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Abstract:  

In this paper the influence of some transient phenomena on the results of dielectric measurements is discussed. 

The investigation is concerned with the region of very low frequencies or the region of very long times.  Based 

on the solution of Maxwell equations three phenomena were analyzed: the effect of incomplete charging on the 

values of discharging current, the effect of a deform shape of the step voltage at charging and the effect of 

multiple periods at evaluation of the alternating current measurements. The results of modeling showed, that the 

minimum charging time for achieving acceptable results at discharging currents responds approximately to the 

50 times of the relaxation time constant. The charging voltage at all experiments has to be checked for its 

individual time constant. An inadequate long time constant disable us to reveal the parameters of the 

investigating relaxation process. In the frequency domain, especially in the very low frequency range, it is 

possible to obtain reliable results after application of minimum three periods of the sinusoidal voltage. Except of 

this, the paper also provides computational bases for estimation of the differences caused by non-ideal conditions 

at dielectric measurements. 

 

INTRODUCTION 

The diagnostic methods for recognizing of the 

electric insulation state are mostly based on the 

measurements in the time domain (e.g. the charging 

and discharging current) as well as in the frequency 

domain (the capacitance and dissipation factor). In 

both cases we try to find the changes of the 

corresponding parameters during a long-term 

operation and predict the expected operating life. A 

common feature of electrical insulations in power 

equipments is their layer structure. A new type of 

polarization (migration polarization) is created on the 

layer interfaces. It depends on the permittivities and 

conductivities of the individual insulating layers. The 

polarization is characterized by a long relaxation 

time. If we want to recognize the phenomena at the 

interfaces, we must take the dielectric measurements 

at relative long times (1000 s) or at very low 

frequencies (0.001 Hz). By conducting a routine 

measurement we often neglect some transient 

phenomena, which could lead to erroneous 

conclusions on the quality of insulation system. In 

this paper we shall treat some selected phenomena by 

solving the Maxwell equations with aim at estimation 

of possible differences between the exact and the real 

measurable values in the time and the frequency 

domain.   

THEORY 

In the theory of dielectrics the electric field E(t) is 

considered as the system input signal and the 

polarization P(t) as the system output signal. The 

system response to an arbitrary electric field E is 
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where 0 is permittivity of free space and h(t) is a 

function called dielectric response, which completely 

characterize the investigated insulating material or 

object. In fact, the dielectric response is the impulse 

function (i.e. the response on the Dirac unit impulse 

) of the input – output system E(t) vs. P(t). 

In experiments the polarization P(t) is not measured 

directly. A commonly used technique in this field is 

the measurement of so-called charging current after a 

step voltage application [1]. The current density can 

be evaluated from Maxwell equation  
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where 0 is the steady state conductivity and  is 

optical permittivity. If the input signal is a step 

electric field E0, the current density is given by 
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As it is seen from (3), the dielectric response can be 

measured as a variable part of the current after 

application of a step voltage to the measured object. 

The complex dielectric susceptibility  is simply the 

Fourier transform of the dielectric response 
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Many times in practice we cannot find the actual 

dimensions of insulation under the test. That is why 

we use a formal geometric or vacuum capacitance CG. 

The current through the measured object is then  
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where U(t) is the voltage on the object. For the sake 

of transparency we use in text the following variables 

C0 = CG  for the capacitance belonging to 

the fast polarizations, 

GC
R

0

0
0




  for the insulation resistance. 

MODEL SOLUTION 

To show the possibilities of a mathematical solution 

of Eq. (5) three phenomena were selected and 

analyzed:  

- the effect of incomplete charging on the values of 

discharging current,  

- the effect of the step voltage deform shape on the 

values of charging current, 

- the effect of multiple periods at evaluation of the 

alternating current measurements. 

The first solution is concerned with influence of so 

called dielectric memory effect. In this case we intend 

to calculate the dielectric susceptibility from the 

discharging current by the Fourier transform. This is 

often used for separation of the conduction and 

polarization dielectric losses while the discharging 

current is free of conduction. Let us define the unit-

step function v(t) as: v(t) = 1 for t  0, v(t) = 0 for t < 

0. If the object is charged with voltage U0 for the time 

interval from 0 to t1 then we have for U(t) in Eq. (5): 
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As the discharging current starts at t = t1 we can 

introduce a new scale for time (assigned as tN) with 

origin in t1. From the generally known properties of 

the convolution integral we can write Eq. (5) for the 

discharging current ID as follows 
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Here the term with R0 was omitted, as the voltage 

equals to zero. Also the derivation of the unit-step 

function, which creates the Dirac unit impulse, was 

omitted because of its non-measurable value. In this 

way the model of the memory effect is very simple. 

The only obstacle may be a computation of the 

dielectric response values CGh(t), which could be 

generated from the frequency function of the complex 

susceptibility. This is specified bellow in the part 

with results and discussion. 

The second solution is concerned with the effect of a 

deform shape of the step voltage at charging. In fact, 

the step voltage used for the absorption current 

measurements has never an ideal rectangular shape. It 

mostly obeys an exponential law because of a non-

zero impedance of power supply. In the same way is 

the step voltage deformed by a protective resistor in 

the measuring circuit. Hence we can write the 

measuring voltage in the form 
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where  is the time constant of the voltage transient 

and U0 is the steady state value of voltage. Under 

these assumptions we cannot use the expression (3) 

for calculation of the dielectric response or the 

dielectric susceptibility, but we must solve the 

convolution integral of Eq. (5). It is useful to solve 

this integral also in the case, when the dielectric 

response is determined from the frequency domain 

measurement, especially in the range of very low 

frequency. That is why we use the same 

computational procedure also for searching the effect 

of multiple periods at evaluation of alternating 

current measurements. 

The transient phenomena in electrical circuits are 

generally solved with help of the Laplace transform. 

In this transform, the convolution integral is changing 

to the product of the individual functions transforms. 

In the following text we shall denote the Laplace 

transform of a time function f as f(p). The expression 

(5) is changed by the Laplace transform as follows: 
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A suitable expression for the dielectric response in 

insulation systems is the Cole-Cole model. In the 

Laplace transform, it has the form 
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where  is the permittivity increment, 0 and α are 

the parameters of relaxation times distribution. To 

solve the convolution integral, we need also the 

transform of the voltage applied to the system. We 

shall consider two types of voltages: the first will 

obey Eq. (8) and the second will be sinusoidal - 

U0sin(t). The voltage transforms U(p) for the 

mentioned voltages are given by 
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The time function of current can be derived simply by 

the inverse Laplace transform of (9). 

By analyzing the transient phenomena we used a 

model object with the dielectric response of the form 

(10). Some parameters of the model, which have not 

a significant effect on the calculated results, were 

kept constant during the analysis. The values of 

parameters were estimated from our previous 

measurements on the cable insulations [2]. The 

investigation was concentrated at finding the next 

relations: 



 
   

 

 

- the influence of the charging time on the values of 

loss factor calculated from the discharging current 

data, 

- the influence of the time constant  in the deform 

step charging voltage on the loss factor calculated 

after conversion of data from the time into the 

frequency domain, 

- detection of the harmonic shape distortion for the 

current flowing through a dielectric during the first 

four periods of the alternating voltage application.  

In the last two cases the inverse Laplace transform of 

Eq. (9) was performed by algorithm published in [3]. 

Commonly, in practice we mostly use the parameter 

known as a complex capacitance (C=C’+jC’’) rather 

than the complex permittivity or susceptibility. 

Therefore majority of our results will be expressed in 

the form of the complex capacitance imaginary part 

(C’’) instead of the loss factor (’’). As the analysis is 

concerned primary with the polarization phenomena, 

in the modeling presented below we will suppose, 

that the steady state conductivity 0 approaches to 

zero. 

RESULTS AND DISCUSSION 

 DIELECTRIC MEMORY EFFECT 

The basic parameters of the system were chosen as 

follows: 

U0=100 V,     CG=1.10
-9

 F,      =3.0,     =0.3,     

=20,     0=20 s. 

We suppose that the model system was charged for 

time t1 with the step voltage of value U0 and than the 

discharging current was measured. The complex 

capacitance was calculated as the Fourier transform 

of discharging current in Eq. (7). The dielectric 

response needed for this calculation was obtained as 

the inverse Laplace transform of Eq. (10). 

When investigating the polarization phenomena, we 

are interested mostly in the value of relaxation time, 

which can be calculated from the maximum value of 

the imaginary part of complex capacitance (C’’). This 

is depicted in Fig. 1. 
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Fig. 1: Frequency dependence of C’’ calculated by the Fourier 
transform for different charging times 

 

The charging time varies in multiples of relaxation 

time. An incomplete charging influences both the 

position and the magnitude of relaxation maximum. 

The process can be analyzed in more detail with help 

of the Tab. 1.  Here we find in separate columns the 

charging time t1, the rate of charging time and the 

relaxation time 0, P - the relative error of the peak 

position against the exact value calculated for infinite 

charging time and M – the relative error of the peak 

magnitude against the exact value. 

 
Tab. 1: Dependence of relative errors on the charging time for 

parameter =0.3  

 

t1 (s) t1/0 P (%) M (%) 

40  2 -37.5 20.05 

60 3 -25.0 13.17 

100 5 -12.5 7.33 

 200 10 0.00 3.48 

  1000 50 0.00 1.75 

 

It was found that the relative errors are influenced 

mostly by the parameter . We checked the values of 

 in the interval from 0 to 0.5. There was no error of 

the peak position P in the mentioned interval for the 

ratio t1/0  50. Under the same conditions we 

achieved the magnitude error M less than 3 %. 

 According to our experiences the parameter  

reaches the value of 0.5 only rarely. A common value 

is about 0.1. If there are indications that the value is 

higher than 0.5, the user must perform a separate 

calculation for this case. 

EXPONENTIAL RISE OF VOLTAGE 

In the case when the charging voltage is deformed 

comparing with the ideal rectangular form, the shape 

of absorption current is significantly influenced by 

the time constant of the applied voltage. Important 

changes appear also in the frequency domain (Fig. 2 - 

3).  

 

10-1 100 101 102

0

2

4

6

8
     (s)

 1.0

 0.1

 0.01

 0

C
'' 

(1
0

-9
 F

)

 (rad)  
Fig. 2: Frequency dependence of C’’ calculated after 

application of the voltage with the form (8) for various 

. The parameter  equals to 20 

 



 
   

 

 

A new extreme is superimposed on the existing 

course of the imaginary part of capacitance. The 

extreme can be mistakenly evaluated as coming from 

the second (unknown) relaxation process. The 

position of this extreme is fixed and can be calculated 

as =1/. The resulting line depends mostly on the 

value of . If  is relative high (as in Fig. 2), the 

existing relaxation process overlaps the parasitic 

process generated from a non-rectangular shape of 

the charging voltage. On the other hand, a small value 

of  has a consequence in a small relaxation peak, 

which fades out under the high parasitic process 

(Fig. 3). 
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Fig. 3: Frequency dependence of C’’ calculated after 

application of the voltage with the form (8) for various 

. The parameter  equals to 2 

 

 SINUSOIDAL VOLTAGE 

In this section we suppose, that the applied voltage 

has the ideal sinusoidal shape. We did not study the 

influence of the voltage deformation on the current. 

The subject of our investigation was the transient 

caused by the harmonic voltage. The result of 

analysis is important for measurements at very low 

frequency (typically 1 mHz), where the test should 

last as short as possible, but with no influence on 

precision. To make the test in the shortest time 

assumes the use of data from the first period of the 

applied voltage. By modeling we can verify if these 

data are reliable. We have used the same system as in 

the previous section. The evaluating procedure was as 

follows: by using equations (9), (10) and (12) we 

generated the first 4 periods of the current through the 

model dielectric. The Fourier analysis of the 

generated current was performed separately for each 

period. Next, the complex capacitance was calculated 

from the values of the amplitude and the phase of 

current. The calculation was repeated for various 

values of  near the expected relaxation peak. The 

resulting values of the imaginary part of the complex 

capacitance (C’’) are depicted in Fig. 4. For the sake 

of transparency, we plot only the data calculated from 

the first and the second period. These are compared 

with the C’’ calculated from the model impedance. 

Generally, the error of the peak position - P is in all 

cases zero. It means, the phase shift of the impedance 

does not depend on the period, from which it has 

been calculated. The magnitude error M has a 

principle dependence, which is influenced only a little 

by the model parameters. This principle dependence 

resides in a great value of error for the first harmonic. 
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Fig. 4: Frequency dependence of C’’ calculated from the 

current after application of a sinusoidal voltage for 

various periods  

 

The situation is demonstrated in Tab. 2. Only the 

parameter  is here varied, but the results are similar 

if changing the other parameters. The most important 

conclusion is, that the impedance data calculated 

from the first period are unreliable. To get more 

precise results, we must use at least the third period 

(see M3 and M4 in Tab. 2.). The model data have 

been also proved experimentally at construction of 

the impedance meter intended for very low frequency 

measurements [4]. 

 
Tab. 2: The peak magnitude error for various periods with  

as parameter (the index at M means the sequential 
number of the individual period) 

 M1 (%) M2 (%) M3 (%) M4 (%) 

5 12.22 0.255 0.038 0.035 

10 12.21 0.246 0.034 0.004 

15 12.21 0.251 0.051 0.022 

20 12.20 0.248 0.049 0.021 

 

CONCLUSIONS 

Modeling of transient phenomena in a dielectric 

system indicated a significant influence of all three 

examined effects on the results of insulation 

diagnostic tests. It was shown that the dielectric 

memory effect shifts the magnitude and the position 

of a relaxation maximum at the complex capacitance 

measurements. Anyway, this undesirable influence 

can be predicted and eliminated, if we know the 

relaxation time of the process. This can be estimated 

at charging current measurement. The necessary 

charging time needed for the precise results 

processing can be calculated online at any instant of 

the charging process and compare with the values, we 

have generated by our model analysis. Information on 



 
   

 

 

the charging time can thus reduce the total time of the 

test. 

The second investigated effect – deformation of the 

charging voltage against the rectangular form can be 

easy identified experimentally  (e.g. by the sampling 

oscilloscope). From an experiment we are able to 

estimate the time constant  and find out, whether the 

peak in the course of C’’ is the measured object 

property or it is generated by an unsuitable charging 

voltage. The check of charging voltage is often 

omitted which can cause some serious errors at test 

assessment.   

By examination of the sinusoidal voltage 

measurements we find, that they are substantially 

influenced by the signal duration. The transient lasts 

approximately 3-4 periods. This phenomenon 

influences mainly the peak value of C’’. Although 

there is a trend of reducing the duration of diagnostic 

tests, we do not recommend using the results 

achieved from the first period of voltage. The 

problem has of course no importance at higher 

frequencies where duration of the first few periods is 

negligible. 
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