
Bandwidth-efficient Hardware-Based Volume
Rendering for Large Unstructured Meshes

Thierry Carrard
CEA/DIF

DSSI

BP 12

France, 91680 Bruyères-le-Châtel

thierry.carrard@cea.fr

Manuel Juliachs
Laboratoire PRiSM

Université de Versailles-Saint-Quentin

45 avenue des Etats-Unis

France, 78035 Versailles

mju@prism.uvsq.fr

ABSTRACT
Recent advances in graphics processor architecture and capabilities have made the development of fast and
efficient unstructured volume rendering methods possible. These techniques can be classified into two roughly
delimited categories: cell projection based methods and GPU raycasting algorithms. However, both approaches
are subject to limitations, respectively due to the main memory-to-GPU bandwidth for the former and due to the
GPU per-fragment computation speed and memory size for the latter. These potential bottlenecks can be
particularly limiting for large-size datasets, such as the ones produced by large-scale numerical simulation. In
this work, we describe an enhancement to the cell-projection rendering method, allowing us to specify each
tetrahedron with only 4 vertices and their associated data. By using a point sprite primitive, instead of a set of 4
triangles, we significantly reduce the amount of data transferred from the main memory through the graphics
port for each frame rendered. We evaluate the impact of the different rendering stages of our method on the
overall frame rate.

Keywords
unstructured meshes, volume visualization, GPU-based rendering.

1. INTRODUCTION
Numerical simulations of unsteady physical
phenomena yield datasets comporting a very large
number of elements. We are interested in such
datasets, usually sharing the following
characteristics:
• a very large number of elements (typically

ranging from 106 to 108 elements),
• unstructured meshes, with tetrahedra, hexahedra

or other types of cells,
• a large number of different time steps,
• a high dynamic range, both in time and space.
Scientific visualization is a way to gain insight into

the simulated phenomena. However, efficiently
visualizing such datasets requires high performance
techniques and methods. Volume rendering of
unstructured datasets is an example of such an
advanced visualization technique. Recently,
performance and functionalities of commodity
graphics processors have reached a point enabling
the implementation of complex volume rendering
algorithms, dramatically accelerating their
performance with respect to previous software
implementations. Current graphics processors (or
GPUs) are able to process several hundred millions
of vertices per second and several billions fragments
per second [Nvi04a], allowing relatively complex
user-defined programs to be applied to each
processed vertex and fragment.
Taking advantage of this dramatic performance
increase, several GPU-based unstructured volume
rendering methods have been developed in the past
years, allowing to render approximatively between
500k and 1 million tetrahedra per second, processing
only relatively modest-sized datasets. However,
given the current size of the datasets routinely
produced by numerical simulations, GPU-based
volume rendering methods should be able to render
at least 10 million elements per second to meet the
visualization needs of computational scientists.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-03-8
WSCG'06, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

WSCG2006 Full Papers proceedings 169 ISBN 80-86943-03-8

The projected tetrahedra (PT) technique [Shi90] is a
well-known hardware-based unstructured cell-
projection volume rendering method. It requires cells
to be rendered according to a correct visibility order
(either front-to-back or back-to-front), which is
typically determined on the CPU, prior to rendering,
using a sorting algorithm. Volume cells are
decomposed on the CPU into a set of transparent
triangles, which in turn are sent to the graphics card
and blended into the framebuffer.
Recently, several enhancements of this method have
been proposed, taking advantage of the
programmability features afforded by modern GPUs.
These methods generally allowed to bypass the CPU
tetrahedron decomposition phase, resulting in an
additional performance gain. However, most of these
methods require that each tetrahedron be transmitted
as a set of four triangles, which can result in a very
high bandwidth consumption between the main
memory and the graphics card. The ability to specify
volume primitives with existing graphics APIs, as
suggested by King et al. [Kin00a] would allow to go
beyond this restriction.
In this work, we present a GPU-based volume
rendering method, building upon previously
developed approaches. First, we describe related
work in the field of GPU-based unstructured volume.
In the following section, we describe in detail our
point sprite-based GPU volume rendering method,
which optimizes the bandwidth usage by reducing
the amount of data sent for each tetrahedron. Then,
we present an adjacency search method, partly
executed on the GPU. After that, we present some
experimental results and a comparison with
previously published approaches. Finally, we discuss
some limitations of our implementation.

2. RELATED WORK
The scope of this section is hardware-accelerated
volume rendering. We classify the different
approaches into object-space or image-space
rendering, the OpenGL rendering pipeline being an
example of such the former whereas raycasting is
typical of the latter.
In order to compute a correct image, graphics
rendering usually requires to depth-sort primitives
according to their viewpoint distance. Surface
rendering generally only requires to find to nearest
primitive (except if transparent). However, volume
rendering requires to find all the primitives
intersected by a given view ray (except if opaque
objects allowing early termination are encountered).
Depending on the optical model used [Max95a], this
requires a visibility ordering of the primitive set
intersecting any given ray. This visibility ordering
can be done either in objet-space or in image-space.
In unstructured volume rendering, object-space
methods first sort primitives according to the
distance to the viewpoint, then render each primitive
individually in the visibility order, accumulating
their contributions into the frame buffer. Image-
space methods process each view ray sequentially.

For a given ray, all the intersecting primitives are
determined, ray segments are computed and sorted
into the correct visibility order and finally
accumulated to determine the final pixel color.

Shirley et al. [Shi90a] developed the first hardware-
accelerated unstructured volume rendering method.
Their projected tetrahedra (or PT) method used the
alpha-blending capabilities of the then existing
graphics boards to accelerate the rendering of
tetrahedral cells. In this method, each tetrahedron is
projected on the view plane and decomposed into a
set of (up to four) non-overlapping triangles,
according to a projection class depending on the
point of view, with a thick vertex at the longest ray
segment-tetrahedron intersection. The triangles are
then transmitted to the graphics accelerator and
rendered into the frame buffer using alpha-blending
to implement transparency. The thick vertex color
and opacity are determined by a transfer function and
hardware linear interpolation is used to compute
color and opacity at each rasterized fragment.
However, opacity usually does not vary linearly
across a tetrahedron, resulting in approximations.

Wylie et al. [Wyl02a] developed a GPU-based
implementation of the projected tetrahedra method.
They developed a vertex program algorithm which
executed the triangle set determination step of the
original PT method. As a vertex program performs
the same computations on every vertex, they used a
fixed topology graph, mapped to each tetrahedra and
corresponding to a triangle fan primitive. By using a
look-up table, their algorithm then determines the
correct projection class, generating zero-area
triangles in certain projection cases. Using a triangle
fan allowed to transmit only the data relevant to the
four tetrahedral vertices, allowing to render a 1000k
tetrahedra mesh at 500k tetrahedra per second with a
GeForce 4 GPU. However, they used an
approximation to compute the thick vertex color.

Weiler et al. [Wei02a] developed a ray-casting based
rendering method of individual tetrahedra on the
GPU, performing projection in a view-independent
way. They used a vertex program to compute the
ray-segment exit intersection parameter with each
face plane at each vertex. The intersection parameter
and vertex scalar values are then linearly interpolated
by the graphics hardware to provide at each fragment
the coordinates addressing a pre-computed volume
integral texture. They were able to render a 220k
mesh at 480k tetrahedra/s, on an nVidia GeForce 4.
However, computing ray intersections per-vertex
instead of at each fragment (due to GPU limitations)
resulted in artifacts, especially along tetrahedra
edges.

More recently, Kraus et al. [Kra04a] reviewed the
major causes of artifacts in the PT method and
related algorithms. They identified incorrect ray
segment length perspective interpolation as being
one of the main causes of artifacts and implemented
the correct interpolation method, using vertex and
fragment processing programs. They also identified
linear mapping between ray length and the third

WSCG2006 Full Papers proceedings 170 ISBN 80-86943-03-8

coordinate of the pre-integrated transfer function
texture as a source of artifacts, due to an
insufficiently accurate sampling of the volume
integral for small ray lengths. Using a logarithmic
mapping allowed them to reduce the sampling
interval for small ray lengths, eliminating edge
artifacts due to the use of linear mapping. Coupling
this to the use of floating-point alpha-blending
virtually eliminated all major sources of rendering
errors.
The previously described methods require an object-
space visibility sorting. Several object-space sorting
methods have been developed, the best-known being
the adjacency graph sorting method MPVO (Meshed
Polyhedra Ordering Visibility) [Wil92a], using either
a Depth-First Search or Breadth-First Search
algorithm. Cook et al. [Coo04a] improved MPVO,
allowing it to generate an image-space correct
visibility ordering. For each different graph
connected component, their method executes the
MPVO topology ordering. Then, it rasterizes every
boundary face on the CPU, storing the coordinates of
every boundary face fragment into an A-buffer. This
allows to define new adjacency relationships,
between two consecutive fragments in a pixel list,
belonging to the boundary faces of two different
cells. These adjacency relationships are then used to
extend the MPVO adjacency graph. The authors
showed that a depth-first search of this extended
graph generates an image-space correct visibility
ordering. Adjacency graph sorting methods are
typically executed sequentially on the CPU prior to
rendering, which can be costly, especially for large
datasets. Reducing this cost might increase the
overall rendering performance.

Weiler et al. [Wei03a] implemented ray-casting of a
convex tetrahedral mesh entirely on the GPU, by
using fragment processing programs. Using floating-
point textures, they were able to store the whole
mesh (vertices, face normals and connectivity) in
graphics memory, after convexification during a pre-
processing phase. They implemented a multi-pass
raycasting rendering method. During a given pass,
each ray traverses a single cell, accumulates the cell
contributions into the framebuffer and proceeds to
the exit point adjacent cell. They were able to render
between 500k and 600k tetrahedra/s, on an ATI
Radeon 9700 graphics card with 128 MB of memory.
However, the maximum size of the mesh was limited
by the graphics memory size (up to 600k tetrahedra
with a 5122 frame buffer).

More recently, Bernardon et al. [Ber04a] improved
Weiler et al.'s approach by using a depth-peeling
technique in order to correctly render non-convex
meshes, eliminating the need to perform a costly
convexification pass. Their technique extracts
successive boundary faces layers, starting the
raycasting phase afresh from the currently extracted
layer. Furthermore, using a static screen tiling
scheme, they were able to reduce the number of
raycasting passes. They reported to be able to render
up to 1.3 Mtetrahedra/s on a 187 ktetrahedra non-
convex dataset.

Callahan et al. [Cal04a] developed a hybrid image-
space/object-space method, performing a coarse per-
primitive sorting step on the CPU then a subsequent
per-fragment refined step on the GPU. They used the
multiple output buffer capability of modern GPUs in
order to implement a fixed-depth sorting network,
storing, for each pixel, an unsorted depth sequence of
up to 4 fragments. Fragments determined to be the
closest to the viewpoint are used to compute the
contributions of a corresponding ray segment. They
reported to be able to render between 1 and 2 million
tetrahedra per second. However, in the case where
the difference of the submitted fragment unsorted
order and the correct one exceeds 4, an incorrect
visibility order is determined and artifacts will
appear, which can be frequent for unstructured data
sets, where cells can vary greatly in size and shape.

Weiler et al. [Wei04a], improving on their previous
work, were able to store unstructured meshes into
graphics memory in a compressed form using
tetrahedral strips and pre-rendering stripification
algorithms. Furthermore, using a depth peeling
technique akin to the one described in [Ber04a], they
were able to correctly render non-convex meshes.
They reported to be able to store up to 17 million
tetrahedra on a 256 MB graphics card, and up to 3
million with speed optimizations.

3. TETRAHEDRA PROJECTION
WITH POINT SPRITES

As we saw earlier, most tetrahedron projection
implementations describe each tetrahedron by a set
of four triangles, which is required by graphics APIs,
which are not designed for the rendering of
unstructured volume primitives. As a consequence,
for a given tetrahedron, there is an overall
duplication factor of up to 3 concerning per-vertex
data (vertex coordinates, scalar field value) and per-
face data (e.g. face plane equations). As the graphics
port downstream bandwidth is limited
(approximately 2.1 GB/s for AGP8x), this can result
in a potential bottleneck and decrease the rendering
performance. Ideally, for a given tetrahedron, its
associated data should be transmitted without any
duplication.
Here, we propose an enhancement to GPU-based
tetrahedra projection methods allowing to transmit
only the required data. To each tetrahedron, we
associate a point sprite primitive instead of four
triangles. For each of a given tetrahedron's four
vertices, we specify the vertex (x, y, z) coordinates
and scalar field value as point sprite vertex attributes,
amounting to a total of 16 floating-point values per
tetrahedron.
To each rasterized fragment of the sprite, we
associate a ray. We use a vertex processing program
in order to perform per-tetrahedron constant
computations, such as edge line equations, whereas
we use a fragment program to compute ray-
tetrahedron intersection point depths, using the
intermediary results computed by the vertex stage.
As a point sprite has fixed maximum dimensions, we

WSCG2006 Full Papers proceedings 171 ISBN 80-86943-03-8

assume for the remainder of this section that the
tetrahedron projection's axis-aligned bounding box is
included within the point sprite footprint. Also note
that we consider only the case of orthographic
projections.
The two vertex and fragment processing programs
describe each tetrahedron as a set of four faces, each
face being represented by a set of three co-edges,
connected into a loop. For any given front-face (in
world space), its projection's co-edges normals point
towards the center of the face, whereas for any given
back-facing face, the normals point towards the
exterior of the face. Using this property, we can
determine for any fragment whether it belongs to a
given back-face or front-face, by computing
fragment position-face edge equations dot products.
We can then determine the two faces (one front-
facing and one back-facing) whose projections cover
the fragment, giving the ray entry and exit points.
Figure 1 shows how intersected faces are determined.

The pseudo-code below describes vertex stage
computations:

• Transform the tetrahedron four vertices into window
space

• Compute the point sprite bounding box dimensions

• Compute the line equations (in window coordinates) of
each co-edge pair (corresponding to each projected
tetrahedron edge)

• For each face vertex, compute the reciprocal of the
result of its opposite co-edge line equation applied to the
vertex

This amounts to the computation of six line
equations, and twelve reciprocals (3 for each of the 4
faces). The second co-edge equations are deduced
from the first ones simply by changing their signs.
As the result of these computations is constant for
any fragment, they can be done during the vertex
processing stage instead of the fragment stage. The
computed values are then written to output.
The following pseudo-code describes fragment stage
computations:

• Compute the unnormalized window-space 2D distance
of the fragment to each of the twelve co-edges

• For each of the 4 projected faces:

• Compute the interpolated fragment depth

• Compute the interpolated scalar value

• Determine if the fragment is inside the
projected face and whether it is a front-face or
a back-face

• Determine the respective identities of the front-face and
the back-face (if any)

• Compute the ray-segment length, subtracting the entry
face z coordinate from the exit face's one

• Determine color and transparency values using the ray-
segment length and write them to output

• If no intersected faces are found, write color and
transparency values (0, 0, 0, 1) to output

Normalized Barycentric (NB) coordinates are
computed, as illustrated in Figure 2, in order to
determine the interpolated z and scalar values at the
entry and exit points.

The unnormalized distance from the fragment
position to each edge e is computed. It is then
multiplied by the reciprocal of the relevant edge-
opposite vertex v distance to produce a normalized
barycentric coordinate nbcv(f). NB coordinates are
then used to compute the interpolated depth and
scalar values at the fragment: zint = nbca' za' + nbcb' zb'

+ nbcc' zc', where nbca', nbcb', nbcc' are the NB
coordinates, za', zb', zc', the 3 face vertices window-
space z coordinate and zint the fragment interpolated z
coordinate. Note that this equation is correct only for
an orthographic projection. A perspective-correct
interpolation formula should be used with
perspective projection in order to get a correct result
(see [Seg03a] and [Kra04a]).
We use the same formula in order to interpolate the
per-vertex scalar values across the entry and exit
faces: sint = nbca' sa' + nbcb' sb' + nbcc' sc'. The two
scalar values at segment extremities and the segment
length are used as a 3D texture coordinate to perform
a lookup into a pre-integrated volume integral
texture, giving the color and transparency
contributions of the ray segment.

4. GPU-ENHANCED BREADTH-FIRST
SEARCH

During a given breadth-first search pass, the
successor determination of currently examined nodes
is performed sequentially on the CPU, only one
node's neighborhood being explored at the same

Figure 2. NB coordinates computation

a'

b'

c'

f
d

f-a'b'

d f-b'c'

d
f-a'c'

d c'
-a

'b
'

d
b'-a'c'

d a'-b'c'

nbc
a'
(f)=d

f-b'c'
/d

a'-b'c'

nbc
c'
(f)=d

f-a'b'
/d

c'-a'b'

nbc
b'
(f)=d

f-b'c'
/d

a'-b'c'

Figure 1. Intersecting faces determination

●f is left to a'b', b'c' and c'a'
●abc is intersected and is a

front face

●f is right to b'd', d'c' and c'b'
●bdc is intersected and is a

back face

f
f

ray

projection plane

WSCG2006 Full Papers proceedings 172 ISBN 80-86943-03-8

time. However, as each node examination can be
performed independently from the others, it is well
suited to a parallel implementation, especially on
modern GPUs, which are able to process many
independent data elements at the same time.
We present a multi-pass CPU-GPU hybrid breadth-
first search implementation, executing successor
determination on the GPU and subsequently
determining visited nodes on the CPU, using the
previously GPU-computed successor list. A pre-
search phase on the GPU determines the adjacency
of each graph node.

An adjacency graph is an oriented graph defined as
{N, E}, respectively a set of nodes and oriented
edges, associated to an unstructured mesh. To each
mesh cell corresponds a node in the node list N. Two
adjacent cells share a common face f which is used to
define an ordering relationship, relatively to the face
normal vector N, as depicted in Figure 3.
This ordering relationship allows us to compute an
adjacency relationship, that is, to determine which
one of the two adjacent cells is in front of the other
one, relatively to the viewing direction v. The whole
set of adjacency relationships is required to compute
a correct depth order of the mesh by a graph search.
To each adjacency relationship corresponds an edge
e in the graph edge list. Note that the adjacency
graph must be determined at each view parameter
change. The edge list E is determined using the node
and mesh faces lists.

Adjacency determination phase
Each list is stored into graphics memory as two
different floating point 2D textures (RGBA and
luminance). For each list, the dimensions of the two
textures are the same. A node list element i stores the
node's 4 face indices f, addressing the face list, and
the node identifier. A face list element j stores the
face normal vector Nj and the indices of the two “in”
and “out” nodes sharing the faces.
The adjacency information is determined by the
fragment program described below, using the four

textures as an input. For each graph node, the
program determines its successor nodes and its
number of entering edges (in-degree), relative to the
viewing direction and writes them to output. A full-
screen quadrilateral is rendered, each fragment
rasterized corresponding to a single graph node i.
The following pseudo-code describes the operations
performed:

• Set entering edges number to zero

• Fetch the node face indices and identifier from textures
1 and 2

• Translate the 4 1D face indices f1D into 4 sets of 2D
texture coordinates f2D

• For each face f

• Fetch f's information from face list using f2D

• Determine the successor node (if any)
corresponding to face f relative to the viewing
direction

• If f is not a boundary face, add one to the total
entering edges number

• Write successor information (cell indices) to first output
color

• Write number of entering edges to 2nd output color

Figure 3 describes in greater detail the determination
of successor nodes through a given face f.
After the end of this phase, we copy back the
computed successor information from the first output
buffer into a floating-point texture, the adjacency
texture, that will be used as an input during the
search phase, whereas the entering edges information
is read back from the second output buffer into main
memory.

Breadth-First Search phase
During the search, the graph node list is stored in
main memory, storing each node's state (unvisited or
visited) and number of entering unvisited edges. The
list of nodes currently examined is stored into a list
on the GPU, which also maintains a search buffer.
The pseudo-code below gives an outline of the
search algorithm:
• Compute unvisited nodes count

• While unvisited nodes count greater than zero

• Perform a search pass

• Subtract visited nodes count from unvisited nodes
count

Source nodes (nodes having no entering edges) are
initially set as visited whereas all the other graph
nodes are initially unvisited. They are also put into
the list of currently examined nodes and subtracted
from the unvisited nodes count. The following
pseudo-code describes the execution of a given pass,
and the operations performed for the two GPU and
CPU steps:

For each given pass:

GPU:

• For each currently examined node (fragment)

• Read its identifier, translate it into 2D coordinates

Figure 3. Ordering, adjacency and successor
determination

View direction v

Face normal N

A
B

Face f

●N points outwards A, defined as the « out » cell
●N points inwards B, defined as the « in » cell
●A is behind B, relative to face f (ordering)
●B is in front of A, relative to v (adjacency)

●(N.v) < 0
●s

A
 > 0, thus s

A
(N.v) < 0, A's successor through f is B

●s
B
 < 0, thus s

B
(N.v) > 0, B has no successor through f

●B has one entering edge through f

WSCG2006 Full Papers proceedings 173 ISBN 80-86943-03-8

id2D

• Use id2D to read the four successor nodes IDs from
the adjacency texture

• Write them to output

CPU:

• Read back the search buffer

• For each node found, decrease the number of unvisited
entering edges in the main list

• If number equals 0

• Mark node as visited with the pass number

• Push node into the sorted list of nodes

• Push node into the list of the nodes to be
examined during the next pass

• Send the list of nodes to be examined back to the GPU

The GPU successor determination phase is
implemented by a fragment processing program (as
outlined by the pseudo-code above). During this
phase, we render a quadrilateral such as each
fragment rasterized corresponds to a node in the
currently examined node list. Successor information,
read from the previously computed adjacency
texture, is written to output into the search buffer.
After the GPU phase, a sequential search of the
readback search buffer is done on the CPU,
examining each successor node and updating the list
of nodes to be examined during the next pass. This
list is then transmitted back to the GPU by updating
the corresponding texture.
When the search main loop is over, the sorted
identifier list is used as an element buffer in order to
specify the mesh cells in the computed depth order.

5. RESULTS
We present results of our breadth-first search
implementation and then of our point sprite-based
tetrahedron rendering method. We performed
measurements on an Intel 3.0 Ghz Xeon-based
workstation with 1 GB RAM, an Nvdia NV40-based
GeForce 6800 GT graphics board with 256 MB
RAM on an AGP8x graphics port, and Redhat Linux
Enterprise 4 as an operating system. We used the
1.0-7664 version of the Nvidia Linux graphics
drivers. The OpenGL library was used for all our
implementations.

Breadth-first search
We implemented the GPU part of our GPU-CPU
BFS method with the ARB_fragment_program
OpenGL extension assembly language, using specific
instructions made available by the
NV_fragment_program2 OpenGL extension, such as
conditional execution or return instructions. In order
to evaluate potential gains, we also made a software
implementation of the breadth-first search algorithm,
including the adjacency determination method and
the actual search algorithm.
To test our implementations, we generated a simple
dataset corresponding to a regular hexahedra grid
that we converted into tetrahedra as described in
[Shi90a], each tetrahedron corresponding to a single

graph node. We used several grids of increasing size.
For each grid, we performed a sequence of several
searches, alternatively specifying two different
viewing direction vectors. Table 1 gives adjacency
computation and search times as well as the number
of sorted nodes per second as a function of grid size,
for the CPU-GPU and software-based methods.

Grid size 403 503 593 703

Nodes 0.32x106 0.63x106 1.03x106 1.72x106

CPU-GPU search results

tadjacency (s) 0.05 0.08 0.11 0.95

tsearch (s) 0.05 0.09 0.14 0.25

Sorted
nodes/s 2.6x106 2.8 x106 3.4x106 1.3x106

Software search results

tadjacency (s) 0.04 0.08 0.13 0.22

tsearch (s) 0.02 0.05 0.11 0.23

Sorted
nodes/s 5.1 x106 4.6 x106 4.1 x106 3.7 x106

Table 1. Graph search performance

We remark that the CPU-GPU search performance,
in sorted nodes/s, increases as the grid size grows.
However, for a grid size of 703, it decreases
dramatically to 1.3x106 nodes/s. This might be due to
the size of the data textures, consuming nearly all the
available graphics memory. On the contrary,
software search performance decreases as the grid
size grows, as for each pass more nodes have to be
examined, still in a sequential way, therefore
increasing the quantity of work to do.

Point-sprite Based Tetrahedron
Rendering
We used the Cg graphics programming language in
order to implement the algorithms described in 3,
using an FP40 rendering profile.
In order to perform the object-space pre-rendering
cell sort, we used the software breadth-first search
implementation we mentioned above. Rendering was
made using immediate mode, specifying each
tetrahedron with 1 glVertexAttrib3f call for each of
the 4 vertices (x, y, z) coordinates sets and one
glVertexAttrib4f call for the tetrahedron's 4 per-
vertex scalar values.
The dataset used for our tests, a tetrahedrized
rectilinear grid, stems from a numerical simulation of
the propagation of seismic waves. We used the
magnitude of displacement vector as the scalar field.
Volume rendering reveals the spatial structure of
wave amplitude (Figure 4). For each single
measurement, we rendered a sequence of 100

WSCG2006 Full Papers proceedings 174 ISBN 80-86943-03-8

images, rotating the view point rotation about the
center of the dataset. We measured the average
sorting (including adjacency determination),
rendering, and total frame time, the latter being used
to compute rendering performance. We activated
linear filtering of the pre-integrated transfer function
texture, which was computed separately by an offline
process. The number of tetrahedra rendered per
second was measured as a function of resolution.
Table 2 represents execution times of respectively
the cell sorting step and the rendering step, the frame
total time, and the number of tetrahedra rendered in
the 106 unit per second.

Resolution 2562 5122 7682 10242

tsorting (s) 0.33 0.33 0.33 0.33

trendering (s) 0.36 0.86 1.74 2.92

tframe (s) 0.7 1.21 2.09 3.29

Tetra/s (x106) 1.78 1.03 0.6 0.38

Table 2. Rendering speed as a function of
resolution

We observe that for a resolution of 5122 pixels,
rendering speed is about 1.0x106 tetrahedra
rendered/s. Sorting time is constant whatever the
resolution, at it is only dependent on the mesh size
and viewing direction.
We performed measurements in order to highlight
the cost of fragment processing, disabling the sorting
step and using a null fragment program doing no
computations, only writing the color (1, 1, 1, 1) to
output. Table 3 indicates the average rendering time
and speed as a function of resolution. We also
indicate the ratio between the rendering time shown
in Table 2 and the rendering time with no fragment
processing.
We observe that for a resolution of 2562 pixels,
rendering speed is about 6.3x106 tetrahedra/s.
Rendering speed decreases with resolution whereas

the rendering time ratio increases, only slightly
decreasing from 5122 to 7682.

Resolution 2562 5122 7682 10242

trendering (s) 0.2 0.2 0.2 0.27

Tetra/s(x106) 6.27 6.31 6.14 4.64

Rendering time ratio 1.8 4.3 8.7 10.8

Table 3. Rendering speed with no fragment
processing

The fact that the time ratio is high, even for low
resolutions, indicates that the fragment processing
cost seems to be the bottleneck of our rendering
method. The increase of the rendering time is
probably due to the increasing rasterization costs
(including alpha-blending).
Finally, in order to evaluate the bandwidth used to
transmit the whole mesh from main memory to the
graphics card, we used a null vertex processing
program, keeping only the vertex projection and
sprite size computation. We also disabled sorting.
Table 4 represents rendering time as a function of
resolution.

Resolution 2562 5122 7682 10242

trendering (s) 0.2 0.2 0.19 0.2

tframe (s) 0.2 0.2 0.2 0.2

Bandwidth (MB/s) 405 398 408 399

Table 4. Bandwidth with no vertex processing

We compute bandwidth as the amount of data
transmitted over the rendering time, that is, the ratio
between mesh size times tetrahedron size (64 bytes)
and the average frame time. A glFinish command
ensures that all data be transmitted between the start
and the end of the rendering. Bandwidth does not
vary with resolution, as fragment processing is
disabled, and is lesser than 1/4th of the AGP8X
theoretical maximum bandwidth. However,
rendering time with no vertex and fragment
processing is lesser than rendering time with
processing activated (see Table 2), which seems to
indicate that bandwidth is not a limiting factor.
Further investigation is necessary in order to see if
the fragment processing and data transmission times
balance better with larger meshes.

6. DISCUSSION
As we precedently showed, our point-sprite based
rendering method significantly decreases the amount
of data transmitted through the graphics port with 64
bytes transmitted per tetrahedron. Furthermore, it
decreases the number of vertices processed by the
vertex stage to only one per tetrahedron, allowing to
perform more complex computations. However, it
appears to be limited by the fragment stage, as the

Figure 4. 1250k tetrahedra dataset,
512x512 pixels

WSCG2006 Full Papers proceedings 175 ISBN 80-86943-03-8

quantity of computations done for each fragment is
quite important. Computations that are done at each
fragment, such as multiplying each face vertex z
coordinate and scalar value by the reciprocal value of
the distance to the opposite edge could be done in the
vertex stage, saving a significant amount of
computation. Interpolated scalar values and fragment
depths have to be explicitly calculated by the
fragment program whereas triangle-based view-
independent methods by specifying them at each
triangle vertex can determine them by using
hardware linear interpolation. Also note that the size
of any projected tetrahedron is limited by the point
sprite maximum size. Tetrahedra with a larger
footprint will be incorrectly processed. However,
GPU fragment processing power has dramatically
increased in the past few years, whereas graphics
port bandwidth has undergone a much slower rate of
growth. We think that this will still be the case for at
least several years to come. Therefore, it might be
likely that our method's performance will scale better
with the increasing GPU fragment processing power
that the performance of other projection methods
which might become limited by graphics port
bandwidth. Future software and hardware evolutions
might also eliminate the point sprite size limitation.
Moreover let us remind that GPU-based raycasting
methods such as described in [Wei03a] or [Ber04a]
require to store the whole geometry in graphics
memory. Tetrahedron projection methods are not
subject to this severe limitation since they allow
streaming from main memory.
The partly GPU-based BFS method we described
takes advantage of the multiple fragment units of
GPUs in order to speed up the successor
determination. However it performs a readback of
successor information into main memory in order to
update the global node list, which costs graphics port
bandwidth and CPU time. Nevertheless, for a 1.7x106

node graph, the search time for the GPU-CPU based
method and the purely CPU-based one are about the
same, indicating that GPU successor determination
might be fast enough to compensate for the read-
back and re-send penalty as well as the additional
CPU cost. Eliminating the readback and performing
the CPU work on the GPU might increase the CPU-
GPU BFS performance in a significant way, allowing
it to sort large meshes (with more than 2x106 cells).

7. CONCLUSION AND FUTURE
WORK

After this first implementation of point sprite-based
tetrahedron projection method, we intend to test the
rendering of larger datasets, with at least 106 cells,
and compare its performance with other GPU-based
tetrahedron projection method. We also plan to
improve our partly GPU-based BFS method by
eliminating the CPU visited-node determination,
using “render to vertex array” capabilities.

8. ACKNOWLEDGMENTS
We would like to thank Jean-Philippe Nominé for his

thorough and insightful reviewing of this work, as
well as the anonymous reviewers for their useful
comments. We also would like to thank Dominique
Rodrigues for PRODIF datasets.

9. REFERENCES
[Ber04a] F.F Bernardon, C.A. Pagot, J.L.D. Comba, C.T.

Silva, GPU-based Tiled Ray Casting using Depth
Peeling, SCI Institute Technical Report, No UUSCI-
2004-006, University of Utah, 2004

[Cal04a] S.P. Callahan, M. Ikits, J.L.D. Comba, C.T. Silva,
Hardware-Assisted Visibility Sorting for Unstructured
Volume Rendering, SCI Institute Technical Report,
No UUSCI-2004-003, University of Utah, 2004

[Coo04a] R. Cook, N. Max, C.T. Silva, P.L. Williams,
Image-Space Visibility Ordering for Cell Projection
Volume Rendering of Unstructured Data,, IEEE
Transactions on Visualization and Computer Graphics,
Vol 10, N° 6, 2004

[Kin00a] D. King, C.M. Wittenbrink, H.J. Wolter, An
Architecture for Interactive Tetrahedral Volume
Rendering, HP Labs Technical Report, HPL-2000-
121R3, 2000

[Kra04a] M. Kraus, W. Qiao, D.S. Ebert, Projecting
Tetrahedra without Rendering Artifacts, Proceedings
of IEEE Visualization 2004, pp. 27-34, 2004

[Max95a] N. Max, Optical Models for Direct Volume
Rendering, Transactions on Visualization and
Computer Graphics, Vol. 1, N° 2, pp. 99-108, 1995

[Mor04a] K. Moreland, E. Angel, A Fast High Accuracy
Volume Renderer for Unstructured Data, Proceedings
of IEEE Symposium on Volume Visualization and
Graphics 2004, pp. 9-16, 2004

[Nvi04a] NVIDIA Corporation, Programming Graphics

Hardware, Eurographics 2004, 2004

[Seg03a] M. Segal, K. Akeley, The OpenGL Graphics
System: A Specification (Version 1.5), Silicon
Graphics, Inc., 2003

[Shi90a] P. Shirley, A. Tuchman, A Polygonal
Approximation to Direct Scalar Volume Rendering,
Proceedings of San Diego Workshop on Volume
Visualization, Computer Graphics, vol. 24, N° 5, pp.
63-70, 1990

[Wei02a] M. Weiler, M. Kraus, T. Ertl, Hardware-Based
View-Independent Cell Projection, Proceedings of
IEEE Symposium on Volume Visualization 2002, pp.
13-23, 2002

[Wei03a] M. Weiler, M. Kraus, M. Merz, T. Ertl,
Hardware-Based Ray Casting for Tetrahedral Meshes,
Proceedings of IEEE Visualization 2003 , pp. 333-
340, 2003

[Wei04a] M. Weiler, P.N. Mallon, M. Krauss, T. Ertl,
Texture-Encoded Tetrahedral Strips, Proceedings of
the 2004 IEEE Symposium on Volume Visualization
and Graphics, pp. 71-78, 2004

[Wil92a] P.L. Williams, Visibility-Ordering Meshed
Polyhedra, ACM Transactions on Graphics, Vol. 11,
N° 2, pp. 103-126, 1992

[Wyl02a] B. Wylie, K. Moreland, L.A. Fisk, P. Crossno,
Tetrahedral Projection using Vertex Shaders,
Proceedings of IEEE Volume Visualization and
Graphics Symposium 2002, pp. 7–12, 2002

WSCG2006 Full Papers proceedings 176 ISBN 80-86943-03-8

	C73-full.pdf
	F37-full.pdf
	Adjacency determination phase
	Breadth-First Search phase
	Breadth-first search
	Point-sprite Based Tetrahedron Rendering

	G31-full.pdf
	C73-full.pdf
	INTRODUCTION
	ATLAS OF DISCOIDS AND Z-BUFFER
	The atlas of discoid
	Z-Buffer and fragment

	ADAPTATIONS FOR REAL-TIME VISUALISATION
	Geometrical considerations
	Level of details
	Illumination model

	RESULTS
	CONCLUSION AND FUTURE WORKS
	REFERENCES

	C71-full.pdf
	B29-full.pdf

