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ABSTRACT

Pel-recursive motion estimation is a well-established approach. However, in the presence of noise, it becomes an

ill-posed problem that requires regularization. In this paper, motion vectors are estimated in an iterative fashion

by means of the Expectation-Maximization (EM) algorithm and a Gaussian data model. Our proposed algorithm

also utilizes the local image properties of the scene to improve the motion vector estimates following a spatially

adaptive approach. Numerical experiments are presented that demonstrate the merits of our methods.
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1. INTRODUCTION 
Motion estimation is very important in multimedia

video processing applications. For example, in video

coding, the estimated motion is used to reduce the

transmission bandwidth. The evolution of an image

sequence motion field can also help other image

processing tasks in multimedia applications such as

analysis, recognition, tracking, restoration, collision

avoidance and segmentation of objects [Jain89].

In coding applications, a block-based approach

[Tek95] is often used for interpolation of lost

information between key frames. The fixed

rectangular partitioning of the image used by some

block-based approaches often separates visually

meaningful image features. If the components of an

important feature are assigned different motion

vectors, then the interpolated image will suffer from

annoying artifacts.

Pel-recursive schemes [Brailean95, Estrela03,

Jain89] can theoretically overcome some of the

limitations associated with blocks by assigning a

unique motion vector to each pixel. Intermediate

frames are then constructed by resampling the image

at locations determined by linear interpolation of the

motion vectors. The pel-recursive approach can also 

manage motion with sub-pixel accuracy. However,

its original formulation was deterministic. The

update of the motion estimate was based on the

minimization of the displaced frame difference 

(DFD) at a pixel. In the absence of additional

assumptions about the pixel motion, this estimation

problem becomes ill-posed because of the following 

problems: a) occlusion; b) the solution to the 2D

motion estimation problem is not unique; and c) the

solution does not continuously depend on the data

due to the fact that motion estimation is highly

sensitive to the presence of observation  noise in

video images.
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In this work, we plan to use the MAP estimate to find

the update  of the motion vector from our

observation model by means of the Expectation-

Maximization technique. The main advantages of the

EM method is that the final algorithm deals with



closed-form expressions and it does not require the

use of optimization techniques.

We organized this work as follows. Section 2 

provides some necessary background on the pel-

recursive motion estimation problem. Section 3

introduces our spatially adaptive approach. Section 4 

describes the EM framework. Section 5 defines the

metrics used to evaluate our results. Section 6

describes some implementation aspects and the

experiments used to access the performance of our

proposed algorithm. Finally, Section 7 has some

conclusions.

2. PEL-RECURSIVE DISPLACEMENT

ESTIMATION
The displacement of each picture element (pel or

pixel) in each frame forms the displacement vector 

field (DVF) and its estimation can be done using at

least two successive frames. The DVF is the 2D

motion resulting from the apparent motion of the

image brightness. A vector is assigned to each point 

in the image.

A pixel belongs to a moving area if its intensity has

changed between consecutive frames. Hence, our

goal is to find the corresponding intensity value Ik(r)

of the k-th frame at location r = [x, y]T, and the

corresponding displacement vector (DV) at the 

working point r in the current frame, that is d(r) = 

[dx, dy]
T. Pel-recursive algorithms minimize the DFD

function in a small area containing the working point

assuming constant image intensity along the motion

trajectory. The DFD is defined by

�
(r; d(r)) = Ik(r)- Ik-1 (r-d(r)) (1)

and the perfect registration of frames will result in

Ik(r)=Ik-1(r-d(r)). The DFD represents the error due to 

the nonlinear temporal prediction of the intensity

field through the DV. The relationship between the

DVF and the intensity field is nonlinear. An estimate

of d(r), is obtained by directly minimizing � (r,d(r))

or by determining a linear relationship between these

two variables through some model. This is

accomplished by means of a Taylor series expansion

of Ik-1(r-d(r)) about the location (r-di(r)), where di(r)

represents a prediction of d(r) in the i-th step. This 

results in
�

(r,r-di(r))=-uT � Ik-1(r-di(r)) + e(r,d(r)), (2)

where the displacement update vector u=[ux, uy]
T = 

d(r) – d
i(r); e(r, d(r)) represents the error resulting 

from the truncation of the higher order terms

(linearization error); and � =[ � / � x, � / � y]
T represents 

the spatial gradient operator. Applying (2) to all 

points in a neighborhood �  gives

z = Gu+ n, (3)

where the temporal gradients 
�

(r, r-di(r)), from (2), 

have been stacked to form the N � 1 observation

vector z containing DFD information on all the pixels

in a neighborhood � , the N � 2 matrix G is obtained

by stacking the spatial gradient operators at each 

observation, and the error terms have formed the N � 1

noise vector n which is assumed Gaussian with

probability density function (pdf) n~N(0, � n
2
I). Each 

row of G has entries [gxi, gyi]
T, with i = 1, …, N. The 

spatial gradients of Ik-1 are calculated through a 

bilinear interpolation scheme [Brailean95].

3. SPATIAL ADAPTION
Aiming to improve the estimates given by the pel-

recursive algorithm, we introduced an adaptive 

scheme for determining the optimal shape of the

neighborhood of pixels overdetermined system of 

equations given by (3).

Errors can be caused by the basic underlying

assumption of uniform motion inside �  (the 

smoothness constraint), by not grouping pixels

adequately, and by the way gradient vectors are

estimated, among other things. Since it is known that

in a noiseless image not containing pixels with

constant intensity, most errors, when estimating

motion, occur close to motion boundaries. We

propose a hypothesis testing approach to determine

the best neighborhood shape for a given pixel. The

masks in Figure 1 show the geometries of the

neighborhoods used, where “x” indicates the position 

of the current pixel and “0” is a neighboring pixel.

We pick up the neighborhood from the finite set of 

templates shown in Figure 1, according to the 

smallest
�
DFD

�
 criterion, in an attempt to adapt the

model to local features associated to motion

boundaries. The chosen mask is the one that better

satisfies the smoothness constraint, capturing the

motion behaviour  around the current pixel, and, 

therefore accounting for motion discontinuities.

X Current pixel     O Neighboring pixel

Figure 1. Neighborhood geometries. 



4. THE EM APPROACH 
The EM algorithm is a general numerical technique

which can be used to determine the maximum

likelihood estimate (MLE) of a set of parameters. It

can be employed for identification of model and 

distribution parameters simultaneously. The 

parameters can be estimated iteratively even in 

situations where some variables cannot be observed. 

4.1 The Ordinary Maximum Likelihood 

Estimate and Its Limitations

The vector u of (3) can be computed using the MAP

estimate [Kay93] as 

, (4)
1

MAP u u n
ˆ ( ) �� �� � �T T
u G G G z

where  and   are, respectively, the covariance 

matrices of the update vector and of the

noise/linearization error term.

u

�
n

�

The estimate in (4) was derived assuming that u and 

n are zero mean, and  uncorrelated. The maximum a 

posteriori (MAP) estimate for the linear observation

model in (3) is also the MAP estimate assuming a

Gaussian prior on u and n.

In this work, we resort to the maximum likelihood

(ML) estimation of the second-order statistics u

�
and  of the model. The calculation of the ML

estimates of  and is done iteratively by means

of the Expectation-Maximization (EM) algorithm

formalized by Dempster et al [Dem77] which has

been used in a variety of applications as referenced in 

[Kat91]. The EM algorithm was previously used for 

motion estimation in [Fan96]. However, this work 

estimates parameters of affine models and it uses a

block-matching framework.

n

�
u

�
n

�

For the model described by (3), let us assume that the

update vector u and the noise n are normally-

distributed with mean zero, and uncorrelated, with

covariance matrices equal to � u and � n respectively. 

Then, the pdf of z is given by

1
H 2

z u n

H H 1

u n

f ( ) 2 ( )

1
exp ( ) .

2

� � �
� �
	

	

 �

�
 � �� �
z G G �

��z G G z

where G
H

 and z
H  are the Hermitian conjugates of G

and z   [Kat91].

Let us take �  = { � u, � n} as the parameter set to be

estimated. The pdf of z can be considered a 

continuous and differentiable function of � . This 

dependency can be better captured by the notation

fz(z; � ). Furthermore, we can assume that the 

additive noise is white, with covariance matrix � n = �
n

2
I, where I is an N � N identity matrix.

The ML estimation of �  is the � ML that maximizes

the logarithm of the likelihood function of fz(z; � ),

which is given by

ML z

z

arg{ max f ( ; )}

arg{ max log f ( ; )}.

�
�

�
�

� �
�

z

z
 (5) 

Combining (4) and (5), we conclude that the

maximization of the log-likelihood function is

equivalent to minimizing the function Lo( � ) where 
H

o n

H H

u n

L ( ) log

( ) �
� �

� �
� � �

� �uG G

1 .z G G z
(6)

This function is  nonlinear and non-unimodal with

respect to � . Analytical solutions for (6) are out of 

question. Thus, we have to resort to optimization

techniques. Nevertheless, since Lo( � ) is not

unimodal, convergence and local extrema of iterative

optimization methods are serious problems. The EM

algorithm arises as an alternative for estimating � ,

since its convergence to a local maximum is

guaranteed.

4.2 Problem Formulation According to 

the EM Framework

We assume that the update vector u is normally-

distributed with mean zero and covariance matrix

equal to � u, and that n ~ N(0, 2

n

�
I ) is the additive

Gaussian noise.

If we choose  as the complete data

where

 T!x u n

( N 2 )

"
# $

1%
x & , then x will be normally

distributed with diagonal covariance matrix � x equal

to

, and
1

u 1 u

x x 1
n n

'' '
( )( )

* *,+ -+ -. / . /
0 00 00 00 0

0 0

with this, (3) can be re-written as 

[ ] for [ ].; , ;1 1 1z G I x Hx H G I

The foundation of the EM algorithm is the

maximization of the expectation of log{fx(x; 2 )},

given the incomplete observed data z and the current 

estimate of the parameter set 2 . fx(x; 2 ) is the pdf of 

the complete data, and it is given by 
1

H 1
2

x x

1
f ( ; ) exp

2

3 4 4
5 67 89 :; <= > >

xx 2 x x , (7)

that taking the logarithm of both sides leads to

{ }

[ ]

H 1

x x

H

1 1
log f ( ; ) log

2 2

1
K

2

?@ A
A A

BC,D D
C D E

x

x

x 2 x

x

A
x

where 2  = 
0

x and K is a constant independent of 2 .



4.1.1 EM algorithm
We want to compute iteratively 

. (8)( p 1 ) ( p )arg{ maxQ( ; )}�� �� C �
For that, we need to compute

, (9)( p ) ( )

xQ( ; ) E[log{ f ( ; )} | ; ]
� � � �� p

x z

where 2 (p)=[
0

u
(p);
0

n
(p)] is the estimate of the

parameter set 2 ={
0

u;
0

n} at the p-th iteration.

We compute (9) and (8) in E-step and M-step,

respectively.

E-Step:

This step can be re-written in terms of the parameter

set 2  by means of the relationships developed in

terms of the complete data x and the pdf f(x|z; 2 (p)) as
( p ) 1 ( p )

u n u u

1 ( p ) ( p )H 1 ( p )

n n|z u|z u u|z

( p )H 1 ( p )

n|z n n|z

|zF( ; ) log log tr( )

tr( ) � �
� �

@ @ A A A A
A A A
A

�
� �
�

� � �
� �
�  (10) 

Our goal is to estimate the update vector u. The

MAP/MMSE estimate of u is ( p )

u|z�  which 

corresponds to its conditional expectation at iteration 

p, given the observation z. Since our observation 

model is linear and Gaussian statistics are assumed,

we have MMSE LMMSE MAP
� �u u u

� � �
.

This estimate is obtained as a byproduct of the 

estimation of 2 . The statistical assumptions about u

and n result in 2  = { � 1
2, � 2

2, � n
2}. Therefore, 

[ ]

[ ]

( p ) 2 2

1 2

( p ) 2( p ) ( p ) 2( p )
2 11 1 22 2
n 2

1 2

( p ) ( p ) 2( p ) 2( p )

11 mm 1 m2

n

F( ; ) log( ) log( )

a c a c
m log( )

1
b b e e
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2

,

,

and

��������

(11)

where

� �
( ) ( ) ( ) ( ) ( ) 1 ( )

( ) ( ) ( ) ( ) ( ) 1 ( )

1
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 1

|

( ) ( )

|

( )

( )

,

( )

p p p H p H p p

u u u n u

p p p H p H p p

u u u n u

p p p p H p p

n n u n n

p p p H p H p

u z u u n

p p

n z n

�
�

�
�

�
�

� ���� ��� � ��� �� �� ���� ��� � ��� �� ����� � � � �!� �"� �� ��� � �!��
� ���

A G G G G

A G G G G

B G G

c G G G z

e
( ) ( ) ( ) 1( ) .p p H p

u n

�� � ����
G G z

(12)

The previous matrices can be simplified and written

as

( ) ( )

( ) 11 12

( ) ( )

21 22

,
p p

p

p p

a a

a a

# $��% &' (A

( p ) ( p )

11 1m

( p )

( p ) ( p )

m1 mm

b b

b b

) *+ ,- + ,+ ,. /B

01 2 1
0 ,

T
( p ) ( p ) ( p )

1 2c c
) *- . /

c  and .
T

( p ) ( p ) ( p )

1 me e
) *- . /

e 3
M-Step:

The minimum of F( 2 ; 2 (p)) occurs when465
p

2

n

F( ; )
07

8 98: :
.  So,

; <
2

2( p 1 ) ( p ) ( p )

n

1
Tr

m

= > ? @A BC D
B e . (13)

Applying similar procedure for � 1
2 and � 2

2  gives 

2( p 1 ) ( p ) 2( p )

1 11 1a c= E A B  and ) . (14)2( p 1 ) ( p ) 2( p

2 22a c= E A B
2

Now, we are ready to state the resulting EM 

algorithm using multiple masks.

4.3 The EM-Based Pel Recursive Motion 

Estimation Algorithm

For each pixel in the current frame k, located at r, do 

the following: 

Initialize: , ,  and ;
0 ( )d r

2( 0 )

n

= 2( 0 )

1

= 2( 0 )

2

=
m p 0A F

 (mask and iteration counter);

thresholds T ,  and
G H

.

Do { 

Calculate
p

G ,
p

z  for current mask 

 Calculate c  from (12) 
( p )

Perform M-Step

Calculate
p 1 p( ) ( )E pA Bd r ud r

p p 1F B
 If ( p = MAX ) then 

m I m+1  (try another neighborhood) 
reset d ,

)
, , ,

0 ( )r
2( 0

n

= 2( 0 )

1

= 2( 0 )

2

= p 0F
 end if

if (all masks where used), 
p 1( )E Ad r 0

} while (
p 1 p HJ JE K L

 and 

p 1 p( ) ( )
GE K L

d r d r  and DFD T
M

and p MAX
M

)

stop.

5. METRICS

This work assesses the motion field quality through 

the use of the four metrics [Brailean95, Estrela03] as 

described below. 

5.1 Mean Squared Error (MSE)

Since the MSE provides an indication of the degree

of correspondence between the estimates and the true

value of the motion vectors, we can apply this 

measure to two consecutive frames of a sequence

with known motion. We can evaluate the MSE in the

horizontal (MSEx) and in the vertical (MSEy)

directions as follows: 



[ 2
xx x

1
]MSE d ( ) d ( )

RC �� ��
r S

r r
�

, and 

[ 2
yy y

1
]MSE d ( ) d ( )

RC �� ��
r S

r r
�

( ( ) ( ))x y
ˆ ˆd ,dA r r

,

where S is the entire frame, r represents the pixel 

coordinates, R and C are, respectively, the number of

rows and columns in a frame, d(r)=(dx(r), dy(r)) is 

the true deviation vector at r, and 

 its estimation.( )d̂ r

5.2 Bias

The bias gives an idea of the degree of

correspondence between the estimated motion field

and the original optical flow. It is defined as the

average of the difference between the true DV’s and

their predictions, for all pixels inside a frame S, and 

it is defined along the x and y directions as 

xx x

1
bias d ( ) d ( )

RC � ? @A KC D�
r S

r r
�

, and 

yy y

1
bias d ( ) d ( )

RC � ?A KC�
r S

r r
� @D

5.3 Mean-Squared Displaced Frame 

Difference

This metric evaluates the behavior of the average of

the squared displaced frame difference (
2

DFD ). It 

represents an assessment of the evolution of the 

temporal gradient as the scene evolves by looking at 

the squared difference between the current intensity

Ik(r) and its predicted value Ik-1(r-d(r)). Ideally, the 
2

DFD  should be zero, which means that all motion

was identified correctly (Ik(r)= Ik-1(r-d(r)) for all r’s).

In practice, we want the
2

DFD  to be as low as

possible. Its is defined as � 	
� 	K

2

k k 1
2

k 2

I ( ) I ( )

DFD
RC K 1


�
� K K?CA K
���

r S

r r d r @D
,

where K is the length of the image sequence. 

5.3 Improvement in Motion Compensation

The improvement in motion compensation

( IMC( dB ) ) between two consecutive frames is

given by � �
� �

2

k k 1

k 10 2

k k 1

I ( ) I ( )

IMC ( dB ) 10 log
I ( ) I ( )

��
��

� ��� � � ��� ��
�

� r S

r S

r r

r r d r

� � 
! �"$# ,

where S is the frame being currently analyzed. It 

shows the ratio in decibel (dB) between the mean-

squared frame difference (
2

FD ) defined by

2

k k 1
2

[ I ( ) I ( )]

FD
RC

%& '(
)
r S

r r

and the 
2

DFD  between frames k and (k-1) .

As far as the use of the this metric goes, we chose to 

apply it to a sequence of K frames, resulting in the 

following equation for the average improvement in

motion compensation: * +

, -
K

2

k k 1

k 2

10 K
2

k k 1

k 2

I ( ) I ( )

IMC( dB ) 10 log

I ( ) I ( )

./
0
./
0

1 234 44 45 6 74 43 38 9: ;4 4< =
>�>

>?> r S

r S

r r

r r d r

When it comes to motion estimation, we seek 

algorithms that have high values of ( )IMC dB . If we 

could detect motion without any error, then the 

denominator of the previous expression would be 

zero (perfect registration of motion) and we would 

have IMC( dB ) = @ .

6. IMPLEMENTATION

In this section, we present several experimental

results illustrating the effectiveness of the EM

algorithm and compare it with the Wiener filter 

described by

,

with A =50 in which the statistics of
0

1( )
Wiener LMMSE

T TB 
A A Bu u G G I G
� �

z

u and 
0

n remain

constant for the entire frame [Bie87]. As before, the

algorithms were tested on a synthetic sequence and 

two real video sequences: the "Foreman" and the

"Mother and Daughter". The sequences are 144 x 

176, 8-bit (QCIF).

6.1 Experiment 1 

In this sequence, there is a moving rectangle 

immersed in a moving background. In order to create

textures for the rectangle and its background 

(otherwise motion detection would not be possible), 

the following auto-regressive model was used: 

I(m,n) = C [I(m,n-1)+I(m-1,n)+I(m-1,n-1)]+ ni(m,n),

where i=1,2. For the background (i=1), n1 is a 

Gaussian random variable with mean A 1 = 50 and 

variance � 1
2 = 49. The rectangle (i=2) was generated 

with A 2 = 100 and variance � 2
2= 25. All pixels from

the background move to the right, and the 

displacement from frame 1 to frame 2 is db(r)=

(dbx(r),dby(r))=(2,0). The rectangle moves diagonally

from frame 1 to 2 with dr(r)=(drx(r),dry(r))=(1,2).

Table 1 shows the values for the MSE, bias,

IMC (dB) and 
2

DFD  for the estimated image

brightness for frames 1 and 2 of the noiseless 



"Synthetic" sequence using the following algorithms:

Wiener filter, EM with one mask (EM), and EM

multi-mask (EMm). All implementations using the 

EM technique performed better than the Wiener

filter. Table 2 shows the values of the same metrics

when SNR = 20dB.

The motion-compensated frames corresponding to 

the estimated DVF’s for the noisy case (SNR=20dB)

are presented in Figure 2. Visually speaking, there is 

an improvement in the outcome around the borders 

of the rectangle for the multi-mask implementation

of the EMm.

6.2 Experiment 2.

Figure 3 presents the values of the IMC  for frames

31 to 40 of the “Mother and Daughter” sequence for

the noiseless and noisy (SNR=20dB) cases, 

respectively, for the multi-mask algorithm

EMA=EMm. If we look at the noiseless case, we will 

see that the algorithm EMA=EMm has very good 

performance. For the noisy case EMA=EMm

algorithm can perform extremely well most of the 

time, except for two pairs of frames. Their qualitative 

(visual) performance can be observed in Figure 4. 

The superior performance of the EMA=EMm routine 

can be better noticed by looking at the errors

resulting from motion compensation.

6.3 Experiment 3

Figure 5 presents the values of the IMC  for frames

11 to 20 of the "Foreman" sequence for the noiseless 

and noisy (SNR=20dB) cases, respectively, for the 

multi-mask algorithm EMm. The EM

implementations outperform the Wiener filter all the 

time. Their qualitative performance can be observed 

in Figure 6 which shows the error in motion

compensation. Visually speaking, we perceive that

the EM seems to be more robust to the motion

introduced by the camera, because the background of 

the frame showing the errors due to motion-

compensation has less artifacts than the one 

generated with the Wiener filter. 

7. CONCLUSIONS 
For all the sequences, the EM algorithm performed

better than the Wiener filter for both the one mask

and multi-mask cases, regardless of the presence of 

noise.

The EM algorithm showed some sensitivity to the 

choice of initial estimates. We used more than one 

initial parameter set  to 

improve the rate of convergence , but even with this

extra feature, the resulting algorithms using one 

mask and multiple masks where faster than the

corresponding Wiener filter counterparts. 

[ ]0 2( 0 ) 2( 0 ) 2( 0 ) T

n 1 2, ,= = =J A

For the EM method, we have a simple algorithm that 

is guaranteed to converge and it does not equire 

numerical optimization. Given that there are multiple

iterations at every pixel location, the speed advantage 

gained by means of the EM algorithm is 

considerable.

The authors think this framework has great potential 

for applications such as video coding and image

segmentation.
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Wiener EM EMm

MSEx 0.1548 0.1436 0.1311

MSEy 0.0740 0.0681 0.0572

biasx 0.0610 0.0571 0.0527

biasy -0.0294 -0.0189 -0.0180

IMC (dB) 19.46 19.93 20.47

2

DFD
4.16 4.08 3.26

Table 1. Comparison between EM implementations and the Wiener filter. SNR = � .

Table 2. Comparison between EM implementations and the Wiener filter. SNR =20dB.

Wiener EM EMm

MSEx 0.2563 0.2401 0.2323

MSEy 0.1273 0.1249 0.1226

biasx 0.0908 0.0842 0.0822

biasy -0.0560 -0.0558 -0.0503

( )IMC dB 14.74 15.09 15.45
2

DFD 12.24 10.91 10.03

SNR = 20 dB

Figure 2. Motion-compensation errors for the Wiener (left) and the EMm (right) algorithms.

Figure 3. IMC( dB )  for the noiseless (left) and noisy (right) cases for the “Mother and Daughter” 

sequence.



SNR = 20 dB

Figure 4. Motion-compensated errors for frame 32 of the “Mother and Daughter” sequence: the Wiener 

filter (right) and the EMm (left) algorithms.

Figure 5. ( )IMC dB  for frames  11-20  of  the  noiseless (left) and  noisy  cases with  SNR=20dB  (right) for

the “Foreman” sequence. 

SNR = 20 dB

Figure 6. Motion-compensated errors for frame 16 of the  “Foreman” sequence: the Wiener filter (left) 

and  the EMm (right) algorithms .


