent frames is easily spotable by an observer [VS11]. There are already a few

methods for temporally coherent editing of dynamic meshes [KG06; CH12; BSG12],

however, for TVMs, to the best of our knowledge, there is only a single method,

which is also only limited to detail enhancement [YXF14].

A proof-of-concept method for temporally coherent editing based on our tem-

poral model was presented in the master’s thesis of Zuzana Káčereková [Káč23].

The method consists of four steps. First, the user selects and moves a center c(𝑓 )
𝑖

(denoted effector) in a frame 𝑓 of choice. The motion of c(𝑓 )
𝑖

is then distributed to

other centers in the given frame by applying a displacement of the effector weighted

by a Gaussian over spatial proximity. These displacements are distributed into the

center positions of the rest of the frames by rotating them given the estimated rigid

motion of the centers. Finally, the motion of the centers is used to deform the sur-

face in each frame. To compute the resulting position of a vertex v̄(𝑒)
𝑖
, the method

uses a simple formula similar to Eq. 8.6, however, considering only the displacement

motion:

v̄(𝑒)
𝑖

= v(𝑒)
𝑖

+
∑︁

𝑗∈𝑁𝑘 (𝑣𝑖)
𝑤𝑗t(𝑒)𝑗 , (8.8)

where t(𝑒)
𝑗

is the displacement vector of center c(𝑒)
𝑗
.

Example results are shown in Figure 8.20. The method is quite limited, but it

was only designed to serve as a baseline for our further efforts. Since then, our team

has been able to achieve some improvements, but the work is still in progress.
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(a) Original

(b) Edited

Figure 8.20: Example results of proof-of-concept method for temporally coherent

editing [Káč23]. Results are courtesy of Zuzana Káčereková.

8.7.5 Structure-preserving TVM compression

Amodel-based structure-preservingTVMcompressionmethod following the pipeline

shown in Figure 4.3 on page 33 can be built around the tracked centers. It first con-

structs the temporal model considering the whole sequence and encodes it using,

for example, the COBRA algorithm [VS09]. Then, the first frame is encoded by an

intra-only method, such as weighted parallelogram [VB13].

Each subsequent frame M𝑖 is then encoded as follows: The model is used to

obtain a reference shapeR𝑖 (a mesh or point cloud) which should be fairly aligned

with the coded frame. The geometry coding approach proposed by Yamasaki et

al. [YA10] is then used. Each vertex of M𝑖 is assigned to the closest vertex (resp.

point) ofR𝑖. For each vertex (resp. point) ofR𝑖, the number of corresponding coded

vertices is encoded, followed by the matching correction vectors. The connectivity

of the frame can be encoded by our priority-based approach, whichwill be presented

in Chapter 9.
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The most crucial part of the method is the process of obtaining the reference

shapeR𝑖. We are currently considering two approaches to address this, each having

its own challenges and limitations. One such approach is using the centers as a

deformation model to deform the previous reference frame
¯Mref given the motion

of centers between the frames. Unfortunately, in our preliminary experiments, such

an approach did not achieve satisfactory results, regardless of the formula used to

propagate the motion from centers to the surface. We believe this is due to the

deformation not guaranteeing the alignment between the R𝑖 and M𝑖 since the

process of obtaining tracked centers does not take into account that they should

serve for such a purpose. Incorrect alignment causes an increase in the length of

correction vectors, which implies a larger entropy of the encoded values.

The second approach obtainsR𝑖 by extracting the iso-surface from the surface

approximation presented in Section 8.7.1. However, theR𝑖 obtained this way might

have a different vertex density thanM𝑖, which may also lead to inefficient geometry

coding - having a too small number of vertices relative to the coded frame, the

length of the correction vectors is expected to increase; having too many vertices

means that the method must indicate for all the redundant vertices that they are

not used to predict any coded vertex. This even applies to local vertex density - if

the coded frame was adaptively sampled so that parts of higher detail have a higher

vertex density, the reference shape should reflect this as well, thus we cannot simply

uniformly sample |𝑉𝑖 | points onR𝑖. Note that this is not expected to be an issue in

the case of the deformationmodel, since we expect that all the frames were obtained

using an identical technique, thus two subsequent frames should have a relatively

(even locally) similar vertex density.

We have decided to prefer the deformation-model-based approach over the

surface approximation and to attempt to address its limitations in the future. The

reason is that solving its alignment problem implies additional applications of the

tracked centers model (see Section 8.7.6). To address this, we first plan to select an

appropriate mechanism for the deformation model, and then to incorporate it in an

additional energy term in the optimization of center positions, which measures the

alignment of consecutive frames using the deformation model. As a consequence,

to this date, we still were not able to propose an efficient general and structure-

preserving compression method.

8.7.6 Surface correspondences

The tracked centers can be interpreted as sparse volume correspondences between

the frames. We believe that if the deformationmodel alignment limitation presented

in the previous section is addressed, it would be possible to use them to estimate the

temporally consistent surface correspondence information. Temporally consistent
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correspondences are such that contain correspondence information from any frame

to all the remaining frames, where the corresponding surface point exists. Obtaining

such information is a fairly different problem from pairwise shape matching.

This information could be derived using the deformationmodel, similarly to the

approach proposed by Eisenberger et al. [ELC19]: The frames are aligned given the

motion of centers, as in structure-preserving TVM compression. Then, the corre-

spondences are estimated from the spatial proximity of vertices. Alternatively, this

information could be derived by matching the temporally coherent feature vectors

f (𝑒) (x) between the frames. The latter approach would also benefit from consider-

ing the deformation model during optimization since it would make the relative

positions of centers to the surface in near proximity much more temporally stable.

8.7.7 Attribute mapping on mesh sequences

Given an input mesh sequence and an attribute function 𝑎(𝑖) : M𝑖 → R, which

assigns all the points on the surface of a particular frameM𝑖 an attribute value, the

goal of attribute mapping on mesh sequences is to generalize the function 𝑎(𝑖) to all

the frames, so that corresponding points are assigned identical values.

Althoughwe have not yet verified this, such a problem can be addressed using the

tracked centers. First, a set of points 𝑃 = {p1, . . . , p𝑛} is sampled from the surface

of M𝑖. For each of the sampled points p𝑗, an attribute value 𝑎𝑗 = 𝑎(𝑖) (p𝑗) and a

feature vector f (𝑖)
(
p𝑗

)
(see Section 8.7.3) are obtained. To generalize the attribute

map to all the frames, it is possible to estimate a function 𝑎 : R𝑙 → R, where 𝑙 is the

dimension of input feature vectors so that 𝑎

(
f (𝑖)

(
p𝑗

) )
≈ 𝑎𝑗 for any of the sampled

points. This can be done, for example, by assigning an input vector the attribute

value of the nearest sampled feature vector, or by regression (e.g., using radial-basis

functions or a regression neural network).

This approach can be easily extended to multi-dimensional attributes (e.g. RGB

colours) by treating each component of the attribute vectors separately. The formu-

lation through feature vectors also allows for attribute mapping with input attribute

maps defined for more than a single frame. This means it can be used in a related

scenario - TVM attribute compression. Instead of the attribute maps for each frame,

only the centers and the parameters of themodel representing the attribute function

𝑎 are stored.

The representation capability of such mapping is influenced by multiple con-

tributing factors: the number of samples, the representation capability of the model

representing the function and the temporal stability of the feature vectors.
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8.8 Summary
We have presented a novel temporal model for representing the motion of dynamic

surfaces based on tracking of volume elements denoted tracked centers. The model

is agnostic of the underlying structure of the surface and can even handle sequences

where surface correspondences between the frames are non-bijective.

(a) PBT (b) IIR-based affinity

(c) Max-based affinity (d) Global optim.

Figure 8.21: Comparison of results obtained with all the published versions of our

tracking algorithm. Highlighted are the areas with the most notable differences.

Although the original tracking pipeline was very limited, we have achieved con-

siderable improvements. Initially, the main issue of the tracking approach was the

presence of tracking irregularities. Realizing that these may never be entirely pre-

vented from occurring, we proposed a post-processing step, in which we aim to
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8. Volume Element Tracking for Time-Varying Meshes

remove these from the tracked results. There is still a very small number of irregular

centers that were undetected by our method, mainly those, which became irregular

in the first (resp. last) few frames. Figure 8.21 shows the progress we achieved in

terms of irregularities. Currently, however, the main issue of obtained tracking re-

sults is that they are not designed to work as a deformation model, which still limits

their applicability in structure-preserving TVM compression.

Regardless of the issues, the tracked centers have already some applications

in different areas. We find the centers particularly helpful in temporally coherent

editing.
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To address the limitations of connectivity coding in TVM compression described in

Section 4.5.1, we have proposed a novelmethod for connectivity codingwith known

geometry, which is similar to theDistance-ranked approach ofMarais et al. [MGS07].

The method was published in Computer graphics forum journal [Dvo+22b]. It was

later selected as one of the CGF papers to be presented at Eurographics 2023 con-
ference. The source code of the method was released under the MIT License and is

available at:

https://gitlab.kiv.zcu.cz/jdvorak/priority-based-connectivity-coding.

9.1 Algorithm overview
Our algorithm (as well as the Edgebreaker and the Distance-ranked algorithm of

Marais et al. [MGS07]) follows the general pipeline of traversal-based algorithms for

connectivity encoding. The procedure starts with a single arbitrarily chosen triangle,

which immediately divides the mesh into a processed part (the selected triangle)

and an unprocessed part (the rest of the mesh). Both the encoder and the decoder

then enter a loop, where a single edge on the border separating the processed and

unprocessed parts is selected (denoted gate), and a single triangle is attached in a

certainway. The task of the encoder is to emit the information needed by the decoder

to attach the new triangle correctly.

This is done by identifying the third vertex (tip vertex) that forms the new tri-

angle together with the gate. The tip vertex may lie on the processed/unprocessed

border, or it may be a vertex that has not been visited by the traversal yet. The

distance-ranked algorithm [MGS07] determines a point in space where the tip ver-

tex is most likely to be located (prediction) using the location of the gate and the

vertex completing the triangle that is incident with the gate within the already pro-

cessed part of the mesh (this vertex will be denoted base vertex), and the available

vertices are ordered by their distance to it. The encoder then emits a symbol identi-

fying the actual tip vertex within this sorted list. The assumption is that the true tip
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vertices will be located at the beginning of their respective lists, yielding a stream of

integer indices with a distribution that is strongly skewed towards zero and thus of

low entropy. The typical situation is depicted in Figure 9.1. Our algorithm also uses

a sorted list of candidate vertices, but these are ordered employing their suitability

of forming a feasible triangle, which we will denote a candidate vertex quality (see
Section 9.3).

Figure 9.1: A schematic of a typical situation in each step of the main algorithm loop.

All blue crosses represent candidate vertices, the task is to identify which one is the

true tip vertex.

The distance-ranked algorithm continues by selecting the next gate using certain

simple local rules, so that no additional data must be transmitted, and by processing

the gates until the whole mesh is covered. Our main observation is that a different
traversal order that provides a lower code entropy can be found. At each step of the

main algorithm loop, there are several possible gates available to the decoder, and

we conjecture that it should choose one where the identity of the tip vertex can be

estimated most reliably, based on the available (already decoded) data. The encoder

merely mimics the decoder’s reasoning and therefore the two stay in sync, even

though no additional data is sent to drive the traversal order. As a result, the main

loop of the proposed algorithm is driven by a priority queue (PQ) of available gates,
rather than by implicit rules for selecting the next gate. The process of determining

which gates should be processed first will be discussed in Section 9.2.

Additionally, the previous method [MGS07] reserved the symbol 0 to identify a

boundary edge. To handle these edges, we develop a simple prediction rule, which

will be discussed in Section 9.4, that allows further data reduction.
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9.2 Priority-driven traversal
The objective of priority-driven traversal is to first process the edges where the en-

coder is the most certain it will make a correct guess of the tip vertex. The priority

cannot simply reflect the quality of the best possible candidate: a gate with a single,

albeit lower-quality candidate that outperforms all other candidates by a large mar-

gin should be preferred over a gate with two or more candidates of similarly high

quality since the probability of generating a low-magnitude code is higher in the

first case. To address this, for each gate, the two highest candidate qualities 𝑞max and

𝑞max2 are determined, and the priority of the gate is determined as 𝑝 = 𝑞max − 𝑞max2.

After the calculation, the highest quality value is also stored to be used later when

performing the boundary prediction.

Having the traversal order reflect the certainty means that ambiguous configura-

tions are often ignored until the algorithm arrives at the same place from a different

location, where the situation might be clearer (see Figure 9.2). The distance-ranked

algorithmwould be forced to guess the tip vertex, which is more likely to be guessed

incorrectly, thus hurting the compression rate.

Figure 9.2: Example of priority-driven traversal. Highlighted triangle with blue-

coloured vertices is the base triangle. Candidate vertices are coloured in red. Leaving

ambiguous situations (left) for later means there is a possibility to arrive at the same

place from a different direction, where the encoder might be more certain it will

take a correct guess (right).

The priority-driven traversal also has an additional benefit. Since the probabil-

ities of symbols are expected to be of the exponential distribution, it is helpful to

encode them using unsigned exp-Golomb code. This assumption should also hold

for the distance-ranked approach. However, if our method estimates the priority

correctly, we expect that it emits smaller values first, as the more ambiguous sce-

narios are treated later. This yields a stream of values in an order, which can be

then exploited by context-adaptive coding algorithms such as CABAC [MSW03] to

achieve data rates smaller than the overall entropy of coded symbols.
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9.3 Vertex candidate quality
While encoding vertex indices, the algorithm attempts to determine their quality in

such away that the best candidates consistently achieve the highest ranking qualities.

In order to achieve this, several properties of the base triangle (the known triangle

adjacent to the active gate) and the candidate triangle (consisting of the gate and a

candidate vertex) are considered. These are shown in Figure 9.3.

(a) Distance to parallelogram prediction (b) Inner angle

(c) Dihedral angle (d) Triangle similarity

Figure 9.3: Geometric criteria contributing to our vertex candidate quality compu-

tation.

The first of these properties is the distance 𝑑 of a candidate vertex from the paral-

lelogram prediction produced using the gate (see Figure 9.3a). In order to maintain

cohesion between meshes, the distance value is divided by the average gate length
𝑙𝑎𝑣𝑔 of the mesh, which can be determined before encoding.

Next, the inner angle 𝜃 at the tip of the candidate triangle is considered (as shown
in Figure 9.3b). Larger inner angles are expected to correspond to higher candidate

quality, as sliver-like triangles with very small angles at the tip are generally avoided,
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while obtuse tip angles indicate the proximity of the vertex to the gate. This may

not apply to meshes modelled manually for 3D printing and manufacturing, but by

adjusting parameter weights, it is possible to achieve good compression results even

for this class of meshes.

The dihedral angle 𝜙 between the base triangle and the candidate triangle is also

considered. Flatter surfaces can be consideredmore likely and therefore correspond

to a higher quality. The algorithm evaluates the dihedral angle as

𝜙 = 𝜋 − arccos(n𝑏 · n𝑐), (9.1)

wheren𝑏 andn𝑐 are the unit normals of the base and candidate triangles respectively

(see Figure 9.3c). This way, the angle approaches 𝜋 for flat predictions and decreases

when bending to either side. The quality can thus be linked directly to 𝜙.

Finally, the similarity of the base and the candidate triangles 𝑆 is considered. With

𝑏𝑠 and 𝑏𝑙 denoting the shorter and the longer non-gate edge lengths in the base

triangle respectively, and 𝑐𝑠 and 𝑐𝑙 denoting the shorter and the longer non-gate

edge lengths in the candidate triangle respectively (see Figure 9.3d), a measure of

triangle similarity can be expressed as:

𝑟𝑠 = 𝑏𝑠/𝑐𝑠, 𝑟𝑙 = 𝑏𝑙/𝑐𝑙
𝑟 = (𝑟𝑠 + 𝑟𝑙)/2

𝑆 = −(|𝑟 − 𝑟𝑠 | + |𝑟 − 𝑟𝑙 |)/2.

Note that 𝑆 is zero when the ratios of shorter and longer non-gate edges are equal,

otherwise, it is negative.

The complete formula for candidate quality 𝑞 is then as follows:

𝑞 = 𝜃 − 𝑤1

𝑙avg

· 𝑑 + 𝑤2 · 𝜙 + 𝑤3 · 𝑆, (9.2)

where 𝑤1, 𝑤2 and 𝑤3 are weights that control the influence of the individual prop-

erties. Since all the terms are assumed to be positively proportional to the quality

of a candidate, all the weights are chosen positive.

9.3.1 Search for relevant vertices
To allow fast encoding (resp. decoding) of the mesh, it is essential to always limit the

number of vertices to be considered when obtaining the list of candidates for the

tip vertex or when computing the gate priority. For the distance-ranked algorithm,

this can be achieved efficiently, for example, by using a k-d tree: when encoding, the

method performs a radial search between the prediction and the ground truth vertex;

the decoder then performs a 𝑘-nearest neighbours search around the prediction,

where 𝑘 is the rank of the tip vertex.
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Having candidate vertices sorted by the quality formulated in Eq. 9.2, the list

of candidates can no longer be obtained this way, since for any candidate vertex of

quality 𝑞 = 𝑞𝑐, we cannot guarantee that all vertices of quality 𝑞 > 𝑞𝑐 lie closer to

the prediction. Nevertheless, we can deduce the search bound which contains all

the relevant vertices by considering the possible ranges of values that can be input

to Eq. 9.2.

For positively chosen 𝑤1, 𝑤2 and 𝑤3, and a quality limit 𝑞𝑐, there is a particular

maximum distance 𝑑max from the parallelogram prediction up to which a better

candidate can exist:

𝑑max = (𝑤2 · 𝜋 + 𝜋 − 𝑞𝑐) ·
𝑙avg

𝑤1

. (9.3)

A potential candidate with 𝑑 = 𝑑max and all other quality terms as good as possible,

i.e., 𝜃 = 𝜙 = 𝜋 and 𝑆 = 0, is going to have 𝑞 = 𝑞𝑐, therefore any candidates with

𝑑 > 𝑑max must have 𝑞 < 𝑞𝑐.

Additionally, given a candidate with 𝑞 = 𝑞𝑐, it is certain that any candidates with

𝑞 > 𝑞𝑐 must have the inner angle 𝜃 > 𝜃min where

𝜃min = 𝑞𝑐 − 𝑤2 · 𝜋.

Such points lie within circles of a certain radius that depends on 𝜃min, of which

the gate is a chord (Figure 9.4a). For acute 𝜃min, all such circles make up a torus

(Figure 9.4b), which is in turn contained within a ball centered at the midpoint of

the gate (Figure 9.4c). The radius of the ball is 𝑟𝑡 = (∥𝑔∥/2)/tan(𝜃min/2), where ∥𝑔∥
is the length of the gate. For obtuse 𝜃min, the radius is simply ∥𝑔∥/2.

(a) 2D (b) 3D (c) Ball B𝜃min

Figure 9.4: Candidate vertex search bound derived from inner angle 𝜃min.

The intersection of this ball with the ball defined by the condition of Eq. 9.3

can be enclosed within an even smaller ball centered at a certain point on the line

connecting the gate midpoint and the parallelogram prediction, as shown in Fig-

ure 9.5. This ball provides a tight search space limitation when searching for a better

candidate.
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(a) Combined criteria (b) Final area for a radial search

Figure 9.5: All the candidates with 𝑞 > 𝑞𝑐 lie within the intersection of the two balls

derived from 𝑑max and 𝜃min.

The candidate list is then further reduced by removing all the vertices that cannot

represent the tip vertex: the vertices of the base triangle and the vertices having all

the incident faces already encoded.

9.3.2 Finding optimal weights
One limitation of quality formulated as a weighted sum is the need for fine-tuning

the weights 𝑤1, 𝑤2 and 𝑤3 to optimize the data rate function 𝑏𝑝𝑓 (𝑤1, 𝑤2, 𝑤3). Not
only does the global optimum of 𝑏𝑝𝑓 lie at different points for each individual mesh,

but it is also difficult to find such an optimum. Due to various contributing factors

(e.g., a slight change in one of the weights can lead to a significant change in the

traversal order), the data rate function is noisy with lots of local optima, although a

trend can be seen towards a range of parameters which achieve satisfactory rates, as

shown in Figure 9.6. This unfortunately means that we cannot use gradient-based

methods to find the global optimum.

Figure 9.6: Data rate visualized as a function of the configuration space (𝑤1, 𝑤2, 𝑤3)
with two different transfer functions. The basin of the minima (right) has a noisy,

disconnected shape due to unpredictable effects in encoding.
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Using an exhaustive search over a range of feasible values is computationally

expensive since the data rate function cannot be evaluated without first encoding

the data. Although this approach tests a large number of configurations, it is still

limited by the sampling resolution of the parametric domain, which means that it

is not expected to find a global optimum.

Later in our experiments, we also used simulated annealing with steps of de-

creasing size, which significantly reduces the number of tested configurations and

is not limited to the original parametric grid resolution, which means it can find a

better configuration than the exhaustive search in fewer steps. However, the best

configuration obtained is still not guaranteed to represent the global optimum.

In case one does not desire optimal data rates, but satisfactory ones, we have

also selected 40 meshes of varying properties on which we found a single default

configuration for our method. These included a few meshes of each dataset used

in our experiments (see Section 9.5.1) accompanied by selected commonly used

meshes in computer graphics research (e.g., Stanford Bunny, Armadillo, Igea, Max

Planck). In Section 9.5.1, we discuss how much the results differ between default

and fine-tuned parameters.

9.4 Boundary prediction
To identify a boundary edge in the output stream of symbols, we adopt the following

strategy: based on the quality of the candidates, the decoder makes a prediction for

each gate whether or not there is a triangle attached to it. The prediction is based

on the assumption that for a border edge, there are probably no candidates of high

quality available. This holds at least for meshes with large holes, e.g. the Stanford
bunny as shown in Figure 9.7. The encoder mimics the prediction process and emits

a code that contains a confirmation/rejection of the decoder’s prediction.

(a) Mesh boundary (b) Sorted qualities 𝑞max for each edge

Figure 9.7: The connection between the gate being a boundary edge and the quality

of its best candidate 𝑞max demonstrated on the Stanford bunnymodel.
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In order to facilitate the border gate prediction, we introduce a border quality

threshold 𝑞𝑡 . Its value is determined in a simplified encoding-like traversal of the

inputmesh, which does not use the kd-tree to find the index of the tip vertex, instead

using the known, true tip vertex, and using only nearest-neighbour queries while

calculating gate priorities. The algorithm also determines up front which edges lie

on the mesh boundary, if any. During the calculation of a gate’s priority, the quality

of the best candidate vertex 𝑞max is determined. The best candidate qualities for

border edges are stored in a set 𝑄𝑏, while the best candidate qualities for inner

edges are stored in another set 𝑄𝑖.

Expecting that qualities in 𝑄𝑏 are predominantly low, as there are no triangles

attached to the corresponding gates, the algorithm finds a threshold quality 𝑞𝑡 that

best separates 𝑄𝑖 from 𝑄𝑏. This is achieved by testing all qualities 𝑞𝑐 ∈ 𝑄𝑏 ∪ 𝑄𝑖 as

candidate thresholds and evaluating the separating ability of each 𝑞𝑐 as the number

of items 𝑞 ∈ 𝑄𝑏, 𝑠.𝑡. 𝑞 < 𝑞𝑐 plus the number of items 𝑞 ∈ 𝑄𝑖, 𝑠.𝑡. 𝑞 > 𝑞𝑐, i.e., the total

number of correctly predicted border/inner gates, if 𝑞𝑐 were selected as threshold.

The 𝑞𝑐 yielding the largest sum is finally chosen as 𝑞𝑡 .

The index encoding and decoding processes are then modified to accommodate

boundary edges. The decoder can predict whether a gate represents a border edge

by comparing the quality of the gate’s best tip vertex candidate with 𝑞𝑡 . The encoder

must in turn produce a symbol based on the outcome of this prediction. It is also

necessary to aim for low-magnitude output integers in order to make the output

sequence well suited for arithmetic coding, i.e., in the most probable case, we would

like to encode the symbol zero, or a low, non-negative integer. Four situations can

arise while making the prediction, which we list in Table 9.1.

Upon encountering a gate that represents a true boundary edge, the encoder

replicates the decoder’s prediction. If the prediction correctly indicates a border,

the encoder emits the symbol 0 to confirm it. If the prediction indicates an inner

gate, the encoder must encode a special border code so that the decoder corrects

its prediction and decodes the gate as a boundary edge. Temporarily, the encoder

uses the symbol −1. Upon completing the encoding process, the largest encoded

integer is found, and its value incremented by one is used as the border code. The

border code is then used to replace all the temporary −1 symbols, resulting in a

set of unsigned codes. The particular choice of border code is transmitted to the

decoder as part of auxiliary data.

In the remaining case, i.e., when the gate represents an inner edge, two possi-

bilities may occur. First, the decoder makes a correct prediction. The encoder can

encode the index of the tip vertex directly. If a wrong prediction is made, i.e., the

decoder predicts a border edge, it expects a zero code as confirmation. Since zero

is also a viable identifier of the true tip vertex, the encoder must produce the true

index incremented by one. This way, upon predicting a boundary edge, the decoder
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can always distinguish between a border confirmation and a correction, serving

simultaneously as the identification of the tip vertex.

Table 9.1: Encoded symbol depending on the predicted and actual type of the gate, in

order of usual occurrence from most to least common. Symbol 𝑖 denotes the index

of the tip vertex in the list of candidates. For typical datasets, the bottom two rows

(wrong predictions) amount to less than 0.3% of the cases.

Prediction Actual Encoded symbol

Inner Inner 𝑖

Boundary Boundary 0

Boundary Inner 𝑖 + 1

Inner Boundary initially −1,

finally max (𝑖) + 1

9.5 Experimental results
To evaluate the proposed connectivity compression algorithm, we compare the

quantitative results against those of the Distance-ranked algorithm proposed by

Marais et al. [MGS07]. Since there is no public implementation, we have reimple-

mented the algorithm following the original paper. The results of our implementa-

tion generally match those reported in the paper, and the remaining discrepancy

can be reasonably explained by using a different entropy coder in the current exper-

iments. To eliminate the influence of the particular choice of entropy coding, we

are also reporting the entropy of the output symbol sequence.

In all experiments, we use an adaptive entropy coder based on the CABAC

scheme [MSW03]. The encoder uses an unsigned exp-Golomb code, which is well

suited for data of exponential distribution, which can be roughly observed with the

encoded symbol sequences.

9.5.1 Connectivity compression
First, we report the results of a pair of "sanity check" experiments.When amesh has a

very regular geometry and connectivity, such as a sphere constructed by subdividing

an icosahedron (see Figure 9.8), it is expected that the best candidate will always

be the true tip vertex, identified by a sequence of identical symbols. Indeed, both

the proposed algorithm and the Distance-ranked algorithm [MGS07] reach exact

zero entropy for such a mesh with 2562 vertices. Since the entropy coder uses a few

auxiliary bytes, the resulting actual data rates are slightly larger than zero: 0.048 bpf

(bits per face) for the proposed algorithm vs. 0.078 bpf for the Distance-ranked

algorithm [MGS07].
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To test the other end of the regularity spectrum, we have created a mesh with

the connectivity of a subdivided icosahedron with 18000 faces, however, the vertex

positions were chosen at randomwithin a unit sphere (see Fig. 9.8). Both algorithms

have reached comparable entropy of 12.42 and 12.18 bits per symbol for the pro-

posed and the Distance-ranked [MGS07] algorithms respectively. The actual data

rate was more than 15 bpf since the data do not exhibit the exponential distribution

expected by the entropy coder because the prediction fails in each case and therefore

the symbols are roughly uniformly distributed.

Figure 9.8: Meshes used in "sanity check" experiments. Left: A subdivided icosahe-

dron yielding perfect compression. Right: A mesh with random positions within

the unit sphere representing the worst case.

Note that this translates tomore than 30 bits per vertex. TheEdgebreaker [Ros99]

algorithm is known to provide a guarantee of reaching less than 4 bpv for any data.

In our setting, the vertex indexing is fixed by the input geometry and cannot be

altered without encoding additional data. An arbitrary permutation map for a se-

quence of 𝑁 elements costs an additional log
2
(𝑁 !)/𝑁 bits per element. With 9000

vertices of the test mesh, this translates to 11.69 additional bpv. Together with the 4

bpv needed by the Edgebreaker, we have 15.69 bpv, which is better than what the

two tested algorithms have produced, but by a smaller margin. With more realistic

data, the tested algorithms reach much lower data rates, while the need for reindex-

ation (and the related additional storage cost) when using Edgebreaker or a similar

algorithm remains.

For experiments with real-world data, we have selected a group of datasets

of varying character. From each dataset, we have randomly selected up to 10 000

meshes with manifold connectivity, and we have unified the face orientation using

the PyMeshlab software [MC21].
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There were six datasets in total:

1. the ABC_regular dataset has been obtained from a set of 1 million CAD mod-

els [Koc+19], selecting from the subset of regular triangulations,

2. the ABC_irregular dataset has been obtained from the same set of CAD mod-

els [Koc+19], selecting from the subset of irregular triangulations,

3. the thingi10k dataset has been selected from the set of models published by

Zhou et al. [ZJ16],

4. the tosca dataset has been constructed from a set of nonrigid 3D shapes in

a variety of poses used for non-rigid shape similarity and correspondence

experiments [BBK09],

5. the mcGill dataset has been constructed from a set of meshes used for testing

of shape retrieval algorithms [Zha+05],

6. and the casual_man dataset is a proprietary scanned human Time-varying

mesh

Representative meshes of each dataset with details illustrating the regularity

of triangulation are shown in Figure 9.9. The best performance is expected on the

ABC_regular, the mcGill and the casual_man datasets which all exhibit regular tri-

angulations induced by certain meshing algorithms. The thingi10k has varying reg-
ularity, as it also contains, e.g., 3D scans [ZJ16]. However, the majority of models

are irregular. The worst performance is expected on the ABC_irregular and the

tosca datasets, since all their meshes have irregular triangulation typical for models

created by 3D modelling tools.

Figure 9.9: Representative models of each dataset used in our experiments. De-

tails show the triangulations of models. From left to right: tosca, casual_man,
ABC_irregular, ABC_regular, mcGill, thingi10k.

From each dataset, 10 meshes were randomly selected for optimising the param-

eters of the quality function. The optimal parameters were found using an exhaus-

tive search over a range of feasible values, and the best-performing configuration
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has been used for the rest of each dataset without change. We also measured the

results for the default configuration. The selected parameters for each dataset and

the default parameters are shown in Table 9.2.

dataset 𝑤1 𝑤2 𝑤3

default 0.4094 0.7920 0.1350
abc_regular 0.252 0.654 0.151

abc_irrgegular 0.84 1.8125 0.089

thingi10k 0.24 0.905 0.000015

tosca 2.18 1.05 0.0005

mcGill 0.362 0.116 0.845

casual_man 0.1406 0.8781 0.0272

Table 9.2: Configuration for each dataset used in our experiments. The default con-

figuration is highlighted.

Additionally to data rate and entropy, we have also measured encoding and

decoding times. The experiment was conducted on a machine with AMD Ryzen 9

5950X 3.4 GHz 16 core processor, 64 GB of memory and NVIDIA GeForce GTX

1650 graphics card. The results are summarized in Table 9.3. The data rates and

entropy listed in the table are averages weighted by vertex count.

Table 9.3: Compression performance. Bits per face (bpf) counts and entropy (H)

values are averaged using vertex counts as weights. Encoding and decoding times

(te, td) are measured as average time per vertex (𝜇𝑠). Best values are highlighted.

Default parameters Optimized parameters [MGS07]

dataset # M bpf H te td bpf H te td bpf H te td

abc_regular 10000 0.191 0.296 40.2 42.8 0.181 0.282 36.7 39.5 0.331 0.381 34.6 28.0
abc_irrgegular 10000 1.059 1.225 135.4 186.0 1.050 1.195 119.7 170.4 2.261 2.324 111.0 120.4
thingi10k 8133 0.988 1.148 84.8 102.9 0.919 1.079 103.6 120.3 1.523 1.552 40.1 36.2
tosca 80 1.129 1.261 116.7 83.5 1.112 1.247 68.9 55.3 1.343 1.317 27.1 25.9
mcGill 458 0.487 0.582 36.0 38.8 0.448 0.521 31.3 34.3 0.708 0.693 18.4 13.4
casual_man 546 0.165 0.183 37.5 40.2 0.152 0.171 35.9 38.2 0.264 0.232 18.9 13.7

It can be seen that the proposed algorithm produces data rates that are consis-

tently considerably lower than those achieved by the state-of-the-art algorithm. The

largest reduction in bpf of 53.5% has been achieved with the abc_irregular dataset.
Generally, the lowest data rates are achieved with regular datasets (abc_regular,

mcGill and casual_man), while models with irregular sampling, such as those cre-

ated in CAD systems, result in higher data rates.

The results obtained using optimised parameters are only slightly better than

those obtained using the default configuration. The largest reduction in bpf of 8.2%

has been achieved with the casual_man dataset, while the smallest of 0.8% has been
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achieved with abc_irregular dataset. It seems that regular datasets benefit more from

the parameter optimisation, while for irregular datasets, the default parameters

generally suffice. Nevertheless, on all the datasets, both configurations yield better

results than the current state of the art.

While the Distance-ranked algorithm achieves similar values of bpf and entropy,

in the results of the proposed algorithm the bpf is consistently lower than the en-

tropy (by 9.5% – 35.9%). This indicates that the priority-based traversal indeed emits

symbols in order that is exploitable by the CABAC-based encoder we use.

As expected, the runtimes of our method are higher than those of the Distance-

ranked approach, which is not required to perform the extended search when deter-

mining a vertex rank. The highest difference between the twomethods occurs on the

thingi10k dataset, where our method performs 3.3 times slower in decoding. In the

case of pure CAD datasets (the abc_regular and the abc_irregular datasets), the run-
ning times are comparable. This is because, in the Distance-ranked algorithm, the

means of adjusting the prediction by stretching sometimes leads to the processing

of all model vertices for a single gate [MGS07, Section 3.2].

To illustrate, how the encoding and decoding runtimes of both methods are

affected by mesh size, we also show times measured at different orders of magnitude

of vertex counts (see Table 9.4) given fixed parameters (optimised). The reported

times are averages over 10 selected models with the number of vertices closest to

the given order of magnitude. All the models were selected from the abc_regular
dataset, which exhibits low variance in mesh regularity, but large variance in mesh

sizes. The results show that with an increasing number of vertices, the difference

between the two methods gets smaller and, eventually, our method performs better

for largemeshes.We again believe that this is due to the inefficiency of the prediction

adjustment in the Distance-ranked algorithm.

Table 9.4: Encoding and decoding times (ms) at different orders of magnitude of

numbers of vertices for the abc_regular dataset.

Proposed [MGS07]

∼ |𝑉 | te td te td

1000 31.02 34.12 15.78 13.03

10000 391.45 384.83 307.09 256.40

100000 3878.33 3776.72 4885.15 4102.01

1000000 61644.31 60679.80 246979.09 225822.83
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9.5.2 Mesh compression
Inspired by similar experiments of Marais et al., we have also evaluated the perfor-

mance of our method in terms of static (intra-only) mesh compression. To this end,

we first encode the geometry with a static point cloud geometry coder by Merry et

al. [MMG06], which constructs a minimum spanning tree over the vertices and uses

the structure of the tree for prediction and then we apply our method on connectiv-

ity. We compared this method to the Distance-ranked algorithm [MGS07] combined

with the same geometry coder and a connectivity-first Edgebreaker-based weighted

parallelogram [VB13] (WP) mesh coding scheme, which can be considered a state-

of-the-art method for single rate manifold mesh compression. Unlike Marais et al.,

who originally considered only the performance on a single level of precision, we

compared the Rate-Distortion (RD) performance using Mean-Squared Error (MSE)

as a distortion measure over all levels of precision permitted by the used point cloud

coder. Experiments were done on Igea (regular triangulation) andMax Planck (ir-
regular triangulation) models. Different parameters were selected for each model,

however, equal for all the levels of precision, found by using simulated annealing

with undistorted original data. The results are shown in Figure 9.10.
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Figure 9.10: RD curve comparison of the proposed method with Distance-ranked

compression [MGS07] and Weighted parallelogram [VB13]

Our method achieves better data rates than the Distance-ranked [MGS07] com-

pression on both models at all levels of precision. For the Max Planck model, the

WP [VB13] outperforms both the geometry-first approaches. At the same amount of

distortion, it achieves data rates of around 3.75 bpv less than our proposed method.

For the Igea model, the geometry-first approach performs better at data rates higher

than circa 8.5 bpv. This is because the regular and dense sampling of vertex positions

allows efficient geometry coding which does not depend on the connectivity. Our

method also benefits from such mesh properties. However, with increasing distor-

tion, the reconstructed geometry that drives the connectivity coding gradually loses
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9. Priority-based Connectivity Coding

regularity. As a result, the difference between the geometry-first approaches andWP

decreases. We believe that this effect could be slightly attenuated by optimising the

parameters of the connectivity compression for each level of precision, however, it

cannot be fully eliminated.

9.6 Summary
We have presented a connectivity compression algorithm that encodes a set of tri-

angles for a known set of vertex positions available at both the encoder and the

decoder. By controlling the traversal by a geometric priority, the algorithm is able

to outperform the current state of the art by up to 53.5% (39.2% on average per

dataset) for connectivity coding.

The performance gain depends mostly on the characteristics of the input data.

Naturally, for a connectivity that is random and cannot be predicted, there is no gain;

however, even for practical connectivities, there are differences in the algorithm’s

performance. In particular, the algorithmworkswell for evenly and densely sampled

surfaces, such as those obtained by means of scanning real-world objects, while it

struggles with artificial models created using standard means of computer-aided

design.

The main motivation for our method was its application in TVM compression,

where the geometry can be encoded separately to exploit the temporal coherence

between the frames. However, it turns out it is also applicable for the compression of

static regular meshes, where it can be combined with a point cloud codec [MMG06]

to form a method that outperforms conventional connectivity-driven approaches

such as weighted parallelogram [VB13]. It could also be utilized in a progressive

compression pipeline, where the first few levels of detail are represented by a point

cloud only, and then, at some level of detail, the connectivity is transferred using

our priority-driven approach.

Currently, the method is limited to 2-manifold triangle meshes as it is built upon

the Edgebreaker algorithm. The ideas of the approach (vertex candidate quality,

priority-driven traversal and boundary prediction) could possibly be applied to a

different algorithm, e.g., the TFAN [MZP09]. However, in such a case, it will bemuch

more difficult to deduce whether a certain vertex has already all of its incident faces

processed and can be safely removed from the vertex candidate list.

Although the default configuration suffices for irregular data, fine-tuning of

parameters is, nevertheless, required to obtain the best compression performance.

Evenwith the simulated annealing, the process is still quite costly. In our futurework,

we would like to analyze whether there might be a connection between the optimal

configuration and certain mesh properties such as vertex degrees, inner angles etc.

Alternatively, the weights might be adjusted on the go during the traversal.
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9.6. Summary

In the future, we would also like to investigate other possible formulations of

the priority, aiming at improving the performance with CAD models. Even such

models exhibit certain properties that could be exploited in order to improve the

prediction accuracy and in turn reduce data rates. In particular, candidate dihedral

angles of magnitude 𝜋/2 may indicate candidate quality. Also, certain regularity of

inner angles stemming from the sampling of basic primitives, such as cylinders or

cones, could be exploited as well in estimating candidate quality.
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Conclusions 10
10.1 Summary
The focus of this thesis was the problem of compression of dynamic data, mainly

the compression of sequences of triangle meshes with variable connectivity (time-

varying meshes), which is still considered an open problem in contrast to the com-

pression of dynamic meshes, where all the frames share the same connectivity. Cur-

rentmethods either discard the original structure of the data, have limited versatility

(e.g., can handle only sequences of constant topology), or have a limited compression

performance. We have pointed out the challenges one must face to address these

issues. Additionally, some inspiration can be also drawn frommethods in the related

field of dynamic point cloud compression.

Our first contribution was in the field of static and dynamic mesh compression,

where we proposed an algorithm to control error propagation in Laplacian mesh

compression by adjusting encoded values on the fly in forward substitution when

solving a linear system. Our method achieves compression performance on par

with state-of-the-art under both mechanistic and perceptual criteria and also allows

faster decoding times than the original High-pass coding approach.

We have also proposed a temporal-model-based method for compression of

molecular dynamics trajectories. The method utilizes a temporal model denoted

canonical molecule, which captures the relative positions of atoms and angles between

incident edges representing atom bonds. Results show that our method performs

particularly well on large molecular systems (e.g. proteins).

One of our twomain contributions is a temporalmodel for representing surfaces

evolving in time denoted tracked centers. We have proposed multiple improvements

since publishing the original work, each substantially reducing the number of track-

ing irregularities. There are already various applications of the model, although

its current limitations prevent it from being applicable in the structure-preserving

compression of TVMs.
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10. Conclusions

Our secondmain contributionwas amethod for compressingmesh connectivity

for known geometry. It uses a priority-driven connectivity traversal, which emits

symbols in an order that can be exploited by context-adaptive coding. The method

can be integrated into any structure-preserving TVM compression pipeline that

encodes geometry separately from connectivity, as long as the input frames are

2-manifold meshes.

Except for the algorithm for error propagation control in Laplacian compression

and the initially proposed volume tracking pipeline, the source codes of all our

contributions were released to the public under permissive licences.

10.2 Discussion
There are still issues to be solved before we will be able to combine our main contri-

butions to form a complete structure-preserving TVM compression pipeline. Cur-

rently, we are researching better ways of using the tracked centers as a deformation

model and also theways of taking such a deformationmodel into account when opti-

mizing the center positions. Addressing this problem should result in a much better

alignment of subsequent frames for geometry compression, while we expect almost

no changes in the data footprint of the model. Alternatively, the surface approxi-

mation presented in Section 8.7.1 might also be used to predict frame geometry,

however, different challenges would have to be solved. It might also be possible that

these challenges cannot be overcome. In such a case, we plan to investigate different

temporal models for versatile data, likely based on deep learning. Nevertheless, the

tracked centers already show promising results in different applications (e.g., surface

approximation and temporally-coherent editing).

For practical reasons, it is also important to adjust our connectivity compres-

sion method to non-manifold meshes in the future. Although we have access to

TVMs with all the frames being 2-manifold meshes, in real-world scenarios, the

non-manifold frames are to be expected, particularly if the compression is to be

performed immediately after the process of obtaining the data.

The area of TVM compression is expected to further evolve in the future, in part

also due to the current efforts of the MPEG. Although the method that is currently

developed to be the future MPEG V-DMC standard does not preserve mesh struc-

ture, it is very likely that in the future, it will be adapted to preserve this information.

To date, the performance of all the TVM compression methods has been evalu-

ated using only the mechanistic error measures. To the best of our knowledge, there

is currently no perceptual metric designed specifically to work with the geometry

of time-varying meshes. For this reason, we also plan to focus on this research area.

Proposing such a metric will very likely require some notion of temporal coherence,

for which, in theory, it might be possible to incorporate our tracked centers.
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