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ABSTRACT 
Conversion of two-dimensional objects into a skeletal representation forms an essential step in many image 
processing and pattern recognition applications. Most of the topological structure of objects, and the information 
contained in the outline of their shapes, are preserved in the skeleton. Approaches based on Voronoi techniques 
preserve topology, but heuristic measures are introduced to remove unwanted edges. Methods based on 
Euclidean distance functions can localize skeletal points accurately, but often at the cost of altering the topology 
of the object. In this paper we offer a method to generate skeletal representations combining these two methods, 
which is robust and accurate, and preserves topology. 
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1. INTRODUCTION 
Shape representation and description plays an 
important role in most computer vision systems. A 
useful and reliable shape representation must meet a 
number of requirements, which include invariance, 
uniqueness, and stability [Mok92]. If two objects 
have the same shape, then their representations 
should be the same and should be invariant with 
respect to translation, rotation, and scaling. 
Uniqueness means that if two objects have different 
shapes they should have different representations. 
Stability denotes the fact that if two objects have a 
small shape difference, then their representations 
should have a small difference. Conversely, if two 
representations have a small difference, then the 
objects they represent should also have a small shape 
difference. Therefore, a stable representation means a 
representation that is insensitive to noise.  

 
The representation should reflect the shape of an 
object at various levels of abstraction and should also 
combine both boundary and region information of 
the object. Finally, the shape descriptors and the 
recognition of objects should be efficiently 
computable.  

The skeleton of a two-dimensional object is a 
transformation of the shape object into a one-
dimensional line. Skeleton representation as 
introduced by Blum [Blu67] meets most of these 
requirements.  

Since the introduction of the skeleton shape 
descriptors, many skeletonization algorithms have 
been reported in the literature [Smi87] [Lee93].  
Existing skeletonization approaches can be classified 
into two categories: discrete methods (thinning 
methods, grassfire methods, potential field methods 
and map distance).continuous methods (using 
Voronoi diagram). 
Map distance methods implement the idea of medial 
axis transformation in straightforward way [Ros66]  
[Nil97], but there seem to be serious problems 
finding a correct and connected set of discrete 
skeleton elements due to several problems when 
dealing with discrete metrics and balls. Potential field 
methods [Kég02] [Sid99] [Tek98] avoid some of 
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these problems by tracking field lines and potential 
valleys in continuous space. Also the potential 
function is much smoother than the minimal 
boundary distance, and so potential fields are less 
sensitive to the noise. However, they require much 
computational effort and number of smartly chosen 
seed points to guarantee a complete and centered 
skeleton. 

Voronoi methods have the advantage of being very 
well defined and theoretically sound since they 
operate on well known and powerful concept, the 
Voronoi diagram.  However, there are two critical 
points: the transition from discrete to continuous 
space (the diagram structure depends heavily on the 
boundary sampling) and the robust pruning of 
spurious branches. One advantage of Voronoi 
methods is the fact that the object’s initial 
connectedness is directly transferred to the diagram, 
whereas other methods have to restore connectedness 
artificially in a post-processing step [Att97] [Fab02]. 
On summary, discrete methods can localize skeletal 
points accurately, but often at the cost of altering the 
object’s topology and being noise sensitive. 
Continuous methods (using Voronoi diagram), 
preserve topology, but heuristic post-processing are 
introduced to remove unwanted edges to preserve the 
homotopy, but then they are less sensitive to the 
noise. 

A mixed skeletonising method is introduced in this 
paper. Our method is based on the combination of 
two techniques in order to regroup the advantages of 
each one, such as homotopy preservation, good 
localisation, robustness to the noise. After a brief 
description of the previous work, the distance map 
method and Voronoi skeleton are exposed in section 
2 and 3 respectively, our method is presented and 
discussed in section 4. Finally, concluding comments 
are made in section 5. 

2. SKELETON DETECTION FROM 
DISTANCE MAP 
The first approach to skeletonization appeared in the 
year 1967, when Blum introduced the concept of a 
skeleton in his paper about the so-called medial axis 
transform [Blu67]. It is based on distance maps 
which have been used subsequently for different 
purposes. 

Calculating the Distance Map  
Computing a distance map ( )DM  is not a very 
difficult task in discrete space. Given a suitable 
metric, one can compute the distance transform by 
propagating distance values from the boundary 
inwards [Ros66] [Nil97] [Kég02][Bor86]. 

The DM labels each pixel with the distance to the 
closest background pixel on the object. An integer 
distance value is used as an approximation to the true 
Euclidean distance for efficiency. The DM 
calculation uses a weighted distance metric: a pixel’s 
direct neighbours are a distance Dd  away, and its 
indirect neighbours a distance Id  away (Fig 1), 
where ID dd < . It has been shown in [Thi94] that if 

Dd =1, and Id =1.351 will produce the best 
approximation to the Euclidean distance, it is not 
robust with regard object rotation , we also show that 
the pseudo- Euclidean metric is not the true distance , 
but it is the more robust measure will be under object 
rotation. We have used 34d metrics ( Dd =3, Id =4) 
for our study (Fig 2). Other integer distance metrics 
approximate more closely the Euclidean measure but 
include a larger neighbourhood (5*5)[Bor93]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have implemented a two-pass algorithm to 
calculate the DM [Ros66]. The distance value of 
each pixel in the object is initialised to some large 
integer value, and exterior pixels are initialised to 
zero. For each pixel ip  the distance value ( )ipd  is 
calculated by taking the distance value of each of the 
pixel’s neighbours and adding Dd  if the neighbour is 
directly adjacent or Id  if it is a diagonal neighbours 
(Fig 3). The pixel’s new distance is set to the 
minimum of these calculated distances. This 
operation is efficient because each pixel stores 
pointers to its eight nearest neighbours. Two passes 
are made: the first processes from top to down and 
left to right, the second processes from bottom to top 
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Figure 1:  Neighbor labeling 
Direct Neighbors { }7,5,3,1=DN  

Indirect Neighbors  { }8,6,4,2=IN  

Figure 2: 34d  mask 



and right to left. In each pass, the minimum distance 
to the boundary is updated for each pixel. 

Pass 1:  

( ) ( ) ( ) ( ) ( )( )IDIDi dNddNddNddNdpd ++++= 5432  , , ,min
 
Pass 2: 

( ) ( ) ( ) ( ) ( ) ( )( )IDIDii dNddNddNddNdpdpd ++++= 1076 ,,,,min
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Identifying Local Maxima in the Distance 
Map 
The set of axial points is derived from the Distance 
Map by applying the Medial Axes Transform 
(MAT). If the Distance Map is represented as a 3D 
surface, with the height corresponding to the distance 
values, the MAT is the set of local maxima M . Many 
skeletonization approaches [San96] [Kim95] 
[Mal98], originating with the work of Blum, utilize a 
distance Map/MAT approach, but with varying the 
local maxima detection. In our work we used a 
natural approach for detecting the skeleton: compute 
the principals curvature of the distance map and 
detect skeleton locations where these principals 
curvature (gaussian or mean curvature) are not high 
(Fig 4).  

Gaussian curvature: 

( )222

2

1 yx

xyyyxxK
ρρ

ρρρ

++

−
=    (1) 

Mean curvature: 
 

( ) ( )
( ) 2/322

22

1

11
2

yx

xxyxyyxyyxH
ρρ

ρρρρρρρ

++

++−+
=   (2) 

 

where xρ is the first order derivative according to x, 

yρ  the first order derivative according to y, xxρ the 
second order derivative according to x, yyρ the 
second order derivative according to y, xyρ the 
second order derivative according to x and y. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. VORONOI DIAGRAM SKELETON 
Voronoi Diagram 
Among the algorithms known for computing 
Voronoi diagrams of points in 2D, 3D and higher 
dimensions are the divide-and-conquer algorithm 

       (a)                          (b)  

Figure 3:  Sequential mask 34d . 

(a) From top to down, (b) from bottom to top

Figure 4:  Skeleton by distance map  
(a) Object 
(b) Distances map 
(c)   Skeleton by mean curvature 

(a)

(b)

(c)



proposed by Shamos [Pre90] and Fortune’s 
sweepline algorithm [For87].  
Given a set of points { }ip=Ω   so-called sites in a 
plan E , the convex polygonal region ( )iV  containing 
only site ip , the Voronoi polygon of ip , is defined 
as the set of all points lying closer to ip  than to any 
other site jp : 

( ) ( ) ( ){ }ji ppdppdijjEppiV ,,:,, 22 ≤≠∀∈=      (3) 

where 2d denotes the distance between two points for 
the conventional Euclidean metricL −2  
The collection of boundaries ( )IpV∂  of all ( )ipV  is 
called Voronoi diagram ( )VD  or Voronoi tessellation 
of Ω , ( )ΩVor  
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Skeleton from Voronoi Diagram 
Let us assume that the planar shape S  is sufficiently 
approximated by polygon ( )SB , whose vertexes  
( )SB  = { }ip  have been obtained by equidistant 

sampling of S∂  with sampling densityε . Schmitt 
[Sch89] show that the centers of a subset of 
Delaunay balls converge towards the medial axis 
when the sampling density of the boundary object 
increases. More precisely, Shmitt proved that when 
ε  tends to 0, the centers of all the Delaunay circles 
converge towards the medial axis.  
The 2D Voronoi skeleton of an object can be 
computed from set points from the objects boundary. 
The skeleton is obtained from the dual of the 
Delaunay triangulation of the sample point, a 
skeleton is a subgraph of the Voronoi tessellation of 
the point. 
As stated in [Att95] [Att97], the 2D Voronoi 
skeleton has been defined in many ways : Voronoi 
vertexes included in S  Fig 5.a, Voronoi elements 
included in S Fig 5.b, intersection of Voronoi 
diagrams with S Fig 5.c. However, it seems most 
convenient to define the skeleton as the Voronoi 
vertexes and edges included in the object, since this 
is the smallest set which approximates the medial 
axis. 
Boundary sampling is a crucial point for Voronoi 
skeletonization of discrete objects. 
On one hand, exact matching of the original shape 
would require an infinite set of sample points (and 
thus, sites). On the other hand, each additionally 
introduced site will increase the number of vertexes 
and edges in the resulting Voronoi diagram. Similar 

problems arise as an effect of boundary noise. Each 
spurious or additional boundary point immediately 
increases the complexity of the Voronoi diagram. 

 

.  

 

 
 
 

4. MIXED METHOD 
In the process of skeletonising an object, some 
conditions must be respected such as the homotopy, 
the reversibility and the correct localization of the 
skeletal. Furthermore, one aims to obtain the graph 
structure without the need of a post-processing 

Figure 5: Voronoi diagram skeleton 
(a)   Voronoi vertexes included in  S  

(b)   Voronoi elements included in S  

(c)  Intersection of Voronoi diagrams with S



procedure. In the present work, we propose a method 
that is able to satisfy these conditions. This method is 
obtained by the combination of two previous ones: 
the first is based on the map distance, and the second 
uses Voronoi diagram. The approaches based on 
Voronoi techniques preserve homotopy and appear 
largely invariant with respect to geometric 
transformations like rotation and translation. 
Unfortunately, they introduce heuristic measures in 
order to remove unwanted edges. For this reason we 
propose to localize the skeletal segments by the use 
of medial axis detection based on distance map. 

 Our approach may then be summarized. First by the 
application of Voronoi method to the objects contour 
in order to preserve homotopy. Then, in a second 
steps the segment candidates are removed by 
computation of local maxima in the distance map, 
such that the better fitted ones will remain. 

Algorithm 
The following processing steps were used to obtain 
the final skeleton. 
1.   A conventional Voronoi diagram according to 
[Att95] is used to extract the complete Voronoi 
diagram of the object (VDobj). 
2.  A distance map skeleton (DMS) is computed 
according method presented in section 2. 
3.  The automatic pruning procedure is used to mark 
all edges VDobj which are members of the Distance 
Map skeleton. 
In order to prune the VDobj to its stable inner 
branches, we have proposed a simple algorithm. For 
any vertex of Voronoi segments if a disc of radius 3 
centred at this vertex, intersects the Distance Map 
skeleton we preserve this segment, otherwise we 
remove it (Fig 6). 

 

 
 
 
 
 
 
 
 
 

Robustness 
Figure 7 depicts the skeletons extracted by the above 
automatic pruning process. This figure illustrates the 
robustness of the proposed automatic pruning when 

confronted with a series of shapes, the degree of 
boundary distortion increasing from top to bottom. 

Even if there are significantly jagged boundaries, the 
algorithm correctly identifies a salient subset of the 
skeleton which shows large structural resemblance to 
the medial axis Transform on an ideal rectangle. 
Satisfying results are also obtained if holes are added 
to the shape (Fig 8.c). Analysis of our skeletons 
promises to assist a more flexible definition of shape 
similarity. 

 

Homotopy 
The main motivation to develop our algorithm is the 
preservation of the homotopy (the object and the 
skeleton are topologically equivalent). This one is 
preserved naturally by the structure of the Voronoi’s 
graph that constructs a continuous skeleton. This is 
reinforced by the fact that the intersection of this 
graph with the distance Map skeleton forces the 
resulting skeleton to stay inside the shape. 
To verify that our algorithm preserves the homotopy 
of the object, we have done several tests. 
In figure 8, we notice that in spite of a weak 
sampling, the structure of the skeleton is the same of 
the object. 

DMS VDobj 

Vertex 

True segment  False segment 

Figure 6: Pruning segments 

 

Figure 7: Robustness test  



 

 

 

 
 
 

5. CONCLUSION 
The goal of this work was to explore possibilities of 
how to extract a skeleton from two dimensional 
images.  
In order to overcome some of the limitations of 
previous distance map based approaches and 
Voronoi Skeleton, an alternative method has been 
proposed which tries to exploit both the distance map 
information and the connectivity information 
contained in Voronoi diagram of the sampling 
boundary object’s. By the intersection of the two 
skeletons, the complete connectivity, the homotopy 
and a geometric invariance can be guaranteed any 
time, but then the localisation is not better due to the 
sampling contour.  
The implemented skeletinization algorithm has been 
tested on various images, and experimental results 
have been presented and discussed. The algorithm is 

able to extract a connected set of lines which is a 
desired skeleton. The major drawback at this stage of 
the work is the fact that the resulting graph depend 
on the boundary sampling. 
Our future work is to find automatically a better   
sample of the objects contour that don’t modifies the 
skeleton appearance.  A second important direction 
of future research is to generalize this algorithm for 
3D objects in order to extract a 3D curve skeleton. 
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