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ABSTRACT

This work presents a new method of fast cubic and higher order image interpolation. The evaluation of the
piecewise n-th order polynomial kernels is accelerated by transforming the polynomials into the interval
[0, 1], which has the advantage that some terms of the polynomials disappear, and that several coefficients
could be precalculated, which is proven in the paper. The results are exactly the same as using standard
n-th order interpolation, but the computational complexity is reduced. Calculating the interpolation
weights for the cubic convolution only needs about 60% of the time compared to the classical method
optimized by the Horner’s rule. This allows a new efficient implementation for image interpolation.
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1 INTRODUCTION

Image interpolation is the process of reconstruct-
ing a spatially continuous image from a set of dis-
crete equidistant samples. It is fundamental in
many image processing operations, such as mag-
nification, subpixel translation, rotation, deforma-
tion or warping. These general operations require
image values at locations from which no sample is
available. From sampling theory it is well known
that the sinc-function is the ideal interpolation
kernel, which, however, cannot be used in prac-
tise [Unser99]. In order to obtain acceptable re-
construction in terms of computational speed and
mathematical precision, it is required to design a
kernel that is of finite extent and approximates
the sinc-function as much as possible.

This is commonly done by symmetrical piecewise
n-th order polynomial kernels, where the classi-
cal cubic convolution kernel was first introduced
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to image processing by [Rifma73]. A quantitative
evaluation of these interpolation kernels can be
found in [Meije99], [Meije01] and [Lehma99].

For arbitrary image warping every pixel of the re-
sulting image has to be interpolated, which is of
higher complexity than the evaluation of the geo-
metric warping function itself. Therefore a speed
up of the image interpolation task is desired and
presented in this paper.

The paper is structured as follows. First, the con-
cept of 1-D signal reconstruction using symmet-
ric piecewise n-th order polynomial kernels is pre-
sented (section 2). Next, the transformation of the
polynomials is described (section 3). In section
4 an analysis of theoretical and practical perfor-
mance of the proposed method is given. Finally,
concluding remarks are made in section 5.

2 RECONSTRUCTION

As shown in [Meije99] the symmetrical piecewise
n-th order polynomial kernel, which approximates
the sinc function in [—(n — 1), (n — 1)], is defined
as follows:

(1)

0 otherwise



To insure continuous, smooth interpolation, it is
necessary to set constraints at the knots. Flat
field interpolation requires that > _h(z —m) =
1, where m = (n + 1)/2. Which leads to two
constraints:

h(0) =1land h(z) =0for |z| =1,--- ,m—1 (2)

AW () must be continuous at x| = 0,1,--- ,m
(3)
With [ = 0,1,--- ,k where £ = 0 for n = 1 and
k =n — 2 for n > 1 which is proven in [Meije99].

2.1 Cubic kernel example

The cubic 1-D kernel function is build up of
third-order polynomials and approximates the
sinc-function in the interval [—2,2]. The kernel is
given as:

he(x) =
a03|x|3 +002|ZE|2 +a01|$‘ + apo if 0 < |£L’| <1
a13|x|3 +a12|1’|2 +U,11|I‘ + aio if 1 S |I‘| < 2

0 otherwise (4)

With the defined constraints in equation 2 and
3 we get seven equations in eight unknowns. By
allowing a13 = « to be a tuneable parameter, the
system can be solved, yielding following values:
ag3 = (a+2), age = —(a+3), apr = 0, agy =
1, aijz = o, a12 = —504, aip = 8a and aijp =
—4a. The free parameter « is chosen that way,
that it satisfies the flatness constraint which leads
to o = —1 [Keys81]. The cubic convolution kernel
by Keys is given by the following equation and is
shown in figure 1.

3 )
po(z) = §|x\3 - §|ﬂc|2 +1if0o< |zl <1

1 5 .
pi(x) = —§|x|3 + §|ac|2 —Alz|+2 if 1<z <2

()

The standard way to calculate the interpolation
weights is to evaluate the piecewise polynomials
functions on the supporting points. Every poly-
nomial is evaluated for the according distance &.
In case of cubic convolution these distances are &,
1—-¢, &+ 1 and 2 — & where € € [0,1].

3 TRANSFORMATION OF
THE POLYNOMIALS

To avoid the calculation of these distances all poly-
nomials are transformed in the space [0, 1]. This is
done by evaluating the polynomial pg(z) at £ =«
andé=1—-z,pi(z)at{=x+1land{ =2—2
analytically for the cubic case. For higher (n-th)
order kernels the strategy is the same and we get
n + 1 polynomials, for ¢ odd and k = i/2:

filz) = pr(z+k)
firn(@) = pr((k+1) - =) (6)
With .
filz) = aia’ x€0,1] (7)
§=0

The cubic convolution kernel is shown in figure
1 and figure 2 shows the transformed cubic
polynomials.
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Figure 1: Key’s cubic convolution kernel.

In order to save computational time we can proof
the following 5 lemmas about the properties of the
transformed polynomial coefficients. The proofs
are given in the appendix. Figure 3 shows the
statements of the lemma graphically on the exam-
ple of quintic interpolation coefficients.

Lemma 1: The lowest order coefficients a;y are
0 for all polynomials f;(x), except for the first
polynomial fy(x) where the coefficient is 1.

Lemma 2: The highest order coefficients a;p,
of pairwise symmetrical polynomials, f;(z) and
fix1(x), i odd, have the same values with opposite
sign.
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Figure 2: Key’s cubic convolution kernel trans-
formed to [0, 1].

Lemma 3: All coefficients of order j < n — 2
of pairwise non symmetrical polynomials have
the same coefficients of odd order and the same
coefficients with opposite sign for even order.

Lemma 4: All coeflicients a,; with j < n —2 of
the polynomial f,(x) are 0.

Lemma 5: All coeflicients ag; with odd or-
der j with j < n — 2 are 0 for the polynomial

fo(x)

Lemma 5

i5 [ Ui:%/ fliz\ i1 | A0
fo —27/32 63/32 0 17/8 0 1

f1 27/32 —9/4 9/16 5/4 19/32 0
I 13/64 | —19/64 | —9/16 5/4 | —19/32 0
f3 || —=13/64 23/32 | =9/32 | —3/16 | —3/64 0
fa 3/64 | —3/16 |1 9/32 | —3/16 3/64 0
fs —3/64 3/64 0 ? 0 (l]

Lemma 2 Lemma 3 Lemma 4 Lemma 1

Figure 3: Statements of the given lemma shown on
the example of quintic (5-th order) interpolation
coefficients.

Using these 5 lemmas we can formulate follow-
ing efficient calculation. The distance x has the
same value for all polynomials, so the powers of
x can be precalculated. Furthermore the multipli-
cations with a power of z and the pairwise same
coefficients have to be calculated only once and
coefficients with zeros could be skipped.

3.1 Example for the cubic case

The classical cubic convolution kernel according
to Keys is given by equation 5.

Transforming the polynomials to the space [0, 1]
gives 4 polynomials:

3 )
folx) = 51'3 - 5:132 +1
3 1
filx) = —51'3 + 227 + 32
1 1
fa(x) = —§x3 + 2% — 22
1 1
fs(x) = 5333 - 5932 (8)

According to the observations of the transformed
polynomials, here following values are calculated:
22, a3, %x?’, —%x3 and %x This strategy reduces
the number of operations even more than using
Horner’s rule. Table 1 and 2 show the coefficient
of the transformed polynomials for cubic and quin-

tic order interpolation.

4 PERFORMANCE
ANALYSIS

Table 3 shows the number of operations for the
polynomial evaluation for the classical 1-D cubic
convolution. Table 4 shows the results for ar-
bitrary m-th order interpolation. As traditional
piecewise n-th order convolution is separable (cas-
caded convolution), the evaluation of N-D convo-
lution takes N x 1-D convolution time.

For 1-D cubic convolution the new method only
needs 16 instead of 26 operations, which means,
that the proposed method manages to calculate
the same values with only 61.5% of operations.
When assessing the whole interpolation task, we
must consider that the evaluation of the interpo-
lation weights is one task, while the second task is
to convolve the N-D function with these weights.
The complexity of this convolution is given by
(n 4+ 1)V additions, multiplications and memory
accesses. This basically means, that the convolu-
tion dominates over the polynomial evaluation in
higher dimensions than 2.

Therefore the achieved speedup, by transforming
the polynomials to [0, 1], for the complete interpo-
lation task is higher for lower dimension interpo-
lation, namely 1-D and 2-D.



4.1 Real world experiments

A program was implemented in C++ to analyse
the behavior of the new polynomial evaluation in a
real world scenario. All calculation are done on a
Pentium ITI, 1 GHz. Of course the kernel functions
could be precalculated using lookup tables. To
keep the accuracy at a high level we choose 10000
grid points per unit length according to [Ostun97].
Note that memory access is quite slow, therefore
the lookup table approach is slower than direct
calculation for the cubic case. To get an average
value we looped over the calculation for 100 mil-
lion times, which leads to the following results in
2-D interpolation:

Evaluation of the polynomials:

using lookup tables 18988 ms
classical method 13790 ms
new method 7962 ms

Whole interpolation task:

using lookup tables 51194 ms
classical method 45996 ms
new method 40168 ms

The new polynomial evaluation only takes 57.7%
of computation time in comparison to the clas-
sical version, which matches quite well with the
theoretical value of 61.5%. The whole 2-D cubic
convolution task needs 87.3% in comparison to the
classical version.

5 CONCLUSION

This paper presents a novel method for efficient
implementation of cubic and higher order interpo-
lation. The proposed polynomial evaluation needs
only about 60% of computation time for cubic and
about 65% for higher order polynomials in com-
parison to the standard method. The whole image
interpolation process is speeded up and takes only
about 87% for cubic convolution in comparison to
the standard method.
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A PROOFS

Lemma 1: The lowest order coefficients a;y are
0 for all polynomials f;(z), except for the first

polynomial fy(x) where the coefficient is 1.
Proof: The first polynomial fy(0) =1 = ago = 1.
For all other polynomials f;(0) = 0 therefore
a;0 = 0. O

Lemma 2: The highest order coefficients a;y,
of pairwise symmetrical polynomials, f;(z) and
fir1(z), i odd, have the same values with opposite
sign.

Proof: The  symmetrical  polynomials
called f(z) = fi(x) = Xj_ga;z/ and
g(x) == fip1(x) = Y"_,bjz? have the prop-
erty that f(z) = g(1 — xi This leads to:

n

F(@) = apz™ Y azal = by (1—2)" Y by(1 —x)!

j=1 j=1
By using factor comparison of a, and
bn, the coefficient for z™ is given by
anz”™ = by(—z)" = (=1)"b,z™. Because n

is odd (—1)™ = —1 and this yields a,, = —b,,. O
Lemma 3: All coefficients of order j < n — 2
of pairwise non symmetrical polynomials have
same the coefficients of odd order and the same
coefficients with opposite sign for even order.
Proof: f; and f;y1, i > 1 and i odd: Because
of the continuous and smooth interpolation
constraints fV(0) = (—1)! fi(jr)l(())7 which yields

;1 = (—1)lai+1l for { S n—2. 0

Lemma 4: All coefficients a,; with j < n —2 of

the polynomial f,(z) are 0.

Proof: Because of the continuous and smooth
interpolation constraints the last polynomial
fn(x) must be continuous to the x-axis, therefore
T(Ll)(O) = 0 for | < n — 2 which directly yields
anj; =0for j =<n-2.0

Lemma 5: All coeflicients ag; with odd or-
der j with j < n — 2 are 0 for the polynomial
f0($>

Proof:  fo(x) is defined as (equation 1)
fo(z) = XJ_gaojlzl and is I-times continuous
at = 0. So lim, .o_ f¥(z) = lim, oy fO (),
which gives lim, .- fP(0) = ag L
lim, oy fP0) = (=1)ag. Therefore for

all j <n—2and jodd: ag; =0. O
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a3 Q2 | Qi1 | Gio
fo 3/2 | —5/2 0 1

fill =32 21721 0
=12 111/2] 0
f 12 =12 0] o0
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