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ABSTRACT
One of the most important tasks of a traditional 3D Rendering engine is the projection on the image

plane of geometrical structures (such as triangles or lines). This operation takes place in the middle
of the rendering pipeline, between the vertex shader and the fragment shader: its aim is just that of
creating fragment data from vertex data. The solution of the projection problem is necessarily bound
to the solution of a great number of systems of equations, where the complexity of the equations is
in general related to the properties of the geometrical structures. To make this process fast, the most
adopted solution is that of using linear models, so that the systems become linear and the module gets
the simplest implementation. Unfortunately, linear models have some limitations: the solution is to use
approximation, but to get good models they are necessary a lot of linear structures, in particular a lot of
triangles; modern 3D Rendering Engines may automate the process of converting non linear models in
triangles, but this does not reduce the occupation of memory and doesn’t eliminate linear approximation.
In this article I consider a non linear model (the Lembo model) for geometrical structures in a 3D
rendering engine: firstly I show the properties of the model; then I show an efficient algorithm to solve
the projection problem directly on the model equations.
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1. INTRODUCTION

I want to show the advantages in using a qua-
dratic triangle model to work with the tradi-
tional polygonal model directly in the graphics
hardware. Graphics is often concerned with ap-
proximation: if you want to represent a function
y = f(t), you may consider the linear approxi-
mation, or you may consider high order polyno-
mial approximations. In 3D graphics they are
used surfaces, and also surfaces may be approxi-
mated with many approximation techniques, but
there still remains the problem of rendering; ren-
dering is generally concerned with the solutions
of systems of equations, and this may take an
enormous computational cost.The GPU hardware
works with triangles; recently, subdivision meshes
have been introduced in the graphical hard-
ware:but they make it possible only the refinement
of triangular meshes (see [Bou01a], [Shi00a]).
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In general the approximation of a curved sur-
face is concerned with the concept of LOD (Level
of Detail), and with some algorithm to decide the
triangles to be used to approximate the surface
(see for example [Bru00a]).

Only in non-Real Time Graphics, such as for
ray-tracing, some techniques are used to render
non-linear elements directly without a triangula-
tion process (see [Mar00a]). Our aim is to intro-
duce non linear rendering techniques also in com-
mon real-time rendering pipelines.

Scan Line Rendering Techniques have been in-
troduced with this aim. However, they have been
thought to work with generical non linear mod-
els (for example [Lan00a],[Sch00a],[SAdDC12] e
[Sed01a]). This Techniques are known to be slow
and less amenable to hardware acceleration. In
this article I show that it is possible to construct a
fast scan line rendering algorithm for a new model
which may be easily introduced in the accelerating
parallel hardware. Such a model is a form of Qua-
dratic Bezier Triangle (see [Bru00a]), with some
other informations which make it very close to
PN Triangles (see [Vla00a] or [Bou00a]) or Steiner
Patches (see [Bre00a], [Sed00a]).
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2. THE QUADRATIC FIXED-DOMAIN

REFERENCED PN TRIANGLE (OR

LEMBO) MODEL
The model I have worked on is a quadratic

bezier triangle defined on a standard dominion
(the triangle with vertices (0, 0), (1, 0) (0, 1)) with
six reference construction points (the points (0, 0),
(1, 0), (0, 1), ( 1

2 , 0), (0, 1
2 ), ( 1

2 , 1
2 )), and a separate

Normal function on the same domain. I use to
call it also Lembo, an Italian word which may be
translated as ’strip’ or ’patch’.
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Figure.1 A lembo representation: there are the
parametric function (top), the standard dominion
with its reference points (bottom), the lembo image

and the modeling points.

Such a model is no really new, but it may
be considered as the compositions of different
ideas from other models. Let us consider Steiner
Patches and PN Curved Triangles.

Steiner Patches and Quadratic Bezier

Triangles
A Steiner Patch is a Quadratic Bezier Trian-

gles, with a fixed domain expressed in this way




x( u, v ) = axu2 + bxv2 + cxuv + dxu + exv + fx

y( u, v ) = ayu2 + byv2 + cyuv + dyu + eyv + fy

z( u, v ) = azu2 + bzv2 + czuv + dzu + ezv + fz

u ≥ 0
v ≥ 0
u + v ≤ 1

The model is similar to Quadratic Bezier Trian-
gles by Bruijns (see [Bru00a]), considering the pro-
jection onto the u-v plane of their domain (with
the equation w = 1− u− v).

A lot of work have been done to study the prop-
erties of similar models, for example in [Bar00a],
[Bre00a] and [Sed00a].

Curved PN Triangles
A curved PN triangle (see [Vla00a]) uses two

different functions to model the geometry and

normals of a patch. The Geometry of the PN
Triangle is defined by a cubic patch b

b : R2 → R3

b(u, v ) =
∑

i+j+k=3

bijk
3!

i!j!k!
uivjwk

u, v, w ≥ 0
u + v + w = 1

The geometry function does not create C1 con-
tinuity, but it is possible to simulate it with a
normals function. The normal component of a
curved PN Triangle is a quadratic function of the
normal data, defined as

n : R2 → R3

n( u, v ) =
∑

i+j+k=2

nijkuivjwk

u, v, w ≥ 0
u + v + w = 1

The Lembo Model and the Mesh

Refinement Techinques
The model I have consider is similar to Curved

PN Triangles, but to model geometry I use a qua-
dratic patch instead of a cubic one. The domain
of the patch is fixed and it is in the same form of
Steiner Patches.

b : R2 → R3

n : R2 → R3

b(u, v ) =
∑

i≤2,j≤2

biju
ivj

n( u, v ) =
∑

i≤2,j≤2

niju
ivj

u, v ≥ 0
u + v ≤ 1

It’s possible to construct Lembos meshes, using
the six reference points for construction, or it’s
possible, as for PN Triangles, to use the Lembo
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Model to refine a triangular mesh instead of cre-
ating a lembos mesh from scratch. For the geome-
try function it’s necessary to find the edges middle
points; this is possible for example using the Near
Least Square Acceleration proposed in [Bar00a];
such a method produces both the control points
and the control normals on the edges. An edge of
a quadratic Bezier triangle between two points P1

and P2 with normals N1 and N2 may be expressed
with a parameter t

f = at2 + bt + c

The function f has to interpolate the ending
points of the edge, and the tangents in the end-
ing points should be tangent to the normal de-
scribed in the ending points. This conduces to a
four equations system. It is not possible to find an
exact solution, but it is possible to find f so that
the integral

∫ 1

0

‖f”‖2dt

has the minimum value. This is the algorithm
(see [Bar00a] for details).

T1 = N2 −N1(N1 ·N2)
T2 = −N1 −N2(N1 ·N2)

α =
T1 · T2

T1 · T1

β =
P · T1

T1 · T2

α′ =
T1 · T2

T2 · T2

β′ =
P · T2

T1 · T2

f(t) = (
α′β′T2 − αβT1

2
)t2

(P +
αβT1 − α′β′T2

2
)t + P1

where T1 and T2 are the tangent required in P1

and P2 and P = P2 − P1.
The points and the normals are evaluated us-

ing only information on the edge ending points,
so the algorithm will give the same values for two
patches with a common edge.

The construction of the normal function may
be done also in the similar way used for PN Tri-
angles; another possibility is to consider the ge-
ometry of two lembos with a common edge and
to evaluate the average of the two normals in the
middle point; this approach has the drawback to
construct a lembo using data from other lembos.

Once the six points and six normals for
the lembo have been found, it is possible to
construct the Lembo function from a sim-
ple linear transformation, making the val-
ues of the lembo in the reference points
{A(0, 0), B(1, 0), C(0, 1), D( 1

2 , 0), E(0, 1
2 ), F ( 1

2 , 1
2 )}

be equal to the value of the constructing points
{A′, B′, C ′, D′, E′, F ′} in the Point-Normal Space
( for every point it’s given the position (x′, y′, z′)
and a normal vector (n′x, n′y, n′z)).





A′x = fx
B′

x = ax + dx + fx
C ′x = bx + ex + fx
D′

x = 1
4ax + 1

2dx + fx

E′
x = 1

4bx + 1
2ex + fx

F ′x = 1
4ax + 1

4bx + 1
4cx + 1

2dx + 1
2ex + fx





fx = A′x
ex = 4(E′

x −A′x)− (C ′x −A′x)
dx = 4(D′

x −A′x)− (B′
x −A′x)

bx = C ′x −A′x − ex

ax = B′
x −A′x − dx

cx = 4F ′x − ax − bx − 2dx − 2ex − 4A′x
where I have considered only the x component

of the geometry function. It is the same also for
the normal function, they are both quadratic.

3. RENDERING WITH

TESSELLATION
One possibility for rendering is tessellation.

Such technique is fast, in particular because it
may be introduced directly in the actual hardware.
Recently some GPUs have introduced a module
to manage the subdivision meshes, and this al-
low the programmers to use common meshes in
the CPU and get the mesh refinement only on
the GPU, and this allow better performance (see
[Bou01a],[Shi00a]). The subdivision techniques
for a quadratic triangular patch have been dis-
cussed for example by Bruijns in [Bru00a], and
they divide in fixed step techniques and variable
step ones.

4. SCAN LINE RENDERING
Scan Line Rendering is a rendering technique

that implies the solution of systems of non linear
equations. A non linear model (in general a cu-
bic patch) is intersected with a plane in the R3

space. Generally they are made some assump-
tions: the screen plane is the x-y plane, with the
z axis orthogonal to the screen; every projection
transformation on the model points have already
been evaluated. So a parametric model is inter-
sected with the plane y = yj , for a set of yj which
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are in the interval between the minimum and the
maximum value for y on the surface. The steps of
a scan line algorithm are:

; Scan Line Rendering Procedure

proc render(Patch)

yj , ymin, ymax

[ymin, ymax]=evalMinMax(Patch)

for yj = ymin;yj ≤ ymax;yj + +

; Study the equation yj = y(u, v)

renderEquation(yj);

endproc

In general a scan line algorithm requires the
use of a numerical method, or more then one, and
the stability properties of the method depend on
the model of the patch rendered. The use of a
numerical method and the managing of numerical
errors to guarantee stability make this algorithms
generally slow.
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Figure.2 TheY (u, v) = 0 curve

5. A VERY EFFICIENT SCAN LINE

ALGORITHM FOR LEMBOS

I’m going to show an efficient scan line algo-
rithm for lembos. In particular this algorithm
doesn’t require numerical techinques, doesn’t suf-
fer stabilities problem and all is described in terms
of solutions of second degree equations.

The Y (u, v) = 0 curve

The Y (u, v) = 0 curve has the form

Y (u, v) = ayu2 + byv2 + cyuv +
dyu + eyv + fy − yj = 0

The equation represent a conic in the (u, v)
space. In particular they have to be studied the
arcs of this curve which are inside the domain.
Along these arcs they are constructed points for
the next rendering steps.

Finding maximum and minimum values

for y

The maximum and minimum values for y are
easy to find. They may be one of the following
alternatives:

(1) One of the Vertices A’,B’,C’ of the Lembo
(2) One of the maximum or minimum points

for the edges, which are arcs of parabola.
They may be one of the Vertices (already
considered) or one of this values:
(a) u = − dy

2ay
, v = 0

(b) u = 0, v = − ey

2by

(c) u = −−2by+cy+dy−ey

2(ay+by−cy) , v = 1− u

(3) The solution of the linear system of equa-
tions with the two partial derivatives func-
tions equal to zero 2ayu+cyv+dy = 0 and
2byv + cyu + ey = 0

The extreme method: linearization of the

Y (u, v) = 0 curve

The idea is to work with extreme linearization:
given o point of the Y (u, v) = 0 curve, it has to
be found another point so that along the segment
between the two points the maximum value of ‖Y ‖
(so the maximum error of the approximation of the
curve piece with the segment) is exactly a prede-
fined value k. This is very simple, because the
Y (u, v) function along the segment behaves as a
parabola. So, the maximum error is easily found
in the middle point. All the parts of the equation
Y (u, v) = 0 inside the lembo domain are approxi-
mated with an array of segments, with every seg-
ment having its maximum error of approximation
in the middle point and that error being exactly
the one established. In general I suggest a pixel-
oriented error choice, such as k = 1

2pixel.
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Figure.3 The segmentation of theY (u, v) = 0
equation

Once the segments have been found, it is pos-
sible to consider the function x = x(u, v). It is
very simple to proceed with the same kind of ap-
proximation, trying to create a sub-segmentation,
where every subsegment has both the property to
have an approximatively constant value for y, with
an error not higher that the one established, and
to have an x with an approximatively linear trend,
with also the error of approximation controlled
and not higher than the established k. So the gen-
eration of fragments along the subsegment may be
done with a simple linear equation for the u and
v components, which may be evaluated step by
step with simple increments. In the next sub sec-
tions I’m going to show the steps of this algorithm:
the managing of the intervals, the construction of
the segment and the construction and rendering
of sub-segments.

Managing Intervals
The first problem is to find the pieces of the

Y=(u,v) curve which are inside the domain. This
may be done constructing intervals inside the do-
main polygon. The extreme points of this intervals
have to be the intersection of the curve with the
domain edges, so they may be

(1) The solutions of the equations ayu2 +
dyu + fy − yj = 0, v = 0

(2) The solutions of the equations u =
0, byv2 + eyv + fy − yj = 0

(3) The solutions of the equations (ay + by −
cy)u2 + (dy − ey + cy − 2by)u + by + ey +
fy − yj = 0, v = 1− u

This points may be used has beginning and end-
ing point for the next step, which is the segmen-
tation one.

The segmentation problem
An approximation of the Y (u, v) = 0 equation can
be evaluated step by step with segmentation. If

P0(u0, v0) is a point of the curve (inside the do-
main), to construct the segment I found a point
P1(u0 +du, v0 +dv), where du and dv satisfy these
conditions

‖Y (u0 +
1
2
du, v0 +

1
2
dv)‖ = k

Y (u0 + du, v0 + dv) = 0

so in the middle-Point of the segment it is re-
quired the maximum error k, while the point P1

has to stay on the curve.
The equations may be written in this way

1
2

∂2Y (u0, v0)
∂u2

du2 +
1
2

∂2Y (u0, v0)
∂v2

dv2

+
∂2Y (u0, v0)

∂u∂v
dudv

+
∂Y (u0, v0)

∂u
du +

∂Y (u0, v0)
∂v

dv = 0

1
2

∂2Y (u0, v0)
∂u2

(
du

2
)2 +

1
2

∂2Y (u0, v0)
∂v2

(
dv

2
)2

+
∂2Y (u0, v0)

∂u∂v

du

2
dv

2

+
∂Y (u0, v0)

∂u

du

2
+

∂Y (u0, v0)
∂v

dv

2
= ±k

Simplifying these equations I obtain the follow-
ing

∂Y (u1, v1)
∂u

du +
∂Y (u1, v1)

∂v
dv = ±4k

∂2Y (u1, v1)
∂u2

du2 +
∂2Y (u1, v1)

∂v2
dv2

+2
∂2Y (u1, v1)

∂u∂v
dudv = ∓8k

which is a second degree system of equations.
The choice for the sign of k± depends on the cur-
vature of the curve and may be done before the
segmentation phase.

The algorithm produces segments step by step.
When P1 has been found, the solution for P2 (and
so for the following points) is very easy to find. In
fact, one of the two solutions of the second degree
system for (du, dv) is the one which brings back
to the point P0. So it’s possible to find the second
solution given the first.
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Figure.4 The sub-segmentation with thex(u, v)
function along the segment with approximately

constant y.

The sub-segmentation
When a segment has been evaluated, it may be

expressed in this form

t ∈ [0, 1]
u(t) = btut + ctu

v(t) = btvt + ctv

x(t) = atxt2 + btxt + ctx

z(t) = atzt
2 + btzt + ctz

etc.(if there are other functions

as normal functions)

The x function may be segmented in a way sim-
ilar to the one used for y. A step dt is evaluated
so that the linear approximation of x between ti
and ti + dt has k as maximum value; the error
function is always a parabola, so the maximum
error is in the middle point.

‖x(ti) + x(ti + dt)
2

− x(ti +
1
2
)‖ = k

dt = ±
√±4k

atx

dt is a fixed step. The sub-segmentation pro-
cess is truly fast. Once a subsegment has been
found, it can be considered as linear both for y
and x, then rasterization is truly simple.

6. PERFORMANCES
The evaluation of performances is a bit diffi-

cult, because it’s necessary to consider many fac-
tors. Of course the rendering of a lembo is slower
than the rendering of a triangle, but if we approx-
imate a lembo with a lot of triangle the rendering

time becomes similar or overcomes the one for the
lembo with the rendering . In general the ren-
dering of single lembo is 2 or 3 times more slow
than the one of a single triangle, but 2 or 3 are
not so much if we consider the possibility to use
dedicated hardware.

Another reason which make difficult an evalu-
ation is that actually there is not an hardware for
lembos, but a comparison should be done exactly
on the hardware level, because there is no reason
to perform it via software.

Figure.5 A possible parallel architecture which
implements the extreme method for lembos

7. CONCLUSIONS

The Lembo Model makes it possible to get a
better approximation reducing the number of ele-
ments used (lembos or triangles) and so reducing
the number of vertexes processed to obtain high
quality renderers; the most evident consequence
is the reduction of memory occupied in graphical
applications.

The extreme method shown in section 5 is a
very fast method for lembos rendering. It’s a scan-
line method, but it doesn’t require numerical ap-
proximation if it is possible to have a fast and ac-
curate instrument to solve equations of the second
degree. Moreover, the algorithm may be divided
in more steps, and these steps are more amenable
for hardware acceleration than over methods for
scan line rendering, in particular the production
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of subsegments from segments and the rasteriza-
tion of the subsegments; they are also amenable
for a parallel architecture, since the production of
subsegments and the rendering of different subseg-
ments may be done in parallel.
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Figure.6 Two spheres, the first constructed with 24
triangles, the second with 24 lembos.
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Figure.7 Two cylinders, the first constructed with
24 triangles, the second with 24 lembos.

Figure.8 Two images of the same surface, the first
constructed with 96 triangles, the second with 96

lembos.
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