

Ročník 2011 Číslo II

SCENE RECONSTRUCTION FROM KINECT MOTION
M. Šolony 1, P. Zemčík 2

1 Department of Computer Graphics and Multimedia, Faculty of Information Technology, VUT v Brně,
Božetěchová 2, Brno

2 Faculty of Information Technology, VUT v Brně,
Božetěchová 2, Brno

E-mail: isolony@fit.vutbr.cz, zemcik@fit.vutbr.cz

Abstract:
This paper demonstrates the capabilities of the Kinect [1] device for the purpose of building dense 3D map of the
small indoor environments. The range scans from this device provide the information about the 3D structure of
scene in the form of 3D point clouds. The alignment problem of these 3D points is solved by tracking the camera
movement using the computer vision algorithms, so the exact camera position and rotation known in every time
frame can be used to reconstruct a consistent map from multiple Kinect depth images. The purpose of this
method is to effectively produce dense 3D maps of small workspaces.

INTRODUCTION

The sensors capable of capturing the depth
information from the scene, such as RGB-D cameras,
have been available for years but because of their
high price they haven’t been part of research outside
the specialized groups. Recently, the Kinect devices
became available for the wide user-base, and because
of its relatively low price they became the center of
research of many universities and computer vision
groups.

The Kinect is a peripheral attachment
primarily manufactured for XBox360 that combines
standard RGB camera, depth camera consisting of IR
projector and IR camera and microphones. This
device can be used also outside of the Xbox360
system using open source drivers. This paper presents
a simple scene reconstruction algorithm for small
workspaces using the Kinect camera as main input
device.

The Kinect RGB camera is able to capture
the image at the resolution 640x480 pixels at steady
30 frames per second. The per-pixel depth
information is acquired by projecting highly
unstructured IR pattern from the IR projector located
on the device and triangulating against known
pattern. The depth map computation is performed
internally by the device and the results can be

accessed through camera drivers. The depth map is a
2D image, which holds the information about the 3D
structure of the scene and can be simply transformed
into 3D point cloud. The RGB camera can be used to
provide information for the estimation of the relative
camera movement between time frames and also
color information of 3D points. The main advantage
of using Kinect camera is the presence of IR camera
which allows the dense reconstruction of dark or
plain textured surfaces. However, this device works
only within short range (maximum effective range is
6m) and in the comparison with laser scanners, it has
much narrower field of view.

3D RECONSTRUCTION OVERVIEW

The scene structure reconstruction plays an
important role in the field of 3D reconstruction,
mobile robot navigation or augmented reality. The
main idea of the reconstruction from multiple scans
of the scene is to find the spatial information between
consecutive frames, and align the 3D data from each
frame to create consistent structure. The
reconstructed scene consists of large number of 3D
points, which can be further processed to obtain
detailed surface. Many approaches have been
developed to address the problem of scene
reconstruction and map building. Most approaches
involve various sensors such as range scanners [2][3],

Fig. 1: Scheme of the 3D reconstruction algorithm.

stereo cameras [4] or monocular cameras [5].
The scheme in Fig. 1 shows the components

and the overview of the proposed algorithm. The 3D
structure of the parts of the scene will be computed
from depth maps provided by Kinect depth camera
and the global map will be composed by aligning
those individual parts. For the alignment, the change
in the camera position has to be tracked, and used to
transform each reconstructed part of the scene to
world coordinate system.

Comparing to the modern map-building
algorithms [3], our solution supposes no uncertainty
in camera position so it is not as robust as
Simultaneous Localization and Mapping (SLAM) [5].

CAMERA LOCALIZATION

Our mapping method is based on the tracking of
moving camera in the static environment and aligning
and merging the range scans into one map. In each
time frame, the position and rotation of the camera
with the respect to world coordinate system has to be
known to ensure consistent insertion of 3D points.
For this task, we decided to track sparse set of feature
points with known 3D position. The 2D positions of
these points have to be tracked in each consecutive
image frame and from the change in their 2D
positions the actual position and rotation of camera is
updated.

Fig. 2: The green circles in the image represent the extracted

feature points and the red lines show their movement
with the respect to the previous frame.

To extract set of visual feature points, SURF

[9] algorithm has been applied, and for the tracking of
these features, KLT tracker [10] has been employed
(Fig. 2). The accuracy of the computation of the 3D
position of camera depends on the accuracy of feature
tracking, so the correspondence of the point pairs has
to be verified to ensure better results.

To prevent the false matches to be used for
the computation of camera, we can exploit the
RANSAC [11] algorithm and epipolar constraints [6]
to check the validity of point matches. The RANSAC
algorithm uses the random subset of the point
matches to compute the parameters of the model. In

this case, the model consists of fundamental matrix F,
which is a 3x3 matrix describing the relations
between every point p from first image and the
corresponding point p’ in second image. In equation
(4), Fp describes a line on which the corresponding
point p’ must lie. The fundamental matrix can be
estimated given at least seven point correspondences.
The model that satisfies most of the point matches is
used to determine the inliers (good matches) and
outliers (false matches).

0' =Fpp T (4)

According to the point matches, sets of 2D

and their corresponding 3D positions (determined
from Kinect depth map) can be built. To estimate the
pose of the camera, these correspondences are used to
create the system of equations which relate the 3D
coordinates of the points with their 2D image
coordinates. This algorithm can be formulated as a
non-linear least squares problem, which minimizes
the reprojection error d, i.e. the sum of squared
distances between the observed points and the points
projected to 2D camera plane using estimated camera
pose and known intrinsic parameters:

∑ =
= m

i ir1

2))((minargˆ θθ
θ

 (5)

m is number of correspondences, function)(θir

represents the reprojection error 222)(yxi rrrd +== θ

and θ are six camera pose parameters, three for
translation and three for rotation around world
coordinate system axes [12].

SCENE CONSTRUCTION

The representation of scene consists of 3D point
clouds, which can be computed from the depth maps
provided by Kinect. The depth information is stored
in a 2D image (Fig 3.), in which each pixel value
represents the distance between camera center and the
distance plane (perpendicular to the camera optical
axis) containing the 3D point.

The maximal range of the Kinect raw depth
is divided to 211 units, and it is possible to convert the
raw depth to metric depth [7]. Each pixel with valid
depth can be interpreted as 3D point on a ray from
center of IR camera, passing through corresponding
pixel in the distance defined by depth map. The
intrinsic parameters of both RGB and IR cameras and
extrinsic mapping between them have to be known,
so these cameras have to be calibrated beforehand
with one of calibration methods [6]. The process of
transforming the pixel depth value into 3D point can
be expressed by following equations:

mir

myir

yir
ir

mxir

xir
ir

dZ

dcy

f
Y

dcx

f
X

=

−
=

−
=

)(

)(

(1)

where Xir, Yir, Zir are the 3D point coordinates, x, y is
position of the depth pixel in image, fxir, fyir is focal
length, cxir, cyir is position of principal point of IR
camera, and dm is depth in meters computed from the
depth map value at position (x, y). Both focal length
and position of the principal point are estimated by
calibration. Note that the 3D point position is
computed with the respect to the IR camera
coordinate frame.

Fig. 3: The image represents the Kinect depth image, color

represents the distance between camera center and
distance plane. The black pixels have unknown depth
value, mostly because of range constraint, occlusion
or reflective surface material.

Because the RGB and IR cameras have

different intrinsic parameters and camera centers, the
coordinates of color pixel doesn’t correspond directly
to the corresponding depth pixel. Knowing the
extrinsic rotation R and translation T between the
RGB and IR camera, the mapping between color
image and depth image can be computed using
equations (2) and (3). Xrgb, Yrgb, Zrgb is the position of
3D point in the coordinate system of RGB camera,
and xxrgb, yrgb is the 2D position of pixel in RGB
image corresponding to the point x, y in the depth
image.

TR

Z

Y

X

Z

Y

X

ir

ir

ir

rgb

rgb

rgb

+
















=
















 (2)

yrgb
rgb

yrgbrgb
rgb

xrgb
rgb

xrgbrgb
rgb

c
Z

fY
y

c
Z

fX
x

+=

+=

 (3)

ALGORITHM

The scheme of the mapping algorithm is shown in
(Fig. 3). In the initialization step, the initial camera
position is set to the center of world coordinate frame
and rotation is aligned with the negative z-axis. Using
the SURF algorithm, the sparse set of feature points is
extracted. The Kinect depth map is used to determine
the 3D positions of the extracted points.

In each successive frame, point
correspondences are found and checked for epipolar
constraints (4) and the outliers are excluded from
features set. The 2D positions of points in the new
frame and the known 3D positions are used to update
the camera pose.

After defined number of frames, the
information from the depth camera is processed to
add new point cloud to the map. The raw depth
measurements are used to compute the 3D positions
of points using equations (1). These 3D positions
can’t be added to the map yet, because they need to
be transformed to the world coordinate system first.
The transformation can be expressed by the following
equation:

TR

Z

Y

X

R

Z

Y

X

rgb

rgb

rgb

w

w

w
11 −− −

















=
















 (4)

where the matrices R and T are the result of the
camera pose estimation, and describe the
transformation of 3D point from the coordinate
system of the camera at actual position to the world
coordinate system. Adding of a new point cloud to
map is processed only once in defined number of
frames but it is more time consuming than the rest of
the algorithm. To ensure real time capabilities of this
algorithm, this task is run in separate thread.

The map is checked for the overlapping
points, which are merged, and the consecutive frames
are processed by the same algorithm.

EXPERIMENTS AND FUTUREWORK

We carried out several experiments to determine the
accuracy of this map building algorithm and Kinect
itself. The algorithm has been tested in small indoor
environments, creating dense 3D maps from pure
rotational, pure transitional movement, and the

combination of both. The metric reconstruction
allows to compare the dimensions of the beforehand
measured object and its reconstructed image. To
measure the error in the 3D position depending on the
distance from the Kinect, planar surface was observed
from multiple distances, and the variance of the
points from the plane was measured. The results are
demonstrated in Graph 1.

Graph 1: Kinect distance error.

Performance test were run on a notebook
with dual-core processor with frequency of 2.00 GHz
and 3GB of RAM. The speed of algorithm depends
mostly on the number of features that we are tracking.
The proposed algorithm is able to operate in real time
(tracking 100 – 150 features) ranging from 18 to 25
frames per second. The durations of the phases of
algorithm can be seen in the Table 1.

Comparing this algorithm with state-of-the-
art mapping solutions [5], the algorithm suffers from
the cumulative error which is caused by small errors
in the estimation of the camera pose between the
consecutive frames. This problem can be solved by
implementing loop closing algorithm [13], which
improves the results of maps when the camera returns
to the previously visited position. The future work
will involve evaluating the camera movement with
the respect to ground truth, implementing loop
closing algorithm, and also will focus on the
optimization of the performance.

a)

b)

c)

d)

Fig. 4: a) – d) The reconstruction of small workspace.

 Image query Feature tracking
and validation

3D position update Whole processing

Average [ms] 8 26 4 38

Percentage 21. 05% 68.42% 10.53% 100%

Table 1: Performance of the algorithm.

ACKNOWLEDGEMENT

This work has been supported by the project of the
EU FP7-Artemis project R3COP: Robust Safe Mobile
Co-operative Autonomous Systems grant no. 100233.

REFERENCES

[1] Latta, S., Tsunoda, K., Geisner, K., Markovic,
R., Bennett, D. A., Perez, K. S.: Gesture
Keyboarding. Patent 20100199228, August 5,
2010.

[2] Thrun, S., Burgard, W., Fox, D.: A real-time
algorithm for mobile robot mapping with
applications to multi-robot and 3D mapping. In
Proc. of the IEEE International Conference on
Robotics Automation (ICRA), 2000.

[3] Triebel R., Burgard, W.: Improving
simultaneous mapping and localization in 3d
using global constraints. In Proc. of the National
Conference on Artificial Intelligence (AAAI),
2005

[4] Konolige, K., Agrawal, M.: FrameSLAM: From
bundle adjustment to real-time visual mapping.
IEEE Transactions on Robotics, 25(5), 2008

[5] Lemaire, T., Berger, C., Jung, I.-K., Lacroix, S.:
Vision-Based SLAM: Stereo and Monocular
Approaches. International Journal of Computer
Vision, 74:343364, 2007

[6] Hartley, R. I., Zisserman, A.: MultipleView
Geometry in Computer Vision. Cambridge
University Press, second edition, p. 239-259,
2004, ISBN: 0521540518

[7] ROS Kinect Node,
http://www.ros.org/wiki/kinect_node, 2011

[8] Bradski, G., Kaehler, A.: Learning OpenCV:
Computer Vision with the OpenCV Library.
O’Reilly, Cambridge, MA, 2008

[9] Bay, H., Tuytelaars, T., Gool, L. V.: SURF:
Speeded up robust features. In 9th European
Conference on Computer Vision, Graz Austria,
May 2006

[10] Tomasi, C., Kanade T.: Detection and Tracking
of Point Features. Carnegie Mellon University
Technical Report CMU-CS-91-132, April 1991.

[11] Forsyth, D. A., Ponce, J.: Computer Vision: A
Modern Approach. Prentice Hall, us edition,
August 2002

[12] Grest, D., Petersen, T., Krüger, V.: A
Comparison of Iterative 2D-3D Pose Estimation
Methods for Real-Time Applications. Image
Analysis, Springer Berlin / Heidelberg, p. 706-
715, 2009

[13] Williams, B., Cummins, M., Neira, J., Newman,
P., Reid, I., Tardos, J.: An image-to-map loop
closing method for monocular SLAM, Proc.
International Conference on Intelligent Robots
and and Systems, 2008

