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ABSTRACT 

This paper presents a generalized approach for performing general rotations in the n-Dimensional Euclidean 
space around any arbitrary (n-2)-Dimensional subspace. It first shows the general matrix representation for the 
principal n-D rotations. Then, for any desired general n-D rotation, a set of principal n-D rotations is 
systematically provided, whose composition provides the original desired rotation. We show that this coincides 
with the well -known 2D and 3D cases, and provide some 4D applications. 
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1. BACKGROUND 
 

The n-Dimensional Translation 
In this work, we will use a simple nD generalization 
of the 2D and 3D translations. A point 

),...,,( 21 nxxx�x  can be translated by a distance vec-

tor ),...,,( 21 nddd�d  and results ),...,,( 21 nxxx �����x , 

which, can be computed as )(dxx T��� , or in its 

expanded matrix form in homogeneous coordinates, 
as shown in Eq.1. 
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(Eq. 1) 

 
The arctan2 function 
If m�)tan(� , then )(arctanm�� . Moreover, if we 

know that xy�)tan(� , then a better well -known 

solution is ),2(arctan xy�� , where 
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In this work we will only use arctan2. 
 

2. INTRODUCTION 
 
The rotation plane 
[Ban92] and [Hol91] have identified that if in the 2D 
space a rotation is given around a point, and in the 
3D space it is given around a line, then in the 4D 
space, in analogous way, it must be given around a 
plane. 
 
[Hol91] considers that rotations in 3D space must be 
considered as rotations parallel to a 2D plane instead 
of rotations around an axis. [Hol91] supports this 
idea considering that given an origin of rotation and a 
destination point in the 3D space, the set of all 
rotated points for a given rotation matrix lie in a 
single plane, which is called the rotation plane. 
Moreover, the rotation axis in the 3D space coincides 
with the normal vector of the rotation plane. The 
concept of rotation plane is consistent with the 2D 
space because all the rotated points lie in the same 
and only plane. Finally, with the above ideas, 
[Hol91] constructs all six basic 4D rotation matrices 
around the main planes in 4D space. 
 
Main n-Dimensional Rotations 
We know that in the 3D space, rotations are defined 
in terms of the axis around they take place. However, 
we know that it is more appropriate to consider that 
3D rotations take place in a plane embedded in the 
3D space (the plane’s normal vector coincides with 
the rotation axis). Using these ideas, [Duf94] genera-
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li zes the concept of a main rotation in an nD space 
)2( �n  as the rotation of an axis Xa in direction to an 

axis Xb. The plane described by axis Xa and Xb is 
what [Hol91] defined as rotation plane. [Duf94] pre-
sents the following general matrix for main rotations: 
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For an n-dimensional rotation, this is an nn �  matrix, 
or an )1()1( ��� nn  matrix if homogeneous 

coordinates are used. It can easily be verified that in 
the 2D space, 

2,1R  corresponds to the positive 

(counter clockwise) rotation around the origin, while 

1,2R  corresponds to the negative (clockwise) rotation 

around the origin, moreover 1,2
1

2,1 RR �
� . Similarly in 

the 3D space, 
2,1R , 

3,2R  and 
1,3R  respectively 

correspond to a positive rotation around axes X3, X1, 
and X2 (ie., axes Z, X, and Y) while the 
corresponding negative rotations are 1,2R , 2,3R  and 

3,1R , which, by the way, are the corresponding 

inverse matrices of 2,1R , 3,2R  and 1,3R .  
 

Observation 1. Matrix )(, �baR
 
is almost an identity 

matrix except in the intersection of columns a and b 
with rows a and b, which means that only the 
coordinates a and b of a point will change after a 

)(, �baR  rotation, which is consistent with the 3D and 

2D cases.  

Observation 2. Since there are ��
�

�
��
�

�

2

n
C  main planes in 

a nD space, this is precisely the number of main 
rotations for such space. 
 

Observation 3. Let ke  )1( nk ��  be the unit vector 

along axis Xk, in the nD space, then 

bbaa eRe �� )2/(, � , i.e., Ra,b moves a point on Xa 

towards Xb. 
 

3. FROM MAIN TO GENERAL 
ROTATIONS 

 

Although the following discussions can be found in 
any text book (see Hearn & Baker [Hea96] for 
example), they are included here to underline some 
 

key points that will  be very useful when extending 
them to the nD case. Moreover, the 3D case will  be 
presented in a way that facilit ates its generalization 
to nD. 
 

General 2D Rotations 
Since the main 2D rotation 

2,1R  is around the origin, 

a general rotation of an angle �  around a fixed point 
),( 21 aa�a  can be obtained by the following 

composition: )()()( 2,1 aaxx TRT ������ � , which is 

expanded as shown in Eq. 2 Note that the inverse 
matrix of )(aT  is )( a�T . 
 

General 3D Rotations 
A general 3D rotation is a rotation of an angle �  
around a general axis. This axis, in this work, will be 
represented by the supporting line of the directed 
segment ab�S  (a 1D simplex), where 

),,( )0(
3

)0(
2

)0(
1 aaa�a  and ),,( )0(

3
)0(

2
)0(

1 bbb�b  are two 

non-coincident 3D points which we will refer as the 
vertices of S. See Fig 1.(i). The positive direction of 
the rotation is given by the right hand rule (pointing 
with your right thumb from a to b, the remaining four 
curved fingers describe the positive direction). This 
rotation can be achieved as the composition of a 
number of transformations, which firstly aligns 
segment S with any of the main axis, secondly 
performs the desired rotation around that main axis, 
and thirdly returns the rotation axis to its original 
position by performing the inverse of those 
transformations in reverse order.  
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bbb

aaa
v  be the matrix for the 

original vertices’ coordinates, let kM  be the 

corresponding matrix for the thk  transformation. 
Then � �,...,, )2()1()0( vvv , where k

kk M�� � )1()( vv , is a 

series of matrices holding the vertices coordinates at 

each step, �
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In this work, the chosen main axis where the segment 
S will be directed to, is X1. The first step is to move 
point a to the origin, therefore, )(1 a�� TM  

which makes �
�

�
�
�

	
� )1(

3
)1(

2
)1(

1

)1(

bbb

000
v  

where .3,2,1,)0()0()1( ��� jabb jjj  See Fig. 1.(ii ). 
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  (Eq. 2) 

 



��

X2

X3

X1

iii)

X2

X3

X1

iv)

ii)

����

X2

X3

X1

i)X2

X3

X1

a

b

 
Figure 1. Set of transformations needed to align 

segment ab�S  to axis X1. 
 

The second step is to rotate )1(b  around axis X1, by a 
suitable angle 

1� , so that the resulting )2(b  lies on 

main plane X1X2. In this way we can get rid of the 
third dimension by making the third coordinate equal 
to zero, resulting a 2D problem. It can be seen from 
Fig.1.(ii ) that the needed rotation is )( 12,3 �R , where 

)1(
2

)1(
31)tan( bb�� , thus ),2(arctan )1(

2
)1(

31 bb�� . 
 

Therefore � �� �)1(
2

)1(
32,32 ,2arctan bbRM � , which makes 

�
�

�
�
�

	
�

0
v )2(

2
)2(

1

)2( 000

bb
, see Fig.1.(iii ). 

 

Similarly,  � �� �)2(
1

)2(
21,23 ,2arctan bbRM � ,  which rotates 

b(2) onto main axis X1 making the second coordinate 

also zero, i.e., �
�

�
�
�

	
�

0

000
)3(

1

)3(

0
v

b
, see Fig.1.(iv). 

 

These last two steps show that if we want to make the 
j th coordinate equal to zero we have to make a 
rotation  

� �� �)1(
1

)1(
1, ,2arctan �

�
�

�� k
j

k
jjjk bbRM  (Eq. 3) 

 

At this point we have segment )3(S (following this 
notation) aligned to axis X1, so the next step is a 
positive rotation of the desired angle �  around axis 
X1, that is � ��3,24 RM � . The final stage returns the 

rotation axis to its original position by applying 

5M , 6M , and 7M , which are the inverse matrices of 

3M , 2M , and 1M , respectively.  
 
Therefore, given a general 3D rotation defined by 

segment ab�S  (the rotation linear axis) and an angle 
� , every point x will rotate to the point x�  defined by 

M��� xx , where 7654321 MMMMMMMM �������  

and it is usually computed in advance. 
 

General 4D Rotations 
A general 4D rotation is a rotation of an angle �  
around a general plane. This plane, in this work, will 
be represented by the supporting plane of 
 a triangle abc�T  (a 2D simplex), where 
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4
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2
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1 bbbb�b  and 

),,,( )0(
4

)0(
3

)0(
2

)0(
1 cccc�c  are three non-colli near 4D 

points which we will refer as the vertices of T. This 
rotation can be achieved as the composition of a 
number of transformations, which firstly takes 
triangle T onto main plane X1X2, so that edge ab of T 
is aligned with axis X1, secondly it performs the 
desired rotation around main plane X1X2, and thirdly 
it returns triangle T to its original position by 
performing the inverse of those transformations in 
reverse order.  
 

Let � �,...,, )2()1()0( vvv  be the series of matrices holding 

the vertices’ coordinates at each step, where 

k
kk M�� � )1()( vv , and )0(v  is the matrix for the 

original vertices’ coordinates: 
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Then, and proceeding in a similar way as the 3D 
case, we find )(1 a�� TM , which makes  
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From now on, we can not rely on a picture for 
figuring out the needed 4D rotations, therefore we 
must rely on Eq. 3 which rotates points in the j th 

dimension towards the (j-1)th dimension, thus we find 
� �� �)1(
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and � �� �)3(
1

)3(
21,24 ,2arctan bbRM � , which makes 
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At this point edge ab of triangle )4(T  lies on axis X1, 
but the opposite vertex )4(c  can be anywhere in the 
4D space. We need to rotate triangle )4(T  so that this 
vertex and the whole triangle result embedded in 
main plane X1X2, however, we have to be careful not 
to apply any rotation that could move edge ab away 
from axis X1. According to observation 1, any 
rotation Ra,b with 1�a  and 1�b  will preserve 
coordinate in X1. So we proceed that way by 
applying Eq. 3 but using vertex c instead of vertex b, 
and find � �� �)4(

3
)4(

43,45 ,2arctan ccRM � , which makes 
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and � �� �)5(
2

)5(
32,36 ,2arctan ccRM � , which makes 
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and provides triangle )6(T  embedded in main plane 
X1X2, so the next step is a positive rotation of the 
desired angle �  around plane X1X2, that is 

� ��4,37 RM � . The final stage returns the rotation 

plane to its original position by applying 
8M  to 13M , 

which are the inverse matrices of 6M  to 1M , 

respectively. 
 

Therefore, given a general 4D rotation defined by 
triangle abc�T  (the rotation planar axis) and an 
angle � , every point x will rotate to the point x�  

defined by M��� xx , where �
�

�
13

1k
kMM  and it is 

usually computed in advance. 
 

General nD Rotations 
For the general case let us rename the elements of 

matrix )(kv  as  

)(kv =
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Then, a general nD rotation is a rotation of an angle 
�  around a general (n-2)-Dimensional subspace. 
This subspace will be represented by a (n-2)D 
simplex, whose vertices are )0(v . Then, and pro-
ceeding in a similar way as the 3D and 4D cases, we 
find )(1 a�� TM , where a is the first row of )0(v . 

Then we see that in the thk  step, 
2

)1(2 ��� nnk , we 

can make )(
,
k
crv =0 in certain row r and column c, 

using � �� �)1(
1,

)1(
,1, ,2arctan �

�
�

�� k
cr

k
crcck vvRM  in a rather 

straightforward sequence, which is an adaptation to a 
more general case of Eq. 3. Therefore in the 
Algorithm 1 is presented our procedure which we 
named as the Aguilera-Perez Algorithm. 
 

Procedure ComputeM( )0(v , � , n) 
  )(:1 a�� TM  

  
1

)0()1( : M�� vv  

  
1: MM �  

  k := 1 
  for r := 2 to n-1 do 
    for c := n downto r do 
      k := k+1 

� �� �)1(
1,

)1(
,1, ,2arctan: �

�
�

�� k
cr

k
crcck vvRM  

      
k

kk M�� � )1()( : vv  

      
kMMM ��:  

    endFor 
  endFor 
  � � 1

,1: �
� ��� MRMM nn �  

endProcedure 
 

Algorithm 1. The Aguilera-Perez Algorithm for 
Computing a General nD Rotation Matrix. 

 
Note that this procedure, at the end of its two loops, 
produces matrix )(kv  with zeros in its last two 
columns. This means that simplex )0(v  has been 

transformed into simplex )(kv  which is embedded in 
a (n-2)-dimensional subspace, because every vertex 
has a zero in its last two coordinates. Moreover, )(kv  
is a lower triangular matrix, i.e., with n zeros in its 
first row, n-1 zeros in the second, and so forth, until 
row n-1 with exactly two zeros. 
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This means that the embedding has taken place in a 
way that vertex 1 of )(kv  is at the origin, vertex 2 is 
on main axis X1, vertex 3 is on main plane X1X2, and 
so  forth,  until  vertex  n-1  which   is   inside   an  
(n-2)-dimensional hyperspace, which is exactly the 
subspace where )(kv  is embedded. At that point of 
the algorithm, M is a single matrix that transforms 
simplex )0(v  into simplex )(kv , that is, 

Mk �� )0()( vv . 
 

This leaves just enough room for performing our next 
step, the desired rotation, which will be a 
positive rotation  of  an  angle � , done around  
the hyperplane X1X2...Xn-2, a (n-2)-dimensional 
hyperspace, that is, )(,1 �nnR �

. The final stage returns 



the rotation plane to its original position, which can 
be done with M-1. These last two stages are 
performed at the end of the algorithm, computing a 
single matrix M for the whole n-Dimensional 
rotation. 
 
Therefore, given a general n-Dimensional rotation 
defined by simplex S (the rotation hyper axis) and an 
angle � , every point x will rotate to the point x�  
defined by M��� xx , where M  is provided by our 
algorithm. 
 
Note that this procedure acts somewhat like the 
Gaussian elimination for a system of linear equations. 
 

4. APPLICATIONS 
 

In this section we will present an interesting 
application of our Aguilera-Perez Algorithm for 
performing the general n-dimensional rotations  
under the context of the unraveling of 4D polytopes, 
specifically the 4D simplex (see Fig. 2). 
 

 
Figure 2. The 4D Simplex. 

 

This topic has been discussed in [Ban96], [Kak94] 
and [Agu02] (where a methodology  for  the 
unraveling of the 4D hypercube is presented). 
Basically,  the  unraveling  of  a  n-dimensional 
polytope implies to embed the (n-1)-dimensional 
cells that compose its boundary onto a (n-1)-
dimensional hyperplane. See Fig. 3.a and Fig 3.b for 
examples of the unraveling processes of the cube and 
the tetrahedron (a 3D simplex) respectively. 
 

a)  
 

b)     
Figure 3. Unraveling the cube (a) 

and the tetrahedron (b). 
 
Unraveling the 4D Simplex 
Because the 4D simplex boundary is composed by 
five tetrahedrons [Cox84], we can expect that the 
unravelings of the 4D simplex will be a tetrahedron 
surrounded by four other tetrahedrons and sharing a 
face with each one (the unravelings of the 
tetrahedron are a triangle surrounded by the other 

three triangles and sharing an edge with each one, see 
Fig. 2.b). We will refer to the unravelings of the 4D 
simplex as a stellated tetrahedron. 
 

The coordinates of the 4D simplex to unravel are 
presented in Table 1 (see [Ban96] for a methodology 
to get the 4D simplex's coordinates). 
 

Vertex X1 X2 X3 X4 
0 0 0 0 0 
1 1 0 0 0 

2 
2
1  

2

3  0 0 

3 
2
1  

6

3  
3

6  0 

4 
2
1  

6

3  
12

6  
4

10  

Table 1. Coordinates of a 4D simplex. 
 

Analogously to the tetrahedron's unraveling, we have 
to select the 4D simplex's volume which will be 
surrounded by the other four volumes as commented 
before. Moreover, the supporting hyperplane of this 
selected volume will be the hyperplane to which all 
the 4D simplex's remaining volumes will be directed 
to. Observing the 4D simplex's coordinates we can 
see that four of them present their fourth coordinate 
value (X4) equal to zero. This fact represents that one 
of the simplex's volumes (formed by vertexes 0-1-2-
3) has X4=0 as its supporting hyperplane. Selecting 
the hyperplane W=0 is useful because one of the 
volumes is "naturally embedded" in the 3D space and 
it will not require any transformations. 
 

Now, it is also useful to identify the simplex's 
volumes through their vertices and to label them for 
future references. Until now we have one identified 
volume, it is formed by vertexes 0-1-2-3, and it will 
be called volume A. See Table 2. 
 

Volume's 
position in the 

4D simplex 

Volume and 
Label 

 Volume's 
position in the 

4D simplex 

Volume and 
Label 

1
2

0

3

4

 

 
Volume A 

0-1-2-3 

 1
2

0

3

4

 

 
Volume D 

0-2-3-4 

1
2

0

3

4

 

 

 
 

Volume B 
0-1-2-4 

 1
2

0

3

4

 

 
Volume E 
1-2-3-4 

1
2

0

3

4

 

 
Volume C 

0-1-3-4 

 

  

Table 2. The 4D simplex's boundary volumes. 



We have already described volume A as "naturally 
embedded" in the 3D space, because it won't require 
any transformations. Volume A will occupy the 
central position in the stellated tetrahedron and it will 
be called the "central volume". 
 

All of the remaining volumes will have face 
adjacency with the central volume. Due to this 
characteristic they can easily be rotated toward our 
space because their rotating plane is clearly 
identified. Each of these volumes will rotate around 
the supporting plane of its shared face with central 
volume. They will be called "adjacent volumes". 
 

Although the rotating planes are clearly identified, 
the main difference between the 4D simplex and 
other polytopes' unraveling (as the hypercube, see 
[Agu02]) is that the rotating planes do not correspond 
to 4D space main planes (X1X2, X2X3, X3X1, X1X4, 
X2X4 and X3X4) in the simplex's unraveling. 
 

Adjacent 
volume 
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rotation 

Transformations 
to apply 

Position in the 
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Table 3. Applied transformations to the adjacent 
volumes 

 

Due to this situation, we will apply the Aguilera-
Perez Algorithm with the specific case of n = 4, i.e., 
for performing general 4D-rotations (as a special 
case, in our example, we have only one volume that 
will rotate around the X1X2 plane, that is, the volume 
B that shares the face composed by vertices 0, 1 and 
2, see Tables 1 and 2). The final objective is to rotate 
each  one  of  the  adjacent  volumes  an angle of 
104° 29' around the supporting plane of the face that 
share with the central volume. This angle 

corresponds to the supplement of the simplex's 
dihedral angle that is 75° 31' [Cox63]. In this way we 
guarantee that their X4 coordinate will be equal to 
zero. The matrices v(0) (i.e. matrices that contain the 
points of the shared faces between an adjacent 
volume and the central volume) and the angles' 
direction for each adjacent volume are presented in 
Table 3 (the central volume is also included in each 
image as a reference for the initial and final position 
of the volume being analyzed). 

 

Now, all the transformations to unravel the simplex 
have been determined. To ravel it back, the same 
process must be applied in an inverse way but only 
the angles’ signs must be changed. 
 

Table 4 presents some snapshots from the 4D 
simplex's unraveling sequence. From  t = 0.00  until  
t = 0.75, the adjacent volumes (in red) are projected 
inside   the   central   tetrahedron  (in  yellow).  When   
t = 1.00, adjacent volumes are projected on the 
central tetrahedron’s faces (they look like planes) -an 
effect  due  to  the  selected  4D-3D projection. From 
t = 1.25 until t = 5.00, the adjacent volumes are 
projected  outside  the   central   tetrahedron.   When  
t = 3.00 an interesting phenomenon arises, the 
projected volumes form an hexadron (a cube) –again, 
an   effect   due   to  the  selected  projection.  When  
t = 5.00 the stellated tetrahedron is finally composed. 
 

5. CONCLUSIONS 
 

In this work we have presented the Aguilera-Perez 
Algorithm which specifies a methodology to perform 
general n-dimensional rotations. Such methodology 
coincides with the well known 2D and 3D cases. 
Moreover, we have discussed an application in the 
context of the 4D simplex's unraveling. 
 

Future work 
Currently we identify two lines of research which are 
closely related with the current presented work: 
 

!" To    propose    methodologies    for    general  
n-dimensional rotations based in octonions or in 
a more general way, based in 2k-nions (whose 
theoretical basis are discussed in [Con03]). As a 
precedent we mention the well known theory 
related to the representation of general 3D 
rotations using quaternions (see [Hea96] for 
example). 

 

!" To define the procedures to unravel nD 
polytopes such as the cross-polytope (the 
analogous to the octahedron in the 3D space, see 
[Gru03] and [Mcm02] for more details) whose 
positions can be arbitrary in the nD space.  

 

Moreover, our methodology is currently being used 
as auxili ary didactic material at the Universidad de 
las Américas-Puebla considerably improving the 
teaching/learning processes related to n-Dimensional 
Euclidean Spaces. 
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Table 4. Unraveling the 4D simplex. 

 
 



6. REFERENCES 
 
[Agu02] Aguilera, A., and Pérez-Aguila, R. A 

Method For Obtaining The Tesseract By 
Unraveling The 4D Hypercube. Journal of the 
10th International Conference in Central Europe 
on Computer Graphics, Visualization and 
Computer Vision WSCG 2002. Volume 10, 
Number 1, pp. 1-8, February 4 to 8, 2002. Plzen, 
Czech Republic. ISSN: 1213-6972. 

 
[Ban92] Banks, D. Interactive Manipulation and Dis-

play of Two-Dimensional Surfaces in Four Di-
mensional Space. Proceedings of the 21st annual  
conference  on Computer graphics, July 24 - 29, 
1994, Orlando, FL USA, Pages 327 - 334. 

 
[Ban96] Banchoff , Thomas F. Beyond the Third 

Dimension. Scientific American Library, 1996. 
 
[Con03] Conway, J., and Smith, D. On Quaternions 

and Octonions. A K Peters, Ltd., 2003. 
 
[Cox63] Coxeter, H.S.M. Regular Polytopes. Dover 

Publications, Inc., New York, 1963. 
 

[Cox84] Coxeter, H.S.M. Fundamentos de Geome-
tría, Editorial Limusa, 1984. 

 

 
 
[Duf94] Duff in, K., and Barnett, W. Spiders: A new 

user  interface  for  rotation and visualization of 
n-dimensional points sets. Proceedings of the 
1994 IEEE Conference on Scientific Visuali -
zation, October 17 to 21, 1994, Washington, D.C. 
USA, Pages 205-211. 

 

[Gru03] Grünbaum, B. Convex Polytopes. Second 
Edition prepared by Kaibel, V., Klee, V., and 
Ziegler, M. Graduate Texts in Mathematics, Vo-
lume 221. Springer-Verlag New York, Inc., 2003. 

 

[Hea96] Hearn, D., and Baker, P. Computer 
Graphics, C Version. Second Edition. Prentice 
Hall , 1996. 

 

[Hol91] Hollasch, S.R. Four-Space Visualization of 
4D Objects. Arizona State University, 1991, 
Thesis for the Master of Science Degree. 

 

[Kak94] Kaku, M. Hyperspace: A Scientific Odyssey 
Through Parallel Universes, Time Warps, and the 
Tenth Dimension. Oxford University Press, 1994. 

 

[Mcm02] McMullen, P., and Schulte, E. Abstract 
Regular Polytopes. Encyclopedia of Mathematics 
and Its Applications, Volume 92. Cambridge 
University Press, 2002. 


