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ABSTRACT

For the local TV presentation of weather forecast data it is important to have high-quality and fast
visualisation of clouds. In this paper we present surface-based methods for the high performance
visualisation of clouds from data produced by a routine meteorological weather simulation. Isosurfaces,
which are originally too coarse because of the data grid resolution are refined and deformed. The
refined geometry is used for a light simulation and transparency computation.
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1. INTRODUCTION

Numerical weather simulation models, like these of the
German Weather Service (DWD), produce twice a day
large quantities of simulation data, which must be visualised
for the presentation on television.
Visualisation systems like TriVis are used to visualise the
weather forecast in the overview for whole countries.
Special weather phenomena, which occur only locally,
would disturb and are not desired in such a general view.
Therefore the realistic representation of clouds is not so
important, because single clouds would appear too small in
the global view anyway. Global cloud fields are visualised
for the presentation of the general weather situation in a
larger region.
The requirements change as soon as one tries to make a
local weather presentation. They result from the
combination of the techniques of Augmented Video and
Scientific Visualisation. If weather visualisation should be
integrated into a video film, the schematic, global
representation of the clouds is not longer acceptable. On
the one hand the spectator can compare the artificial clouds
with the genuine world presented in the video. Any break in
the representation diverts from the actual information and
irritates the spectator. On the other hand only a realistic
cloud representation yields understandable weather
forecasts.
The actuality of the data in the presentation is an important
restriction for the selection of the visualisation methods.
For a film of only one minute 3000 images must be
rendered and stored quickly enough to guarantee that the
resulting TV presentation is still up to date. If the
production of a frame takes only one second, 50 minutes

are needed for the film, for practical applications the
approximate computing time must not exceed 5 seconds.
Such rendering times can only be achieved with the help of
3D graphics hardware. The common way is to use OpenGL
graphics accelerator hardware, which is available at low
prices these days.
This paper presents methods to generate appropriate cloud
visualisation from isosurfaces generated by the Marching
Cubes algorithm.

2. PREVIOUS WORK

The concept of representing clouds as textured,
semitransparent and stiff ellipsoids was proposed by
Gardner [3]. Gardner did not use simulation data, but
Knöpfle simplified his approach for the integration of
weather forecast data in a virtual environment [6]. He
achieved a real-time visualisation of cloud fields by using
textured polygons for the top and bottom layer of the
clouds. This method is also used in the TriVis TV weather
presentation software [12]. Since the resolution of the
layers is just as low as the resolution of the data, the
resulting clouds appear very schematic.
In the volume rendering approach, the 3D world is
subdivided into voxels and the local gas density is
computed using spectral turbulence [13, 11, 2]. After these
calculations are finished one has to render the scene with
special ray tracers. The disadvantages are obvious: volume
ray tracing is too slow and the amount of data for complex
scenes is too large to handle. Similar volume grid based
approaches were introduced in [5] and [7].
Neyret presented in [8] a method to produce clouds from
overlaid spheres. We use a modified form of this method
for the calculation of the surface of our clouds.



In [9] very complex, high-quality volume-based cloud
lighting models are presented. [1] extends these results with
even more complex volume rendering techniques based on
the splatting algorithm using billboards. An own cloud
simulation is developed to achieve a high quality animation.
For our purpose these methods are still too slow (up to 30
seconds per 640x480 pixels frame) and the visualised data
does not originate from a meteorological routine weather
simulation. Due to the rendering algorithm the generated
clouds appear extremely blurry, so the method cannot be
used to generate all kinds of clouds, especially not the
classical cumulus clouds.
Commercial applications like Softimage or Bryce seem to
use some of the above methods. They can generate and
render fine clouds, but these clouds still have nothing to do
with weather simulation data.
Unbescheiden and Trembilski presented in [16] a particle-
based method for the visualisation of smoke in Virtual
Reality. It models the movement of a smoke cloud and
guarantees that a moving observer gets a correct optical
impression especially inside the smoke cloud, but it is also
not suitable for the visualisation of any given simulation
data.
Trembilski presented in [14] two different, prototypical
methods for cloud generation from isosurfaces. Their main
advantage was the change of the shape of the original
isosurface geometry towards a realistic looking cloud. Still,
the fractal algorithm’s space complexity is not acceptable.
The light model used here is too simple to be used in a high
quality TV presentation.

3. THE PROBLEM AND OUR SOLUTION

Without any obstacles we can see a horizon with a radius of
35.7 km from a 100m tower. The visible piece of the sky is
however still larger with a radius of 514 km. However, this
is only the theoretically visible part of the atmosphere. The
radius can be limited, assuming that even on best days the
atmosphere is never quite clear and thus the diameter of the
visible area will surely remain limited to 200 km (see [14]).
Additionally, this is absolutely sufficient for the needs of the
local weather forecast.
Using the model of the German weather service with the
mesh size of 2.5 km for the local weather forecast, we get a
grid of 80x80x35 data points, i.e. 224000 data points.

Fig. 1: Isosurfaces computed from the original data grid (200 km2)

The Marching Cubes algorithm produces closed, coherent
polygonal cloud geometries. An example of an isosurface
calculated from such a data grid is presented in fig. 1. The
geometry seems to be very coarse. It does not look like a
cloud, parts of it are very sharp-edged, and other parts are
very flat. The simple gouraud shaded rendering does not
improve the result.
Therefore we developed some new postprocessing
algorithms to use the isosurfaces for a realistic cloud
visualisation.
To achieve this goal we pass through the following steps:

1. Refinement of the geometry
1.1 Production of the sub-triangles (fig. 2b)
1.2 Rounding of the sharp edges (fig. 2c)
1.3 Shift of the vertex positions (fig. 2d)
2. Colour calculation
2.1 Ray tracing (only for the triangle vertices)
2.2 Calculation of transparencies
3. Texturing.

These steps are described in the following sections.

GEOMETRIC MODEL

As our algorithms are mainly designed to construct cumulus
clouds, the isosurfaces we used are constructed from data,
which represents cumulus clouds. The data-pre-filtering
step is done at first with help of the meteorological data
base. To convert a given isosurface to a cloud, we have to
refine it by partitioning the original triangles (fig. 2b) and a
smooth approximation (fig. 2c) of the original geometry
and then to deform the smoothed geometry (fig. 2d). We
use a simple level-of-detail technique to reduce the amount
of produced sub-triangles depending on the distance of the
original triangle from the eye-point. To produce the typical
cloud surface properties we then use Neyret’s sphere
approach.
The following sections describe these steps.

a

c

b

d

Fig. 2: Steps for the refinement and deformation of a rough
cloud geometry: a: original geometry, b: partitioning of the
triangles, c: smoothing, d: deformation.

Partitioning of the original triangles and the
calculation of smooth cloud forms
Our approximation procedure calculates a smoothed
geometry where the new vertices Pj depend of the base
vertices Si from the original geometry (see fig. 3).

Fig 3: Computation of a new point Pj to smooth the rough
cloud surface.

S1

S2

S3

S4

S5

S6

Pj

d1

d2

d5



In order to control the number n of the base vertices Si

influencing the new vertices Pj, we construct a base
function f(d):
















∞∈

∈






 +−

∈






 +−

=

)[D,dfor0

D),
2

D
[dfor

2

D
d

D

1

)
2

D
[0,dforDd2d

D

1

f(d)
2

2

2
2

(1)

In (1) D defines the influence range of the old vertices. It is
a user-defined, experimentally found constant, depending
only on the coordinate range of the points Si.
For the calculation of Pj the weight of a base vertex Si

depends on its distance dj from Sj. We define this
dependency using the base function f:
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See fig. 2c for an example of a smoothed cloud geometry.
The refinement can be repeated. We experimented with up
to 6 iterations (starting with an octahedron).
The smooth geometry has now to be deformed, in order to
give it the typical cloudy appearance.

Deformation of the refined surface
Similarly as suggested by Neyret in [8], we describe the
surface of a cloud as a set of hemispheres, which are pushed
into a plane (see fig 4).

Fig. 4: Spheres shape the cloud surface.
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Fig 5: How to avoid flat parts while building a cloud shape
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Fig. 5 shows our procedure schematically for the 1D case:

1. A sphere is set into the cloud structure at a (pseudo-)
random position.

2. Examine all points of the outline of the projection of
the sphere along the y-axis.

3. The midpoint of the sphere is shifted up to the lowest
point found in 2 and the sphere is stamped into the
structure.

Fig. 6: Left: a cloud surfaces computed with a constant K = 0.1.
Right: a cloud with a smoother lower surface after the reduction ofK
for low Ny values.

In order to form the cloud surface in a realistic way, each
vertex Pi of the new smooth geometry is shifted by the
value of g(Pi) along its (normalised) normal N = ( Nx , Ny ,
Nz ):
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where g(P) is a Fourier-based pseudorandom wave
function, as introduced for clouds by Gardner in [3].
It is important to note that in the natural environment the
characteristic cloud forms are especially distinct on the
topside of the clouds. We achieve this effect simply by the
last term of (3). K = const should be situated between 0
(for Ny = -1) and 1 (for Ny = 1). Thus with K = 1 the
surface of the cloud is shifted equally in all directions, for K
= 0 the lower surface stays smooth. We received realistic
cloud forms for K≈ 0.1 .
The result makes a quite natural impression (fig. 6). The
calculation process is quite complex, it is however possible
to store the values of function g in a table and interpolate
the intermediate values to accelerate the computation.

LIGHTING MODEL

Our lighting model is not strictly a physical one. We tried to
obtain best visual results with a minimum of computational
cost – our aim was not the exact light simulation. Our
model determines the colour of vertices on the cloud
surface. For efficiency reasons this calculation is executed
only for the vertices of the cloud geometry. The pixel
colours within the triangles are interpolated by the graphics
hardware.
For the lighting calculations the distances the light beams
pass within clouds must be determined. In order not to test
each ray against each triangle we organize the intersections
of all light beams with their appropriate level in a k-d-point-
quadtree. To find the rays cutting a triangle, the triangle
must be projected (in lighting coordinates) on the plane.
Then, all light beams cutting the bounding box of the
triangle can be efficiently found in the k-d-tree. Only these
rays are accurately tested whether they cut the triangle.
For the calculation of the colour of a cloud geometry vertex
we determine the following light components:

1. Ambient light
2. Sunlight reflected depending on the direction
3. Sunlight reflected not depending on the direction
4. Mie-scattered sunlight
5. Sky light



Ambient light
If I a is the ambient brightness and ka the ambient reflection
factor of clouds, then the brightness I of a cloud vertex is as
always:
I = I a ka (4)

ka indicates the percentage of the ambient light, reflected by
a cloud. This constant is approximately equal to the albedo
of a cloud. Nishita recommends in [9] an albedo of
approximately 0.7 for cumulus and 0.9 for stratus.

Direct sunlight
In contrast to the ambient intensity Ia, which is a constant
for the entire scene, light rays crossing clouds should have a
reduced intensity. We calculate the intensity IP of the
sunlight at the point Pn on the surface of a cloud generally
as:
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with
Imax = maximum intensity of the resulting cloud surface,

should depend on the current weather situation
and sun position

∑
i

id = sum of the distances, which the actual light ray

travels within the clouds
OP = opacity factor of the clouds, a user-defined

constant.

We split IP into three parts, which differ in how the light
rays are reflected or scattered at clouds:

1. Id : sunlight reflected like ambient light (independent
of the angle, direct intensity)

2. Ir : diffusely reflected sunlight, (depending on the
angle between the light beam and the cloud surface,
direction-controlled intensity)

3. Im : strongly forward scattered sunlight (scattering on
tiny water droplets, with the laws of the Mie
scattering, Mie intensity).

For the reflection and scattering effects, which strongly
depend on the direction of the arriving light, we introduce a
different opacity of the clouds for the intensity parts Id, Ir

and Im with Od ≈ const., Or ≈ 4 Od and Om ≈ 8 Od. Thus
rays, which crossed larger cloud sections, can hardly cause
such effects, as it is the case in the nature. Therefore we
write:
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These intensities are successively weighted and inserted to
our lighting model in the following sections.

Direct intensity
Direct intensity Id is only weighted with a reflection factor
kd:

I = I a ka + I d kd (9)

We assume kd ≈ ka. Fig. 7 shows a cloud using backlight
with a small (left) and with large Od (right). For vertices
which are lit up directly by the light source applies Id = Imax,
i.e. all these vertices have the same brightness (fig. 7 left).

Fig 7: A strongly (left) and a weakly translucent cloud (on the
right) in with direct lighting.

Direction-controlled intensity
The part of diffuse reflection decreases with the increasing
angleφ between a light ray and the surface-normal. Thus
(fig. 8) also directly illuminated cloud parts are optically
resolved. Using this extension the new formula for the
calculation of the intensity is

φcosrrddaa kIkIkII ++= (10)

A suitable value for kr is kr ≈ kd/2, as we found in
experiments.

Fig 8: Clouds lit without (left) and with diffuse reflection.

Mie intensity
Mie scattering becomes clearly visible, if the sun is behind a
cloud. In this case the thin edges of the cloud light up
brightly in the backlight. This brightness depends strongly
on the angleϕ between the view ray and light ray and
decreases quickly from a maximum (forϕ = 180°) almost to
0. This behaviour can be achieved with a factor like
((-cosϕ + 1)/2)n. The exponent n is a measure for the
angle-dependence. We found experimentally n≈ 11 as a
suitable value.
Thus the new formula for the calculation of the brightness
of a vertex is:
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As shown in fig. 9, the part of Mie scattering can be very
bright in the thin parts of the cloud, whereϕ ≈ 180°.
For this reason we introduced a scattering coefficient km,
which should be chosen as large as km ≈ 4 kd.



Fig. 9: Cloud visualisation without (left) and with the Mie scat-
tering effect (right).

Sky as light source
During the day the sun is by far the most important source
of light. However Nishita points out (in [9]) that in the
morning and in the evening the light emitted by the sky
hemisphere plays an increasing role. If the sun sank already
so far behind the horizon that it does not illuminate the
clouds directly any longer, the skylight becomes the
strongest source of light. In our model the skylight comes
directly from above and is limited to a direct lighting part Ih.
Thus the formula for the calculation of the cloud vertex
brightness is now:
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Fig. 10 shows two clouds lit by the sun and skylight with
the sun in the back of the spectator (left) and with some
back light (right).

Fig. 10:Two examples of clouds lit by sky and sun light.

The Σdi term in the brightness calculation (5-8) naturally
introduces shadows in our visualisation. If a second cloud is
situated within this shadow (as in fig. 11), it appears darker.

Fig. 11: Shadows on clouds.

Transparency and opacity
For the calculation of the opacity of the vertices we use
view rays. Starting from the viewer’s eye they cross the
vertices Pi of each triangle. We call the distance, which a
viewing ray passes after the vertex Pi within the cloud,
thicknesss. Of course s depends on the eye position. The

opacity Oi (see fig. 12) of a vertex is proportional to the
respective thickness s. We also choose a constant thickness
T starting from which a cloud appears completely opaque.
However, with this simple method problems can occur
while calculating animations (fig. 12,13).

interpolated

interpolated

Fig. 12: After a small rotation the thickness s for individual
vertices can change dramatically .
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The thickness s and thus at the same time the opacity Oi can
change suddenly for individual vertices after only a small
turn of the cloud (see fig. 13). Thus the observer can get an
impression of a ring of flickering triangles around the cloud
during its slow rotation.

Fig. 13: Sudden vertex opacity changes after a rotation: the
right cloud is turned around 1° around the y axis, compared to
the right cloud.

A method to suppress flickering triangles is to consider the
angles between view rays and cloud triangles (fig. 14). The
opacity is still determined from s but is afterwards weighted
with a function of the angleγ:

OP = f(γ)s.

Fig 14: Computation of s depending onγ.
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For γ = 0°, s(γ) should be 0. In this way we achieve that
during a slow turn the originally transparent cloud does not
suddenly become visible, but it slowly fades in. As a well
suitable function for this fading we found by experiments

f(γ) = 1 - cosn γ , (13)

where n describes the rate of the transition. Useful values of
n are found within the range of n∈[6…12].
This technique works very well with convex clouds. In the
general concave case however it produces new unpleasant
effects (fig. 15).

Fig. 15: Problems with angle-dependent opacity.

They occur within thick areas inside of the clouds, as soon
as some triangles are situated almost parallel to the view
rays. In this case is f(γ) is almost zero, and actually
completely opaque areas become transparent.
In order to moderate these problems that occur at the
internal outlines of concave clouds, the calculation of the
opacity is executed in such a way that the vertices of
triangles situated directly in front of further cloud sections
are rendered more opaque.
To calculate the opacity of the point Pi we write:
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with

di,0: the length of the first part of the ray runninginsideof
the cloud,
x: the length of the part of the ray runningoutsideof the
cloud (see the right part of fig. 17).
di,1: the length of the second part of the ray runninginside
of the cloud,
We choose quite a large constant E = 4D. Errors resulting
from a too inaccurate overlay of the outlines are now
substantially reduced. Fig. 17 shows the changed thickness
calculation schematically.
The opacity of the cloud now rises within the middle area,
which was otherwise completely underestimated, and
approximates the real opacity (see fig. 16).

Fig. 16: Reduction of the opacity problems by our modified com-
putation method.

Fig. 17: The real opacity A compared with the opacity B
calculated with the first method and the opacity C com-
puted with the use of d2,0 , d2,1 and x. The extreme trans-
parency difference is avoided.
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Semi-transparent texturing
In order to be able to show details, the transparency on the
cloud surface is distorted by a two-dimensional density
function. Our technique is similar to Gardners [3] and
works with semi-transparent textures (see fig 18). Please
see [17] for more details.

Fig. 18: A cloud without (left) and with semi-transparent
textures (right)

4. RESULTS AND FURTHER WORK

Fig. 19 demonstrates that our methods are suitable to
produce different types of cumulus clouds, e.g. cumulus
fractus, cumulus humilis, cumulus mediocris and cumulus
congestus. Fig. 20 shows the suitability of our algorithms
for the production of animated clouds from varying original
isosurface data: if the original polyhedrons change slowly
the modification of resulting cloud geometry is just as slow.
Consequently there is a strong coherency between two
subsequent frames of the animation.
Fig. 21-24 show several cloud visualizations as they are
needed by our target application, TV weather presentation
with augmented video.
We tested our routines on a SGI Visual Workstation with a
Pentium-III-450 processor. The times consider the
processing of our entire procedure, including the
refinement, rounding and deformation of the given
isosurface geometry, the calculation of the lighting and
transparency, as well as the rendering of a typical PAL-
resolution frame (768x576 pixels). Background cirrus
clouds in these pictures are not generated with our method.



Triangles 18510 42054 70792 89084 103270

Time (s) 2,11 2,73 5,35 6,32 6,88

Table 1: Performance of our rendering algorithm

In these examples geometry generation uses roughly 15 %
of the time, lighting 60 % and rendering 25 %.
Our further work will include the calculation of the colours
of the sky and the clouds themselves from the sun position
and weather simulation data. Of course, more visualisation
methods for different cloud types are needed. The smooth
integration of the sky and cloud visualization in video
sequences will be our further focus.
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Fig 19: Cumulus fractus (A), Cumulus humilis (B),
Cumulus mediocris (C) und Cumulus congestus (D)

Fig. 21: Isocumulus clouds lit by the sunset. Mie
scattering effects are clearly visible. Background cirrus
clouds result from the original picture.

Fig.23: Isocumulus clouds with some back light.
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Fig 20: Cloud animation by the use of a varying base
geometry

Fig.22: Isocumulus clouds. Background cirrus clouds
result from the original picture.

Fig. 24: Isocumulus clouds. Background cirrus clouds
result from the original picture.


