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ABSTRACT
This paper deals with light sources in computer graphics. Different kinds of light sources and different types
of solutions generally used are first described. Then, a new solution for directionally dependent light sources
based on Nóe and Ṕeroche’s model[NP00] is proposed to avoid drawbacks of bilinear interpolation. The use
of singular integrals with locally supported functions allows a fast and accurate reconstruction of goniometric
diagrams. Application to point light sources is finally compared with some experimental results.
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1 INTRODUCTION

Nowadays, complex light sources are more and more
used in computer graphics. This complexity may
be spectral (without using three chromatic represen-
tations), but also directional. Such light sources can
be used to compute more beautiful images, but above
all to simulate real scenes. Lighting industry needs
to compute images with a good accuracy, in order to
guarantee the results of simulations before production.
These simulations may be used, for example, for the
architectural design of art galleries, offices, museums,
gymnasiums, streets and tunnels and for the design of
head lights and rear lights.

There are several ways to achieve this accuracy. A
first one is the use of measurements of light sources.
Thus, since several years, manufacturers of luminaires
provide the scientific community with some informa-
tion on the directional distribution of their products.
This allows to model more accurately illuminance in
a given scene. A second way is computation methods,
and, in some cases, it is even possible to obtain an
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analytic formula. A third solution is the simulation of
the interactions inside the light source device.

When measurements are used, the notions ofnear-
field and far-field photometry must be distinguished.
With far-field photometry, a light source is regarded as
a point. In this case, agoniometric diagramis asso-
ciated with the light source. It is a two-dimensional
angular representation of the directional information.
On the other side, with near-field photometry, the vol-
ume of the light source and more generally its entire
geometry acts upon the resulted illuminance. In this
case, a goniometric diagram is not sufficient. Far-field
photometry is commonly used when radiance is going
to be computed at a distance greater than five times the
maximum width of the luminaire[Ash93a].

The first goal of this work is to make a survey of differ-
ent types of light sources, of various representations of
the emission of a light source and of known solutions
to define and use light sources in computer graphics.
Then, a new method to represent a photometric solid
from measurements will be presented and applied to
point light sources. This method is based on singular
integrals with locally supported functions and allows
a fast and accurate reconstruction of goniometric dia-
grams.

The remainder of the paper is organized as follows. A
classification of light sources is proposed in Section
2. In Section 3, a review of previous work on light
sources in computer graphics is presented. Our rep-
resentation model is defined in Section 4. In Section
5, some results and a validation method are described.
Finally, a conclusion and some further developments
are suggested in Section 6.



2 A SURVEY OF LIGHT
SOURCES AND THEIR
REPRESENTATION

In this section, we will first describe the characteristics
of light sources commonly used in computer graph-
ics. Then, several means to represent the emission of
a light source will be presented.

2.1 Light Sources Characteristics

In [VG84], Verbeck and Greenberg described light
sources as a combination of three parameters: the ge-
ometry of the light source, its luminous intensity dis-
tribution and its emitted spectral distribution.

2.1.1 Geometry

The shape of a light source may vary widely: let’s
think to the area of sky seen through a window, a neon
or a tungsten lamp, for example. Thus, these geome-
tries are modeled as zero, one or two dimensional ob-
jects respectively for point, linear or area light sources.
Other marginal light sources do not have any geome-
try. It may be the case for LEDs, xenon arc lamps,
compact fluorescent lamps or strobe lamps[RW97].

2.1.2 Luminous Intensity Distribution

Light sources that have early been used in computer
graphics are point light sources which emit uniformly
a radianceR given by: R = I

d2 cos θ, whereI is the
intensity of the source,θ the incident angle andd the
distance between the source and the point where the
radiance is computed.

In real world, light sources do not emit uniformly es-
pecially for architectural design or car lights. Usu-
ally, this distribution is modeled analytically with
spot light sources which are zero dimensional light
sources where the energy is reduced according to a
cone[NDW93]. Another way to take into account this
phenomena is to use measurements.

2.1.3 Emitted Spectral Distribution

Light sources can also have a non-uniform spectral
distribution. This characteristic is very important for
fluorescent lights or LEDs. In this paper, we consider
the emission of a light source as the product of a spec-
tral distribution by a luminous intensity distribution.

2.2 Representations

Representing the emission of a light source is a preem-
inent problem and the computation of illuminance is

dependent on this representation. There are two meth-
ods to obtain the data necessary to represent a light
source: measurements and simulations.

2.2.1 Measurement of a Light Source

Several methods have been suggested to measure a
light source. In far-field photometry, the angular dis-
tribution of a light source has been first represented by
two orthogonal curves(θ, φ = 0) and(θ = 0, φ) (cf.
Figure 1) called goniometric diagrams. But, it is not
easy to get a good precision with only a few samples.

Figure 1: Goniometric diagrams

Nowadays, manufacturers give more and more data
corresponding to two-dimensional discretized gonio-
metric diagrams, in matrix form. The most common
format is now IES[IES95], which is defined by the
Illuminating Engineering Society of North America
(http://www.iesna.org). Figure 2 shows an exam-
ple of such a goniometric diagram with a large direc-
tional variation.

Figure 2: A 2D goniometric diagram

We must also point out theEULUMDAT for-
mat (http://www.helios32.com/Eulumdat.htm),
which is a European standard. Even if it is more so-
phisticated, it is not yet widespread in the lighting
community.

Ashdown[Ash93a, Ash93b] showed that the notion of
two-dimensional goniometric diagram is not sufficient



in a near-field photometry context. He suggested a
new way to measure the energy from a light source by
using a virtual bounding sphere. A set of photographs
is taken by a CCD camera with its lens focused on in-
finity. In this case, each pixel of an image represents a
ray of light.

Thus, the combination of all the images gives a set of
rays emitted by the light source. These rays represent
a four-dimensional field of light around the luminaire
(cf. Figure 3).

Virtual bounding sphere

Measured rays

Luminaire
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Figure 3: The field of light of a luminaire in near-field
photometry

This process has been introduced by Ashdown, but
the implementation is due to Radiant Imaging[Ryk94,
JM00] (http://www.radimg.com). These measure-
ments can be used to compute the illuminance on an
object.

Another method has been proposed by Chu and Di-
Laura in [CD95]. They decompose a complex lumi-
naire as a collection of luminaire pieces, each one as-
sociated with a photometric center along the plane lit
by the outgoing surface of the luminaire. Then, each
luminaire piece is modeled with far-field photometry
data computed with a simplex optimization method.

2.2.2 Computed Representations

Energy from a light source may also be represented
through a simulation approach. With a right model
of a light source device including the luminaire itself
(e.g. a filament), some reflectors guiding emission and
some disturbing objects like fastenings, the outgoing
flow of light can be simulated by casting rays from the
emitter. This flow can then be stored in a data struc-
ture.

Deville and Paul[DP95] proposed such a method.
They defined a set of virtual surfaces around the light
source. The outgoing flow is stored according to these
surfaces which are later used during the rendering
phase. Heidrichet al.[HKSS98] suggested more or

less the same approach but stored the light field in a
lumigraph.

As these methods are very specific, they are difficult
to be really applied. To obtain a good accuracy, the
internal geometry of the light source and theBRDF
of the reflectors must be known, which may become
difficult with the increasing complexity of current de-
vices. Finally, the internal light source itself can have
a complex directionally dependent distribution.

3 PREVIOUS WORK

There are mainly two methods to compute illuminance
from a light source: with an analytic formula or by dis-
cretization. In fact, there is also a third solution which
consists in using data from simulation.

3.1 Analytic Solutions

The most common model is diffuse point light source
already presented in Section 2.1.2.

Nishita et al.[NON85] introduced a model taking
into account linear light sources with penumbra and
shadow detection. Although this model is defined in
near-field photometry, it only solves the directionally
dependent case with an uniform emission along the
line. Several papers[PA90, OF01] have been published
since then for linear light sources.

Arvo[Arv94] developed a solution to take planar non-
diffuse light sources into account. This work has
been extended to planar linearly-varying light sources
in [CA00] and to planar non-diffuse linearly-varying
light sources in [CA01]. Though very attractive, these
models have a directional variation reduced to Phong-
like phenomena. These formula are unusable with a
specific directional variation given by anIES file. In
[TT91] and [TT97], Tanaka and Takahashi presented
two methods for area light sources. DiLaura proposed
in [DiL95] a solution for non-diffuse planar area light
sources by using contour integral along the emitting
surface.

3.2 Discretization Solutions

A second possible solution is to use discretization
methods. Many papers have been presented in this
way.

Ouellette and Fiume[OF99] introduced a method for
diffuse linear light sources. Illuminance is computed
by detecting discontinuities that are caused by occlud-
ing objects. Each part of the line contributing to the
result is evaluated by low-degree numerical quadra-
tures. Picott[Pic92] and Heidrichet al.[HBS00] also
presented some solutions for linear light sources.



Directionally dependent light sources in far-field pho-
tometry context have been studied by Languénou
and Tellier[LT92]. They introduced an interpolation
method to get a value for any direction(θ, φ) from go-
niometric diagrams (cf. Section 2.2.1).

For near-field photometry, a first attempt was made by
Houle and Fiume[HF93] for planar light sources. Af-
ter sampling the surface, a 2D goniometric diagram is
linked to each sample point. The resulting contribution
is computed by interpolating values between points.
Therefore, it is not easy to establish a correlation be-
tween the location and the variation of the luminous
intensity distribution.

In [SWZ96], Shirleyet al. proposed a method with
stochastic sampling. In 1999, Zaninettiet al.[ZBP99]
introduced a model based on an adaptive subdivision
of a planar rectangular surface. This model works for
planar diffuse light sources, and is easily extended to
non-uniform surfaces, as all sub-sources are indepen-
dent, and to any planar light source thanks to a mask.

In Brotman and Badler’s paper[BB84], light sources
are modeled with polygons to get polyhedra. Thus,
any geometry may be achieved. Radiance is computed
by a random sampling of polygons.

4 RECONSTRUCTION OF
DIRECTIONALLY
DEPENDENT LIGHT
SOURCES IN A
FAR-FIELD
PHOTOMETRY
CONTEXT

A simple solution for reconstructing a goniometric di-
agram is bilinear interpolation. But this method has
some drawbacks which are difficult to eliminate like
the need of regular measurements. Similarly, this
method cannot be used if measurements are noisy. We
will introduce a new method to reduce those problems.

4.1 Our Method

In a far-field photometry context, light sources can be
considered as simple points. Their luminous intensity
distribution can be represented by a two-dimensional
goniometric diagram (cf. Figure 2). The goal of this
section is to introduce a newC1 representation of a
goniometric diagram from measurements.

4.2 Main Idea

To reconstruct such a diagram whatever the incident
direction, we use Nóe and Ṕeroche’s model[NP00],
which was previously introduced forBRDFs’ mea-
surements. We will apply it to two-dimensional go-
niometric diagrams reconstitution.

The model can be described as follows: to each mea-
surement over the sphere, a locally supported spread-
ing function is associated. This function is used to get
some energy even not exactly on a measurement (cf.
Figure 4). Furthermore, the local support allows a fast
computation since the function is null outside its do-
main of definition and do not have to be evaluated.

measurements

light source

Figure 4: A kernel is associated to each measurement

Let us denotef the function to be reconstructed. The
singular integral off is defined by [Ach56]:

I(f)( ~X) =
∫

Ω

f(~x)K(~x · ~X)dω(~x) (1)

where:

• ~X is the incident direction;

• Ω is the unit sphere;

• K() is a spreading kernel with supportρ;

• ~x · ~X is the dot product between~x and ~X.

If the kernel checks the following propertiesZ 1

−1

K(t)dt =
1

2π
and lim

ρ→1

Z 1

−1

K(t)tdt =
1

2π
(2)

then [Ach56]Z
Ω

I(f)dω =

Z
Ω

fdω and lim
ρ→1

I(f) = f (3)

4.3 An Example of Kernel

Let cos θ = ~x· ~X
||~x||×|| ~X|| . Like Noé and Ṕeroche, we

chose:

K(cos θ) =

(
0 if cos θ ∈ [−1; ρ]

k+1
2π(1−ρ)

�
cos θ−ρ

1−ρ

�k

if cos θ ∈ [ρ; 1]

(4)



whereρ andk are parameters forK.

k is linked to the shape of the kernelK andρ to the
size of its support. Figure 5 shows some kernels with
ρ = 0.5 (the support is thus[−π

3 ; π
3 ]).
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Figure 5: Kernels with different degrees (from
[NP00])

4.4 Discretization

A goniometric diagram is a collection of couples
( ~Xi, Fi), where ~Xi is an incident direction andFi the
associated measurement. We may define a continuous
function F representing the goniometric diagram by
discretizing the singular integral off :

F ( ~X) =
n∑

i=1

FiK( ~X · ~Xi)∆ω2
i (5)

∆ω2
i is computed in such a way to minimize the error

between the reconstructed and the original function.
Noé and Ṕeroche showed that∆ω2

i is a constant equal

to
Pn

i=1 f( ~Xi)FiPn
i=1 f( ~Xi)2

.

By putting kernels according to measurements, we can
get a good approximation of functionf . Furthermore,
this approximation may be computed very quickly be-
cause all supports are restricted to the evaluation area.
Finally, we must point out that this method is not an
interpolation but an approximation. So, some infor-
mation (measurements) is needed to compute values.

4.5 The Choice of ρ

With aBRDF, measurements are not stored uniformly:
there are often more samples in the specular direc-
tion. Thus, the size of the support, which depends
on ρ, cannot be constant. With goniometric diagrams,
each measurement is done according to a regular grid.
Thus, ρ can just depend on the discretization step
calledds. Figure 6 shows a measured goniometric di-
agram and some reconstructions with different values
of ρ. If a small value is chosen (b), the reconstruction

will be too smooth to take particular emissions into ac-
count. On the other hand, with bigger values (d), the
support of the kernels will be restricted, and holes can
appear.

Measurements ρ = 0.26
⇒ θ = 75 degrees

(a) (b)

ρ = 0.951 ρ = 0.9925
⇒ θ = 18 degrees ⇒ θ = 7 degrees

(c) (d)

Figure 6: Influence ofρ on the reconstruction of the
diagram

After many experiments, we choseρ = cos−1(0.6 ×
ds) which seems to be a good compromise between
smoothing and holes. On our example, the discretiza-
tion step was30 degrees. So, we tookρ = cos−1(0.6×
30) = 0.951.

4.6 A Fast Evaluation

Kernels’ storage has been achieved during a prepro-
cessing step. In the rendering pass, any value must be
computed very quickly. For that, we use the propri-
ety of locality. We chose a locally supported function
(only defined for[ρ; 1]). So, we just need a data struc-
ture over the sphere to store our kernels. Like Noé and
Péroche, we used an igloo structure. As shown in Fig-
ure 7, each cell contains a list of kernels that are not nil.
In this figure, only the kernel centers are represented
by points. Of course, as a kernel may be large, it may
overlap more than one igloo cell. Thus, to evaluate
the function for an incident direction, only the kernels
overlapping the right cell must be computed.



Figure 7: An igloo with kernels

Figure 8: An office with a typical directionally depen-
dent light source

5 RESULTS AND
VALIDATION

Figure 8 shows an office lit with a directionally de-
pendent light source described in Figure 9 in order to
get an efficient illuminance on the desk runner. This
image is computed with a global illumination method
[SP01].

Figure 9: The goniometric diagram of the light source
used for the office

5.1 Validation

In this section, we will describe the method used
to evaluate our model. It is based on a compari-
son between our simulation and real measurements.
Slater[Sla89] did such an experiment. Nine point lu-
minaires with a known goniometric diagram (Figure
10) were set on the ceiling of an empty room. The
reflectivity of the walls, of the floor and of the ceil-
ing were respectively 0.3, 0.2 and 0.7. 169 photocells
were set at 0.75m above the floor to measure the radi-
ance in the room. Figure 11 shows the measurements
from photocells achieved by Slater.

Figure 10: The goniometric diagram used by Slater



Figure 11: Measurements from Slater’s experiment

Figure 12 shows a comparison between measurements
from Slater and point directionally dependent light
sources (with the goniometric diagram shown in Fig-
ure 10). The average distance is about 4.10%, with
a minimum of 0.03% and a maximum of 17.02%. In
the lighting community, an error around 15% is often
judged acceptable. So, with an average error in the re-
gion of 5%, we may say that our model is consistent
with the needs in this domain.

For this image, radiance is computed by ray-tracing
whitout global illumination. Large errors occur on the
edges of the virtual ground located at 0.75m above the
floor because indirect reflections on walls are not taken
into account. When computing global illumination,
the mean error is reduced to 2.72% instead of 4.10%
before.

Figure 12: Comparison between Slater’s measure-
ments and a directional point light source

If a planar luminaire is designed in such a way that
the emission is spatially uniform over the surface, only
one goniometric diagram can be used to reconstruct
the emission function for any point on the plane. This
case is solved by using our method and the adaptive
subdivision method from [ZBP99].

6 CONCLUSION AND
FURTHER
DEVELOPMENTS

We have introduced a new model to reconstruct a go-
niometric diagram for light sources in a far-field pho-
tometry context. This model has two advantages: first,
a good precision with singular integrals; second, lo-
cally supported functions allow a fast evaluation since
only kernels that are in the neighborhood of the direc-
tion to be evaluated are computed. This method has
few drawbacks, except the need of a sufficient number
of measurements.

For future work, we would like to be able to com-
pute simple scenes at interactive rates, in order to al-
low interactive simulations of complex light sources
for inside architectural design for example. This could
be achieved by pre-computing and tabulating the re-
constructed function. For non uniform planar lumi-
naires, a knowledge of the goniometric diagrams dis-
tribution should be given in order to be able to apply
our method. Finally, a major improvement would be
to take near-field photometry into account.
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