A Meshing Scheme for Real Time Surface

Subdivision
E. J. Padrén' M. Amor! R. Doallo!
M. Béo?

! Department of Electronics and Systems, University of A Coruila,
E-15071 A Coruna, Spain. E-mail: {emilioj, margamor, doallo}@des.fi.udc.es

2 Department of Electronic and Computer Eng., University of Santiago de Compostela,
E-15782 Santiago de Compostela, Spain. E-mail: mboo@dec.usc.es

ABSTRACT

Surface subdivision in real time is highly desirable for computer graphics, geometric
modeling, and scientific visualization. In this paper we present a parallelization of
the Modified Butterfly algorithm based on the subdivision of the original mesh into
small groups. The groups are sorted in decreasing order of number of triangles per
group, and the sorted groups are cyclically distributed on the processors in order to
balance the load. So as to avoid cracking effects among groups a slight modification
of the Modified Butterfly algorithm is used. Finally, we evaluate the algorithm on

a SGI Origin 2000 system.

Keywords: surface subdivision, distributed memory multiprocessor, grouping
algorithm, parallel implementation, Modified Butterfly

1 INTRODUCTION

Achieving smooth surfaces from coarse
meshes is a frequently used operation in
computer graphics, geometric modeling,
and scientific visualization. The recur-
sive subdivision schemes [Schré00] are well
suited for this purpose because they are
easy to implement and computationally
efficient. A recursive subdivision algo-
rithm generates a smooth mesh from a
coarse mesh as the limit of a sequence of
successive refinements with a fixed set of
subdivision rules. The evolution of each
triangle is conditioned by the first order

contiguous triangles. In general, these
subdivision techniques can be categorized
into two distinct classes: approximating
and interpolating schemes.

Approximating schemes for arbitrary
topology meshes are typically modifica-
tions of spline based schemes. This way,
the vertices of the original mesh do not
belong to the final computed mesh. A
representative approximating scheme for
triangle meshes is the Loop algorithm
[Loop87]. On the other hand, for interpo-
lating schemes the vertices of the original
mesh are also points of the final surfaces.

The most well-known interpolation-based
subdivision scheme is the Butterfly algo-
rithm proposed by Dyn et al. [Dyn90].
This algorithm exhibits degeneracies when
it is applied to a topologically irregular
grid. This problem was overcome with the
Modified Butterfly algorithm proposed by
Zorin et al. [Zorin97]. Loop and Modified
Butterfly are based on the same basic idea
in which each edge is subdivided employ-
ing its neighbor information.

The main disadvantage of the subdivi-
sion schemes is their high memory re-
quirements when finer meshes are consid-
ered. The number of mesh vertices and
computations grow by a constant factor
from iteration to iteration. Processing of
a high detailed mesh in real time could be
achieved by its partitioning on a set of pro-
cessors. The smooth meshes calculated on
each processor are sent to an application,
like a graphics pipeline, to be drawn; then
the achievement of high quality images in
real time is feasible.

These algorithms present an important
drawback from a parallel implementation
point of view: computation of each edge
implies the utilization of not only the coor-
dinates of the extreme vertices of the edge,
but also the corresponding coordinates of
the neighbors of these vertices; it is neces-
sary the mesh partitioning in such a way
that the communications among proces-
sors are minimized. In this paper, we
consider the parallelization of surface sub-
division algorithms for triangular meshes
on a distributed memory multiprocessor.
A novel mesh partitioning algorithm to
subdivide the coarse mesh into smaller
groups is considered. This grouping al-
gorithm [Amor00], [B6o01] covers the full
mesh in an efficient way, produces a bal-
anced number of triangles per group, and
reduces the number of bounding trian-
gles per group. Load balancing among
processors together with the reduction of
the communications are algorithm design

s b ¢ 5

()

Figure 1: Modified Butterfly Sub-
division Masks (the crosses indicate
the midpoints of the edges for which
a new value is computed) (a) Reg-
ular vertices (b) Extraordinary ver-
tices (¢) Boundary vertices

goals.

This work is organized as follows: in Sec-
tion 2 we introduce the Modified Butterfly
scheme for subdividing triangle meshes;
the parallel implementation based on the
mesh grouping algorithm is presented in
Section 3; experimental results on the SGI
Origin 2000 multiprocessor are shown in
Section 4; finally, in Section 5 we present
the conclusions.

2 THE MODIFIED BUTTERFLY
ALGORITHM

The Modified Butterfly [Zorin97] is an in-
terpolating algorithm. The triangulation
scheme is refined through splitting each
edge in two and reconnecting. The lo-
cation of a new vertex is obtained by a
weighted average of the neighboring ver-
tices. Vertices are classified as regular ver-
tices and extraordinary vertices: a reg-
ular vertex is characterized by a valence
of 6 (the vertex is shared by 6 triangles);
meanwhile an extraordinary vertex has a
valence not equal to 6. Next, four different
subdivision situations have to be consid-
ered:

1. The edge connects two regular ver-
tices (Fig. 1.a). The new point, in-
dicated with a cross in the figure,

is computed through the weighted
sums of neighbors’ values using these
weights:

a=1/2 ¢=-1/16

b=1/8 d=0

2. The edge connects an extraordinary
vertex of valence K and a regular ver-
tex. The mask to be employed for the
extraordinary vertex is indicated in
Fig. 1.b. The weights are computed
as follows:

So=5/12 Sy=—1/12
K3 =) 5075/ 2=-1/
S1=—1/12

S0=3/8 S>=-—1/8
K=4 = 0 / 2 /
S1=0 S3=0

_ 711-+cos(2ﬂj/K)+%~cos(4ﬂj/K)

K>5=8; 74

(K #6) with j=0,,K—1

3. The edge connects two extraordinary
vertices. In this case we take the av-
erage of the values computed using
the appropriate scheme from the pre-
vious case for each endpoint.

4. Boundary edges are subdivided using
the 1-dimensional 4 point scheme of
Fig. 1.c (with ¢ = 9/16 and b =
—1/16 as weights). This scheme was
proposed to avoid cracking effects be-
tween contiguous meshes.

3 MESH PARTITIONING: PAR-
ALLEL IMPLEMENTATION

The solution we propose in order to
achieve high speed surface subdivision
is based on the mesh partitioning into
groups to be processed in parallel by dif-
ferent processors. The scheme in Fig. 2
shows a simple system with two proces-
sors. The original coarse mesh is repli-
cated in every processor (first row in
Fig. 2); this fact does not represent a

Processor 1 Processor 2

Replication

“0 Grouping

Subdivision

[—

1\

Application

Figure 2: Generic Structure of the
System

drawback due to the low storage require-
ments for coarse meshes. Next, each pro-
cessor partitions the full mesh into small
groups employing the new grouping algo-
rithm [Amor00], [B6o01] (second row in
Fig. 2). Groups are assigned cyclically to
the different processors in order to obtain
load balancing. Once a group is assigned
to a given processor the subdivision proce-
dure explained in Section 2 is carried out
(third row in Fig. 2).

3.1 Grouping Algorithm

In this section the grouping algorithm to
subdivide the full mesh into small groups
is presented. A detailed analysis can be
found in [Amor00]. The grouping algo-
rithm we use attempts to reduce the num-
ber of bounding triangles, generate well
balanced groups, and cover the full mesh
in an efficient way. The group construc-
tion algorithm is based on a central vertex
(vg) search, and the selection of the con-
tiguous concentric triangle strips around
this central vertex. Moreover, the central
vertex is selected in such a way that suc-
cessive processing groups are contiguous

and without holes (non-assigned triangles)
among groups.

1 Lstert=NULL;

2 B = NULL;

3 wo= select_a_vertex(mesh);

4 while (vertices){

5 build_group(vo);

6 list_updating(Lst*"t, B);

7 if(Lstert) yv=select_a_vertex(Lst"t);
8 else v= select_last_vertex(B);

9 vo = find_group_center(v);

10 }

Figure 3: Grouping algorithm structure

B_group

(a) (b)

Figure 4: (a) Triangle full connected
to B_group (b) Attachment to the

group

The basic algorithm is summarized in
Fig. 3. In lines 1 and 2, the lists of work-
ing starting points, L**%"* and of bound-
ing vertices of the global group are ini-
tialized. For the first processing group,
B, a random central vertex, vy, is selected
(line 3). Once a central vertex is selected
the group of triangles around this vertex
is constructed (line 5). Next, the lists
Lt and B are updated (line 6). Af-
ter that, the bounding vertices of the ac-
tual group, B_group, are identified. Each
time a group is identified, the list B of all
building groups has to be computed. For
the firstly computed group the list B coin-
cides with the B_group. Each time a new
group is attached to the previous com-
puted groups the shared internal frontier
edges have to be eliminated from B. The
two extreme points of this frontier, char-
acterized for not having all their triangles
assigned, have to be considered as part of
B and also as part of the list of working
starting points, L. The working start-
ing points are reference points for comput-
ing the new groups close to the previously

computed triangles, allowing in this way
an efficient covering of the full mesh of
triangles (line 8). The next central ver-
tex, vy, is selected from this starting point
(line 9). The basic idea consists of search-
ing, from a starting vertex v of L9 a
vo point that is surrounded by a specific
number of triangles rings without over-
lapping with any other group previously
computed. With this central point a new
group can be built. Then, this grouping
process (lines 4 to 10) is repeated mean-
while non-assigned vertices remain in the
mesh.

Once a group is made some additional
steps [Amor00] have to be performed to
assure a good coverage of the mesh. These
steps are summarized in Figs. 4 - 6. First,
triangles not included in the group with all
their vertices located on the corresponding
bounding B_group have to be attached to
that group (Fig. 4).

Group

B_group 7

A

Figure 5: Hole identification

T,"

-

.

.

(a) (b)

Figure 6: Cave (a) Identification (b)
Elimination

Furthermore, some holes, that is, non-
assigned triangles, can appear in the con-
struction of a group. This can be ob-
served in Fig. 5 where there are some
non-assigned triangles between the last
built group (marked in light grey) and

the global group consisting of the previ-
ously built groups (marked in dark grey).
These triangles have to be identified and
attached to the current group under con-
struction.

Finally, a strip of cave triangles can ap-
pear in the union between two groups.
If these triangles are assigned to an-
other new group, no neighbor information
could be employed for their subdivision.
This situation should be detected in or-
der to include this strip of triangles in
the current group under construction. As
Fig. 6.a shows there is a strip of triangles
{1\, T,,T5,T,} delimited by the previous
computed groups (B frontier) and the ac-
tual group (B_group frontier). These tri-
angles have to be detected in order to be
included in the current group; then the
distribution indicated in Fig. 6.b is ob-
tained.

3.2 Parallel Surface Subdivision

Algorithm

In this section the parallel surface subdi-
vision algorithm is presented (see Fig. 2).
The parallel implementation is based on a
coarse—grain approach, that is, each pro-
cessor performs the whole computation of
subdivision of triangles for a set of groups
of the mesh.

GROUP 1

Figure 7: Vertices locations for two
adjacent groups

With respect to the parallel implementa-
tion of the surfaces subdivision algorithm

we have carried out a static assignment of
the groups to the processors. The groups
are sorted in decreasing order of num-
ber of triangles per group. Before begin-
ning the recursive subdivision, the sorted
groups are cyclically assigned to the pro-
cessors, in order to achieve a load bal-
ancing. We assume p processors and a
coarse mesh grouped into g groups; the
number of groups assigned to each pro-
cessor is g/p. Afterwards, during the re-
cursive process each processor only com-
putes the subdivision of the triangles as-
signed. It is important to note that the
edges shared by two groups assigned to
two different processors are this way com-
puted twice. In order to avoid cracking
effects the same new vertex coordinates in
two groups have to be assured. Specifi-
cally, simple and local masks are employed
on the border edges to avoid incoherent
information among groups. Fig. 7 shows
two adjacent groups assigned to different
processors. Taking into account the neigh-
bour information available in each proces-
sor the edges can be classified in three
classes:

e Internal edges. In this case both ver-
tices of the edge are internal to the
group (eg. edge g — i of Fig. 7). The
masks for ordinary and extraordinary
vertices (Fig. 1.a and 1.b) could be
employed as all the neighbours infor-
mation is available.

e Border edges. In this case both ver-
tices of the edge are located on the
border of the group. Let us con-
sider as an example the edge between
vertices b and ¢ in Fig. 7. In this
case the boundary mask (Fig. 1.c)
is not suitable as it could produce
cracking effects between neighbour-
ing groups. From the point of view
of the group 1, the boundary mask
would imply vertices a, b, ¢ and d,
meanwhile from the point of view of

group 2 the boundary mask would
imply vertices a, b, ¢ and e. This sug-
gests the utilization of a mask which
only takes into account the current
working edge (vertices b and ¢).

e External edges. In this case only one
of the vertices is located on the bor-
der of the group (eg. edges h — g and
b — f of Fig. 7). In these cases only
the neighbour information of the in-
ternal vertex (g and f) is available.
We employ the simple mask that only
takes into account the current work-
ing edge (vertices h and g, and ver-
tices b and f, respectively).

As it was indicated, no neighbour infor-
mation is considered in the border and
external edges. Nevertheless, these condi-
tions can be relaxed if contiguous groups
are assigned to the same processor. For
example, if group 1 and group 2 of Fig. 7
were assigned to the same processor, all
the neighbour information for vertices b
and f would be available, so that the orig-
inal Modified Butterfly masks can be em-
ployed.

4 EXPERIMENTAL RESULTS

The Modified Butterfly subdivision algo-
rithm has been implemented on the SGI
Origin 2000 distributed-shared memory
computer using the message passing pro-
gramming model. We have used the MPI
programming environment.

Table 1: The average errors of the
parallel algorithm

| N. Proc. || 2 rings | 3 rings | 4 rings |
2 0.0041 0.0034 | 0.0013
4 0.0057 | 0.0038 | 0.0024
16 0.0064 | 0.0044 --
N. groups || 0.0065 0.0044 0.0037

Three different models, shown in Fig. 8,
have been rendered using the algorithm:
armadillo, bunny and hypersheet, with
799, 499 and 917 triangles respectively. In
Fig. 9 the subdivided bunny meshes af-
ter 2 and 4 iterations are shown. The re-
sults in terms of speedups are shown in
Fig. 10, both for 2 rings and for 4 rings
after 5 iterations. The speedup of our par-
allel algorithm with respect to the sequen-
tial algorithm without grouping is shown.
The execution time of the sequential algo-
rithm for hypersheet is 8.45 seconds, and
it is 0.99 seconds using 2 rings on 16 pro-
cessors. As we can see, though better
speedups are achieved by using 2 rings,
from a certain number of processors the
speedup does not increase accordingly. As
future work, we intend to use a dynamic
scheduling in order to achieve better load
balancing.

The number of triangles per group for 2, 3
and 4 rings of the bunny model is depicted
in Fig. 11. As we can see, the group-
ing algorithm covers the full original mesh
in an efficient way, producing a balanced
number of triangles per group. Obviously,
the increasing number of rings produces
an increase in the number of triangles per
group, and a reduction in the number of
groups. The number of simple masks em-
ployed on the border and external edges
is lower so higher quality are obtained in
the resulting images.

In order to evaluate the degree of error
due to the grouping algorithm, and the
simple masks employed on the border and
external edges, we employ the average er-
ror between the subdivided mesh with the
sequential algorithm, and the subdivided
mesh with the parallel algorithm. In Ta-
ble 1 the average error for 4 iterations is
indicated. Specifically, cases from 2 to 4
rings were considered. In first, second and
third rows the results for 2, 4, and 16 pro-
cessors are indicated. In the last row a
system with as much processors as num-

(a)

Figure 8: The original coarse meshes: (a) armadillo with 799 triangles, (b) bunny

with 499 triangles and (c) hypersheet with 917 triangles

ber of groups was considered. This config-
uration represents the worst case as every
border and external edge of all the groups
are processed using the simple mask with-
out employing neighbour information.

‘.

Figure 9: Subdivided bunny meshes
after: (a) 2 iterations and (b) 4 it-
erations, with 7984 and 127744 tri-
angles respectively

As we can see on the table, the increas-
ing number of rings produces a reduction

ideal

armadillo - 2 rings
armadillo - 4 rings
bunny - 2 rings
bunny - 4 rings
hypersheet - 2 rings
hypersheet - 4 rings

Speedup
\

IS
T
\

8
Processors

Figure 10: Speedup for the three
different models for 2 and 4 rings

in the error because the number of border
and external edges is lower. On the other
hand, the increasing number of processors
produces an increase in the error because
there is more probability than neighbour-
ing groups were located on different pro-
cessors. However, though different numer-
ical errors are obtained, no difference in
quality can be appreciated in the final im-
ages. The grouping strategy and the cor-
responding simple masks employed do not
affect this quality.

5 CONCLUSIONS

In this paper we have described a paral-
lel implementation of the Modiffied But-
terfly scheme for triangular meshes on

ENAIN
EE T
aaa
AN

Number of triangles

Group

Figure 11: Number of triangles per
group for 2, 3 and 4 rings of the
bunny model

distributed-shared memory multiproces-
sors using the message passing program-
ming model. The original mesh is par-
titioned into small groups employing a
grouping algorithm. The groups are
sorted in decreasing order of number of
triangles. Afterwards, the sorted groups
are distributed cyclically, trying to assign
the same number of computations to each
processor. Once a group is assigned to a
given processor the subdivision procedure
is carried out. In order to avoid crack-
ing effects among groups a slight modifi-
cation of the Modified Butterfly algorithm
is used.

The parallel method maintains a high
quality in the resulting images, in spite
of the greatest number of border edges
and the simplification introduced by the
grouping process. Furthermore, a good
speedup was achieved, so we are close to
the objective of real time rendering (at
least managing relatively large meshes).

Finally, it should be remarked that the
Modified Butterfly algorithm was used in
this paper as a testbed for checking the
benefits of parallelization in surface sub-
division for 3D image synthesis; actually,
we think similar results could be obtained
using the Loop algorithm and, in general,
all those algorithms in which the first or-
der neighbour information is employed.

ACKNOWLEDGEMENTS

This work was supported by the Min-
istry of Education and Science (CICYT)
of Spain under the project TIC 2001-
3694-C02-02 and by the Vice-Rector for
Research of the University of A Coruna
(Spain). The authors would like to thank
to Centro de Supercomputacion Com-
plutense (Madrid, Spain) for providing ac-
cess to the SGI Origin 2000.

REFERENCES

[Amor00] M. Amor, M. Bbo, M. Doggett,
J. Hirche, and W. Strasser. A mesh-
ing scheme for memory efficient

adaptive rendering of subdivi-
sion surfaces. Technical Report
WSI-2000-21, Wilhelm-Schickard-

Institut, Fakultit fiir Informatic,
Univ. Tiibingen, 2000.

[B6o01] M. Béo, M. Amor, M. Doggett,
J. Hirche, and W. Strasser. Hard-
ware support for adaptive sub-
division surface rendering. In
SIGGRAPH/Eurographics Graphics
Hardware Workshop 2001, 2001.

[Dyn90] N. Dyn, D. Levin, and J. A. Gre-
gory. A butterfly subdivision scheme
for surface interpolation with ten-

sion control. ACM Trans. Graphics,
9(2):160-169, 1990.

[Loop87] C. Loop. Smooth subdivision
surfaces based on triangles. Master’s
thesis, Univ. of Utah, 1987.

[Schré00] P. Schroder and D. Zorin. Sub-
division for modeling and anima-
tion. In SIGGRAPH’00 Course
Notes. ACM SIGGRAPH, 2000.

[Zorin97] D. Zorin. Subdivision and mul-
tiresolution surface representations.
Master’s thesis, Univ. of Caltech,
1997.

