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ABSTRACT
One of the most promising developments in computer vision in recent years is the use of generative neural net-
works for functionality condition-based 3D design reconstruction and generation. Here, neural networks learn
dependencies between functionalities and a geometry in a very effective way. For a neural network the function-
alities are translated in conditions to a certain geometry. But the more conditions the design generation needs
to reflect, the more difficult it is to learn clear dependencies. This leads to a multi criteria design problem due
various conditions, which are not considered in the neural network structure so far. In this paper, we address this
multi-criteria challenge for a 3D design use case related to an unmanned aerial vehicle (UAV) motor mount. We
generate 10,000 abstract 3D designs and subject them all to simulations for three physical disciplines: mechanics,
thermodynamics, and aerodynamics. Then, we train a Conditional Variational Autoencoder (CVAE) using the
geometry and corresponding multicriteria functional constraints as input. We use our trained CVAE as well as
the Marching cubes algorithm to generate meshes for simulation based evaluation. The results are then evaluated
with the generated UAV designs. Subsequently, we demonstrate the ability to generate optimized designs under
self-defined functionality conditions using the trained neural network.

Keywords
3D Generation, Multi-Criteria, Optimization, Engine Mount, Coditional Variational Autoencoder, Simulation
based Evaluation

1 INTRODUCTION
The potential of using neural networks (NN) for com-
puter aided design (CAD) generation shows new possi-
bilities in the fields e.g. medicine, engineering as well
as product development. Algorithms iteratively gener-
ate a variety of solutions in the shortest possible time
for higher-performance designs [Seo22]. Only func-
tionality requirements with some boundary conditions
are needed. This is achieved by NN as they connect the
functionality requirements, as conditions, directly to
generated geometry features. The weights of the neural
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networks are adjusted based on the conditions for opti-
mal material distribution during training. Trained neu-
ral networks are showing excellent results to learn these
dependencies [Du21]. Thus, the NN can be trained to
find new design variations which only consider func-
tionality requirements. For this generative design pro-
cesses, generative neural networks like Variational Au-
toencoder (VAE) [Kin13] and Generative Adversarial
Networks (GAN) [Goo14] are often successfully used.
For generative neural networks based approaches func-
tionality design requirements are assigned as conditions
for a specific geometry. Newer approaches use Condi-
tional Variational Autoencoder (CVAE)[Soh15] to gen-
erate objects under specific conditions. Training such
a model with an increasing number of conditions is a
major challenge. For this purpose, a low dimensional
representation like a latent space is mostly used to rep-
resent multi functionality dependencies. It gives the op-
portunity to compare designs due to their similarities
[Shu20]. In this way, the chance is given to balance
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multi-criteria conditions for a higher-performance de-
sign. However, these latent spaces are difficult to inter-
pret and analyze with a growing number of conditions.
This is one reason why design problems solved so far
with generative neural networks are mostly limited to
a two-dimensional design space and a low number of
considered conditions [Che22, Oh19a]. Further, exist-
ing approaches show lack of adaptation in the NN struc-
ture with the complexity of multiple conditions to learn
the relationship between conditions and geometry. In
particular, when conditions are strongly dependent, in
the same geometry. Moreover, there are hardly any ex-
amples as a data basis for such 3D CAD generative neu-
ral networks use cases with major conditions. From this
we derive our main research questions for this work:

1. Can a generative neural networks be trained on 3D
synthetic data with multi physics based conditions
to generate a 3D design for a real design task?

2. How must the structure of a generative neural net-
work be extended to associate multi-criteria con-
straints during the training process with geometry
features on a design?

3. How to train a generative neural network to predict
more powerful designs and find an optimum under
multiphysics conditions?

To answer our research questions, we have a multi-
criteria 3D design use case regarding an engine mount
for an unmanned air vehicle. We generate 10,000 3D
generative designs, which is based on our earlier work
[Pet21]. The designs are generated with respect to the
functionalities and geometries features from our use
case. With a total of 30,000 executed simulations we
evaluate and label the generated generative designs in
terms of its physics-based functionalities. The physics-
based functionalities are mechanics, thermodynamics
as well as aerodynamics. In addition, we introduce
conditions, which enable an assessment of manufac-
turability with additive manufacturing [Bik19]. After,
we train a CVAE with our labeled generative designs
[Soh15]. A major challenge on our regression problem
are the continuous values of our conditions. Moreover,
the physical quantities values are numerically very dif-
ferent in scale. The introduction of more than one con-
dition caused a large divergence in the latent space. It
is an ambiguous learning behavior to concrete geometry
features. Therefore, we semantically partition our con-
ditions and extend the input NN structure of the CVAE.
The trained model gives us the probability for a mate-
rial prediction for all material areas in the design space.
Finally, we use our trained model to generate an opti-
mized design which fulfills best our multi-criteria func-
tionalities. To the best of our knowledge, this is the
first work that addresses the problem of a 3D design

problem with regression multi-criteria conditions with
a generative neural networks. Our contribution in this
paper is threefold:

• An extended conditional variational autoencoder
approach to open up a three-dimensional solution
space with a geometrically parameter-free descrip-
tion of a component under multiple physics based
conditions.

• An approach for a higher performance design gen-
eration, from a multi-condition learned relationship
between latent representations and the generated de-
signs.

• An evaluation of our presented approach on a 3D use
case, with an interpretation of the latent space of a
successfully trained generative neural networks for
an optimal component design.

2 RELATED WORK
2.1 Deep Learning for 3D Data
In the field of computer vision, there has been a
significant development of different deep networks
for a variety of different tasks in recent years. For
this reason, a variety of methods based on VAEs
[Bro16, QY20], GANs[Gao22, Shu20], diffusion mod-
els [Ye22, Zhe22] as well as normalising flows [Klo20]
have been explored to generate 3D objects as mesh,
point cloud or voxel representations. So in the field of
3D object recognition to implement a joint embedding
of 3D shapes and synthesised images approaches are
shown in [Li15, Su15a]. Another approach is presented
in [Sha16] where the researchers used voxel-based
models with an autoencoder to represent 3D objects.
A more effective approach is used in [Qi17a] where a
point-like representation is used to explore 3D objects.
Other approaches like in [Yan16a] use 2D images
together with a 3D to 2D projection layer to generate
3D objects. Besides the classical use of the presented
approaches for classification tasks [Qi17a, Sha16], the
approaches can also be used for completing full shapes
[Che19b, Tch19a] or for single-view reconstruction
[Man18]. Furthermore, [Che19a, Fu22] are exploring
text-based 3D object generating approaches.

2.2 Conditional Variational Autoencoder
Based on the concept of a VAE [Kin13] a Conditional
Variational Autoencoder [Soh15] (CVAE) is considered
good to represent the high-dimensional joint distribu-
tions of features [Kim21a, Soh15, Yon21].
The main target of VAEs is the estimation of the rela-
tion between the input xi and the corresponding latent
representation zi. In variational inference, the posterior
p(z|x) is approximated by a parameterized distribution
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qθ (z|x) called the variational distribution. The lower
bound for p(x) can be written as follows [Kin13]:

Lθ ,φ ,x = Eqθ (z|x) [log pφ (x|z)]−KL(qθ (z|x)||pφ (z))
(1)

The two fundamental parts of the VAE are the En-
coder E = qθ (x|z) with parameters θ and the Decoder
D = pφD(x|z) with parameters φ . They represent func-
tions which map the input xi to a latent space zi and vice
versa. The reconstruction from xi is x̂i. Here, the rep-
resented optimization is an minimization of the recon-
struction loss under consideration of the KL divergence
as an regularizer. E has two outputs µi and σi that cor-
respond to the mean and the standard deviation of the
Gaussian latent variable zi. For this, the reparameter-
ization trick [Kin13] is normally used with µi +σi ∗ ε

under consideration of εi ∼ N(0,1) to calculate zi. It
helps the network to shift not to much from the true
distribution.
In contrast to the VAE, a CVAE approach based on the
maximisation from the variational lower bound of the
conditional likelihood p(x|c) which supports to gen-
erate designs under multiple specified conditions c =
{c1 . . .cn} where n is the number of conditions [Soh15].

Lθ ,φ ,x,c = Eqθ (z|x,c) [log pφ (x|z,c)]
−KL(qθ (z|x,c)||pφ (z|c))

(2)

The trained CVAE is usable to reconstruct an input xi
under a set of conditions c to match the target out-
puts x̂i. In contrast to the VAE, the main parts of the
CVAE E and D are conditioned by c. It follows that
E = qθ (z|x,c) with parameters θ and D = pφD(x|z,c)
with parameters φ which represents functions are used
to map the input xi under consideration of c to a latent
space zi and vice versa. In this context, a core problem
is when working with multiple conditions in a CVAE is
how to bring them into the network. Also the weight-
ing or balancing problem of the reconstruction error and
the Kullback-Leibler divergence shows this. It has been
object of several investigations [Asp20].

2.3 Deep Learning for Engineering Tasks
For iterative design generation, in [Shu20] a GAN
based approach is shown for direct 3D modeling of an
aircraft. The work followed the idea of a physics-based
generated dataset. Thereby, the aerodynamics are
considered primarily and the shape as the single con-
dition. The goal is to minimize the aerodynamic drag.
Furthermore, in [Hey21] an approach is developed
for generating 3D models with more constraints. The
researchers add a range loss, so design constraints
are additionally taken into account based on param-
eter specifications using the example of 3D aircraft
models. A slightly different approach is presented
in [Zha19] for the optimization of 3D models. After

successfully training of a variational autoencoder, a
genetic algorithm is used to optimize the latent space
design embeddings. Further, an approach to consider
continuous conditions in the generation process with
Conditional GANs is shown in [Nob21]. They use a
singular vicinal loss in combination with a loss function
based on determinant point processes. In doing so,
the researchers add a new self-amplifying Lambert
Log Exponential Transition Score, which is used for
improved conditioning. They successfully demonstrate
the approach on an 2D airfoil generation task with
diverse results. Similarly, a Free-Form Deformation
Generative Adversarial Networks which provides
efficient parameterization for 3D shapes is presented
in [Che21]. Hereby, they achieve high representation
compactness and capacity. A VAE to select an optimal
material strength for their 2D optimization approach to
retrieve a result from a latent space is shown in [QY20].
They take a structure optimization and determines the
optimal material from the latent space of their trained
VAE. A two-dimensional shape optimization based
on the Bezier GAN, where the approach is based
on a parameterized representation of a 2D shape is
introduced in [Che22].
The work presented shows the difficulty of available
data for design problems. Data for more complex
solutions for multiple conditions isn’t published.
3D data and corresponding physics-based labels are
missing. GAN approaches are available in detail
mostly with one considered condition. Multiphysics
problems are missing in the context of direct 3D design
creation completely or don’t deal with real physics-
based designs [Ugu19]. Further, it is recognisable
that generative neural networks are often used for
classification problems, which have not been further
discussed here. In summary, an approach which
allows to incorporate three-dimensional multi-criteria
designs with regression conditions into a generative
neural network is missing. Therefore, no extended NN
approaches which have a change in their architecture
in favor of multi-criteria conditions do exist.

3 METHOD
In this section we propose our method to effectively
bring continuous multi-criteria conditions into a new
design of an UAV. In doing so, we solve a multi-physics
design problem with a CVAE. The use case gives con-
crete functionalities and geometry features. Finally, a
multi-physics and functionally generative optimal de-
sign is presented. Optimal with regard to the physical
conditions. To achieve this target, we developed a four-
step approach to use a generative neural networks for a
new design of a component (Figure: 1).

First, we generate 10,000 designs. We do it with a
pseudo random noise based on [Bae18] and our earlier
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Figure 1: Multi-criteria generative neural networks de-
sign approach. Four steps of using a Deep Input CVAE
for functionalities based design generation.

work [Pet21]. The special random function should en-
sure that the design space is covered completely and
evenly [Pet21]. For the neural network each voxel
should occur equally often in training. This is done
to teach the neural network a parameter-free geometric
generative description of design variants. In this way
a geometric solution appears as unrestricted as possi-
ble in the design space (generative design). Second,
we use a physics-based simulation to evaluate our de-
signs with respect to the functionalities. Each gener-
ated generative design is labeled with its physical per-
formance data. Third, we train a generative neural net-
works with an extended architecture and our generated
designs as well as simulation based labels as input. It
learns where material in the design space is important
or unimportant for the physics-based functionalities. In
a last step the trained NN is used to generate an optimal
design. At this point the lower dimensional latent repre-
sentation is used for a prediction of a new design under
regression multi-criteria conditions. The main differ-
ences of our approach to existing approaches is as fol-
lows. We show a generative neural networks based ap-
proach in which not only single criterion requirements
for a design problem are solved. The design problem
is three-dimensional, multi-physical and considers geo-
metric requirements and interfaces. A concrete use case
and additive manufacturing are also addressed. The ex-
tension of a CVAE is developed, demonstrated and im-
proved for multi criteria conditions.

3.1 Training Data Generation

To create the 10,000 generative designs
X = {x1 . . .xi}, i ∈ {1 . . .10,000} we use a noise
based generation method. We define our design space
A with 50,400 voxels (Figure: 3)

A = {(a j,k,l)|∀ j = 1,2, . . .30, k = 1 . . .40, l = 1 . . .42}
(3)

where one voxel a j,k,l per cm3 is used. This compar-
atively rough representation is chosen due to the ex-
pected long computation and power calculation time.
Next a three-dimensional Perlin Noise (noise) is used

Figure 2: ANSYS simulations for mechanics, ther-
modynamics and aerodynamics with generated designs
and specific load cases. The arrows represent the direc-
tion of it.

to generate a basic material distribution MdAM,i in the
design space A

MdAM,i =
M−1

∑
n=0

û∗noise(νn ∗ a j,k,l) (4)

with amplitude modulation AM, frequency ν and am-
plitudes û. Here, ûn+1 = ûn ∗ φnoise is guilty where a
combination of the frequency and amplitude modula-
tion with different frequencies is used. At this point,
φnoise is a special constant which links the amplitude
with the amplitude of the previous step. This creates
uniform coverage of the design space. At the correct
scale it produces organic-looking designs due to the ba-
sis of locally contiguous duration’s.
After, where the engine mount needs interfaces to the
engine and to aircraft structure, material is used per
design (Figure: 3). Through repetitive areas, the NN
learns where in any case must be material for addon
parts. Algorithms are used to ensure that the designs
can be use for a physic-based simulation [Pet21]. So
the design consists of only one body and can be flowed
through by air[Pet21]. As a final step, the designs are
transformed into a surface description for simulations.
The described steps from Eq. 4 are repeated until a
quantity of 10,000 generated designs X is achieved.

3.2 Physics Based Simulations
The simulation based label generation is done with
automated simulations in ANSYS [Mad15] FEM and
CFD (Figure: 2). For this purpose, one mechanical, one
thermal and one aerodynamic simulation for each gen-
erated design xi is performed. We take these as the ba-
sis for our considered physic-based parameters, which
are most expressive for our use case. So our conditions
where n = 9 are the following:
For the mechanics, we evaluate the mean residual stress
c1 and mean total deformation c2 for all voxels. For
thermodynamic, mean temperature c3 and heat den-
sity c4. In aerodynamics we consider the mean outlet
pressure c5 and the resistance to air c6 in the direction
of flow. For the previously mentioned conditions, we
don’t use maxima values cause of bad training tests.
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Figure 3: On the left our developed Deep Input CVAE approach for reconstruction of 3D object with multiple
conditions cn and k1,...,5 is illustrated. On the right our approach for design generation with a FNN as well as the
trained decoder D is shown. The data flow as well as the neural network structure is shown to generate new designs
χq with self selected values c{χq}. In red, fnet is highlighted.

Instead, we use mean values, so that the value distri-
bution corresponds more closely to a Gaussian distri-
bution. The assessment with regard to additive manu-
facturing is based on the heat distribution in the print-
ing process c7 and build-up angle of number to sur-
faces c8. A lightweight design criterion c9 is introduced
as a classic optimization factor. For this consideration
we use the number of voxels per design. Finally we
have a set 10,000 value pairs with one value for each
condition per generated design Cx = {cx1 , . . . ,cx10000}.
So, all values are normalized per condition for faster
and better training. Values in the set of conditions
cn = {cn,1, . . . ,cn,10000} which are not in range of ± 2σ

are dropped out. This leads to a more uniform training
process, which does not focus on maximums.

3.3 Extended CVAE for Multi-Physics
Based Design Generation

In our approach we use a CVAE-approach like in 2.2 ex-
plained with the generated designs X and the values of
Cx as input. With data augmentation like in [Kar22] we
support our training. Further we use seven dense layers
to reduce the size as follows (50400,1024,512, ...,16)
as well as in reverse order in D. After each layer we use
a Rectified Linear Unit (ReLU) activation function The
latent size z is defined as 32. Further we apply an Adam
optimizer [Kin14]. For the generation of q(z) as close
as possible to the standard normal distribution we are
using a two-part loss function with the reconstructions
loss E[·] as well as a KL-divergence loss KL[·] like in
Eq.2.
In comparison to the state of art, we divide c given the
physic discipline of each cn into five categories K =
{k1 . . .kb},b ∈ {1. . . . ,5}. In doing so, we have used
the following allocations: k1 = {c1,c2}, k2 = {c3,c4},
k3 = {c5,c6}, k4 = {c7,c8} and k5 = {c9}. This ex-
tension supports the combination of values which differ

significantly in their dimensions. In this context, we
use complementary simple feedforward neural network
(FNN) structure extension for each category in the input
of our Deep Input CVAE (D-CVAE). The five exten-
sions are added in one layer aM after seven hidden lay-
ers size (4,8, ...,256) per extension kb and concatenated
with last layer of E and the first layer of D. This se-
mantically separated and more complex representation
of our input improves the representation of the complex
data strongly. After training the D-CVAE, trained D
represents a parametric model where zi and ci are input
parameters to generate new designs. So, an opportunity
is given with the trained D-CVAE to generate a new
design χq with the desired performance maximization
across all conditions. The D-CVAE architecture previ-
ously described is shown in Figure 3.

3.4 Design Optimization
An approach for an optimal design generation χopt fol-
lows on. First to generate a new design χq with self
selected values for each condition in c, the relationship
between the latent representation per design zxi and cx1
is trained. For this purpose a FNN ( fnet) is used to learn
this relationship to predict ẑxi as a new representation:

ẑi = fnet(ci) (5)

In- and output variables to train the FNN fnet(c) with
eight hidden layers and a ReLU activation function to
predict a latent representation per generated design ẑxi

are cx1 as well as zxi . The trained fnet allows with
trained D and self selected values cχq for c to predict
a permissible quantity q (e.g. q = 100) of new individ-
ual models Q = {χ1, . . . ,χq}. Therefore the following
applies under consideration of cχq

χi = D(ẑi,cχq). (6)

The explained approach to generate χq is shown on the
right in Figure: 3.
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Once fnet is successfully trained, ẑi can be used in a
three step way to determine an optimal design χopt in
performance across all conditions.
First, the values of every physical property cn,xi are or-
dered per condition from the user’s point of view from
the lowest to the maximum performance. This is given
by the minimum and maximum performance by the
value range per condition. This creates new value pairs
Cχ = {cχq , . . . ,cχq}. These value pairs are are not pre-
viously present in Cx. The new value pairs are the basis
for more powerful designs. Thereby, χ1 has the low-
est performance for all cn,χq while χq has the highest
performance per cn,χq so the following is guilty

χ1 = D(ẑ1,cχ1)< χ2 = D(ẑ2,cχ2)< .. .

< χq = D(ẑq,cχq).
(7)

Next, to see if we can push our self-selected values even
further to a higher performance design, we look at the
variety which our D-CVAE can provide. For this we
use the material change rate ∆M of each design point
per design χq to the next χq+1 calculated by

∆M =
q−1

∑
1

∑
j
1 ∑

k
1 ∑

l
1(A j∗k∗l)χq+1 − (A j∗k∗l)χq)

j ∗ k ∗ l
. (8)

We use Eq.8 to define the range where the new val-
ues for our defined conditions can be set. We assume
that a new value per condition can only be set in the
area where trained D has enough diversity in the design.
This defines the limit for our trained model to retrieve
a design with maximum performance from the latent
space. Finally, we analyze the point where the material
change rate is maximum while considering maximum
performance. This results in the best possible design
Eq. (9) with the presented optimization approach.

χopt : max f (∆M) for min D(ẑi,cχq) (9)

Here, χopt defines the optimal material distribution for a
higher performance design. For a simulation based val-
idation χopt has to be transformed manually via [Lor98]
to a CAD file.

4 EXPERIMENTS
In this section, we report the details of our experiments
and the qualitative and quantitative validation. We com-
pare our approach with a 3D Convolutional Neural Net-
work in conjunction with a CVAE (CNN-CVAE) pre-
sented by [Na18] and a fully connected layer (FC-
CVAE) presented in [Can19a]. In addition, we show
the results in terms of an optimal design generation.

4.1 Use Case
Our use case is the design of an engine mount for an un-
manned air vehicle (UAV) displayed in Figure 4). The

Figure 4: On the right is the complete UAV drive unit
and on the left the engine Mount. We use a voxel-based
geometric description.

idea is to reduce the number of components as far as
possible to one central design with add-on parts (e.g.
electronic, engine). For this purpose, the new possibili-
ties of additive manufacturing are considered.

To achieve the target, we analyze the engine in terms
of its main functionalities. In this case, the Wankel en-
gine is attached to an engine mount that transmits the
thrust to the aircraft structure. For operation, there is
a radiator at the beginning of the engine, which cools
the engine through coolant pipes located on the engine
mount. In the particular case of the launch phase on a
catapult, much heat is transported from the engine in
the engine mount.

The main functionality of the engine mount can be de-
scribed as the static stability to hold and sufficient heat
dissipation to cool the engine. To ensure these function-
alities, air must flow freely through the engine mount.
Our goal is derived from this to design with a CVAE a
holder which can withstand the mechanical and thermal
load case, and has a favorable aerodynamic design. In
addition, conditions which make metal additive manu-
facturing feasible must be considered.

4.2 Training Settings
The Training is done on a Xeon 4108 with 64GB RAM
and 1 GPU NVIDIA P5000. Training results for the
mentioned types generative neural networks are shown
in Figure (5). It can be seen for multiple conditions the
reconstruction result for our designs becomes more and
more fuzzy. First, when using a CNN-CVAE compared
to the FC-CVAE the core body of the design is pre-
sented well. However, fine details and the edges in the
designs are not taken into account. Also, the training
time is 8h for 200 epochs. Therefore, hyperparameter
tuning is very time consuming. Compared to a training
time of 40 minutes, the FC-CVAE is much faster, but
it shows a very noisy design. Interesting is the obser-
vation of areas where material is very unlikely which is
displayed numeric negatively (dark blue areas in Figure
5).
In the following Table 1 our final loss values are pre-
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Figure 5: Reconstruction of the models depending on
the condition. On the right side in red the original and
on the left in colors representing the probability of ma-
terial.

Model KL-Loss Rec. loss Total
CNN-CVAE 90 6,050 6,140
FC-CVAE 2,500 30,000 32,500
D-CVAE 80 520 600

Table 1: Absolute final values of the loss functions as
well as the total loss after training per considered gen-
erative neural network-approach. The smaller the error
value, the better the model.

Figure 6: Representation of the loss functions of the 3
trained models. Top total loss, mid KL loss and bottom
reconstruction loss. The red line points to the maximum
in the KL loss and the adjustment of the reconstruction
loss. It is recognizable that our developed D-CVAE has
the best training curves.

sented. The reconstruction loss (Rec. loss) can be un-
derstood as the number of misrepresented voxels. The
KL Loss is a measure for the quality of the conditions
learned. Our D-CVAE shows a natural balancing of our
label to learn the latent space. This is shown in Figure
6. The total loss with of the D-CVAE improves signifi-
cantly compared to the CNN-CVAE and FC-CVAE and
the two loss components. KL Loss and Reconstruction
Loss, converge (redline) by themselves in such a way
that the conditions have a sufficient influence.

On the basis of the representation of the learned design
(Figure 5 and Table 2) our D-CVAE approach generates
qualitatively and quantitatively better results than the

Model Abs. Error Design Space
CNN-CVAE 1,762
FC-CVAE 2,625
D-CVAE 60

Table 2: Abs. error in design space of design predic-
tions x̂i.

Figure 7: Comparison of the latent space of the t-
dispersed stochastic neighborhood implantation of the
100 user wanted performance values. The latent space
of our D-CVAE has the best spread data representation.

CNN-CVAE and FC-CVAE approaches. The D-CVAE
shows the highest accuracy when it comes to mapping
the contour. By adding up the probabilities of the pre-
dictions, the reliability of the predictions of a geometry
from the condition can be determined by variance in
Table 3.

4.3 Multi-Criteria Optimization of a 3D
Design

Next we specify our own values per condition cn,χ to
generate new models in the interest of design optimiza-
tion. We create χ = 100 values per condition cn,χ from
good to bad in the sense of our used case and the per-
formance. The values are selected as follows: Ther-
mals and mechanics should withstand the loads as much
as possible and are demanded as constant conditions.
Aerodynamics and manufacturability should improve
over the 100 labels from 0-100. The ninth condition
(c9), which should ensure that less material is used, as a
classic optimization requirement. Min. and Max. from
the simulated conditions are used as upper and lower
limits. The challenge here, is that condition combina-
tions are now required which are not previously learned
in the latent space. In total these are 100 new values
pairs uzk of unknown designs. These hundred condi-
tions are used to retrieve the desired designs in the form
of material distributions from the latent space with the
decoder D(ẑq,cχq).
In the following, we use the term material distribution
instead of design proposal, because the strongly com-
peting nine conditions lead to the fact that no distinct
design for arbitrary condition combinations can emerge
clearly. Unfortunately, for our validation with simula-
tions, each material prediction with the new conditions
has to be reconstructed manually. Thus, 4 examples
each are chosen and simulated evenly split between 0-
100 to look at the variance. From this, the variance σ to
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Modell c1 c2 c3 c4 c5 c6 c7 c8 c9
VAR CNN-CVAE 0.210 0.30 261 0.07 1,202 569 9.07 1,047 0.07
VAR FC-CVAE 0.150 0.31 169 0.09 2,015 2,000 14.05 476 0.10
VAR D-CVAE 0.077 0.27 62 0.03 939 2,030 7.22 501 0.13
CNN-CVAE → ↓ → → ↗ ↑ ↗ ↗ ↑
FC-CVAE → → ↘ ↘ → ↗ → ↑ ↑
D-CVAE → → → → ↗ ↗ ↑ ↑ ↑
Target performance → → → → ↑ ↑ ↑ ↑ ↑

Table 3: Variance (VAR) from predicted and simulated designs in comparison to the used condition. Together
qualitatively presented with the desired performance that should be achieved

the expected value cχi is calculated from the given 100,
q ∈ Q conditions with σ2 = 1

q ∑
q
1(c− cχi)

2.

In addition to Table 3, we evaluate how the value pro-
ceed from good to bad qualitatively. In comparison how
it should develop according to the wanted performance
per condition. Here, ↑ represents a qualitative improve-
ment, ↓ on the other hand a degradation, → a preserve
of the condition. The target performance defines how a
better performing design should behave. The D-CVAE
shows the best results in terms of the qualitative con-
sideration of the conditions. It can be seen that the D-
CVAE tends to have lower variance in its simulated pre-
dictions than the other models (Table: 3).

The 100 desired labels can be seen in the latent space of
the models in Figure (7). It is recognizable that a clearer
range in the D-CVAE appears. The area in which the
100 conditions are retrieved is contiguous (red rings).
The 100 points are marked from blue (poor perfor-
mance) to yellow (good performance). Also, the dis-
tribution of the data shows more clearly distributed and
separated points, which is indicative of a more diverse
learned latent space. Finally, we want to find the best

Condition Training Our Opt. Dev.[%]
c1[MPa] 0.062 0.10 -48
c2[mm] 0.0032 0.0072 -56
c3[K] 216 291 +26
c4[

kW
s ] 0.047 0.095 -51

c5[Pa] 198 26 +716
c6[N] 116 52 +223
c7[

mm2

layer ] 7.175 2.300 +311
c8[sur f aces] 1,317 795 +165
c9[voxel] 0.234 0.160 +146

Table 4: Our optimum compared in percent to the
model with the best performance in our training’s data
set. The results for the mechanical and thermal load
case remain the same as intended and keep the condi-
tions. The other conditions improve significantly.

possible solution for our 3D multi-criteria design prob-
lem. The goal is to find a material distribution in the
design space that maximizes performance considering

Figure 8: Optimal material distribution and recon-
structed CAD design. Arrows indicate the simulated
load case for validation.

the conditions. But there are natural limits to retriev-
ing better and better design proposals from our model.
To find them we look at the range in which our model
still shows sufficient diversity material prediction with
respect to the conditions. For this we use the mate-
rial change gradient from one design point to the next
for our 100 created conditions (Eq. 8). The range in
which significant material change can still be predicted
for high performance is of interest. We searched in
that manner for the best design with our trained model.
We chose one recognizable maximum in the material
change rate close to the maximum performance. The
results are illustrated in Figure 8, it shows the product
of a condition point. We simulate our optimum in all
physical disciplines cf. Table 4 and compare it to the
best in our previously generated training data. From a
qualitative point of view the results makes sense. There
is a lot of material around the engine to remove the heat,
there is a solid connection to the mounting points. In
addition, the engine is directly surrounded by cooling
air from two sides. The optimal model we generated is
much better compared to the best model in the training
data set.

5 CONCLUSION
The presented approach is one way to generate a 3D
parameter-free geometry for a real multi-physics de-
sign problem with a D-CVAE. The main problem of
determining a material distribution and linking geom-
etry features to multiple regression conditions is met.
However, the automated evaluation of the generated de-
signs with D-CVAE is still a major obstacle for such a
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complex use case. It must be inferred repeatedly from
to the material distribution to the design, similar to a
classical topology optimization result. In this work one
best design is shown in terms of our conditions as an
optimum. It can be achieved without ground truth with
the help of synthetic data. We have no comparison to
an optimized component for all criteria with another
method yet. Simpler data would not adequately address
the complex challenge of multi-criteria design gener-
ation. Therefore, in further work, we concentrate on
completely different conditional generative neural net-
work approaches and new ways to clearly generate de-
signs with multiple conditions. So, a faster and auto-
mated evaluation can be done with our data. The data
and code are available upon reasonable request.
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