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Abstract:  
This paper demonstrates the capabilities of the Kinect [1] device for the purpose of building dense 3D map of the 
small indoor environments. The range scans from this device provide the information about the 3D structure of 
scene in the form of 3D point clouds. The alignment problem of these 3D points is solved by tracking the camera 
movement using the computer vision algorithms, so the exact camera position and rotation known in every time 
frame can be used to reconstruct a consistent map from multiple Kinect depth images. The purpose of this 
method is to effectively produce dense 3D maps of small workspaces. 
 

INTRODUCTION 

The sensors capable of capturing the depth 
information from the scene, such as RGB-D cameras, 
have been available for years but because of their 
high price they haven’t been part of research outside 
the specialized groups. Recently, the Kinect devices 
became available for the wide user-base, and because 
of its relatively low price they became the center of 
research of many universities and computer vision 
groups.  

The Kinect is a peripheral attachment 
primarily manufactured for XBox360 that combines 
standard RGB camera, depth camera consisting of IR 
projector and IR camera and microphones. This 
device can be used also outside of the Xbox360 
system using open source drivers. This paper presents 
a simple scene reconstruction algorithm for small 
workspaces using the Kinect camera as main input 
device.  

The Kinect RGB camera is able to capture 
the image at the resolution 640x480 pixels at steady 
30 frames per second. The per-pixel depth 
information is acquired by projecting highly 
unstructured IR pattern from the IR projector located 
on the device and triangulating against known 
pattern. The depth map computation is performed 
internally by the device and the results can be 

accessed through camera drivers. The depth map is a 
2D image, which holds the information about the 3D 
structure of the scene and can be simply transformed 
into 3D point cloud. The RGB camera can be used to 
provide information for the estimation of the relative 
camera movement between time frames and also 
color information of 3D points. The main advantage 
of using Kinect camera is the presence of IR camera 
which allows the dense reconstruction of dark or 
plain textured surfaces. However, this device works 
only within short range (maximum effective range is 
6m) and in the comparison with laser scanners, it has 
much narrower field of view. 

3D RECONSTRUCTION OVERVIEW 

The scene structure reconstruction plays an 
important role in the field of 3D reconstruction, 
mobile robot navigation or augmented reality. The 
main idea of the reconstruction from multiple scans 
of the scene is to find the spatial information between 
consecutive frames, and align the 3D data from each 
frame to create consistent structure. The 
reconstructed scene consists of large number of 3D 
points, which can be further processed to obtain 
detailed surface. Many approaches have been 
developed to address the problem of scene 
reconstruction and map building. Most approaches 
involve various sensors such as range scanners [2][3], 

 
Fig. 1: Scheme of the 3D reconstruction algorithm. 



 

stereo cameras [4] or monocular cameras [5].  
The scheme in Fig. 1 shows the components 

and the overview of the proposed algorithm. The 3D 
structure of the parts of the scene will be computed 
from depth maps provided by Kinect depth camera 
and the global map will be composed by aligning 
those individual parts. For the alignment, the change 
in the camera position has to be tracked, and used to 
transform each reconstructed part of the scene to 
world coordinate system.  

Comparing to the modern map-building 
algorithms [3], our solution supposes no uncertainty 
in camera position so it is not as robust as 
Simultaneous Localization and Mapping (SLAM) [5]. 

CAMERA LOCALIZATION 

Our mapping method is based on the tracking of 
moving camera in the static environment and aligning 
and merging the range scans into one map. In each 
time frame, the position and rotation of the camera 
with the respect to world coordinate system has to be 
known to ensure consistent insertion of 3D points. 
For this task, we decided to track sparse set of feature 
points with known 3D position. The 2D positions of 
these points have to be tracked in each consecutive 
image frame and from the change in their 2D 
positions the actual position and rotation of camera is 
updated. 

 

 
Fig. 2: The green circles in the image represent the extracted 

feature points and the red lines show their movement 
with the respect to the previous frame.  

 
To extract set of visual feature points, SURF 

[9] algorithm has been applied, and for the tracking of 
these features, KLT tracker [10] has been employed 
(Fig. 2). The accuracy of the computation of the 3D 
position of camera depends on the accuracy of feature 
tracking, so the correspondence of the point pairs has 
to be verified to ensure better results.   

To prevent the false matches to be used for 
the computation of camera, we can exploit the 
RANSAC [11] algorithm and epipolar constraints [6] 
to check the validity of point matches. The RANSAC 
algorithm uses the random subset of the point 
matches to compute the parameters of the model. In 

this case, the model consists of fundamental matrix F, 
which is a 3x3 matrix describing the relations 
between every point p from first image and the 
corresponding point p’ in second image. In equation 
(4), Fp describes a line on which the corresponding 
point p’ must lie. The fundamental matrix can be 
estimated given at least seven point correspondences. 
The model that satisfies most of the point matches is 
used to determine the inliers (good matches) and 
outliers (false matches). 
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According to the point matches, sets of 2D 

and their corresponding 3D positions (determined 
from Kinect depth map) can be built. To estimate the 
pose of the camera, these correspondences are used to 
create the system of equations which relate the 3D 
coordinates of the points with their 2D image 
coordinates. This algorithm can be formulated as a 
non-linear least squares problem, which minimizes 
the reprojection error d, i.e. the sum of squared 
distances between the observed points and the points 
projected to 2D camera plane using estimated camera 
pose and known intrinsic parameters: 
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m is number of correspondences, function )(θir  

represents the reprojection error 222)( yxi rrrd +== θ  

and θ  are six camera pose parameters, three for 
translation and three for rotation around world 
coordinate system axes [12]. 

SCENE CONSTRUCTION  

The representation of scene consists of 3D point 
clouds, which can be computed from the depth maps 
provided by Kinect. The depth information is stored 
in a 2D image (Fig 3.), in which each pixel value 
represents the distance between camera center and the 
distance plane (perpendicular to the camera optical 
axis) containing the 3D point.  

The maximal range of the Kinect raw depth 
is divided to 211 units, and it is possible to convert the 
raw depth to metric depth [7]. Each pixel with valid 
depth can be interpreted as 3D point on a ray from 
center of IR camera, passing through corresponding 
pixel in the distance defined by depth map. The 
intrinsic parameters of both RGB and IR cameras and 
extrinsic mapping between them have to be known, 
so these cameras have to be calibrated beforehand 
with one of calibration methods [6]. The process of 
transforming the pixel depth value into 3D point can 
be expressed by following equations: 
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where Xir, Yir, Zir are the 3D point coordinates, x, y is 
position of the depth pixel in image, fxir, fyir is focal 
length, cxir, cyir is position of principal point of IR 
camera, and dm is depth in meters computed from the 
depth map value at position (x, y). Both focal length 
and position of the principal point are estimated by 
calibration. Note that the 3D point position is 
computed with the respect to the IR camera 
coordinate frame. 

 

 
Fig. 3: The image represents the Kinect depth image, color 

represents the distance between camera center and 
distance plane. The black pixels have unknown depth 
value, mostly because of range constraint, occlusion 
or reflective surface material. 

 
Because the RGB and IR cameras have 

different intrinsic parameters and camera centers, the 
coordinates of color pixel doesn’t correspond directly 
to the corresponding depth pixel. Knowing the 
extrinsic rotation R and translation T between the 
RGB and IR camera, the mapping between color 
image and depth image can be computed using 
equations (2) and (3). Xrgb, Yrgb, Zrgb is the position of 
3D point in the coordinate system of RGB camera, 
and xxrgb, yrgb is the 2D position of pixel in RGB 
image corresponding to the point x, y in the depth 
image. 
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ALGORITHM 

The scheme of the mapping algorithm is shown in 
(Fig. 3). In the initialization step, the initial camera 
position is set to the center of world coordinate frame 
and rotation is aligned with the negative z-axis. Using 
the SURF algorithm, the sparse set of feature points is 
extracted. The Kinect depth map is used to determine 
the 3D positions of the extracted points. 

In each successive frame, point 
correspondences are found and checked for epipolar 
constraints (4) and the outliers are excluded from 
features set. The 2D positions of points in the new 
frame and the known 3D positions are used to update 
the camera pose. 

After defined number of frames, the 
information from the depth camera is processed to 
add new point cloud to the map. The raw depth 
measurements are used to compute the 3D positions 
of points using equations (1). These 3D positions 
can’t be added to the map yet, because they need to 
be transformed to the world coordinate system first. 
The transformation can be expressed by the following 
equation: 
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where the matrices R and T are the result of the 
camera pose estimation, and describe the 
transformation of 3D point from the coordinate 
system of the camera at actual position to the world 
coordinate system. Adding of a new point cloud to 
map is processed only once in defined number of 
frames but it is more time consuming than the rest of 
the algorithm. To ensure real time capabilities of this 
algorithm, this task is run in separate thread. 

The map is checked for the overlapping 
points, which are merged, and the consecutive frames 
are processed by the same algorithm. 

EXPERIMENTS AND FUTUREWORK 

We carried out several experiments to determine the 
accuracy of this map building algorithm and Kinect 
itself. The algorithm has been tested in small indoor 
environments, creating dense 3D maps from pure 
rotational, pure transitional movement, and the  



 

combination of both. The metric reconstruction 
allows to compare the dimensions of the beforehand 
measured object and its reconstructed image. To 
measure the error in the 3D position depending on the 
distance from the Kinect, planar surface was observed 
from multiple distances, and the variance of the 
points from the plane was measured. The results are 
demonstrated in Graph 1. 
 

 
Graph 1: Kinect distance error. 
 

Performance test were run on a notebook 
with dual-core processor with frequency of 2.00 GHz 
and 3GB of RAM. The speed of algorithm depends 
mostly on the number of features that we are tracking. 
The proposed algorithm is able to operate in real time 
(tracking 100 – 150 features) ranging from 18 to 25 
frames per second. The durations of the phases of 
algorithm can be seen in the Table 1. 

Comparing this algorithm with state-of-the-
art mapping solutions [5], the algorithm suffers from 
the cumulative error which is caused by small errors 
in the estimation of the camera pose between the 
consecutive frames. This problem can be solved by 
implementing loop closing algorithm [13], which 
improves the results of maps when the camera returns 
to the previously visited position. The future work 
will involve evaluating the camera movement with 
the respect to ground truth, implementing loop 
closing algorithm, and also will focus on the 
optimization of the performance. 
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d) 

Fig. 4: a) – d) The reconstruction of small workspace. 

 Image query Feature tracking 
and validation 

3D position update Whole processing 

Average [ms] 8 26 4 38 

Percentage 21. 05% 68.42% 10.53% 100% 

Table 1: Performance of the algorithm. 
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