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ABSTRACT
This paper presents a generdized approach for performing genera rotations in the n-Dimensional Euclidean
spacearoundany arbitrary (n-2)-Dimensional subspace It first shows the general matrix representation for the
principal n-D rotations. Then, for any desired general n-D rotation, a set of principa n-D rotations is
systematicdly provided, whose compasition provides the original desired rotation. We show that this coincides

with the well -known 2D and 3 cases, and provide some 4D appli cations.
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1. BACKGROUND

The n-Dimensional Translation

In this work, we will use asimple nD generalization
of the 2D and 3D trandations. A poaint
X = (X, X5,...,X,) Can betranslated by a distancevec

tor d=(d,d,,...d,) and results x'=(x;,X5,....X,),
which, can be computed as x'=x-T(d), or in its

expanded matrix form in homogeneous coordinates,
as .ownin Eq.1.
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The arctan2 function
If tan@)=m, then ¢ = arctar(m). Moreover, if we

know that tan(@) = y/x, then a better well-known
solutionis @ = arctar2(y, x) , where
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arctarfy/x) x>0
arctafy/x)+z x<0

/2 x=0,y>0
—7r/2 x=0,y<0
In thiswork we will only use actan2.

2. INTRODUCTION

arctar2(y,x) =

Therotation plane

[Ban9Z and [Hol91] have identified that if in the 2D
space arotation is given around a point, and in the
3D gpaceit is given around a ling, then in the 4D
space in analogows way, it must be given around a
plane.

[Hol91] considers that rotations in 3D spacemust be
considered as rotations paral el to a 2D plane instead
of rotations around an axis. [Hol91] suppats this
idea onsideringthat given an arigin of rotationand a
destination padnt in the 3D space the set of all
rotated pdnts for a given rotation matrix lie in a
singe plane, which is cdled the rotation dane.
Moreover, the rotation axis in the 3D space oincides
with the norma vedor of the rotation dane. The
concept of rotation dane is consistent with the 2D
spacebecaise dl the rotated pants lie in the same
and ory plane. Findly, with the &owe idess,
[Hol91] constructs all six basic 4D rotation matrices
aroundthe main panesin 4D space

Main n-Dimensional Rotations

We know that in the 3D space rotations are defined
in terms of the ais aroundthey take place However,
we know that it is more gpropriate to consider that
3D rotations take placein a plane anbedded in the
3D space (the plane's norma vedor coincides with
the rotation axis). Using these ideas, [Duf94] genera-



lizes the concept of a main rotation in an nD space
(n>2) astherotation d an axis X,in dredionto an
axis Xy. The plane described by axis X, and X, is
what [Hol91] defined as rotation dane. [Duf94] pre-
sents the following general matrix for main rotations:

[ i r.a=cos@) |
Ty, =C0SP)

T, =—Sin()
Reo@) =]y e = SINE)

;=1 j#b
1, =0 elsewhere

For an n-dimensional rotation, thisisan nxn matrix,
or an (n+)x(n+l) matrix if homogeneous
coordinates are used. It can easily be verified that in
the 2D space R, corresponds to the positive

j #a,

(courter clockwise) rotation aroundthe origin, while
R, correspondk to the negative (clockwise) rotation

aroundthe origin, moreover R, = R,,. Similarly in

the 3D space R,, R,, and R, respedively

correspondto a pasitive rotation aroundaxes Xz, Xy,
and X, (ie, axes Z, X, and Y) while the
correspondng regative rotations are R,;, R,, and

R, which, by the way, are the crrespondng
inverse matricesof R,, R,, and R, .

Observation 1. Matrix R,,(6) is amost an identity

matrix except in the intersedion d columns a and b
with rows a and b, which means that only the
coordinates a and b of a point will change dter a
R,,(0) rotation, which is consistent with the 3D and

2D cases.

Observation 2. Sincethere ae C[gj main planesin

a nD space this is predsely the number of main
rotations for such space

Observation 3. Let e, (1<k<n) be the unit vedor

aong axis Xy, in the nD space then
e,"R,,(7/2)=¢,, i.e, Ryp Moves a paint on X,

towards Xy,

3. FROM MAIN TO GENERAL
ROTATIONS
Althoughthe following dscusgons can be foundin

any text book (see Hean & Baker [He&d6] for
example), they are included here to uncerline some

key points that will be very useful when extending
them to the nD case. Moreover, the 3D case will be
presented in a way that fadlit ates its generalizaion
tonD.

General 2D Rotations
Since the main 2D rotation R, is aroundthe origin,

agenera rotation d an angle # aroundafixed pdnt
a=(a,a,) can be obtained by the following
composition:  x'=x-T(-a)-R,(0)-T(a), which is

expanded as hown in Eq. 2 Note that the inverse
matrix of T(a) is T(-a).

General 3D Rotations

A genera 3D rotation is a rotation o an ange 6
arounda general axis. This axis, in this work, will be
represented by the suppating line of the direaed

segment S=ab (@ 1D simplex), where
a=(a®a®a® and b-(b°,5060) ae two

non-coincident 3D points which we will refer as the
vertices of S. SeeFig L1(i). The paositive diredion d
the rotation is given by the right hand rule (pointing
with you right thumb from a to b, the remaining four
curved fingers describe the pasitive diredion). This
rotation can be adieved as the composition d a
number of transformations, which firstly aigns
segment S with any of the main axis, seoondy
performs the desired rotation around that main axis,
and thirdly returns the rotation axis to its origina
position by prforming the inverse of those
transformations in reverse order.

(0) (0) (0)

Let v© {Z}’) :io) ZZ")} be the matrix for the
2

original vertices coordinates, let M, be the

correspondng matrix for the k™ transformation.
Then {v©@,v® v .} where v® =v&?.M,, is a
series of matrices halding the vertices coordinates at

(k) (k) (k)
eadh step, v“‘)z{al & & } or simply

b by B
®)
v = a .
bk

In thiswork, the chosen main axis where the segment
Swill be direded to, is X;. The first step is to move

pont a to the origin, therefore, M, =T(-a)
which makes v(l){b?l) bc;l) b?l)}

where b® —=b® —a®, j =12,3. SeeFig. L.(ii).

1 0O Of|cospP) sin@) 0|1 0O O
x x, =[x % 1] 0 1 0||-sin@ cosp) 0]-l0 1 0 (Eq.2)
-a -a, 1 0 0 1| |a a, 1



X3 i) Xs v)
Figure 1. Set of transformations needed to align
segment S=ab to axis X.

The send step is to rotate b aroundaxis Xy, by a
suitable angle ¢,, so that the resulting b® lies on
main plane X;X,. In this way we can get rid of the
third dmension by making the third coordinate egual
to zero, resulting a 2D problem. It can be seen from
Fig.L.(ii) that the needed rotation is R,,(6,), where

tan@,) =b{" /bl , thus @, = arctar2(0,b").

Therefore M, = R, (arctar2(b{® b)), which makes

v<2>{ )

o0 01, seeFig.1.iii).
b” b~ 0

Similarly, M, = R,,(arctar2(b® b)), which rotates
b® onto main axis X; making the second coordinate

0 0}  seeFig.L(iv).

also zeo, i.e, v©® =
b® 0 0

These last two steps how that if we want to make the
j™ coordinate eyual to zero we have to make a
rotation
M, =R (arctare(b®? b))  (Eq.3)

At this paint we have segment S® (following this
notation) aligned to axis Xy, so the next step is a
pasitive rotation d the desired angle ¢ around axis
X1, that is M, =R, ,(¢). The final stage returns the
rotation axis to its origina position by applying
Mg, Mg, and M,, which are the inverse matrices of

M., M,,and M, respedively.

Therefore, given a general 3D rotation defined by
segment S=ab (therotationlinea axis) and an angle
@, every paint x will rotateto the point x’ defined by

X'=x-M,where M =M, -M,-M,;-M,-M;-M,-M,
and it isusually computed in advance

General 4D Rotations

A general 4D rotation is a rotation d an angle 6
arounda general plane. This plane, in this work, will
be represented by the suppating pdane of
a triange T=abc (a 2D simplex), where
a-(@”aa’ a?), b=(b?60.6%) and
c=(c?,c?,c?,c?) are three noncollinea 4D
points which we will refer as the vertices of T. This
rotation can be adieved as the omposition d a
number of transformations, which firstly takes
triangle T onto main plane XX, so that edgeab of T
is aigned with axis X;, secondy it performs the
desired rotation aroundmain plane X1X,, and thirdly
it returns triangle T to its origina position by
performing the inverse of thase transformations in
reverse order.

Let {v©,v® v | bethe series of matrices holding

the vertices coordinates at ead step, where

v =y®D .M, and v© is the matrix for the
original vertices' coordinates:

a:EO) aéo) aéo) a.‘(tO)

vO =|p® pO pO pO

CfO) CéO) CéO) C‘(10)

Then, and procealing in a similar way as the 3D
case, wefind M, =T (-a), which makes
0O 0 0 O
vO =|p® p® p® p®
C](_l) Cél) Cgl) CL(‘1)

From now on, we can nd rely on a picture for
figuring ou the neaded 4D rotations, therefore we
must rely on Eq. 3 which rotates points in the |
dimension towards the (j-1)" dimension, thus we find
M, = R4v3(arctar2(b§1),b§” )) which makes

0 0 0 O
v@=|p? b® b® 0
_C](.Z) CéZ) CéZ) ng)

—

b b)), which makes
o 0 0 0
v@=b® b 0 0
_C1(3) CéS) CéS) C‘(13)

M, = Rg,z(arctarﬁ

and M, = Rzyl(arctarﬁ(bf),bl“) )) which makes
0 0 0 0
v =b® 0 0 0
¢? ¢¥ o ¢



At this point edge ab of triangle T lies on axis X1,
but the opposite vertex ¢'® can be anywhere in the
4D space. We need to rotate triangle T so that this
vertex and the whole triangle result embedded in
main plane X1X,, however, we have to be careful not
to apply any rotation that could move edge ab away
from axis X;. According to observation 1, any
rotation R,, with a=1 and b=1 will preserve
coordinate in X;. So we proceed that way by
applying Eq. 3 but using vertex c instead of vertex b,
and find M, = R,,(arctan2(c{?,c{* )), which makes

0 0 0 O
vO=[p® 0 0 0
C_ES) CéS) CgS) 0
and M, = R, (arctan2(c$?, ¢ )), which makes
0 0 0O
vO=p® 0 0 0
c® ¢® 00

and provides triangle T®® embedded in main plane
X1Xz, S0 the next step is a positive rotation of the
desired angle ¢ around plane XX, that is
M,=R,,(9). The fina stage returns the rotation
plane to its original position by applying M, to M,
which are the inverse matrices of M, to M,
respectively.

Therefore, given a general 4D rotation defined by

triangle T =abc (the rotation planar axis) and an
angle @, every point x will rotate to the point x’

defined by x'=x-M , where M =] [M, and it is

k=1
usually computed in advance.

General nD Rotations
For the genera case let us rename the elements of

matrix V) as

(k) (k) (k) (k)

Vit Vi Vis Vi

(k) =] k) (k) (k) (k)
V= Vo V2 Vis  Van
(k) (k) (k) (k)
Vn—l,l Vn—1,2 Vn—l,3 o Vn—l,n

Then, a general nD rotation is a rotation of an angle
¢ around a general (n-2)-Dimensiona subspace.
This subspace will be represented by a (n-2)D
simplex, whose vertices are v®. Then, and pro-
ceeding in a similar way as the 3D and 4D cases, we
find M, =T(-a), where a is the first row of v?.

Then we see that in the k" step, 2<k <", we
can make v =0 in certain row r and column c,
using M, =R ,(arctan2(v®?,v*2)) in a rather

r,.c » Yr,e-1

straightforward sequence, which is an adaptation to a
more general case of Eq. 3. Therefore in the
Algorithm 1 is presented our procedure which we
named as the Aguilera-Perez Algorithm.

Procedure ConputeM v®, g,n)

M, =T(-a)
v =v@. M,
M =M,
k:=1

for r:=2 to n-1 do
for ¢c:=n downto r do
k :=k+1
My = R, arctan2vfs® vish)
v =y oM,
M:=M- M,
endFor
endFor
M:=M-R,,(0)-M"
endPr ocedur e

Algorithm 1. The Aguilera-Perez Algorithm for
Computing a General nD Rotation Matrix.

Note that this procedure, at the end of its two loops,
produces matrix v with zeros in its last two
columns. This means that simplex v® has been
transformed into simplex v which is embedded in
a (n-2)-dimensional subspace, because every vertex
has a zero in its last two coordinates. Moreover, v
is a lower triangular matrix, i.e., with n zeros in its

first row, n-1 zeros in the second, and so forth, until
row n-1 with exactly two zeros.

(0) (0) (0) (0)
Vit Viz Vig 0 Vin 0 0 00
(0) (0) (0) (0) (k)

Va1 Va2 Vas Van Vai 0 00
(0) (0) (0) (0) (k) Loy

Vn—l,l Vn—1,2 Vn—1,3 : Vn-1,n Vnfl,l anl,nfz 00

This means that the embedding has taken place in a
way that vertex 1 of v is at the origin, vertex 2 is
on main axis Xy, vertex 3 is on main plane X1X,, and
so forth, until vertex n-1 which is inside an
(n-2)-dimensional hyperspace, which is exactly the
subspace where v is embedded. At that point of
the algorithm, M is a single matrix that transforms
smplex v© into simplex v, that s,
v =vO@ .M.

This leaves just enough room for performing our next
step, the desired rotation, which will be a
positive rotation of an angle ¢, done around
the hyperplane X;X,..X,2 a (n-2)-dimensional
hyperspace, that is, R , (@) . Thefinal stage returns

n-1,n



the rotation dane to its origina pasition, which can
be dore with M™. These last two stages are
performed at the end d the dgorithm, computing a
singe matrix M for the whoe n-Dimensiona
rotation.

Therefore, given a general n-Dimensional rotation
defined by simplex S (the rotation hyper axis) and an
angle 0, every pant x will rotate to the paint x’
defined by x'=x-M, where M is provided by ou
algorithm.

Note that this procedure ads mewhat like the
Gausdan elimination for a system of linea equations.

4. APPLICATIONS

In this wdion we will present an interesting
applicdion d our Aguilera-Perez Algorithm for
performing the general n-dimensional rotations
uncer the ontext of the unraveling o 4D poalytopes,
spedficdly the 4D simplex (seeFig. 2).

Figure 2. The 4D Simplex.

This topic has been discussed in [Ban96], [Kak94]
and [Agu03 (where a methoddogy for the
unraveling d the 4D hypercube is presented).
Basicdly, the unraveling d a n-dimensional
poytope implies to embed the (n-1)-dimensional
cdls that compose its boundry onto a (n-1)-
dimensional hyperplane. SeeFig. 3.a and Fig 3b for
examples of the unraveling processs of the aube and
the tetrahedron (a 3D simplex) respedively.

ﬂ%/ \\
a)
D=

Figure 3. Unraveling the aube (a)
and the tetrahedron (b).

Unraveling the 4D Simplex

Becaise the 4D simplex boundry is composed by
five tetrahedrons [Cox84, we can exped that the
unravelings of the 4D simplex will be a tetrahedron
surrounced by four other tetrahedrons and sharing a
face with ead ore (the unravelings of the
tetrahedron are atriangle surrounced by the other

threetriangles and sharing an edge with ead ore, see
Fig. 2.b). We will refer to the unravelings of the 4D
simplex as a stellated tetrahedron.

The mordinates of the 4D simplex to urravel are
presented in Table 1 (see[Ban9§ for a methoddogy
to get the 4D simplex's coordinates).

Vertex X1 X2 X3 X4

0 0 0 0 0

1 1 0 0 0

2 E ﬁ 0 0
2 2

P T R R
2 6 3

A 1] 43| /6 |10
2 6 12 4

Table 1. Coordinates of a4D simplex.

Anaogously to the tetrahedron's unraveling, we have
to sdled the 4D simplex's volume which will be
surrounced by the other four volumes as commented
before. Moreover, the suppating hyperplane of this
seleded vdume will be the hyperplane to which all
the 4D simplex's remaining vdumes will be direaed
to. Observing the 4D simplex's coordinates we can
seethat four of them present their fourth coordinate
value (X,) equal to zero. Thisfad represents that one
of the simplex's volumes (formed by ertexes 0-1-2-
3) has X,=0 as its suppating hyperplane. Seleding
the hyperplane W=0 is useful becaise one of the
volumesis "naturally embedded" in the 3D space ad
it will not require ay transformations.

Now, it is aso useful to identify the simplex's
volumes throughtheir vertices and to label them for
future references. Until now we have one identified
volume, it is formed by vertexes 0-1-2-3, and it will
be cdled vdume A. SeeTable 2.

Volume's Volume's
SV Volume and SV Volume and
position in the L abel position in the L abel
4D simplex 4D simplex
1
2 v
\/
\ Volume A Volume D
: 0-1-2-3 0-2-3-4
1 1
2 v 2 V
Volume B Volume E
: 0-1-2-4 § 1-2-3-4
Volume C
0-1-3-4

Table 2. The 4D simplex's boundry volumes.




We have dready described vdume A as "naturally
embedded" in the 3D space because it won't reguire
any transformations. Volume A will occupy the
central paosition in the stell ated tetrahedron and it will
be cdled the "central volume".

All of the remaining vdumes will have face
adjacency with the central volume. Due to this
charaderistic they can easily be rotated toward our
space because their rotating gdane is clealy
identified. Each of these volumes will rotate aound
the suppating dane of its dhared face with centra
volume. They will be cdled "adjacent volumes".

Although the rotating danes are dealy identified,
the main dfference between the 4D simplex and
other polytopes unraveling (as the hypercube, see
[Agu02) isthat the rotating danes do nd correspond
to 4D spacemain planes (X1X,, X2X3, X3X1, X1X4,
XX 4 and X3X,) in the simplex's unraveling.

Position in the
stellated
tetrahedron
after the
transfor mations

Adjacent
volume
previousto
rotation

Transformations
to apply

Volume B
Rotation around
X1X; plane with

0=104 29

Volume C

o o

0 0 0 0
vO =1 0 0
%% 1%

6=104° 29"

Volume D

0 0 0 O
m % 5

2 b 0
% % %

06 =-104° 29"

o o

Volume E

1 0 0

=72 @2 0
% B
0=-104° 29"

o o

o

v
N
N
Y

4 4«4

Table 3. Applied transformations to the adjacent
volumes

Due to this stuation, we will apply the Aguilera-
Perez Algorithm with the spedfic case of N =4, i.e,
for performing general 4D-rotations (as a spedad
case, in ou example, we have only one volume that
will rotate aoundthe XX, plane, that is, the volume
B that shares the face ompased by vertices 0, 1 and
2, seeTables 1 and 2. The final objediveisto rotate
eathh ore of the dajacent volumes an angle of
104 29 aroundthe suppating dane of the facethat
share with the cettral volume. This ange

corresponds to the suppement of the simplex's
dihedral angle that is 75° 31' [Cox63. In thisway we
guarantee that their X, coordinate will be equal to
zero. The matrices v© (i.e. matrices that contain the
points of the shared faces between an adjacent
volume ad the ceitral volume) and the anges
diredion for ead adjacent volume ae presented in
Table 3 (the cantral volume is also included in eat
image & areference for the initial and final position
of the volume being analyzed).

Now, all the transformations to urravel the simplex
have been determined. To ravel it badk, the same
process must be gplied in an inverse way but only
the angles’ sighs must be changed.

Table 4 presents me snapshots from the 4D
simplex's unraveling sequence. From t = 0.00 urtil
t = 0.75, the ajacent volumes (in red) are projeded
inside the catra tetrahedron (in yellow). When
t = 1.00, adjacent volumes are projeded on the
central tetrahedron’s faces (they look like planes) -an
effed due to the seleded 4D-3D projedion. From
t = 1.25 unil t = 5.00, the ajacent volumes are
projeded ouside the cetra tetrahedron. When
t = 3.00 an interesting plenomenon arises, the
projeded vadumes form an hexadron (a aube) —again,
an effed due to the seleded projedion. When
t = 5.00 the stell ated tetrahedronis finally composed.

5. CONCLUSIONS

In this work we have presented the Aguilera-Perez
Algorithm which spedfies a methoddogy to perform
general n-dimensiona rotations. Such methoddogy
coincides with the well known 2D and 3D ceses.
Moreover, we have discussed an applicdion in the
context of the 4D simplex's unraveling.

Futurework
Currently we identify two lines of research which are
closely related with the aurrent presented work:

e To popose methoddogies for genera
n-dimensional rotations based in octonions or in
a more general way, based in Z-nions (whose
theoreticd basis are discussed in [Con03). Asa
precalent we mention the well known theory
related to the representation o genera 3D
rotations using queternions (see [Hed&6] for
example).

e To define the procedures to urravel nD
polytopes such as the aosspoytope (the
anaogots to the octahedron in the 3D space see
[Gru03 and [McmO02] for more details) whose
pasitions can be abitrary in the nD space

Moreover, our methoddogy is currently being used
as auxiliary didadic material at the Universidad de
las Américas-Puebla mnsiderably improving the
teading/leaning processs related to n-Dimensional
Euclidean Spaces.



t=0.00

t=0.25 t=0.50

t=0.75

>

t=1.00 t=125 t=1.50 t=175
t=2.00 t=2.25 t=2.50 t=2.75

>

t=3.00

@

t=4.00

&

t=5.00

Table 4. Unraveling the 4D simplex.
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